Characterizing forbidden pairs for rainbow connection in graphs with minimum degree 2

Přemysl Holub ${ }^{1,2,3}$
Zdeněk Ryjáček ${ }^{1,2,3}$
Petr Vrána ${ }^{1,2,3}$
Ingo Schiermeyer ${ }^{4}$

September 15, 2015

Abstract

A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number $\operatorname{rc}(G)$ of G is the minimum number of colors that are needed in order to make G rainbow connected. In this paper, we complete the discussion of pairs (X, Y) of connected graphs for which there is a constant $k_{X Y}$ such that, for every connected (X, Y)-free graph G with minimum degree at least $2, \operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}($ where $\operatorname{diam}(G)$ is the diameter of $G)$, by giving a complete characterization. In particular, we show that for every connected ($Z_{3}, S_{3,3,3}$)free graph G with $\delta(G) \geq 2, \operatorname{rc}(G) \leq \operatorname{diam}(G)+156$, and, for every connected $\left(S_{2,2,2}, N_{2,2,2}\right)$-free graph G with $\delta(G) \geq 2, \operatorname{rc}(G) \leq \operatorname{diam}(G)+72$.

1 Introduction

We use [2] for terminology and notation not defined here and consider finite simple undirected graphs only. To avoid trivial cases, all graphs considered will be connected with at least one edge.

A subgraph of an edge-colored graph G is rainbow if all its edges have pairwise distinct colors, and G is rainbow-connected if, for any $x, y \in V(G)$, the graph G contains a rainbow path with x, y as endvertices. Note that the edge coloring need not be proper. The rainbow connection number of G, denoted by $\operatorname{rc}(G)$, is the minimum number of colors that are needed in order to make G rainbow connected.

[^0]This concept of rainbow connection in graphs was introduced by Chartrand et al. in [5]. An easy observation is that if G has n vertices then $\operatorname{rc}(G) \leq n-1$, since one may color the edges of a given spanning tree of G with different colors and color the remaining edges with one of the already used colors. Chartrand et al. determined the precise value of the rainbow connection number for several graph classes including complete multipartite graphs [5]. The rainbow connection number has been studied for further graph classes in $[3,7,11,15]$ and for graphs with fixed minimum degree in $[3,12,17]$. See [16] for a survey.

There are various applications for such edge colorings of graphs. One interesting example is the secure transfer of classified information between agencies (see, e.g., [8]).

For the rainbow connection number of graphs, the following results are known (and obvious).

Proposition A. Let G be a connected graph of order n. Then
(i) $1 \leq \operatorname{rc}(G) \leq n-1$,
(ii) $\operatorname{rc}(G) \geq \operatorname{diam}(G)$,
(iii) $\operatorname{rc}(G)=1$ if and only if G is complete,
(iv) $\operatorname{rc}(G)=n-1$ if and only if G is a tree.

Note that the difference $\operatorname{rc}(G)-\operatorname{diam}(G)$ can be arbitrarily large since e.g. for $G \simeq$ $K_{1, n-1}$ we have $\operatorname{rc}\left(K_{1, n-1}\right)-\operatorname{diam}\left(K_{1, n-1}\right)=(n-1)-2=n-3$. Especially, each bridge requires a single color. For bridgeless graphs, the following upper bound is known.

Theorem B [1]. For every connected bridgeless graph G with radius r,

$$
\operatorname{rc}(G) \leq r(r+2)
$$

Moreover, for every integer $r \geq 1$, there exists a bridgeless graph G with radius r and $\operatorname{rc}(G)=r(r+2)$.

Note that this upper bound is still quadratic in terms of the diameter of G.
Let \mathcal{F} be a family of connected graphs. We say that a graph G is \mathcal{F}-free if G does not contain an induced subgraph isomorphic to a graph from \mathcal{F}. Specifically, for $\mathcal{F}=\{X\}$ we say that G is X-free, and for $\mathcal{F}=\{X, Y\}$ we say that G is (X, Y)-free. The members of \mathcal{F} will be referred to in this context as forbidden induced subgraphs.

If X_{1}, X_{2} are graphs, we write $X_{1} \stackrel{\text { IND }}{\subset} X_{2}$ if X_{1} is an induced subgraph of X_{2} (not excluding the possibility that $X_{1}=X_{2}$), and if $\left\{X_{1}, Y_{1}\right\},\left\{X_{2}, Y_{2}\right\}$ are pairs of graphs, we write $\left\{X_{1}, Y_{1}\right\} \stackrel{\text { IND }}{\subset}\left\{X_{2}, Y_{2}\right\}$ if either $X_{1} \stackrel{\text { IND }}{\subset} Y_{1}$ and $X_{2} \stackrel{\text { IND }}{\subset} Y_{2}$, or $X_{1} \stackrel{\text { IND }}{\subset} Y_{2}$ and $X_{2} \stackrel{\text { IND }}{\subset} Y_{1}$. It is straightforward to see that if $X_{1} \stackrel{\text { IND }}{\subset} X_{2}$, then every X_{1}-free graph is X_{2}-free, and if $\left\{X_{1}, Y_{1}\right\} \stackrel{\text { IND }}{\subset}\left\{X_{2}, Y_{2}\right\}$, then every $\left(X_{1}, Y_{1}\right)$-free graph is $\left(X_{2}, Y_{2}\right)$-free.

Although, by Theorem $\mathrm{B}, \operatorname{rc}(G)$ can be quadratic in terms of diam (G), it turns out that forbidden subgraph conditions can remarkably lower the upper bound on $\operatorname{rc}(G)$.

In [9], the authors considered the question for which families \mathcal{F} of connected graphs, a connected \mathcal{F}-free graph satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, where $k_{\mathcal{F}}$ is a constant (depending on \mathcal{F}), and gave a complete answer for $1 \leq|\mathcal{F}| \leq 2$ by the following two results (where N denotes the net, i.e. the graph obtained by attaching a pendant edge to each vertex of a triangle).

Theorem C [9]. Let X be a connected graph. Then there is a constant k_{X} such that every connected X-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X}$, if and only if $X=P_{3}$.

Theorem D [9]. Let X, Y be connected graphs, $X, Y \neq P_{3}$. Then there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}$, if and only if either $\{X, Y\} \subset{ }^{\text {IND }}\left\{K_{1, r}, P_{4}\right\}$ for some $r \geq 4$, or $\{X, Y\} \subset{ }^{\text {IND }}\left\{K_{1,3}, N\right\}$.

Let $S_{i, j, k}$ denote the graph obtained by identifying one endvertex of three vertex disjoint paths of lengths i, j, k, Z_{i} the graph obtained by attaching a path of length i to a vertex of a triangle, and let $N_{i, j, k}$ denote the graph obtained by identifying each vertex of a triangle with an endvertex of one of three vertex disjoint paths of lengths i, j, k. We also use Z_{1}^{t} to denote the graph obtained by attaching a triangle to each vertex of degree 1 of a star $K_{1, t}$ (see Fig. 1).

Figure 1: The graphs $S_{2,2,2}, S_{3,3,3}, S_{1,1,4}, Z_{3}, N_{2,2,2}$ and Z_{1}^{t}.
In [10], the authors considered an analogous question for graphs with minimum degree at least two and gave the following results.

Theorem E [10]. Let X be a connected graph. Then there is a constant k_{X} such that every connected X-free graph G with $\delta(G) \geq 2$ satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X}$, if and only if $X \stackrel{\text { IND }}{\subset} P_{5}$.

Theorem F [10]. Let $X, Y \stackrel{\text { IND }}{\not \subset} P_{5}$ be a pair of connected graphs for which there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G with $\delta(G) \geq 2$ satisfies $\mathrm{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}$. Then $\{X, Y\}{ }^{\text {IND }} \subset\left\{P_{6}, Z_{1}^{r}\right\}$ for some $r \in \mathbb{N}$, or $\{X, Y\} \subset \subset{ }^{I N D}\left\{Z_{3}, P_{7}\right\}$, or $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{Z_{3}, S_{1,1,4}\right\}$, or $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{Z_{3}, S_{3,3,3}\right\}$, or $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{S_{2,2,2}, N_{2,2,2}\right\}$.

In [10], it was also shown that for the first three of the forbidden pairs listed in Theorem F, the converse is also true.

Theorem G [10].
(i) Let r be a positive integer and let G be a $\left(P_{6}, Z_{1}^{r}\right)$-free graph with $\delta(G) \geq 2$. Then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+20+r$.
(ii) Let G be a connected $\left(Z_{3}, P_{7}\right)$-free graph with $\delta(G) \geq 2$. Then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+$ 30.
(iii) Let G be a connected $\left(Z_{3}, S_{1,1,4}\right)$-free graph with $\delta(G) \geq 2$. Then $\operatorname{rc}(G) \leq$ $\operatorname{diam}(G)+59$.

In this paper, we complete the characterization of forbidden pairs (X, Y) for which there is a constant $k_{X Y}$ such that every (X, Y)-free graph G with $\delta(G) \geq 2$ has rc $(G) \leq$ $\operatorname{diam}(G)+k_{X Y}$, by proving sufficiency for the remaining pairs listed in Theorem F. In particular, we show the following:

- in Theorem 1, we show that every connected ($Z_{3}, S_{3,3,3}$)-free graph G with $\delta(G) \geq 2$ has $\operatorname{rc}(G) \leq \operatorname{diam}(G)+156$, and
- in Theorem 2, we show that every connected $\left(S_{2,2,2}, N_{2,2,2}\right)$-free graph G with $\delta(G) \geq 2$ has rc $(G) \leq \operatorname{diam}(G)+72$.
Finally, in Theorem 3, we summarize these results and the results of the paper [10] and we give a complete characterization of all forbidden pairs $\{X, Y\}$ implying $\operatorname{rc}(G) \leq$ $\operatorname{diam}(G)+k_{X Y}$ in (X, Y)-free graphs G with $\delta(G) \geq 2$.

2 Definitions and notations

In this section, we summarize some further notations and known facts that will be needed for the proofs of our results.

A path with endvertices x, y will be referred to as an (x, y)-path, and for $F \subset G$, an (x, y)-path with $y \in V(F)$ is called an (x, F)-path. For a nontrivial (x, y)-path P, we set $\operatorname{int}(P)=V(P) \backslash\{x, y\}$, and two paths P, Q are said to be internally vertex-disjoint if $\operatorname{int}(P) \cap \operatorname{int}(Q)=\emptyset$. We use $\operatorname{rad}(G)$ for the radius of G and $\operatorname{diam}(G)$ for the diameter of G. If $x, y \in V(G)$ are at distance $\operatorname{diam}(G)$ and P is a shortest (x, y)-path, we say that P is a diameter path. If C is a cycle, then a subgraph of C which is a path is called an arc of C, and for $A, B \subset V(C)$, an arc of C with endvertices in A and B, respectively, is called an (A, B)-arc of C. For a path P and $x, y \in V(P)$, a subpath of P with origin at x and end at y is denoted by $x P y$, and for a cycle Q (with a fixed orientation), we use $x Q y$ to denote the (x, y)-arc of Q. The same arc, traversed in the opposite orientation, is denoted by $y \overleftarrow{Q} x$. For $X, Y \subset V(G)$, we use $E[X, Y]$ to denote the set of edges of G with one vertex in X and the other vertex in Y. We will also sometimes use $N_{G}[P]$ to denote the closed neighborhood of a subgraph $P \subset G$. Finally, a bridge of G is an edge $e \in E(G)$ such that $G-e$ has more components than G.

A dominating set D in a graph G is called a two-way dominating set if D includes all vertices of G of degree 1 . In addition, if $G[D]$ is connected, we call D a connected two-way dominating set. Note that if $\delta(G) \geq 2$, then every (connected) dominating set in G is a (connected) two-way dominating set.

Theorem H [4]. If D is a connected two-way dominating set in a graph G, then $\operatorname{rc}(G) \leq \operatorname{rc}(G[D])+3$.

A set $D \subset V(G)$ is called a k-step dominating set of $G, k \geq 0$, if every vertex of G is at a distance at most k from D.

Theorem I [6]. If G is a connected graph, and D^{k} is a connected k-step dominating set of G, then G has a connected $(k-1)$-step dominating set $D^{k-1} \supset D^{k}$ such that $\operatorname{rc}\left(G\left[D^{k-1}\right]\right) \leq \operatorname{rc}\left(G\left[D^{k}\right]\right)+\max \left\{2 k+1, b_{k}\right\}$, where b_{k} is the number of bridges of G in $E\left(D^{k}, N\left(D^{k}\right)\right)$.

In our proofs, we will use several times the following easy consequence of Theorem I.
Corollary J. Let G be a connected graph, and let D be a connected k-step dominating set of G such that $G[D]$ contains all bridges of G. Then $\operatorname{rc}(G) \leq \operatorname{rc}(G[D])+k(k+2)$.

Proof. Let D be a connected k-step dominating set of G such that $G[D]$ contains all bridges of G. By Theorem I, there is a connected $(k-1)$-step dominating set D^{k-1} in G such that $D^{k-1} \supset D$ and $\operatorname{rc}\left(G\left[D^{k-1}\right]\right) \leq \operatorname{rc}(G[D])+(2 k+1)$. By induction, we get a sequence of sets $D, D^{k-1}, D^{k-2}, \ldots, D^{0}$ such that $D^{i-1} \supset D^{i}$ and D^{i-1} is a connected ($i-1$)-step dominating set in $G, i=k, \ldots, 1$, (i.e., specifically, $D^{0}=V(G)$), and such that $\operatorname{rc}(G)=\operatorname{rc}\left(G\left[D^{0}\right]\right) \leq \operatorname{rc}(G[D])+(2 k+1)+(2 k-1)+\ldots+3=\operatorname{rc}(G[D])+\frac{k(2 k+4)}{2}=$ $\operatorname{rc}(G[D])+k(k+2)$.

We will also use the following two results on bridgeless graphs of small diameter.
Theorem K [13]. If G is a connected bridgeless graph of diameter 2 , then $\operatorname{rc}(G) \leq 5$.

Theorem L [14]. If G is a connected bridgeless graph of diameter 3 , then $\operatorname{rc}(G) \leq 9$.

3 Results

The following two theorems are the main results of this paper.
Theorem 1. Let G be a connected $\left(Z_{3}, S_{3,3,3}\right)$-free graph with $\delta(G) \geq 2$. Then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+156$.

Theorem 2. Let G be a connected $\left(S_{2,2,2}, N_{2,2,2}\right)$-free graph with $\delta(G) \geq 2$. Then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+72$.

Summarizing the statements of Theorems 1 and 2 with those of Theorems F and G, we obtain the following characterization.

Theorem 3. Let $X, Y \stackrel{I N D}{\not \subset} P_{5}$ be a pair of connected graphs. Then there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G with $\delta(G) \geq 2$ satisfies rc $(G) \leq$ $\operatorname{diam}(G)+k_{X Y}$, if and only if either $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{P_{6}, Z_{1}^{r}\right\}$ for some $r \in \mathbb{N}$, or $\{X, Y\} \subset$ $\left\{Z_{3}, P_{7}\right\}$, or $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{Z_{3}, S_{1,1,4}\right\}$, or $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{Z_{3}, S_{3,3,3}\right\}$, or $\{X, Y\} \stackrel{\text { IND }}{\subset}\left\{S_{2,2,2}, N_{2,2,2}\right\}$.

4 Proofs

Let $P=x_{0}, x_{1}, \ldots, x_{\ell}$ be a shortest $\left(x_{0}, x_{\ell}\right)$-path in G and let $z \in V(G) \backslash V(P)$. If $\left|N_{P}(z)\right| \geq 2$ and $\left\{x_{i}, x_{j}\right\} \subset N_{P}(z)$, then $|i-j| \leq 2$ and $\left|N_{P}(z)\right| \leq 3$ since P is a shortest path. In the proofs of Theorems 1 and 2, we will use the following notation (for more details see Fig. 2):

- $M_{i}^{1}(P):=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{x_{i}\right\}\right\}$ for $0 \leq i \leq \ell$,
- $N_{i}^{1}(P):=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z) \supset\left\{x_{i-1}, x_{i+1}\right\}\right\}$ for $1 \leq i \leq \ell-1$,
- $O_{i}^{1}(P):=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{x_{i-1}, x_{i}\right\}\right\}$ for $1 \leq i \leq \ell$.

We set $M^{1}(P)=\bigcup_{i=0}^{\ell} M_{i}^{1}(P), N^{1}(P)=\bigcup_{i=1}^{\ell-1} N_{i}^{1}(P), O^{1}(P)=\bigcup_{i=1}^{\ell} O_{i}^{1}(P)$, and $R^{1}(P)=$ $V(G) \backslash N_{G}[P]$. For $j=1,2,3, \ldots, \ell-1$ we further denote

- $M_{i}^{j+1}(P)=N_{G}\left(M_{i}^{j}(P)\right) \cap R^{j}(P)$ for $0 \leq i \leq \ell, N_{i}^{j+1}(P)=N_{G}\left(N_{i}^{j}(P)\right) \cap R^{j}(P)$ for $1 \leq i \leq \ell-1, O_{i}^{j+1}(P)=N_{G}\left(O_{i}^{j}(P)\right) \cap R^{j}(P)$ for $1 \leq i \leq \ell$,
- $M^{j+1}(P)=\bigcup_{i=0}^{\ell} M_{i}^{j+1}(P), N^{j+1}(P)=\bigcup_{i=1}^{\ell-1} N_{i}^{j+1}(P), O^{j+1}(P)=\bigcup_{i=1}^{\ell} O_{i}^{j+1}(P)$,
- $R^{j+1}(P)=R^{j}(P) \backslash\left(M^{j+1}(P) \cup N^{j+1}(P) \cup O^{j+1}(P)\right)$.

We also denote $M_{i}(P)=\bigcup_{j=1}^{\ell} M_{i}^{j}(P), N_{i}(P)=\bigcup_{j=1}^{\ell} N_{i}^{j}(P)$ and $O_{i}(P)=\bigcup_{j=1}^{\ell} O_{i}^{j}(P)$.
If the path P is clear from the context, we will omit the letter P in all the above notations, i.e., we will shortly write $M_{i}^{j}, N_{i}^{j}, O_{i}^{j}$ etc. for $M_{i}^{j}(P), N_{i}^{j}(P), O_{i}^{j}(P)$ etc., respectively.

Figure 2: The sets M_{i}^{j}, N_{i}^{j} and O_{i}^{j}.

4.1 The pair $\left(Z_{3}, S_{3,3,3}\right)$

Before proving sufficiency for the pair $X=Z_{3}$ and $Y=S_{3,3,3}$, we give some auxiliary statements.

Lemma 4. Let G be a connected bridgeless Z_{3}-free graph with $\omega(G) \geq 3$ and $\delta(G) \geq 2$. Then $\operatorname{rc}(G) \leq \min \{24, \operatorname{diam}(G)+20\}$.

Proof. Let $S \subset V(G)$ denote the vertex set of a maximum clique in G. Suppose that there is a vertex $z \in V(G) \backslash S$ at distance $k \geq 4$ from $G[S]$ in G, and let P : $y_{0}, y_{1}, y_{2}, \ldots, y_{k}=z$, be a shortest path between z and some vertex $y_{0} \in S$. Since P is shortest, y_{0} is the only vertex of P belonging to S, P is induced and y_{i} has no neighbor in S for $2 \leq i \leq k$. Since S is maximum, $v_{0} y_{1} \notin E(G)$ for some $v_{0} \in S$. If there is another $v_{1} \in S$ with $v_{1} \neq v_{0}$ and $v_{1} y_{1} \notin E(G)$, then $G\left[\left\{y_{0}, v_{0}, v_{1}, y_{1}, \ldots, y_{k}\right\}\right] \simeq Z_{k}$, otherwise, for some $v_{1} \in S, v_{1} \neq v_{0}$, we have $G\left[\left\{y_{1}, y_{0}, v_{1}, y_{2}, \ldots, y_{k}\right\}\right] \simeq Z_{k-1}$. Since $k \geq 4, G$ contains an induced Z_{3}, a contradiction. Therefore, $\operatorname{dist}_{G}(x, y) \leq 3$ for every pair of vertices $x \in S$ and $y \in V(G) \backslash S$, implying $\operatorname{rad}(G) \leq 4$. By Theorem B, we have $\operatorname{rc}(G) \leq 24$. If $\operatorname{diam}(G) \geq 4$, then $\operatorname{rc}(G) \leq \operatorname{diam}(G)+20$. Now, by Theorems K and L, we obtain $\operatorname{rc}(G) \leq \min \{24, \operatorname{diam}(G)+20\}$.

Lemma 5. Let G be a connected Z_{3}-free graph with $\omega(G) \geq 3$ and $\delta(G) \geq 2$ such that G contains a bridge. Then $\operatorname{rc}(G) \leq 4$.

Proof. Let $x y$ be a bridge in G. Since G is connected, $G-x y$ has two components. Let G_{1} denote a component containing a triangle and let G_{2} denote the other component of $G-x y$. Up to a symmetry, suppose that $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. Every vertex of G_{2} is adjacent to y, for otherwise we get an induced Z_{3} with a triangle in G_{1}. Then $\omega\left(G_{2}\right) \geq 3$ since $\delta(G) \geq 2$. Now, every vertex of G_{1} is adjacent to x, otherwise we get an induced Z_{3} with a triangle in G_{2}. This implies that $D=\{x, y\}$ is a two-way dominating set in G and, by Theorem $\mathrm{H}, \operatorname{rc}(G) \leq \operatorname{rc}(G[D])+3=4$.

The following easy observation is a useful tool.
Lemma 6. Let G be a triangle-free graph with $\delta(G) \geq 2$, let $b=u v$ be a bridge in G, and let G_{u}, G_{v} denote the components of $G-b$ such that $u \in V\left(G_{u}\right)$ and $v \in V\left(G_{v}\right)$. Then there is a vertex at distance two from u in G_{u} and a vertex at distance two from v in G_{v}.

Proof. Consider a component G_{u} of the graph $G-b$. If every vertex x of G_{u} is a neighbor of u, then $d_{G}(x)=1$ since G is triangle-free, a contradiction. The proof for G_{v} is symmetric.

Proof of Theorem 1. Let G be a $\left(Z_{3}, S_{3,3,3}\right)$-free graph. If G contains a triangle, then the statement follows from Lemma 4 and 5 . Thus, we assume that G is triangle-free.

First suppose that $\operatorname{diam}(G) \leq 5$. If G is bridgeless, then $\operatorname{rc}(G) \leq 35 \leq \operatorname{diam}(G)+35$ by Theorem B. Thus, we assume that G contains a bridge b, and let G_{1}, G_{2} denote the components of $G-b$. By Lemma $6, \operatorname{diam}(G)=5$ and b is the central edge of a diameter path in G. Since $\operatorname{diam}(G)=5, \operatorname{rad}\left(G_{1}\right)=\operatorname{rad}\left(G_{2}\right)=2$ and G_{1}, G_{2} are both bridgeless. Then, by Theorem B, $\operatorname{rc}\left(G_{1}\right) \leq 8$ and $\mathrm{rc}\left(G_{2}\right) \leq 8$. Thus we get $\mathrm{rc}(G) \leq \mathrm{rc}\left(G_{1}\right)+\mathrm{rc}\left(G_{2}\right)+1$ since we need an extra color for the bridge b, implying that $\operatorname{rc}(G) \leq 17=\operatorname{diam}(G)+12$.

For the sets M_{i}^{j} and N_{i}^{j}, we have the following statement.
Claim 1.1. Let $a, b \in V(G)$ be vertices at distance $\operatorname{dist}_{G}(a, b) \geq 6$, and let $P: a=$ $x_{0}, x_{1}, \ldots, x_{k}=b(k \geq 6)$ be a shortest (a, b)-path in G. Then
(i) $M_{i}^{j}=\emptyset$ for $3 \leq i \leq k-3$ and $j \geq 3$,
(ii) $N_{i}^{j}=\emptyset$ for $3 \leq i \leq k-3$ and $j \geq 4$,
(iii) $N_{G}(y) \subset\left(M^{1} \cup N^{1}\right)$ for every $y \in M_{i}^{2}, 3 \leq i \leq k-3$,
(iv) $N_{G}(y) \subset N_{i}^{2}$ for every $y \in N_{i}^{3}, 3 \leq i \leq k-3$.

Proof. We prove the statement (i). Let, to the contrary, $z \in M_{i}^{3}$ for some $3 \leq i \leq k-3$. Let Q be a shortest $\left(z, x_{i}\right)$-path in G. Then the set of vertices $\left\{x_{i-3}, x_{i-2}, \ldots x_{i+3}\right\} \cup V(Q)$ induces an $S_{3,3,3}$, a contradiction. The proof of (ii) and (iii) is analogous. To prove (iv), let $y \in N_{i}^{3}$ (for some $i, 3 \leq i \leq k-3$), let $y^{2} \in N(y) \cap N_{i}^{2}$, and let $y^{1} \in N\left(y^{2}\right) \cap N_{i}^{1}$. If $z \in N(y) \backslash\left\{y^{2}\right\}$, then the set $\left\{y^{1}, y^{2}, y, z, x_{i-1}, x_{i-2}, x_{i-3}, x_{i+1}, x_{i+2}, x_{i+3}\right\}$ induces an $S_{3,3,3}$, unless $z \in N\left(y^{1}\right)$, implying $z \in N_{i}^{2}$.

For the rest of the proof, we suppose that $d=\operatorname{diam}(G) \geq 6$. We choose a diameter path $P: x_{0}, x_{1}, \ldots, x_{d}$ in G. Unless otherwise stated, the sets M_{i}^{j}, N_{i}^{j} and R^{j}, as introduced above, will be always understood with respect to this fixed diameter path P. Since G is triangle-free, $N_{P}(z)=\left\{x_{i-1}, x_{i+1}\right\}$ for any $z \in N_{i}^{1}, 1 \leq i \leq d-1$, and $O_{i}^{1}=\emptyset$ for $1 \leq i \leq d$.

Claim 1.2. \quad The path P contains all bridges of G.

Figure 3: The paths P, Q_{1} and Q_{2} in the proof of Claim 1.2

Proof. Let, to the contrary, $b=u_{1} u_{2}$ be a bridge with $b \notin E(P)$, and choose the notation such that u_{1} is in the component B_{P} of $G-b$ containing P, and u_{2} is in the other component B_{R} of $G-b$ (see Fig. 3). By Lemma $6, B_{R}$ contains a vertex w with $\operatorname{dist}\left(u_{2}, w\right)=2$ (i.e., $\left.\operatorname{dist}\left(u_{1}, w\right)=3\right)$. Let Q_{1} denote a shortest $\left(w, x_{0}\right)$-path in G and Q_{2} a shortest $\left(w, x_{d}\right)$-path in G. Let v be the last common vertex of Q_{1} and Q_{2}, i.e., a vertex such that the paths $v Q_{1} x_{0}$ and $v Q_{2} x_{d}$ are internally vertex-disjoint. Denote $s=\operatorname{dist}\left(v, x_{0}\right)=\left|E\left(v Q_{1} x_{0}\right)\right|$, $t=\operatorname{dist}\left(v, x_{d}\right)=\left|E\left(v Q_{2} x_{d}\right)\right|$, and $r=\operatorname{dist}(v, w)=\left|E\left(v Q_{1} w\right)\right|=\left|E\left(v Q_{2} w\right)\right|$. Obviously, $r \geq 3$.

Now, choose the paths Q_{1}, Q_{2} such that
(i) $\left|E\left(Q_{1}\right)\right|$ is minimum and $\left|E\left(Q_{2}\right)\right|$ is minimum (as already mentioned), and
(ii) subject to $(i), s+t=\left|E\left(v Q_{1} x_{0}\right)\right|+\left|E\left(v Q_{2} x_{d}\right)\right|$ is minimum.

Since $d=\operatorname{diam}(G)$, we have

$$
\begin{align*}
& \operatorname{dist}\left(x_{0}, w\right)=s+r \leq d \tag{1}\\
& \operatorname{dist}\left(x_{d}, w\right)=t+r \leq d \tag{2}
\end{align*}
$$

Since $x_{0} \overleftarrow{Q_{1}} v Q_{2} x_{d}$ is an $\left(x_{0}, x_{d}\right)$-path and P is a diameter path, we have

$$
\begin{equation*}
\operatorname{dist}\left(x_{0}, v\right)+\operatorname{dist}\left(x_{d}, v\right)=s+t \geq d \tag{3}
\end{equation*}
$$

We show that $t \geq 3$: if $t \leq 2$, then from (3) we have $s+2 \geq s+t \geq d$, from which $s \geq d-2$, and then (1) implies $d \geq s+r \geq d-2+r \geq d-2+3=d+1$, a contradiction. Hence $t \geq 3$, and, symmetrically, (using (2) instead of (1)), $s \geq 3$. Hence the graph F, consisting of the paths $v Q_{1} x_{0}, v Q_{2} x_{d}$ and $v \overleftarrow{Q_{1}} w$, contains a subgraph isomorphic to the graph $S_{3,3,3}$ (with center at v). Since G is $S_{3,3,3}$ free, F is not an induced subgraph of G.

Thus, let $h=z_{1} z_{2}$ be an arbitrary edge with $z_{1}, z_{2} \in V(F)$ but $h \in E(G) \backslash E(F)$. Since both Q_{1} and Q_{2} are shortest (hence chordless), up to a symmetry, $z_{1} \in V\left(v^{+} Q_{1} Q_{1} x_{0}\right)$ and $z_{2} \in V\left(v^{+Q_{2}} Q_{2} x_{d}\right)$, where $v^{+Q_{1}}$ and $v^{+Q_{2}}$ denotes the successor of v on Q_{1} and Q_{2}, respectively. Set $p=\operatorname{dist}\left(v, z_{1}\right)=\left|E\left(v Q_{1} z_{1}\right)\right|$ and $q=\operatorname{dist}\left(v, z_{2}\right)=\left|E\left(v Q_{2} z_{2}\right)\right|$. Obviously, $p \geq 1$ and $q \geq 1$.

We show that $p=q$. First suppose that $p \geq q+1$. Then, considering the paths Q_{1} and $Q_{2}^{\prime}=w Q_{1} z_{1} z_{2} Q_{2} x_{d}$, we have a contradiction with the choice of Q_{1} and Q_{2} : if $p>q+1$, then Q_{2}^{\prime} is shorter than Q_{2}, contradicting (i), and if $p=q+1$, then $\left|E\left(Q_{2}\right)\right|=\left|E\left(Q_{2}^{\prime}\right)\right|$, but $\left|E\left(z_{1} Q_{1} x_{0}\right)\right|+\left|E\left(z_{1} Q_{2}^{\prime} x_{d}\right)\right|<\left|E\left(v Q_{1} x_{0}\right)\right|+\left|E\left(v Q_{2} x_{d}\right)\right|$, contradicting (ii) (where z_{1} plays the role of v). Hence $p<q+1$. Symmetrically, $q<p+1$, implying $p=q$. Moreover, since G is triangle-free, we have

$$
\begin{equation*}
p=q \geq 2 \tag{4}
\end{equation*}
$$

Now, we choose the edge $h=z_{1} z_{2}$ such that
(iii) subject to (i) and (ii), $p=q$ is maximum.

By (4), and since $r \geq 3, q+r \geq 5$, i.e., $r \geq 5-q$. From (2) we then have $d \geq t+r \geq t+5-q$, from which $t-q \leq d-5$. Since the path $x_{0} \overleftarrow{Q_{1}} z_{1} z_{2} Q_{2} x_{d}$ is an $\left(x_{0}, x_{d}\right)$-path of length $s-p+1+t-q$, and P is a diameter path, $d \leq s-p+1+t-q \leq s-p+1+d-5$, from which we conclude that $s-p \geq 4$. Thus, $\operatorname{dist}\left(z_{1}, x_{0}\right)=\left|E\left(z_{1} Q_{1} x_{0}\right)\right|=s-p \geq 4$. Symmetrically, $\operatorname{dist}\left(z_{2}, x_{d}\right)=\left|E\left(z_{2} Q_{2} x_{d}\right)\right|=t-q \geq 4$, and hence $\left|E\left(z_{1} z_{2} Q_{2} x_{d}\right)\right| \geq 5$.

Thus, the graph consisting of the paths $z_{1} Q_{1} x_{0}, z_{1} z_{2} Q_{2} x_{d}$ and $z_{1} \overleftarrow{Q_{1}} w$ contains a subgraph F^{\prime} isomorphic to $S_{3,3,3}$ (with center at z_{1}). By the choice (iii), F^{\prime} is an induced subgraph of G, a contradiction.

We set

$$
J_{C}=\bigcup_{i=3}^{d-3}\left(M_{i} \cup N_{i} \cup\left\{x_{i}\right\}\right)
$$

By Claim 1.1, $\operatorname{dist}_{G}(x, P) \leq 3$ for each $x \in J_{C}$. Moreover, the vertices in J_{C} at distance 3 from P have no neighbors in $V(G) \backslash J_{C}$, as shown in the following statement.

Claim 1.3. Let $x \in J_{C}$. If $\operatorname{dist}_{G}(x, P)=3$, then x has no neighbor in $V(G) \backslash J_{C}$.
Proof. If $x \in J_{C}$ is at distance three from P, then $x \in N_{i}^{3}$ by Claim 1.1(i) for some $i, 3 \leq i \leq d-3$, and by Claim $1.1(i v)$, every neighbor of x belongs to N_{i}^{2}, and hence to J_{C}.

We also show the following observation.
Claim 1.4. Let $u \in V(G) \backslash J_{C}$ and $v \in J_{C}$ be such that $u v \in E(G)$. Then $v \in$ $M_{i} \cup N_{i} \cup\left\{x_{3}\right\}$ for some $i \leq 6$, or $v \in M_{i} \cup N_{i} \cup\left\{x_{d-3}\right\}$ for some $i \geq d-6$.

Proof. Up to a symmetry, suppose that $u \in\left(M_{0} \cup M_{1} \cup N_{1} \cup M_{2} \cup N_{2} \cup\left\{x_{0}, x_{1}, x_{2}\right\}\right) \backslash J_{C}$. If $v \in M_{i}$ for some $i \geq 7$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 3$ by Claim 1.1 (iii), implying that $i \leq 6$, for otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. Analogously, if $v \in N_{i}$ for some $i \geq 7$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 4$ by Claim 1.1(iv), implying that $i \leq 6$, for otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is shorter than P, a contradiction. Similarly, if $v=x_{i}$ for some $i \geq 5$, then there is a shorter $\left(x_{0}, x_{d}\right)$-path containing the edge $u v$, a contradiction again. Finally, if $v=x_{4}$, then $u \in M_{4} \cup N_{3} \cup N_{5}$, contradicting the choice of u.

We now distinguish two cases.
Case 1: \quad The set J_{C} is a cutset of G.
We show that there is no vertex at distance greater than 5 from P in G.
Claim 1.5. For every $z \in V(G) \backslash J_{C}$, $\operatorname{dist}_{G}(z, P) \leq 5$.
Proof. Let, to the contrary, $\ell=\operatorname{dist}_{G}(z, P) \geq 6$ for some $z \in V(G) \backslash J_{C}$. Up to a symmetry, suppose that $z \in M_{0} \cup M_{1} \cup N_{1} \cup M_{2} \cup N_{2}$. Let Q_{1} denote a shortest $\left(z, x_{d}\right)$-path in G, and let y^{\prime} denote the last vertex of Q_{1} in J_{C} and y the successor of y^{\prime} on Q_{1}, both in an orientation of Q_{1} from x_{d} (note that y^{\prime} exists since J_{C} is a cutset). From Claim 1.3 and from the fact that $y \notin J_{C}, \operatorname{dist}_{G}(y, P) \leq 2$. Then clearly $\operatorname{dist}_{G}\left(x_{0}, y\right) \leq 4$ and $\operatorname{dist}_{G}(y, z) \geq$ $\ell-2 \geq 4$. We have $d \geq \operatorname{dist}_{G}\left(z, x_{d}\right) \geq \operatorname{dist}_{G}(z, y)+\operatorname{dist}_{G}\left(y, x_{d}\right) \geq 4+\operatorname{dist}_{G}\left(y, x_{d}\right)$, implying that $\operatorname{dist}_{G}\left(y, x_{d}\right) \leq d-4$. But $d \leq \operatorname{dist}_{G}\left(x_{0}, y\right)+\operatorname{dist}_{G}\left(y, x_{d}\right)$, implying that $\operatorname{dist}_{G}\left(y, x_{d}\right) \geq d-4$. Hence dist ${ }_{G}\left(y, x_{d}\right)=d-4, \operatorname{dist}_{G}\left(y, x_{0}\right)=4, \operatorname{dist}_{G}(z, y)=4, y \in M_{2}^{2}$ (by Claim 1.3) and $z \in M_{2}^{6}$. We denote Q_{2} a shortest (y, x_{2})-path. Then the path $x_{1} x_{2} Q_{2} y Q_{1} z$ is induced, and the path $x_{0} x_{1} x_{2} Q_{2} y Q_{1} x_{d}$ is a diameter path. Recall that Q_{1} is a shortest path. Now, if $d \geq 7$, then the subgraph consisting of the paths $y Q_{2} x_{2} x_{1}$, $y Q_{1} x_{d}$ and $y \overleftarrow{Q_{1}} z$ contains an induced $S_{3,3,3}$ (with center at y). Hence $d=6$, and then $\operatorname{dist}_{G}\left(y, x_{d}\right)=2$, implying $y^{\prime} x_{6} \in E(G)$. But then, by the definition of $J_{C}, y^{\prime} \in N_{3}^{1} \cup M_{3}^{1}$, contradicting the fact that P is a shortest path.

Now, by Claim 1.5, the set $V(P)$ is 5 -step dominating in G, hence by Corollary J and by Claim 1.2, we have $\operatorname{rc}(G) \leq \operatorname{diam}(G)+5 \cdot 7 \leq \operatorname{diam}(G)+35$.

Case 2: The set J_{C} is not a cutset of G.
If G is not bridgeless, then all bridges of G are on P by Claim 1.2, and at least one vertex of each bridge is in J_{C} by Lemma 6. But then J_{C} is a cutset of G, contradicting the assumption of Case 2. Thus, G is bridgeless.

First suppose that $d=\operatorname{diam}(G) \leq 12$. Since G is bridgeless, by Theorem B, we have $\operatorname{rc}(G) \leq \operatorname{rad}(G)(\operatorname{rad}(G)+2) \leq d(d+2)$. It is easy to verify that, for $d \leq 12$, $d(d+2)=d+d(d+1) \leq d+156$, we have $\operatorname{rc}(G) \leq \operatorname{diam}(G)+156$, and we are done.

Thus, for the rest of the proof, we suppose that $d=\operatorname{diam}(G) \geq 13$. We introduce the following notation:

$$
\begin{aligned}
& J_{1}=\bigcup_{i=3}^{6}\left(M_{i} \cup N_{i} \cup\left\{x_{i}\right\},\right. \\
& J_{2}=\bigcup_{i=d-6}^{d-3}\left(M_{i} \cup N_{i} \cup\left\{x_{i}\right\}\right), \\
& J_{V}=J_{C} \backslash\left(J_{1} \cup J_{2}\right) .
\end{aligned}
$$

We further denote P^{\prime} a shortest $\left(x_{0}, x_{d}\right)$-path in $G-J_{C}$. Note that $J_{1} \cap J_{2}=\emptyset$ since $d \geq 13$.

Note that, by Claim 1.4, there is no edge between J_{V} and $V(G) \backslash J_{C}$.

If $F \subset G$ is a cycle or a path, and $A^{I}=v_{1} F v_{2}$ is an arc of F, we say that A^{I} is J_{C}-internal if $V\left(A^{I}\right) \subset J_{C}, A^{I}$ is maximal (in terms of the number of vertices) with this property and $v_{1} \in J_{j}$ and $v_{2} \in J_{3-j}$ for some $j \in\{1,2\}$. We also say that an arc $A^{E}=w_{1} F w_{2}$ is J_{C}-external if no internal vertex of A^{E} belongs to J_{C}, and $w_{1} \in J_{j}$ and $w_{2} \in J_{3-j}$ for some $j \in\{1,2\}$. We will use $j_{C}^{I}(F)$ to denote the number of internally vertex-disjoint J_{C}-internal arcs of F and $j_{C}^{E}(F)$ for the number of internally vertex-disjoint $J_{C^{-}}$external arcs of F. Finally, we say that an arc A of F is a $J_{C^{-}}$arc if A is $J_{C^{-}}$-internal or J_{C}-external.

Let now C be a shortest cycle in G such that $j_{C}^{I}(C)$ is odd (note that C exists since the subgraph $G\left[V(P) \cup V\left(P^{\prime}\right)\right]$ certainly contains such a cycle.) We observe that $j_{C}^{E}(C)$ is also odd. Clearly, the total number of arcs of C between some vertex of J_{1} and some vertex of J_{2} is even. Since $j_{C}^{I}(C)$ is odd, there must be an arc of C between J_{1} and J_{2} which is not J_{C}-internal. Let A^{\prime} be such an arc and choose A^{\prime} shortest possible. Since A^{\prime} is not J_{C}-internal, A^{\prime} contains some vertex $z \in V(G) \backslash J_{C}$, and since A^{\prime} is shortest, $\operatorname{int}\left(A^{\prime}\right) \cap\left(J_{1} \cup J_{2}\right)=\emptyset$. By Claim 1.4, we also have $\operatorname{int}\left(A^{\prime}\right) \cap J_{V}=\emptyset$, since there is no edge between z and J_{V}. Thus, A^{\prime} is $J_{C^{-}}$external. This means that every arc of C between J_{1} and J_{2} is either J_{C}-internal or $J_{C^{-}}$-external, hence a J_{C}-arc. Thus $j_{C}^{I}(C)+j_{C}^{E}(C)$ is even and, since $j_{C}^{I}(C)$ is odd, $j_{C}^{E}(C)$ must be also odd.

Claim 1.6. Let A be a J_{C}-internal $\left(v_{1}, v_{2}\right)$-arc of C, let $v_{1}^{\prime}, v_{2}^{\prime}$ denote the neighbor of v_{1} or v_{2} in $V(C) \backslash \operatorname{int}(A)$, respectively. Then $\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \geq d-8$.

Proof. By the definition of a J_{C}-internal arc, $v_{1}^{\prime}, v_{2}^{\prime} \notin J_{C}$. By symmetry, we can suppose that $v_{1}^{\prime} \in\left(M_{0} \cup M_{1} \cup N_{1} \cup M_{2} \cup N_{2} \cup\left\{x_{0}, x_{1}, x_{2}\right\}\right) \backslash J_{C}$. Then $\operatorname{dist}_{G}\left(v_{1}^{\prime}, P\right) \leq 2$ and $\operatorname{dist}_{G}\left(v_{2}^{\prime}, P\right) \leq 2$ by Claim 1.3 and since $v_{1}^{\prime}, v_{2}^{\prime} \notin J_{C}$. Hence $\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right) \leq 4$ and $\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \leq 4$. Since $\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right)+\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)+\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \geq d$, we get $\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \geq d-\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right)-\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \geq d-8$.

Note that, using Claim 1.6, we immediately observe that $|V(C)| \geq 10$.
Claim 1.7. \quad The cycle C can be chosen such that $j_{C}^{I}(C)=j_{C}^{E}(C)=1$.
Proof. Since both $j_{C}^{I}(C)$ and $j_{C}^{E}(C)$ are odd, hence nonzero, there is a pair A^{I}, A^{E} of $J_{C^{-}}$-arcs of C such that A^{I} is J_{C}-internal, A^{E} is $J_{C^{-}}$-external, and A^{I}, A^{E} are consecutive on C, i.e., at least one of the components of $C-\left(\operatorname{int}\left(A^{I}\right) \cup \operatorname{int}\left(A^{E}\right)\right)$ contains no $J_{C^{-}}$ arc. Let v_{i}^{I}, v_{i}^{E} denote the endvertex of A^{I}, A^{E} in $J_{i}(i=1,2)$, respectively, let $\left(v_{i}^{I}\right)^{\prime}$ denote the neighbor of v_{i}^{I} on $C-A^{I}$, and let $\left(v_{i}^{E}\right)^{\prime}$ denote the neighbor of v_{i}^{E} on A^{E}. Then $\left(v_{1}^{I}\right)^{\prime},\left(v_{1}^{E}\right)^{\prime} \in\left(M_{0} \cup M_{1} \cup N_{1} \cup M_{2} \cup N_{2} \cup\left\{x_{0}, x_{1}, x_{2}\right\}\right) \backslash J_{C}$ and $\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime} \in$ $\left(M_{d-2} \cup N_{d-2} \cup M_{d-1} \cup N_{d-1} \cup M_{d} \cup\left\{x_{d}, x_{d-1}, x_{d-2}\right\}\right) \backslash J_{C}$. By Claim 1.3, $\operatorname{dist}_{G}\left(\left(v_{i}^{I}\right)^{\prime}, P\right) \leq 2$ and $\operatorname{dist}_{G}\left(\left(v_{i}^{E}\right)^{\prime}, P\right) \leq 2$, implying that $\operatorname{dist}_{G}\left(\left(v_{i}^{I}\right)^{\prime},\left(v_{i}^{E}\right)^{\prime}\right) \leq 6$ for $i=1,2$. Since A^{I} and A^{E} are consecutive on C, we may assume (up to a symmetry) that there is no J_{C}-arc between v_{1}^{I} and v_{1}^{E}.

Now, if, say, $j_{C}^{I}(C)>1$, then the cycle C^{\prime} consisting of A^{I}, A^{E}, the arc $v_{1}^{I} C v_{1}^{E}$, and a shortest $\left(\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime}\right)$-path, has length at most $|V(C)|-2 \cdot 5+6=|V(C)|-4$ since we
delete from C at least two J_{C}-internal arcs and we add a shortest $\left(\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime}\right)$-path. But this contradicts the fact that C is shortest possible. Therefore $j_{C}^{I}(C)=1$, and analogously $j_{C}^{E}(C)=1$.

By Claim 1.7, for the rest of the proof we suppose that the cycle C is chosen such that $j_{C}^{I}(C)=j_{C}^{E}(C)=1$.

Claim 1.8. Every $\left(y, y^{\prime}\right)$-arc of C of length at most $\frac{|V(C)|}{2}$ is a shortest $\left(y, y^{\prime}\right)$-path in G.
Proof. Suppose, to the contrary, that there is an $\operatorname{arc} y C y^{\prime}$ of length at most $\frac{|V(C)|}{2}$ that is not a shortest path in G, let Q be a shortest $\left(y, y^{\prime}\right)$-path in G, and, among all such arcs in C, choose the arc $A_{1}: y C y^{\prime}$ such that the path Q is shortest possible. By the same argument as in the proof of Claim 1.7, $j_{C}^{I}(Q) \leq 1$ and $j_{C}^{E}(Q) \leq 1$.

Let $A_{2}: y^{\prime} C y$ denote the complementary arc to A_{1} (i.e., $V\left(A_{1}\right) \cup V\left(A_{2}\right)=V(C)$ and $\left.V\left(A_{1}\right) \cap V\left(A_{2}\right)=\left\{y, y^{\prime}\right\}\right)$. Then clearly A_{1}, A_{2} and Q are pairwise internally vertexdisjoint paths with common endvertices, hence both $C_{1}: y A_{1} y^{\prime} \overleftarrow{Q} y$ and $C_{2}: y^{\prime} A_{2} y Q y^{\prime}$ are cycles in G. By the definition of Q and by the assumption that A_{1} is of length at most $\frac{|V(C)|}{2}$, we have $|E(Q)|<\left|E\left(A_{1}\right)\right| \leq\left|E\left(A_{2}\right)\right|$, hence both C_{1} and C_{2} are shorter than C. Let $A: v_{1} C v_{2}$ be the (only) J_{C}-internal arc of C, and choose the notation such that $v_{1} \in J_{1}$ and $v_{2} \in J_{2}$. According to the position of y and y^{\prime} with respect to A, we have the following three possibilities.
(α) $y, y^{\prime} \notin J_{C}$. Then either $A \subset A_{1}$, or $A \subset A_{2}$, thus, for each value of $j_{C}^{I}(Q)$, either $j_{C}^{I}\left(C_{1}\right)=1$ or $j_{C}^{I}\left(C_{2}\right)=1$.
(β) $y, y^{\prime} \in J_{C}$. Then both y and y^{\prime} are vertices of A (possibly $A=A_{1}$, or $\left\{y, y^{\prime}\right\} \cap$ $\operatorname{int}(A) \neq \emptyset)$. If $j_{C}^{E}(Q)=0$, then $j_{C}^{I}\left(C_{2}\right)=1$, and if $j_{C}^{E}(Q)=1$, then $j_{C}^{I}\left(C_{1}\right)=1$.
$(\gamma) y \in J_{C}$ and $y^{\prime} \notin J_{C}$. Let z be the vertex in $Q \cap\left(J_{1} \cup J_{2}\right)$ such that $\operatorname{dist}_{Q}(z, y)$ is maximal (i.e., z is the last vertex of Q in J_{C}, in the orientation from y to y^{\prime}). Now, if $z \in J_{1}$, then $j_{C}^{I}\left(C_{1}\right)=1$, and if $z \in J_{2}$, then $j_{C}^{I}\left(C_{2}\right)=1$.
In each of the possible cases, we have obtained a contradiction with the choice of C.
Recall that, by Claim 1.6, $|V(C)| \geq 10$. We show that the set $V(C)$ is 3 -step dominating in G. Let, to the contrary, y_{4} be a vertex at distance 4 from C, and let $Q: y_{4}, y_{3}, y_{2}, y_{1}, y_{0}$ be a shortest $\left(y_{4}, C\right)$-path in G (i.e., $\left\{y_{0}\right\}=V(C) \cap V(Q)$). Let $y_{0}^{+i}\left(y_{0}^{-i}\right)$ denote the i-h successor (predecessor) of y_{0} on C, respectively, and set $A=y^{-3} C y^{+3}$. Since G is $S_{3,3,3}$-free, the subgraph $G[V(A) \cup \operatorname{int}(Q)]$ is not isomorphic to $S_{3,3,3}$, and since both Q and C are induced, there is an edge $u v \in E(G)$ with $u \in V(Q) \backslash\left\{y_{0}\right\}$ and $v \in V(A) \backslash\left\{y_{0}\right\}$. Then $u=y_{1}$ since Q is shortest, and by Claim 1.8 and since G is triangle-free, $v \in\left\{y_{0}^{-2}, y_{0}^{+2}\right\}$. By symmetry, let $v=y_{0}^{+2}$. But then $G\left[\left(V(Q) \cup V(A) \cup\left\{y_{0}^{+4}\right\}\right) \backslash\left\{y_{0}^{+1}, y_{0}^{-3}\right\}\right]$ is an induced $S_{3,3,3}$ with center at y_{1}, a contradiction. Thus, the set $V(C)$ is 3 -step dominating in G.

Recall that G is bridgeless since J_{C} is not a cutset. Then, by Corollary J, we have $\operatorname{rc}(G) \leq \operatorname{diam}(C)+1+3 \cdot 5 \leq \operatorname{diam}(G)+16$.

4.2 The pair ($S_{2,2,2}, N_{2,2,2}$)

The proof of Theorem 2 basically follows the same strategy as the proof of Theorem 1. We first handle the cases with small diameter, show that all bridges are on a diameter path, and then we again distinguish two cases according to whether the set J_{C} is a cutset of G or not: in the first case, we obtain a 3 -step domination by a diameter path, while in the second case we obtain a 2 -step domination by a certain chordless cycle. However, there are 2 major differences:

- the graph G does not have to be triangle-free (implying that the sets $O_{i}^{j}(P)$ can be nonempty and vertices in the sets $N_{i}^{1}(P)$ can have three neighbours),
- all distances are smaller since we work with an $S_{2,2,2}$ instead of an $S_{3,3,3}$.

Consequently, some parts of the proof are identical with the corresponding parts of the proof of Theorem 1, some parts are almost identical with only different constants, and some parts are substantially different. In order to avoid unnecessary (and tedious) repetitions, for the identical parts, we refer to the corresponding parts of the proof of Theorem 1.

Proof of Theorem 2. Let G be an $\left(S_{2,2,2}, N_{2,2,2}\right)$-free graph. First suppose that $d=\operatorname{diam}(G) \leq 4$. If G is bridgeless, then $\operatorname{rc}(G) \leq 24 \leq \operatorname{diam}(G)+20$ by Theorem B. Thus we assume that G contains a bridge $b=u v$. If $d=3$, then $u v$ is a two-way dominating set in G since $\delta(G) \geq 2$, implying that $\mathrm{rc}(G) \leq 4$ by Theorem H. Hence we suppose that $d=4$. Let G_{u}, G_{v} denote the components of $G-b$ such that $u \in V\left(G_{u}\right)$ and $v \in V\left(G_{v}\right)$. Up to a symmetry, suppose that every vertex of G_{u} is adjacent to u. Then $\operatorname{rad}\left(G_{u}\right)=1$ and G_{u} is bridgeless, and $\operatorname{rad}\left(G_{v}\right)=2$. If G_{v} is also bridgeless, then $\operatorname{rc}\left(G_{v}\right) \leq 8$ by Theorem B, implying that $\operatorname{rc}(G)=\operatorname{rc}\left(G_{u}\right)+1+\mathrm{rc}\left(G_{v}\right) \leq 3+1+8=12$. Thus, we assume that G_{v} contains a bridge. Since G is $S_{2,2,2}$ free and $\delta(G) \geq 2, G_{v}$ contains only one bridge b^{\prime}, for otherwise v would be a center of an induced $S_{2,2,2}$. Moreover, b^{\prime} is incident with v. Let $G_{v_{1}}, G_{v_{2}}$ denote the components of $G_{v}-b^{\prime}$ such that $G_{v_{1}}$ contains v. Then $G_{v_{1}}, G_{v_{2}}$ are both bridgeless, $\operatorname{rad}\left(G_{v_{2}}\right)=1$, and $\operatorname{rad}\left(G_{v_{1}}\right)=1$ since otherwise v would be a center of an induced $S_{2,2,2}$. Thus $\operatorname{rc}(G)=\operatorname{rc}\left(G_{u}\right)+2+\operatorname{rc}\left(G_{v_{1}}\right)+\operatorname{rc}\left(G_{v_{2}}\right) \leq 3+2+3+3=11$.

For the rest of the proof, we suppose that $d=\operatorname{diam}(G) \geq 5$. We choose a diameter path $P: x_{0}, x_{1}, \ldots, x_{d}$ in G. Unless otherwise stated, the sets $M_{i}^{j}, N_{i}^{j}, O_{i}^{j}$ and R^{j}, as introduced above, will be always understood with respect to this fixed diameter path P. For these sets M_{i}^{j}, N_{i}^{j} and O_{i}^{j}, we can prove the following statement.

Claim 2.1.
(i) $M_{i}^{j}=\emptyset$ for $2 \leq i \leq d-2$ and $j \geq 2$,
(ii) $O_{i}^{j}=\emptyset$ for $3 \leq i \leq d-2$ and $j \geq 3$,
(iii) $N_{i}^{j}=\emptyset$ for $2 \leq i \leq d-2$ and $j \geq 3$,
(iv) if $x \in O_{i}^{2}, 3 \leq i \leq d-2$, and $y \in R^{1}$ is such that $x y \in E(G)$, then $y \in O_{i}^{2}$,
(v) if $x \in N_{i}^{2}, 2 \leq i \leq d-2$, and $y \in R^{1}$ is such that $x y \in E(G)$, then $y \in N_{i}^{2}$.

Proof. The statements (i), (ii) and (iii) follow from the fact that G is $S_{2,2,2}$-free or $N_{2,2,2}$-free. Now we show (iv). Let $x \in O_{i}^{2}$ for some $i, 3 \leq i \leq d-2$, let $y \in R^{1}$ be such that $x y \in E(G)$, and let x_{i}^{\prime} denote a neighbor of x in O_{i}^{1}. Then $x_{i}^{\prime} y \in E(G)$, for
otherwise the set $\left\{x_{i}^{\prime}, x_{i-1}, x_{i}, x, y, x_{i-2}, x_{i-3}, x_{i+1}, x_{i+2}\right\}$ induces an $N_{2,2,2}$, a contradiction. The statement (v) can be proved analogously.

Claim 2.2. \quad The path P contains all bridges of G.
Proof. For the proof of Claim 2.2, we can basically follow the proof of Claim 1.2, and we refer to Figure 3. Differently from Claim 1.2, for the vertex w in the component B_{R}, we have only $\operatorname{dist}\left(u_{2}, w\right)=1$, i.e., $\operatorname{dist}\left(u_{1}, w\right)=2$, and for $r=\operatorname{dist}(v, w)=\left|E\left(v Q_{1} w\right)\right|=$ $\left|E\left(v Q_{2} w\right)\right|$, we have $r \geq 2$.

We choose the paths Q_{1}, Q_{2} satisfying (i) and (ii), and we have the inequalities (1), (2) and (3) as in the proof of Claim 1.2.

We show that $t \geq 2$: if $t \leq 1$, then from (3) we have $s+1 \geq s+t \geq d$, from which $s \geq d-1$, and then (1) implies $d \geq s+r \geq d-1+r \geq d-1+2=d+1$, a contradiction. Hence $t \geq 2$, and, symmetrically, (using (2) instead of (1)), $s \geq 2$. Hence the graph F, consisting of the paths $v Q_{1} x_{0}, v Q_{2} x_{d}$ and $v \overleftarrow{Q_{1}} w$, contains a subgraph isomorphic to the graph $S_{2,2,2}$ (with center at v). Since G is $S_{2,2,2}$-free, F is not an induced subgraph of G.

Now, as in the proof of Claim 1.2, we have an edge $h=z_{1} z_{2}$ with the same properties, and, in the same way, we show that $p=q$. However, since G need not be triangle-free, inequality (4) now reads

$$
\begin{equation*}
p=q \geq 1 . \tag{4}
\end{equation*}
$$

As in Claim 1.2, we choose the edge $h=z_{1} z_{2}$ such that
(iii) subject to (i) and (ii), $p=q$ is maximum.

By (4), and since $r \geq 2$, we have $q+r \geq 3$, i.e., $r \geq 3-q$. From (2) we then have $d \geq t+r \geq t+3-q$, from which $t-q \leq d-3$. Since the path $x_{0} \overleftarrow{Q_{1}} z_{1} z_{2} Q_{2} x_{d}$ is an $\left(x_{0}, x_{d}\right)-$ path of length $s-p+1+t-q$, and P is a diameter path, $d \leq s-p+1+t-q \leq s-p+1+d-3$, from which we conclude that $s-p \geq 2$. Thus, $\operatorname{dist}\left(z_{1}, x_{0}\right)=\left|E\left(z_{1} Q_{1} x_{0}\right)\right|=s-p \geq 2$. Symmetrically, $\operatorname{dist}\left(z_{2}, x_{d}\right)=\left|E\left(z_{2} Q_{2} x_{d}\right)\right|=t-q \geq 2$, and hence $\left|E\left(z_{1} z_{2} Q_{2} x_{d}\right)\right| \geq 3$.

If $p=q=1$ the subgraph $\left[\left\{z_{1} z_{2} v, z_{1} Q_{1} x_{0}, z_{2} Q_{2} x_{d}, v Q_{1} w\right\}\right]_{G}$ contains an induced $N_{2,2,2}$, a contradiction

For $p=q \geq 2$, the graph consisting of the paths $z_{1} Q_{1} x_{0}, z_{1} z_{2} Q_{2} x_{d}$ and $z_{1} \overleftarrow{Q_{1}} w$ contains a subgraph F^{\prime} isomorphic to $S_{2,2,2}$ (with center at z_{1}). By the choice (iii), F^{\prime} is an induced subgraph of G, a contradiction.

We define the set $J_{C}=\left(\bigcup_{i=2}^{d-2}\left(M_{i} \cup N_{i} \cup\left\{x_{i}\right\}\right)\right) \cup\left(\bigcup_{i=3}^{d-2} O_{i}\right)$.
By Claim 2.1, $\operatorname{dist}_{G}(x, P) \leq 2$ for each $x \in J_{C}$.
We also show the following observation.
Claim 2.3. Let $u \in V(G) \backslash J_{C}$ and $v \in J_{C}$ be such that $u v \in E(G)$. Then $v \in$ $M_{i} \cup N_{i} \cup O_{i+1} \cup\left\{x_{2}\right\}$ for some $i \leq 4$, or $v \in M_{i} \cup N_{i} \cup O_{i} \cup\left\{x_{d-2}\right\}$ for some $i \geq d-4$.

Proof. By Claim 2.1(i), (ii) and (iii), we have $\operatorname{dist}_{G}(v, P) \leq 2$, and by Claim 2.1(iv), (v), $\operatorname{dist}_{G}(u, P) \leq 2$. Up to a symmetry, suppose that $u \in\left(M_{0} \cup M_{1} \cup N_{0} \cup N_{1} \cup O_{1} \cup O_{2} \cup\right.$ $\left.\left\{x_{0}, x_{1}\right\}\right) \backslash J_{C}$ (the case $u \in\left(M_{d} \cup M_{d-1} \cup N_{d} \cup N_{d-1} \cup O_{d} \cup O_{d-1} \cup\left\{x_{d}, x_{d-1}\right\}\right) \backslash J_{C}$ is symmetric).

If $v \in M_{i}$ for some $i \geq 5$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 2$ by Claim 2.1(i), implying that $i \leq 4$, for otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. If $v \in N_{i}$ for some $i \geq 5$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 3$ by Claim 2.1(v), implying that $i \leq 4$, for otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. Analogously, if $v \in O_{i}$ for some $i \geq 6$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 3$ by Claim 2.1(iv), implying that $i \leq 5$, since otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. Similarly, if $v=x_{i}$ for some $i \geq 4$, then there is a shorter $\left(x_{0}, x_{d}\right)$-path containing the edge $u v$, a contradiction again. Finally, if $v=x_{3}$ then $u \in M_{3} \cup N_{2} \cup N_{3} \cup N_{4} \cup O_{3} \cup O_{4}$, contradicting the choice of u.

We now distinguish two cases.
Case 1: The set J_{C} is a cutset of G.
We show that there is no vertex at distance greater than 3 from P in G.
Claim 2.4. For every $x \in V(G) \backslash J_{C}, \operatorname{dist}_{G}(x, P) \leq 3$.
Proof. Let, to the contrary, $x \in V(G) \backslash J_{C}$ be at distance 4 from P in G. Up to a symmetry, suppose that $\operatorname{dist}_{G}\left(x, x_{0}\right)<\operatorname{dist}_{G}\left(x, x_{d}\right)$. Let Q denote a shortest x, x_{d}-path, z_{i}^{\prime} the first vertex of Q in J_{C} (in an orientation of Q from x) and z_{i} the predecessor of z_{i}^{\prime} on Q in the same orientation. By Claim 2.1 and by the definition of J_{C}, $\operatorname{dist}_{G}\left(z_{i}, P\right)=1$ and $\operatorname{dist}_{G}\left(z_{i}, x_{0}\right) \leq 2$, implying that $\operatorname{dist}_{G}\left(z_{i}, x_{d}\right) \geq d-2$. Then $\operatorname{dist}_{G}\left(x, z_{i}\right) \geq 3$, implying that $\operatorname{dist}_{G}\left(x, x_{d}\right) \geq 3+d-2>d$, a contradiction.

By Claim 2.4, the set $V(P)$ is 3 -step dominating in G, hence by Corollary J and by Claim 2.2, we have $\operatorname{rc}(G) \leq \operatorname{diam}(G)+3 \cdot 5 \leq \operatorname{diam}(G)+15$.

Case 2: \quad The set J_{C} is not a cutset of G.
First suppose that $d=\operatorname{diam}(G) \leq 8$. If G is not bridgeless, then all bridges of G are on P by Claim 2.2, and at least one vertex of each bridge is in J_{C}. But then J_{C} is a cutset of G, contradicting the assumption of Case 2 . Hence G is bridgeless, and then, by Theorem B, we have $\operatorname{rc}(G) \leq \operatorname{rad}(G)(\operatorname{rad}(G)+2) \leq d(d+2)$. It is easy to verify that, for $d \leq 8, d(d+2)=d+d(d+1) \leq d+72$, we have $\operatorname{rc}(G) \leq \operatorname{diam}(G)+72$, and we are done.

Thus, for the rest of the proof, we suppose that $d=\operatorname{diam}(G) \geq 9$. We introduce the following notation:

$$
\begin{aligned}
& J_{1}=\bigcup_{i=2}^{4}\left(M_{i} \cup N_{i} \cup O_{i+1} \cup\left\{x_{i}\right\}\right), \\
& J_{2}=\bigcup_{i=d-4}^{d-2}\left(M_{i} \cup N_{i} \cup O_{i} \cup\left\{x_{i}\right\}\right), \\
& J_{V}=J_{C} \backslash\left(J_{1} \cup J_{2}\right) .
\end{aligned}
$$

We further denote P^{\prime} a shortest $\left(x_{0}, x_{d}\right)$-path in $G-J_{C}$. Note that $J_{1} \cap J_{2}=\emptyset$ since $d \geq 9$.

Note that, by Claim 2.3, there is no edge between J_{V} and $V(G) \backslash J_{C}$.
As in the proof of Theorem 1, we introduce the concepts of a J_{C}-internal arc and a J_{C}-external arc and the numbers $j_{C}^{I}(C)$ and j_{C}^{E}, and we define the cycle C to be a shortest cycle in G such that $j_{C}^{I}(C)$ is odd. Using Claim 2.3 (which is a counterpart of Claim 1.4), we show in the same way that j_{C}^{E} is also odd.

Claim 2.5. Let A be a J_{C}-internal $\left(v_{1}, v_{2}\right)$-arc of C, let $v_{1}^{\prime}, v_{2}^{\prime}$ denote the neighbor of v_{1} or v_{2} in $V(C) \backslash \operatorname{int}(A)$, respectively. Then $\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \geq d-4$.

Proof. By the definition of a J_{C}-internal arc, $v_{1}^{\prime}, v_{2}^{\prime} \notin J_{C}$. By symmetry, we can suppose that $v_{1}^{\prime} \in\left(M_{0} \cup M_{1} \cup N_{1} \cup M_{2} \cup N_{2} \cup\left\{x_{0}, x_{1}\right\}\right) \backslash J_{C}$. Then $\operatorname{dist}_{G}\left(v_{1}^{\prime}, P\right) \leq 1$ and dist ${ }_{G}\left(v_{2}^{\prime}, P\right) \leq$ 1 by Claim 2.1 and since $v_{1}^{\prime}, v_{2}^{\prime} \notin J_{C}$. Hence $\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right) \leq 2$ and dist ${ }_{G}\left(v_{2}^{\prime}, x_{d}\right) \leq 2$. Since $\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right)+\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)+\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \geq d$, we get $\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \geq d-\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right)-$ $\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \geq d-4$.

Note that, using Claim 2.5, we immediately observe that $|V(C)| \geq 10$.
Claim 2.6. \quad The cycle C can be chosen such that $j_{C}^{I}(C)=j_{C}^{E}(C)=1$.
Proof. Since both $j_{C}^{I}(C)$ and $j_{C}^{E}(C)$ are odd, hence nonzero, there is a pair A^{I}, A^{E} of $J_{C^{-}}$-arcs of C such that A^{I} is J_{C}-internal, A^{E} is J_{C}-external, and A^{I}, A^{E} are consecutive on C, i.e., at least one of the components of $C-\left(\operatorname{int}\left(A^{I}\right) \cup \operatorname{int}\left(A^{E}\right)\right)$ contains no J_{C}-arc. Let v_{i}^{I}, v_{i}^{E} denote the endvertex of A^{I}, A^{E} in $J_{i}(i=1,2)$, respectively, let $\left(v_{i}^{I}\right)^{\prime}$ denote the neighbor of v_{i}^{I} on $C-A^{I}$, and let $\left(v_{i}^{E}\right)^{\prime}$ denote the neighbor of v_{i}^{E} on A^{E}. Then $\left(v_{1}^{I}\right)^{\prime},\left(v_{1}^{E}\right)^{\prime} \in\left(M_{0} \cup M_{1} \cup N_{1} \cup O_{1} \cup O_{2} \cup\left\{x_{0}, x_{1}\right\}\right) \backslash J_{C}$ and $\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime} \in\left(O_{d-2} \cup O_{d} \cup M_{d-1} \cup\right.$ $\left.N_{d-1} \cup M_{d} \cup\left\{x_{d}, x_{d-1}\right\}\right) \backslash J_{C}$. By Claim 2.1, $\operatorname{dist}_{G}\left(\left(v_{i}^{I}\right)^{\prime}, P\right) \leq 1$ and $\operatorname{dist}_{G}\left(\left(v_{i}^{E}\right)^{\prime}, P\right) \leq 1$, implying that $\operatorname{dist}_{G}\left(\left(v_{i}^{I}\right)^{\prime},\left(v_{i}^{E}\right)^{\prime}\right) \leq 4$ for $i=1,2$. Since A^{I} and A^{E} are consecutive on C, we may assume (up to a symmetry) that there is no $J_{C^{-}}$arc between v_{1}^{I} and v_{1}^{E}.

Now, if, say, $j_{C}^{I}(C)>1$, then the cycle C^{\prime} consisting of A^{I}, A^{E}, the arc $v_{1}^{I} C v_{1}^{E}$, and a shortest $\left(\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime}\right)$-path, has length at most $|V(C)|-2 \cdot 5+3=|V(C)|-7$ since we delete from C at least two J_{C}-internal arcs and we add a shortest $\left(\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime}\right)$-path. But this contradicts the fact that C is shortest possible. Therefore $j_{C}^{I}(C)=1$, and analogously $j_{C}^{E}(C)=1$.

By Claim 2.6, for the rest of the proof we suppose that the cycle C is chosen such that $j_{C}^{I}(C)=j_{C}^{E}(C)=1$.

The next claim is identical with Claim 1.8, and since the proof of Claim 1.8 uses only metric arguments on cycles and arcs, the proof of Claim 2.7 is also identical with that of Claim 1.8 (using Claim 2.6, which is a counterpart to Claim 1.7). We therefore include here only the statement of Claim 2.7, and for its proof, we refer to the proof of Claim 1.8.

Claim 2.7. Every $\left(y, y^{\prime}\right)$-arc of C of length at most $\frac{|V(C)|}{2}$ is a shortest $\left(y, y^{\prime}\right)$-path in G.

Recall that, by Claim 2.5, $|V(C)| \geq 10$. Now, every vertex of G is at distance at most 2 from C by the same arguments as in the proof of Claim 2.1. But then the set $V(C)$ is 2 -step dominating in G, hence by Corollary J and by Claim 2.2, we have $\operatorname{rc}(G) \leq \operatorname{diam}(C)+1+2 \cdot 4 \leq \operatorname{diam}(G)+9$.

Acknowledgments

This research was partly supported by the DAAD-PPP project Rainbow connection and cycles in graphs with project-ID 56268242 (German) and 7AMB13DE003 (Czech), respectively. First, second and fourth authors' research was partly supported by project P202/12/G061 of the Czech Science Foundation.

References

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, and D. Ramaswamy, Rainbow connection number and radius, Graphs and Combinatorics 30 (2014), 275-285.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electr. Journal Comb. 15 (2008), \#57.
[4] L. S. Chandran, A. Das, D. Rajendraprasad, and N. M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.
[5] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008), 85-98.
[6] J. Dong, X. Li, Rainbow connection number, bridges and radius, Graphs and Combinatorics 29 (2013), 1733-1739.
[7] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček, I. Schiermeyer, The rainbow connection number in 2-connected graphs, Discrete Mathematics 313 (2013), 1884-1892.
[8] A. B. Ericksen, A matter of security, Graduating Engineer \& Computer Careers (2007), 24-28.
[9] P. Holub, Z. Ryjáček, I. Schiermeyer and P. Vrána, Rainbow connection and forbidden subgraphs, Discrete Math. 338/10 (2015), 1706-1713.
[10] P. Holub, Z. Ryjáček, I. Schiermeyer and P. Vrána, On forbidden subgraphs and rainbow connection in graphs with minimum degree 2, Discrete Math. 338/3 (2015), 1-8.
[11] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Disscuss. Math. Graph Theory 31 (2011), 313-320.
[12] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010), 185-191.
[13] H. Li, X. Li, S. Liu, Rainbow connection of graphs with diameter 2, Discrete Mathematics 312 (2012), 1453-1457.
[14] H. Li, X. Li, and Y. Sun, Upper bound for the rainbow connection number of bridgeless graphs with diameter 3, arXiv: 1109.2769v2 [mathCO] 2011.
[15] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013), 603-611.
[16] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[17] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Lecture Notes in Computer Science 5874 (2009), 432-437.

5 Appendix (for referees only, not for publication)

We include here a full proof of Theorem 2, containing also the omitted parts.

Proof of Theorem 2. First suppose that $d=\operatorname{diam}(G) \leq 4$. If G is bridgeless, then $\operatorname{rc}(G) \leq 24 \leq \operatorname{diam}(G)+20$ by Theorem B. Thus we assume that G contains a bridge $b=u v$. If $d=3$, then $u v$ is a two-way dominating set in G since $\delta(G) \geq 2$, implying that $\operatorname{rc}(G) \leq 4$ by Theorem H. Hence we suppose that $d=4$. Let G_{u}, G_{v} denote the components of $G-b$ such that $u \in V\left(G_{u}\right)$ and $v \in V\left(G_{v}\right)$. Up to a symmetry, suppose that every vertex of G_{u} is adjacent to u. Then $\operatorname{rad}\left(G_{u}\right)=1$ and G_{u} is bridgeless, and $\operatorname{rad}\left(G_{v}\right)=2$. If G_{v} is also bridgeless, then $\operatorname{rc}\left(G_{v}\right) \leq 8$ by Theorem B, implying that $\operatorname{rc}(G)=\operatorname{rc}\left(G_{u}\right)+1+\operatorname{rc}\left(G_{v}\right) \leq 3+1+8=12$. Thus, we assume that G_{v} contains a bridge. Since G is $S_{2,2,2}$-free and $\delta(G) \geq 2, G_{v}$ contains only one bridge b^{\prime}, for otherwise v would be a center of induced $S_{2,2,2}$. Moreover, b^{\prime} is incident with v. Let $G_{v_{1}}, G_{v_{2}}$ denote the components of $G_{v}-b^{\prime}$ such that $G_{v_{1}}$ contains v. Then $G_{v_{1}}, G_{v_{2}}$ are both bridgeless, $\operatorname{rad}\left(G_{v_{2}}\right)=1$, and $\operatorname{rad}\left(G_{v_{1}}\right)=1$ since otherwise v would be a center of an induced $S_{2,2,2}$. Thus $\operatorname{rc}(G)=\operatorname{rc}\left(G_{u}\right)+2+\operatorname{rc}\left(G_{v_{1}}\right)+\operatorname{rc}\left(G_{v_{2}}\right) \leq 3+2+3+3=11$.

For the rest of the proof, we suppose that $d=\operatorname{diam}(G) \geq 5$. We choose a diameter path $P: x_{0}, x_{1}, \ldots, x_{d}$ in G. Unless otherwise stated, the sets $M_{i}^{j}, N_{i}^{j}, O_{i}^{j}$ and R^{j}, as introduced above, will be always understood with respect to this fixed diameter path P. For these sets M_{i}^{j}, N_{i}^{j} and O_{i}^{j}, we can prove the following statement.

Claim 2.1.
(i) $M_{i}^{j}=\emptyset$ for $2 \leq i \leq d-2$ and $j \geq 2$,
(ii) $O_{i}^{j}=\emptyset$ for $3 \leq i \leq d-2$ and $j \geq 3$,
(iii) $N_{i}^{j}=\emptyset$ for $2 \leq i \leq d-2$ and $j \geq 3$,
(iv) if $x \in O_{i}^{2}, 3 \leq i \leq d-2$, and $y \in R^{1}$ is such that $x y \in E(G)$, then $y \in O_{i}^{2}$,
(v) if $x \in N_{i}^{2}, 2 \leq i \leq d-2$, and $y \in R^{1}$ is such that $x y \in E(G)$, then $y \in N_{i}^{2}$.

Proof. The statements (i), (ii) and (iii) follow from the fact that G is $S_{2,2,2}$-free or $N_{2,2,2}$-free, respectively. Now we show (iv). Let $x \in O_{i}^{2}$ for some $i, 3 \leq i \leq d-2$, let $y \in R^{1}$ be such that $x y \in E(G)$, and let x_{i}^{\prime} denote a neighbor of x in O_{i}^{1}. Then $x_{i}^{\prime} y \in E(G)$, for otherwise the set $\left\{x_{i}^{\prime}, x_{i-1}, x_{i}, x, y, x_{i-2}, x_{i-3}, x_{i+1}, x_{i+2}\right\}$ induces an $N_{2,2,2}$, a contradiction. The statement (v) can be proved analogously.

Claim 2.2. The path P contains all bridges of G.
Proof. Let, to the contrary, $b=u_{1} u_{2}$ be a bridge with $b \notin E(P)$, and choose the notation such that u_{1} is in the component B_{P} of $G-b$ containing P, and u_{2} is in the other component B_{R} of $G-b$ (see Fig. 4). The component B_{R} contains a vertex w with $\operatorname{dist}\left(u_{2}, w\right)=1$ (i.e., $\left.\operatorname{dist}\left(u_{1}, w\right)=2\right)$. Let Q_{1} denote a shortest $\left(w, x_{0}\right)$-path in G and Q_{2} a shortest $\left(w, x_{d}\right)$-path in G. Let v be the last common vertex of Q_{1} and Q_{2}, i.e., a vertex such that the paths $v Q_{1} x_{0}$ and $v Q_{2} x_{d}$ are internally vertex-disjoint. Denote $s=\operatorname{dist}\left(v, x_{0}\right)=\left|E\left(v Q_{1} x_{0}\right)\right|$,

Figure 4: The paths P, Q_{1} and Q_{2} in the proof of Claim 2.2
$t=\operatorname{dist}\left(v, x_{d}\right)=\left|E\left(v Q_{2} x_{d}\right)\right|$, and $r=\operatorname{dist}(v, w)=\left|E\left(v Q_{1} w\right)\right|=\left|E\left(v Q_{2} w\right)\right|$. Obviously, $r \geq 2$.

Now, choose the paths Q_{1}, Q_{2} such that
(i) $\left|E\left(Q_{1}\right)\right|$ is minimum and $\left|E\left(Q_{2}\right)\right|$ is minimum (as already mentioned), and
(ii) subject to $(i), s+t=\left|E\left(v Q_{1} x_{0}\right)\right|+\left|E\left(v Q_{2} x_{d}\right)\right|$ is minimum.

Since $d=\operatorname{diam}(G)$, we have

$$
\begin{align*}
& \operatorname{dist}\left(x_{0}, w\right)=s+r \leq d \tag{1}\\
& \operatorname{dist}\left(x_{d}, w\right)=t+r \leq d . \tag{2}
\end{align*}
$$

Since $x_{0} \overleftarrow{Q_{1}} v Q_{2} x_{d}$ is an $\left(x_{0}, x_{d}\right)$-path and P is a diameter path, we have

$$
\begin{equation*}
\operatorname{dist}\left(x_{0}, v\right)+\operatorname{dist}\left(x_{d}, v\right)=s+t \geq d \tag{3}
\end{equation*}
$$

We show that $t \geq 2$: if $t \leq 1$, then from (3) we have $s+1 \geq s+t \geq d$, from which $s \geq d-1$, and then (1) implies $d \geq s+r \geq d-1+r \geq d-1+2=d+1$, a contradiction. Hence $t \geq 2$, and, symmetrically, (using (2) instead of (1)), $s \geq 2$. Hence the graph F, consisting of the paths $v Q_{1} x_{0}, v Q_{2} x_{d}$ and $v \overleftarrow{Q_{1}} w$, contains a subgraph isomorphic to the graph $S_{2,2,2}$ (with center at v). Since G is $S_{2,2,2}$ free, F is not an induced subgraph of G.

Thus, let $h=z_{1} z_{2}$ be an arbitrary edge with $z_{1}, z_{2} \in V(F)$ but $h \in E(G) \backslash E(F)$. Since both Q_{1} and Q_{2} are shortest (hence chordless), up to a symmetry, $z_{1} \in V\left(v^{+Q_{1}} Q_{1} x_{0}\right)$ and $z_{2} \in V\left(v^{+Q_{2}} Q_{2} x_{d}\right)$, where $v^{+Q_{1}}$ and $v^{+Q_{2}}$ denotes the successor of v on Q_{1} and Q_{2}, respectively. Set $p=\operatorname{dist}\left(v, z_{1}\right)=\left|E\left(v Q_{1} z_{1}\right)\right|$ and $q=\operatorname{dist}\left(v, z_{2}\right)=\left|E\left(v Q_{2} z_{2}\right)\right|$. Obviously, $p \geq 1$ and $q \geq 1$.

We show that $p=q$. First suppose that $p \geq q+1$. Then, considering the paths Q_{1} and $Q_{2}^{\prime}=w Q_{1} z_{1} z_{2} Q_{2} x_{d}$, we have a contradiction with the choice of Q_{1} and Q_{2} : if $p>q+1$, then Q_{2}^{\prime} is shorter than Q_{2}, contradicting (i), and if $p=q+1$, then $\left|E\left(Q_{2}\right)\right|=\left|E\left(Q_{2}^{\prime}\right)\right|$, but $\left|E\left(z_{1} Q_{1} x_{0}\right)\right|+\left|E\left(z_{1} Q_{2}^{\prime} x_{d}\right)\right|<\left|E\left(v Q_{1} x_{0}\right)\right|+\left|E\left(v Q_{2} x_{d}\right)\right|$, contradicting (ii) (where z_{1}
plays the role of v). Hence $p<q+1$. Symmetrically, $q<p+1$, implying $p=q$. Moreover we have

$$
\begin{equation*}
p=q \geq 1 . \tag{4}
\end{equation*}
$$

Now, we choose the edge $h=z_{1} z_{2}$ such that
(iii) subject to (i) and ($i i$), $p=q$ is maximum.

By (4), and since $r \geq 2, q+r \geq 3$, i.e., $r \geq 3-q$. From (2) we then have $d \geq t+r \geq t+3-q$, from which $t-q \leq d-3$. Since the path $x_{0} \overleftarrow{Q_{1}} z_{1} z_{2} Q_{2} x_{d}$ is an $\left(x_{0}, x_{d}\right)$-path of length $s-p+1+t-q$, and P is a diameter path, $d \leq s-p+1+t-q \leq s-p+1+d-3$, from which we conclude that $s-p \geq 2$. Thus, $\operatorname{dist}\left(z_{1}, x_{0}\right)=\left|E\left(z_{1} Q_{1} x_{0}\right)\right|=s-p \geq 2$. Symmetrically, $\operatorname{dist}\left(z_{2}, x_{d}\right)=\left|E\left(z_{2} Q_{2} x_{d}\right)\right|=t-q \geq 2$, and hence $\left|E\left(z_{1} z_{2} Q_{2} x_{d}\right)\right| \geq 3$.

If $p=q=1$ the subgraph $\left[\left\{z_{1} z_{2} v, z_{1} Q_{1} x_{0}, z_{2} Q_{2} x_{d}, v Q_{1} w\right\}\right]_{G}$ contains an induced $N_{2,2,2}$, a contradiction

For $p=q \geq 2$, the graph consisting of the paths $z_{1} Q_{1} x_{0}, z_{1} z_{2} Q_{2} x_{d}$ and $z_{1} \overleftarrow{Q_{1}} w$ contains a subgraph F^{\prime} isomorphic to $S_{2,2,2}$ (with center at z_{1}). By the choice (iii), F^{\prime} is an induced subgraph of G, a contradiction.

We define the set $J_{C}=\left(\bigcup_{i=2}^{d-2}\left(M_{i} \cup N_{i} \cup\left\{x_{i}\right\}\right)\right) \cup\left(\bigcup_{i=3}^{d-2} O_{i}\right)$.
By Claim 2.1, $\operatorname{dist}_{G}(x, P) \leq 2$ for each $x \in J_{C}$.
We also show the following observation.
Claim 2.3. Let $u \in V(G) \backslash J_{C}$ and $v \in J_{C}$ be such that $u v \in E(G)$. Then $v \in$ $M_{i} \cup N_{i} \cup O_{i+1} \cup\left\{x_{2}\right\}$ for some $i \leq 4$, or $v \in M_{i} \cup N_{i} \cup O_{i} \cup\left\{x_{d-2}\right\}$ for some $i \geq d-4$.

Proof. By Claim 2.1(i), (ii) and (iii), we have $\operatorname{dist}_{G}(v, P) \leq 2$, and by Claim 2.1(iv), (v), $\operatorname{dist}_{G}(u, P) \leq 2$. Up to a symmetry, suppose that $u \in\left(M_{0} \cup M_{1} \cup N_{0} \cup N_{1} \cup O_{1} \cup O_{2} \cup\right.$ $\left.\left\{x_{0}, x_{1}\right\}\right) \backslash J_{C}$ (the case $u \in\left(M_{d} \cup M_{d-1} \cup N_{d} \cup N_{d-1} \cup O_{d} \cup O_{d-1} \cup\left\{x_{d}, x_{d-1}\right\}\right) \backslash J_{C}$ is symmetric).

If $v \in M_{i}$ for some $i \geq 5$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 2$ by Claim 2.1(i), implying that $i \leq 4$, for otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. If $v \in N_{i}$ for some $i \geq 5$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 3$ by Claim 2.1(v), implying that $i \leq 4$, for otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. Analogously, if $v \in O_{i}$ for some $i \geq 6$, then $\operatorname{dist}_{G}(u, P)+\operatorname{dist}_{G}(v, P) \leq 3$ by Claim 2.1(iv), implying that $i \leq 5$, since otherwise a path consisting of a shortest $\left(x_{0}, u\right)$-path, the edge $u v$ and a shortest $\left(v, x_{d}\right)$-path is an $\left(x_{0}, x_{d}\right)$-path shorter than P, a contradiction. Similarly, if $v=x_{i}$ for some $i \geq 4$, then there is a shorter $\left(x_{0}, x_{d}\right)$-path containing the edge $u v$, a contradiction again. Finally, if $v=x_{3}$ then $u \in M_{3} \cup N_{2} \cup N_{3} \cup N_{4} \cup O_{3} \cup O_{4}$, contradicting the choice of u.

We now distinguish two cases.
Case 1: The set J_{C} is a cutset of G.
We show that there is no vertex at distance greater than 3 from P in G.
Claim 2.4. For every $x \in V(G) \backslash J_{C}, \operatorname{dist}_{G}(x, P) \leq 3$.
Proof. Let, to the contrary, $x \in V(G) \backslash J_{C}$ be at distance 4 from P in G. Up to a symmetry, suppose that $\operatorname{dist}_{G}\left(x, x_{0}\right)<\operatorname{dist}_{G}\left(x, x_{d}\right)$. Let Q denote a shortest x, x_{d}-path, z_{i}^{\prime} the first vertex of Q in J_{C} (in an orientation of Q from x) and z_{i} the predecessor of z_{i}^{\prime} on Q in the same orientation. By Claim 2.1 and by the definition of J_{C}, $\operatorname{dist}_{G}\left(z_{i}, P\right)=1$ and $\operatorname{dist}_{G}\left(z_{i}, x_{0}\right) \leq 2$, implying that $\operatorname{dist}_{G}\left(z_{i}, x_{d}\right) \geq d-2$. Then $\operatorname{dist}_{G}\left(x, z_{i}\right) \geq 3$, implying that $\operatorname{dist}_{G}\left(x, x_{d}\right) \geq 3+d-2>d$, a contradiction.

By Claim 2.4, the set $V(P)$ is 3 -step dominating in G, hence by Corollary J and by Claim 2.2, we have $\operatorname{rc}(G) \leq \operatorname{diam}(G)+3 \cdot 5 \leq \operatorname{diam}(G)+15$.

Case 2: \quad The set J_{C} is not a cutset of G.
First suppose that $d=\operatorname{diam}(G) \leq 8$. If G is not bridgeless, then all bridges of G are on P by Claim 2.2, and at least one vertex of each bridge is in J_{C}. But then J_{C} is a cutset of G, contradicting the assumption of Case 2 . Hence G is bridgeless, and then, by Theorem B, we have $\operatorname{rc}(G) \leq \operatorname{rad}(G)(\operatorname{rad}(G)+2) \leq d(d+2)$. It is easy to verify that, for $d \leq 8, d(d+2)=d+d(d+1) \leq d+72$, we have $\operatorname{rc}(G) \leq \operatorname{diam}(G)+72$, and we are done.

Thus, for the rest of the proof, we suppose that $d=\operatorname{diam}(G) \geq 9$. We introduce the following notation:

$$
\begin{aligned}
& J_{1}=\bigcup_{i=2}^{4}\left(M_{i} \cup N_{i} \cup O_{i+1} \cup\left\{x_{i}\right\}\right), \\
& J_{2}=\bigcup_{i=d-2}^{d-2}\left(M_{i} \cup N_{i} \cup O_{i} \cup\left\{x_{i}\right\}\right), \\
& J_{V}=J_{C} \backslash\left(J_{1} \cup J_{2}\right) .
\end{aligned}
$$

We further denote P^{\prime} a shortest $\left(x_{0}, x_{d}\right)$-path in $G-J_{C}$. Note that $J_{1} \cap J_{2}=\emptyset$ since $d \geq 9$.

Note that, by Claim 2.3, there is no edge between J_{V} and $V(G) \backslash J_{C}$.
If $F \subset G$ is a cycle or a path, and $A^{I}=v_{1} F v_{2}$ is an arc of F, we say that A^{I} is J_{C}-internal if $V\left(A^{I}\right) \subset J_{C}, A^{I}$ is maximal (in terms of the number of vertices) with this property and $v_{1} \in J_{j}$ and $v_{2} \in J_{3-j}$ for some $j \in\{1,2\}$. We also say that an arc $A^{E}=w_{1} F w_{2}$ is J_{C}-external if no internal vertex of A^{E} belongs to J_{C}, and $w_{1} \in J_{j}$ and $w_{2} \in J_{3-j}$ for some $j \in\{1,2\}$. We will use $j_{C}^{I}(F)$ to denote the number of internally vertex-disjoint J_{C}-internal arcs of F and $j_{C}^{E}(F)$ for the number of internally vertex-disjoint $J_{C^{-}}$-external arcs of F. Finally, we say that an arc A of F is a J_{C}-arc if A is J_{C}-internal or J_{C}-external.

Let now C be a shortest cycle in G such that $j_{C}^{I}(C)$ is odd (note that C exists since the subgraph $G\left[V(P) \cup V\left(P^{\prime}\right)\right]$ certainly contains such a cycle.) We observe that $j_{C}^{E}(C)$
is also odd. Clearly, the total number of arcs of C between some vertex of J_{1} and some vertex of J_{2} is even. Since $j_{C}^{I}(C)$ is odd, there must be an arc of C between J_{1} and J_{2} which is not J_{C}-internal. Let A^{\prime} be such an arc and choose A^{\prime} shortest possible. Since A^{\prime} is not $J_{C^{-}}$internal, A^{\prime} contains some vertex $z \in V(G) \backslash J_{C}$, and since A^{\prime} is shortest, $\operatorname{int}\left(A^{\prime}\right) \cap\left(J_{1} \cup J_{2}\right)=\emptyset$. By Claim 2.3, we also have $\operatorname{int}\left(A^{\prime}\right) \cap J_{V}=\emptyset$, since there is no edge between z and J_{V}. Thus, A^{\prime} is J_{C}-external. This means that every arc of C between J_{1} and J_{2} is either J_{C}-internal or $J_{C^{-}}$-external, hence a J_{C}-arc. Thus $j_{C}^{I}(C)+j_{C}^{E}(C)$ is even and, since $j_{C}^{I}(C)$ is odd, $j_{C}^{E}(C)$ must be also odd.

Claim 2.5. Let A be a J_{C}-internal $\left(v_{1}, v_{2}\right)$-arc of C, let $v_{1}^{\prime}, v_{2}^{\prime}$ denote the neighbor of v_{1} or v_{2} in $V(C) \backslash \operatorname{int}(A)$, respectively. Then $\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \geq d-4$.

Proof. By the definition of a J_{C}-internal arc, $v_{1}^{\prime}, v_{2}^{\prime} \notin J_{C}$. By symmetry, we can suppose that $v_{1}^{\prime} \in\left(M_{0} \cup M_{1} \cup N_{1} \cup M_{2} \cup N_{2} \cup\left\{x_{0}, x_{1}\right\}\right) \backslash J_{C}$. Then dist ${ }_{G}\left(v_{1}^{\prime}, P\right) \leq 1$ and dist ${ }_{G}\left(v_{2}^{\prime}, P\right) \leq$ 1 by Claim 2.1 and since $v_{1}^{\prime}, v_{2}^{\prime} \notin J_{C}$. Hence $\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right) \leq 2$ and dist ${ }_{G}\left(v_{2}^{\prime}, x_{d}\right) \leq 2$. Since $\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right)+\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)+\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \geq d$, we get $\operatorname{dist}_{G}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \geq d-\operatorname{dist}_{G}\left(x_{0}, v_{1}^{\prime}\right)-$ $\operatorname{dist}_{G}\left(v_{2}^{\prime}, x_{d}\right) \geq d-4$.

Note that, using Claim 2.5, we immediately observe that $|V(C)| \geq 10$.
Claim 2.6. \quad The cycle C can be chosen such that $j_{C}^{I}(C)=j_{C}^{E}(C)=1$.
Proof. Since both $j_{C}^{I}(C)$ and $j_{C}^{E}(C)$ are odd, hence nonzero, there is a pair A^{I}, A^{E} of
 on C, i.e., at least one of the components of $C-\left(\operatorname{int}\left(A^{I}\right) \cup \operatorname{int}\left(A^{E}\right)\right)$ contains no $J_{C^{-}}$arc. Let v_{i}^{I}, v_{i}^{E} denote the endvertex of A^{I}, A^{E} in $J_{i}(i=1,2)$, respectively, let $\left(v_{i}^{I}\right)^{\prime}$ denote the neighbor of v_{i}^{I} on $C-A^{I}$, and let $\left(v_{i}^{E}\right)^{\prime}$ denote the neighbor of v_{i}^{E} on A^{E}. Then $\left(v_{1}^{I}\right)^{\prime},\left(v_{1}^{E}\right)^{\prime} \in\left(M_{0} \cup M_{1} \cup N_{1} \cup O_{1} \cup O_{2} \cup\left\{x_{0}, x_{1}\right\}\right) \backslash J_{C}$ and $\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime} \in\left(O_{d-2} \cup O_{d} \cup M_{d-1} \cup\right.$ $\left.N_{d-1} \cup M_{d} \cup\left\{x_{d}, x_{d-1}\right\}\right) \backslash J_{C}$. By Claim 2.1, $\operatorname{dist}_{G}\left(\left(v_{i}^{I}\right)^{\prime}, P\right) \leq 1$ and $\operatorname{dist}_{G}\left(\left(v_{i}^{E}\right)^{\prime}, P\right) \leq 1$, implying that $\operatorname{dist}_{G}\left(\left(v_{i}^{I}\right)^{\prime},\left(v_{i}^{E}\right)^{\prime}\right) \leq 4$ for $i=1,2$. Since A^{I} and A^{E} are consecutive on C, we may assume (up to a symmetry) that there is no J_{C}-arc between v_{1}^{I} and v_{1}^{E}.

Now, if, say, $j_{C}^{I}(C)>1$, then the cycle C^{\prime} consisting of A^{I}, A^{E}, the arc $v_{1}^{I} C v_{1}^{E}$, and a shortest $\left(\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime}\right)$-path, has length at most $|V(C)|-2 \cdot 5+3=|V(C)|-7$ since we delete from C at least two J_{C}-internal arcs and we add a shortest $\left(\left(v_{2}^{I}\right)^{\prime},\left(v_{2}^{E}\right)^{\prime}\right)$-path. But this contradicts the fact that C is shortest possible. Therefore $j_{C}^{I}(C)=1$, and analogously $j_{C}^{E}(C)=1$.

By Claim 2.6, for the rest of the proof we suppose that the cycle C is chosen such that $j_{C}^{I}(C)=j_{C}^{E}(C)=1$.

Claim 2.7. Every $\left(y, y^{\prime}\right)$-arc of C of length at most $\frac{|V(C)|}{2}$ is a shortest $\left(y, y^{\prime}\right)$-path in G.
Proof. Suppose, to the contrary, that there is an arc $y C y^{\prime}$ of length at most $\frac{|V(C)|}{2}$ that is not a shortest path in G, let Q be a shortest $\left(y, y^{\prime}\right)$-path in G, and, among all such arcs
in C, choose the arc $A_{1}: y C y^{\prime}$ such that the path Q is shortest possible. By the same argument as in the proof of Claim 2.6, $j_{C}^{I}(Q) \leq 1$ and $j_{C}^{E}(Q) \leq 1$.

Let $A_{2}: y^{\prime} C y$ denote the complementary arc to A_{1} (i.e., $V\left(A_{1}\right) \cup V\left(A_{2}\right)=V(C)$ and $\left.V\left(A_{1}\right) \cap V\left(A_{2}\right)=\left\{y, y^{\prime}\right\}\right)$. Then clearly A_{1}, A_{2} and Q are pairwise internally vertexdisjoint paths with common endvertices, hence both $C_{1}: y A_{1} y^{\prime} \overleftarrow{Q} y$ and $C_{2}: y^{\prime} A_{2} y Q y^{\prime}$ are cycles in G. By the definition of Q and by the assumption that A_{1} is of length at most $\frac{|V(C)|}{2}$, we have $|E(Q)|<\left|E\left(A_{1}\right)\right| \leq\left|E\left(A_{2}\right)\right|$, hence both C_{1} and C_{2} are shorter than C. Let $A: v_{1} C v_{2}$ be the (only) J_{C}-internal arc of C, and choose the notation such that $v_{1} \in J_{1}$ and $v_{2} \in J_{2}$. According to the position of y and y^{\prime} with respect to A, we have the following three possibilities.
(α) $y, y^{\prime} \notin J_{C}$. Then either $A \subset A_{1}$, or $A \subset A_{2}$, thus, for each value of $j_{C}^{I}(Q)$, either $j_{C}^{I}\left(C_{1}\right)=1$ or $j_{C}^{I}\left(C_{2}\right)=1$.
(β) $y, y^{\prime} \in J_{C}$. Then both y and y^{\prime} are vertices of A (possibly $A=A_{1}$, or $\left\{y, y^{\prime}\right\} \cap$ $\operatorname{int}(A) \neq \emptyset)$. If $j_{C}^{E}(Q)=0$, then $j_{C}^{I}\left(C_{2}\right)=1$, and if $j_{C}^{E}(Q)=1$, then $j_{C}^{I}\left(C_{1}\right)=1$.
$(\gamma) y \in J_{C}$ and $y^{\prime} \notin J_{C}$. Let z be the vertex in $Q \cap\left(J_{1} \cup J_{2}\right)$ such that $\operatorname{dist}_{Q}(z, y)$ is maximal (i.e., z is the last vertex of Q in J_{C}, in the orientation from y to y^{\prime}). Now, if $z \in J_{1}$, then $j_{C}^{I}\left(C_{1}\right)=1$, and if $z \in J_{2}$, then $j_{C}^{I}\left(C_{2}\right)=1$.
In each of the possible cases, we have obtained a contradiction with the choice of C.
Recall that, by Claim 2.5, $|V(C)| \geq 10$. Now, every vertex of G is at distance at most 2 from C by the same arguments as in the proof of Claim 2.1. But then the set $V(C)$ is 2-step dominating in G, hence by Corollary J and by Claim 2.2, we have $\operatorname{rc}(G) \leq \operatorname{diam}(C)+1+2 \cdot 4 \leq \operatorname{diam}(G)+9$.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia P.O. Box 314, 30614 Pilsen, Czech Republic
 ${ }^{2}$ Centre of Excellence ITI, Institute for Theoretical Computer Science, Charles University, P.O. Box 314, 30614 Pilsen, Czech Republic
 ${ }^{3}$ European Centre of Excellence NTIS - New Technologies for the Information Society; P.O. Box 314, 30614 Pilsen, Czech Republic
 ${ }^{4}$ Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany

