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Abstract

A connected edge-colored graph G is rainbow-connected if any two distinct ver-

tices of G are connected by a path whose edges have pairwise distinct colors; the

rainbow connection number rc(G) of G is the minimum number of colors that are

needed in order to make G rainbow connected. In this paper, we complete the

discussion of pairs (X,Y ) of connected graphs for which there is a constant kXY

such that, for every connected (X,Y )-free graph G with minimum degree at least

2, rc(G) ≤ diam(G) + kXY (where diam(G) is the diameter of G), by giving a com-

plete characterization. In particular, we show that for every connected (Z3, S3,3,3)-

free graph G with δ(G) ≥ 2, rc(G) ≤ diam(G) + 156, and, for every connected

(S2,2,2, N2,2,2)-free graph G with δ(G) ≥ 2, rc(G) ≤ diam(G) + 72.

1 Introduction

We use [2] for terminology and notation not defined here and consider finite simple undi-

rected graphs only. To avoid trivial cases, all graphs considered will be connected with at

least one edge.

A subgraph of an edge-colored graph G is rainbow if all its edges have pairwise distinct

colors, and G is rainbow-connected if, for any x, y ∈ V (G), the graph G contains a rainbow

path with x, y as endvertices. Note that the edge coloring need not be proper. The rainbow

connection number of G, denoted by rc(G), is the minimum number of colors that are

needed in order to make G rainbow connected.
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This concept of rainbow connection in graphs was introduced by Chartrand et al. in

[5]. An easy observation is that if G has n vertices then rc(G) ≤ n − 1, since one may

color the edges of a given spanning tree of G with different colors and color the remaining

edges with one of the already used colors. Chartrand et al. determined the precise value of

the rainbow connection number for several graph classes including complete multipartite

graphs [5]. The rainbow connection number has been studied for further graph classes

in [3, 7, 11, 15] and for graphs with fixed minimum degree in [3, 12, 17]. See [16] for a

survey.

There are various applications for such edge colorings of graphs. One interesting

example is the secure transfer of classified information between agencies (see, e. g., [8]).

For the rainbow connection number of graphs, the following results are known (and

obvious).

Proposition A. Let G be a connected graph of order n. Then

(i) 1 ≤ rc(G) ≤ n− 1,

(ii) rc(G) ≥ diam(G),

(iii) rc(G) = 1 if and only if G is complete,

(iv) rc(G) = n− 1 if and only if G is a tree.

Note that the difference rc(G) − diam(G) can be arbitrarily large since e.g. for G ≃
K1,n−1 we have rc(K1,n−1)− diam(K1,n−1) = (n− 1)− 2 = n− 3. Especially, each bridge

requires a single color. For bridgeless graphs, the following upper bound is known.

Theorem B [1]. For every connected bridgeless graph G with radius r,

rc(G) ≤ r(r + 2).

Moreover, for every integer r ≥ 1, there exists a bridgeless graph G with radius r and

rc(G) = r(r + 2).

Note that this upper bound is still quadratic in terms of the diameter of G.

Let F be a family of connected graphs. We say that a graph G is F-free if G does not

contain an induced subgraph isomorphic to a graph from F . Specifically, for F = {X}
we say that G is X-free, and for F = {X, Y } we say that G is (X, Y )-free. The members

of F will be referred to in this context as forbidden induced subgraphs.

If X1, X2 are graphs, we write X1

IND

⊂ X2 if X1 is an induced subgraph of X2 (not

excluding the possibility that X1 = X2), and if {X1, Y1}, {X2, Y2} are pairs of graphs, we
write {X1, Y1}

IND

⊂ {X2, Y2} if either X1

IND

⊂ Y1 and X2

IND

⊂ Y2, or X1

IND

⊂ Y2 and X2

IND

⊂ Y1.

It is straightforward to see that if X1

IND

⊂ X2, then every X1-free graph is X2-free, and if

{X1, Y1}
IND

⊂ {X2, Y2}, then every (X1, Y1)-free graph is (X2, Y2)-free.

Although, by Theorem B, rc(G) can be quadratic in terms of diam(G), it turns out

that forbidden subgraph conditions can remarkably lower the upper bound on rc(G).
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In [9], the authors considered the question for which families F of connected graphs, a

connected F -free graph satisfies rc(G) ≤ diam(G)+kF , where kF is a constant (depending

on F), and gave a complete answer for 1 ≤ |F| ≤ 2 by the following two results (where

N denotes the net, i.e. the graph obtained by attaching a pendant edge to each vertex of

a triangle).

Theorem C [9]. Let X be a connected graph. Then there is a constant kX such that

every connected X-free graph G satisfies rc(G) ≤ diam(G) + kX , if and only if X = P3.

Theorem D [9]. Let X, Y be connected graphs, X,Y ̸= P3. Then there is a constant

kXY such that every connected (X, Y )-free graph G satisfies rc(G) ≤ diam(G) + kXY , if

and only if either {X,Y }
IND

⊂ {K1,r, P4} for some r ≥ 4, or {X,Y }
IND

⊂ {K1,3, N}.

Let Si,j,k denote the graph obtained by identifying one endvertex of three vertex dis-

joint paths of lengths i, j, k, Zi the graph obtained by attaching a path of length i to a

vertex of a triangle, and let Ni,j,k denote the graph obtained by identifying each vertex of

a triangle with an endvertex of one of three vertex disjoint paths of lengths i, j, k. We also

use Zt
1 to denote the graph obtained by attaching a triangle to each vertex of degree 1 of

a star K1,t (see Fig. 1).
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Figure 1: The graphs S2,2,2, S3,3,3, S1,1,4, Z3, N2,2,2 and Zt
1.

In [10], the authors considered an analogous question for graphs with minimum degree

at least two and gave the following results.

Theorem E [10]. Let X be a connected graph. Then there is a constant kX such that

every connected X-free graph G with δ(G) ≥ 2 satisfies rc(G) ≤ diam(G) + kX , if and

only if X
IND

⊂ P5.

Theorem F [10]. Let X, Y ̸
IND

⊂ P5 be a pair of connected graphs for which there is

a constant kXY such that every connected (X, Y )-free graph G with δ(G) ≥ 2 satisfies

rc(G) ≤ diam(G)+kXY . Then {X,Y }
IND

⊂ {P6, Z
r
1} for some r ∈ N, or {X,Y }

IND

⊂ {Z3, P7},
or {X,Y }

IND

⊂ {Z3, S1,1,4}, or {X,Y }
IND

⊂ {Z3, S3,3,3}, or {X, Y }
IND

⊂ {S2,2,2, N2,2,2}.
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In [10], it was also shown that for the first three of the forbidden pairs listed in

Theorem F, the converse is also true.

Theorem G [10].

(i) Let r be a positive integer and let G be a (P6, Z
r
1)-free graph with δ(G) ≥ 2. Then

rc(G) ≤ diam(G) + 20 + r.

(ii) Let G be a connected (Z3, P7)-free graph with δ(G) ≥ 2. Then rc(G) ≤ diam(G)+

30.

(iii) Let G be a connected (Z3, S1,1,4)-free graph with δ(G) ≥ 2. Then rc(G) ≤
diam(G) + 59.

In this paper, we complete the characterization of forbidden pairs (X, Y ) for which

there is a constant kXY such that every (X, Y )-free graph G with δ(G) ≥ 2 has rc(G) ≤
diam(G) + kXY , by proving sufficiency for the remaining pairs listed in Theorem F. In

particular, we show the following:

• in Theorem 1, we show that every connected (Z3, S3,3,3)-free graph G with δ(G) ≥ 2

has rc(G) ≤ diam(G) + 156, and

• in Theorem 2, we show that every connected (S2,2,2, N2,2,2)-free graph G with

δ(G) ≥ 2 has rc(G) ≤ diam(G) + 72.

Finally, in Theorem 3, we summarize these results and the results of the paper [10]

and we give a complete characterization of all forbidden pairs {X, Y } implying rc(G) ≤
diam(G) + kXY in (X,Y )-free graphs G with δ(G) ≥ 2.

2 Definitions and notations

In this section, we summarize some further notations and known facts that will be needed

for the proofs of our results.

A path with endvertices x, y will be referred to as an (x, y)-path, and for F ⊂ G, an

(x, y)-path with y ∈ V (F ) is called an (x, F )-path. For a nontrivial (x, y)-path P , we set

int(P ) = V (P ) \ {x, y}, and two paths P , Q are said to be internally vertex-disjoint if

int(P ) ∩ int(Q) = ∅. We use rad(G) for the radius of G and diam(G) for the diameter of

G. If x, y ∈ V (G) are at distance diam(G) and P is a shortest (x, y)-path, we say that

P is a diameter path. If C is a cycle, then a subgraph of C which is a path is called an

arc of C, and for A,B ⊂ V (C), an arc of C with endvertices in A and B, respectively, is

called an (A,B)-arc of C. For a path P and x, y ∈ V (P ), a subpath of P with origin at

x and end at y is denoted by xPy, and for a cycle Q (with a fixed orientation), we use

xQy to denote the (x, y)-arc of Q. The same arc, traversed in the opposite orientation, is

denoted by y
←−
Qx. For X, Y ⊂ V (G), we use E[X, Y ] to denote the set of edges of G with

one vertex in X and the other vertex in Y . We will also sometimes use NG[P ] to denote

the closed neighborhood of a subgraph P ⊂ G. Finally, a bridge of G is an edge e ∈ E(G)

such that G− e has more components than G.
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A dominating set D in a graph G is called a two-way dominating set if D includes all

vertices of G of degree 1. In addition, if G[D] is connected, we call D a connected two-way

dominating set. Note that if δ(G) ≥ 2, then every (connected) dominating set in G is a

(connected) two-way dominating set.

Theorem H [4]. If D is a connected two-way dominating set in a graph G, then

rc(G) ≤ rc(G[D]) + 3.

A set D ⊂ V (G) is called a k-step dominating set of G, k ≥ 0, if every vertex of G is

at a distance at most k from D.

Theorem I [6]. If G is a connected graph, and Dk is a connected k-step dominating

set of G, then G has a connected (k − 1)-step dominating set Dk−1 ⊃ Dk such that

rc(G[Dk−1]) ≤ rc(G[Dk]) + max{2k + 1, bk}, where bk is the number of bridges of G in

E(Dk, N(Dk)).

In our proofs, we will use several times the following easy consequence of Theorem I.

Corollary J. Let G be a connected graph, and let D be a connected k-step dominating

set of G such that G[D] contains all bridges of G. Then rc(G) ≤ rc(G[D]) + k (k + 2).

Proof. Let D be a connected k-step dominating set of G such that G[D] contains all

bridges of G. By Theorem I, there is a connected (k − 1)-step dominating set Dk−1 in

G such that Dk−1 ⊃ D and rc(G[Dk−1]) ≤ rc(G[D]) + (2k + 1). By induction, we get

a sequence of sets D,Dk−1, Dk−2, . . . , D0 such that Di−1 ⊃ Di and Di−1 is a connected

(i − 1)-step dominating set in G, i = k, . . . , 1, (i.e., specifically, D0 = V (G)), and such

that rc(G) = rc(G[D0]) ≤ rc(G[D]) + (2k+1)+ (2k− 1)+ . . .+3 = rc(G[D]) + k (2k+4)
2

=

rc(G[D]) + k (k + 2).

We will also use the following two results on bridgeless graphs of small diameter.

Theorem K [13]. If G is a connected bridgeless graph of diameter 2, then rc(G) ≤ 5.

Theorem L [14]. If G is a connected bridgeless graph of diameter 3, then rc(G) ≤ 9.
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3 Results

The following two theorems are the main results of this paper.

Theorem 1. Let G be a connected (Z3, S3,3,3)-free graph with δ(G) ≥ 2. Then

rc(G) ≤ diam(G) + 156.

Theorem 2. Let G be a connected (S2,2,2, N2,2,2)-free graph with δ(G) ≥ 2. Then

rc(G) ≤ diam(G) + 72.

Summarizing the statements of Theorems 1 and 2 with those of Theorems F and G,

we obtain the following characterization.

Theorem 3. Let X, Y ̸
IND

⊂ P5 be a pair of connected graphs. Then there is a constant

kXY such that every connected (X,Y )-free graph G with δ(G) ≥ 2 satisfies rc(G) ≤
diam(G) + kXY , if and only if either {X, Y }

IND

⊂ {P6, Z
r
1} for some r ∈ N, or {X, Y }

IND

⊂
{Z3, P7}, or {X, Y }

IND

⊂ {Z3, S1,1,4}, or {X,Y }
IND

⊂ {Z3, S3,3,3}, or {X,Y }
IND

⊂ {S2,2,2, N2,2,2}.

4 Proofs

Let P = x0, x1, . . . , xℓ be a shortest (x0, xℓ)-path in G and let z ∈ V (G) \ V (P ). If

|NP (z)| ≥ 2 and {xi, xj} ⊂ NP (z), then |i− j| ≤ 2 and |NP (z)| ≤ 3 since P is a shortest

path. In the proofs of Theorems 1 and 2, we will use the following notation (for more

details see Fig. 2):

• M1
i (P ) := {z ∈ V (G) \ V (P )|NP (z) = {xi}} for 0 ≤ i ≤ ℓ,

• N1
i (P ) := {z ∈ V (G) \ V (P )|NP (z) ⊃ {xi−1, xi+1}} for 1 ≤ i ≤ ℓ− 1,

• O1
i (P ) := {z ∈ V (G) \ V (P )|NP (z) = {xi−1, xi}} for 1 ≤ i ≤ ℓ.

We set M1(P ) =
ℓ∪

i=0

M1
i (P ), N1(P ) =

ℓ−1∪
i=1

N1
i (P ), O1(P ) =

ℓ∪
i=1

O1
i (P ), and R1(P ) =

V (G) \NG[P ]. For j = 1, 2, 3, . . . , ℓ− 1 we further denote

• M j+1
i (P ) = NG(M

j
i (P )) ∩Rj(P ) for 0 ≤ i ≤ ℓ, N j+1

i (P ) = NG(N
j
i (P )) ∩Rj(P ) for

1 ≤ i ≤ ℓ− 1, Oj+1
i (P ) = NG(O

j
i (P )) ∩Rj(P ) for 1 ≤ i ≤ ℓ,

• M j+1(P ) =
ℓ∪

i=0

M j+1
i (P ), N j+1(P ) =

ℓ−1∪
i=1

N j+1
i (P ), Oj+1(P ) =

ℓ∪
i=1

Oj+1
i (P ),

• Rj+1(P ) = Rj(P ) \ (M j+1(P ) ∪N j+1(P ) ∪Oj+1(P )).

We also denote Mi(P ) =
ℓ∪

j=1

M j
i (P ), Ni(P ) =

ℓ∪
j=1

N j
i (P ) and Oi(P ) =

ℓ∪
j=1

Oj
i (P ).

If the path P is clear from the context, we will omit the letter P in all the above

notations, i.e., we will shortly write M j
i , N

j
i , O

j
i etc. for M j

i (P ), N j
i (P ), Oj

i (P ) etc.,

respectively.
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Figure 2: The sets M j
i , N

j
i and Oj

i .

4.1 The pair (Z3, S3,3,3)

Before proving sufficiency for the pair X = Z3 and Y = S3,3,3, we give some auxiliary

statements.

Lemma 4. Let G be a connected bridgeless Z3-free graph with ω(G) ≥ 3 and δ(G) ≥ 2.

Then rc(G) ≤ min{24, diam(G) + 20}.

Proof. Let S ⊂ V (G) denote the vertex set of a maximum clique in G. Suppose

that there is a vertex z ∈ V (G) \ S at distance k ≥ 4 from G[S] in G, and let P :

y0, y1, y2, . . . , yk = z, be a shortest path between z and some vertex y0 ∈ S. Since P is

shortest, y0 is the only vertex of P belonging to S, P is induced and yi has no neighbor

in S for 2 ≤ i ≤ k. Since S is maximum, v0y1 /∈ E(G) for some v0 ∈ S. If there

is another v1 ∈ S with v1 ̸= v0 and v1y1 /∈ E(G), then G[{y0, v0, v1, y1, . . . , yk}] ≃ Zk,

otherwise, for some v1 ∈ S, v1 ̸= v0, we have G[{y1, y0, v1, y2, . . . , yk}] ≃ Zk−1. Since

k ≥ 4, G contains an induced Z3, a contradiction. Therefore, distG(x, y) ≤ 3 for every

pair of vertices x ∈ S and y ∈ V (G) \ S, implying rad(G) ≤ 4. By Theorem B, we have

rc(G) ≤ 24. If diam(G) ≥ 4, then rc(G) ≤ diam(G) + 20. Now, by Theorems K and L,

we obtain rc(G) ≤ min{24, diam(G) + 20}.

Lemma 5. Let G be a connected Z3-free graph with ω(G) ≥ 3 and δ(G) ≥ 2 such that

G contains a bridge. Then rc(G) ≤ 4.

Proof. Let xy be a bridge in G. Since G is connected, G − xy has two components.

Let G1 denote a component containing a triangle and let G2 denote the other component

of G − xy. Up to a symmetry, suppose that x ∈ V (G1) and y ∈ V (G2). Every vertex

of G2 is adjacent to y, for otherwise we get an induced Z3 with a triangle in G1. Then

ω(G2) ≥ 3 since δ(G) ≥ 2. Now, every vertex of G1 is adjacent to x, otherwise we get an

induced Z3 with a triangle in G2. This implies that D = {x, y} is a two-way dominating

set in G and, by Theorem H, rc(G) ≤ rc(G[D]) + 3 = 4.
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The following easy observation is a useful tool.

Lemma 6. Let G be a triangle-free graph with δ(G) ≥ 2, let b = uv be a bridge in

G, and let Gu, Gv denote the components of G− b such that u ∈ V (Gu) and v ∈ V (Gv).

Then there is a vertex at distance two from u in Gu and a vertex at distance two from v

in Gv.

Proof. Consider a component Gu of the graph G − b. If every vertex x of Gu is a

neighbor of u, then dG(x) = 1 since G is triangle-free, a contradiction. The proof for Gv

is symmetric.

Proof of Theorem 1. Let G be a (Z3, S3,3,3)-free graph. If G contains a triangle,

then the statement follows from Lemma 4 and 5. Thus, we assume that G is triangle-free.

First suppose that diam(G) ≤ 5. If G is bridgeless, then rc(G) ≤ 35 ≤ diam(G) + 35

by Theorem B. Thus, we assume that G contains a bridge b, and let G1, G2 denote the

components of G− b. By Lemma 6, diam(G) = 5 and b is the central edge of a diameter

path in G. Since diam(G) = 5, rad(G1) = rad(G2) = 2 and G1, G2 are both bridgeless.

Then, by Theorem B, rc(G1) ≤ 8 and rc(G2) ≤ 8. Thus we get rc(G) ≤ rc(G1)+rc(G2)+1

since we need an extra color for the bridge b, implying that rc(G) ≤ 17 = diam(G) + 12.

For the sets M j
i and N j

i , we have the following statement.

Claim 1.1. Let a, b ∈ V (G) be vertices at distance distG(a, b) ≥ 6, and let P : a =

x0, x1, . . . , xk = b (k ≥ 6) be a shortest (a, b)-path in G. Then

(i) M j
i = ∅ for 3 ≤ i ≤ k − 3 and j ≥ 3,

(ii) N j
i = ∅ for 3 ≤ i ≤ k − 3 and j ≥ 4,

(iii) NG(y) ⊂ (M1 ∪N1) for every y ∈M2
i , 3 ≤ i ≤ k − 3,

(iv) NG(y) ⊂ N2
i for every y ∈ N3

i , 3 ≤ i ≤ k − 3.

Proof. We prove the statement (i). Let, to the contrary, z ∈M3
i for some 3 ≤ i ≤ k−3.

Let Q be a shortest (z, xi)-path in G. Then the set of vertices {xi−3, xi−2, . . . xi+3}∪V (Q)

induces an S3,3,3, a contradiction. The proof of (ii) and (iii) is analogous. To prove (iv),

let y ∈ N3
i (for some i, 3 ≤ i ≤ k − 3), let y2 ∈ N(y) ∩ N2

i , and let y1 ∈ N(y2) ∩ N1
i . If

z ∈ N(y)\{y2}, then the set {y1, y2, y, z, xi−1, xi−2, xi−3, xi+1, xi+2, xi+3} induces an S3,3,3,

unless z ∈ N(y1), implying z ∈ N2
i . �

For the rest of the proof, we suppose that d = diam(G) ≥ 6. We choose a diameter path

P : x0, x1, . . . , xd in G. Unless otherwise stated, the sets M j
i , N

j
i and Rj, as introduced

above, will be always understood with respect to this fixed diameter path P . Since G

is triangle-free, NP (z) = {xi−1, xi+1} for any z ∈ N1
i , 1 ≤ i ≤ d − 1, and O1

i = ∅ for

1 ≤ i ≤ d.

Claim 1.2. The path P contains all bridges of G.
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Figure 3: The paths P , Q1 and Q2 in the proof of Claim 1.2

Proof. Let, to the contrary, b = u1u2 be a bridge with b /∈ E(P ), and choose the notation

such that u1 is in the componentBP ofG−b containing P , and u2 is in the other component

BR of G− b (see Fig. 3). By Lemma 6, BR contains a vertex w with dist(u2, w) = 2 (i.e.,

dist(u1, w) = 3). LetQ1 denote a shortest (w, x0)-path inG andQ2 a shortest (w, xd)-path

in G. Let v be the last common vertex of Q1 and Q2, i.e., a vertex such that the paths

vQ1x0 and vQ2xd are internally vertex-disjoint. Denote s = dist(v, x0) = |E(vQ1x0)|,
t = dist(v, xd) = |E(vQ2xd)|, and r = dist(v, w) = |E(vQ1w)| = |E(vQ2w)|. Obviously,

r ≥ 3.

Now, choose the paths Q1, Q2 such that

(i) |E(Q1)| is minimum and |E(Q2)| is minimum (as already mentioned), and

(ii) subject to (i), s+ t = |E(vQ1x0)|+ |E(vQ2xd)| is minimum.

Since d = diam(G), we have

dist(x0, w) = s+ r ≤ d, (1)

dist(xd, w) = t+ r ≤ d. (2)

Since x0
←−
Q1vQ2xd is an (x0, xd)-path and P is a diameter path, we have

dist(x0, v) + dist(xd, v) = s+ t ≥ d. (3)

We show that t ≥ 3: if t ≤ 2, then from (3) we have s + 2 ≥ s + t ≥ d, from which

s ≥ d− 2, and then (1) implies d ≥ s+ r ≥ d− 2+ r ≥ d− 2+3 = d+1, a contradiction.

Hence t ≥ 3, and, symmetrically, (using (2) instead of (1)), s ≥ 3. Hence the graph F ,

consisting of the paths vQ1x0, vQ2xd and v
←−
Q1w, contains a subgraph isomorphic to the

graph S3,3,3 (with center at v). Since G is S3,3,3-free, F is not an induced subgraph of G.

Thus, let h = z1z2 be an arbitrary edge with z1, z2 ∈ V (F ) but h ∈ E(G)\E(F ). Since

both Q1 and Q2 are shortest (hence chordless), up to a symmetry, z1 ∈ V (v+Q1Q1x0)

and z2 ∈ V (v+Q2Q2xd), where v+Q1 and v+Q2 denotes the successor of v on Q1 and

Q2, respectively. Set p = dist(v, z1) = |E(vQ1z1)| and q = dist(v, z2) = |E(vQ2z2)|.
Obviously, p ≥ 1 and q ≥ 1.
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We show that p = q. First suppose that p ≥ q+1. Then, considering the paths Q1 and

Q′
2 = wQ1z1z2Q2xd, we have a contradiction with the choice of Q1 and Q2: if p > q + 1,

then Q′
2 is shorter than Q2, contradicting (i), and if p = q + 1, then |E(Q2)| = |E(Q′

2)|,
but |E(z1Q1x0)| + |E(z1Q

′
2xd)| < |E(vQ1x0)| + |E(vQ2xd)|, contradicting (ii) (where z1

plays the role of v). Hence p < q+1. Symmetrically, q < p+1, implying p = q. Moreover,

since G is triangle-free, we have

p = q ≥ 2. (4)

Now, we choose the edge h = z1z2 such that

(iii) subject to (i) and (ii), p = q is maximum.

By (4), and since r ≥ 3, q+r ≥ 5, i.e., r ≥ 5−q. From (2) we then have d ≥ t+r ≥ t+5−q,
from which t − q ≤ d − 5. Since the path x0

←−
Q1z1z2Q2xd is an (x0, xd)-path of length

s − p + 1 + t − q, and P is a diameter path, d ≤ s − p + 1 + t − q ≤ s − p + 1 + d − 5,

from which we conclude that s − p ≥ 4. Thus, dist(z1, x0) = |E(z1Q1x0)| = s − p ≥ 4.

Symmetrically, dist(z2, xd) = |E(z2Q2xd)| = t− q ≥ 4, and hence |E(z1z2Q2xd)| ≥ 5.

Thus, the graph consisting of the paths z1Q1x0, z1z2Q2xd and z1
←−
Q1w contains a sub-

graph F ′ isomorphic to S3,3,3 (with center at z1). By the choice (iii), F ′ is an induced

subgraph of G, a contradiction. �

We set

JC =
d−3∪
i=3

(Mi ∪Ni ∪ {xi}).

By Claim 1.1, distG(x, P ) ≤ 3 for each x ∈ JC . Moreover, the vertices in JC at distance

3 from P have no neighbors in V (G) \ JC , as shown in the following statement.

Claim 1.3. Let x ∈ JC . If distG(x, P ) = 3, then x has no neighbor in V (G) \ JC .

Proof. If x ∈ JC is at distance three from P , then x ∈ N3
i by Claim 1.1(i) for some

i, 3 ≤ i ≤ d − 3, and by Claim 1.1(iv), every neighbor of x belongs to N2
i , and hence

to JC . �

We also show the following observation.

Claim 1.4. Let u ∈ V (G) \ JC and v ∈ JC be such that uv ∈ E(G). Then v ∈
Mi ∪Ni ∪ {x3} for some i ≤ 6, or v ∈Mi ∪Ni ∪ {xd−3} for some i ≥ d− 6.

Proof. Up to a symmetry, suppose that u ∈ (M0∪M1∪N1∪M2∪N2∪{x0, x1, x2})\JC .
If v ∈ Mi for some i ≥ 7, then distG(u, P ) + distG(v, P ) ≤ 3 by Claim 1.1 (iii), implying

that i ≤ 6, for otherwise a path consisting of a shortest (x0, u)-path, the edge uv and

a shortest (v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. Analogously,

if v ∈ Ni for some i ≥ 7, then distG(u, P ) + distG(v, P ) ≤ 4 by Claim 1.1(iv), implying

that i ≤ 6, for otherwise a path consisting of a shortest (x0, u)-path, the edge uv and

a shortest (v, xd)-path is shorter than P , a contradiction. Similarly, if v = xi for some

i ≥ 5, then there is a shorter (x0, xd)-path containing the edge uv, a contradiction again.

Finally, if v = x4, then u ∈M4 ∪N3 ∪N5, contradicting the choice of u. �
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We now distinguish two cases.

Case 1: The set JC is a cutset of G.

We show that there is no vertex at distance greater than 5 from P in G.

Claim 1.5. For every z ∈ V (G) \ JC , distG(z, P ) ≤ 5.

Proof. Let, to the contrary, ℓ = distG(z, P ) ≥ 6 for some z ∈ V (G) \ JC . Up to a

symmetry, suppose that z ∈M0∪M1∪N1∪M2∪N2. Let Q1 denote a shortest (z, xd)-path

in G, and let y′ denote the last vertex of Q1 in JC and y the successor of y′ on Q1, both in

an orientation of Q1 from xd (note that y
′ exists since JC is a cutset). From Claim 1.3 and

from the fact that y ̸∈ JC , distG(y, P ) ≤ 2. Then clearly distG(x0, y) ≤ 4 and distG(y, z) ≥
ℓ − 2 ≥ 4. We have d ≥ distG(z, xd) ≥ distG(z, y) + distG(y, xd) ≥ 4 + distG(y, xd),

implying that distG(y, xd) ≤ d − 4. But d ≤ distG(x0, y) + distG(y, xd), implying that

distG(y, xd) ≥ d− 4. Hence distG(y, xd) = d− 4, distG(y, x0) = 4, distG(z, y) = 4, y ∈M2
2

(by Claim 1.3) and z ∈ M6
2 . We denote Q2 a shortest (y, x2)-path. Then the path

x1x2Q2yQ1z is induced, and the path x0x1x2Q2yQ1xd is a diameter path. Recall that Q1

is a shortest path. Now, if d ≥ 7, then the subgraph consisting of the paths yQ2x2x1,

yQ1xd and y
←−
Q1z contains an induced S3,3,3 (with center at y). Hence d = 6, and then

distG(y, xd) = 2, implying y′x6 ∈ E(G). But then, by the definition of JC , y
′ ∈ N1

3 ∪M1
3 ,

contradicting the fact that P is a shortest path. �

Now, by Claim 1.5, the set V (P ) is 5-step dominating in G, hence by Corollary J and

by Claim 1.2, we have rc(G) ≤ diam(G) + 5 · 7 ≤ diam(G) + 35.

Case 2: The set JC is not a cutset of G.

If G is not bridgeless, then all bridges of G are on P by Claim 1.2, and at least one vertex

of each bridge is in JC by Lemma 6. But then JC is a cutset of G, contradicting the

assumption of Case 2. Thus, G is bridgeless.

First suppose that d = diam(G) ≤ 12. Since G is bridgeless, by Theorem B, we

have rc(G) ≤ rad(G)(rad(G) + 2) ≤ d(d + 2). It is easy to verify that, for d ≤ 12,

d(d+ 2) = d+ d(d+ 1) ≤ d+ 156, we have rc(G) ≤ diam(G) + 156, and we are done.

Thus, for the rest of the proof, we suppose that d = diam(G) ≥ 13. We introduce the

following notation:

J1 =
6∪

i=3

(Mi ∪Ni ∪ {xi}),

J2 =
d−3∪

i=d−6

(Mi ∪Ni ∪ {xi}),

JV = JC \ (J1 ∪ J2).

We further denote P ′ a shortest (x0, xd)-path in G − JC . Note that J1 ∩ J2 = ∅ since

d ≥ 13.

Note that, by Claim 1.4, there is no edge between JV and V (G) \ JC .
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If F ⊂ G is a cycle or a path, and AI = v1Fv2 is an arc of F , we say that AI is

JC-internal if V (AI) ⊂ JC , AI is maximal (in terms of the number of vertices) with

this property and v1 ∈ Jj and v2 ∈ J3−j for some j ∈ {1, 2}. We also say that an arc

AE = w1Fw2 is JC-external if no internal vertex of AE belongs to JC , and w1 ∈ Jj
and w2 ∈ J3−j for some j ∈ {1, 2}. We will use jIC(F ) to denote the number of internally

vertex-disjoint JC-internal arcs of F and jEC (F ) for the number of internally vertex-disjoint

JC-external arcs of F . Finally, we say that an arc A of F is a JC-arc if A is JC-internal

or JC-external.

Let now C be a shortest cycle in G such that jIC(C) is odd (note that C exists since

the subgraph G[V (P ) ∪ V (P ′)] certainly contains such a cycle.) We observe that jEC (C)

is also odd. Clearly, the total number of arcs of C between some vertex of J1 and some

vertex of J2 is even. Since jIC(C) is odd, there must be an arc of C between J1 and J2
which is not JC-internal. Let A′ be such an arc and choose A′ shortest possible. Since

A′ is not JC-internal, A
′ contains some vertex z ∈ V (G) \ JC , and since A′ is shortest,

int(A′)∩ (J1∪J2) = ∅. By Claim 1.4, we also have int(A′)∩JV = ∅, since there is no edge

between z and JV . Thus, A′ is JC-external. This means that every arc of C between J1
and J2 is either JC-internal or JC-external, hence a JC-arc. Thus j

I
C(C) + jEC (C) is even

and, since jIC(C) is odd, jEC (C) must be also odd.

Claim 1.6. Let A be a JC-internal (v1, v2)-arc of C, let v′1, v
′
2 denote the neighbor of v1

or v2 in V (C) \ int(A), respectively. Then distG(v
′
1, v

′
2) ≥ d− 8.

Proof. By the definition of a JC-internal arc, v
′
1, v

′
2 ̸∈ JC . By symmetry, we can sup-

pose that v′1 ∈ (M0 ∪M1 ∪ N1 ∪M2 ∪ N2 ∪ {x0, x1, x2}) \ JC . Then distG(v
′
1, P ) ≤ 2

and distG(v
′
2, P ) ≤ 2 by Claim 1.3 and since v′1, v

′
2 /∈ JC . Hence distG(x0, v

′
1) ≤ 4

and distG(v
′
2, xd) ≤ 4. Since distG(x0, v

′
1) + distG(v

′
1, v

′
2) + distG(v

′
2, xd) ≥ d, we get

distG(v
′
1, v

′
2) ≥ d− distG(x0, v

′
1)− distG(v

′
2, xd) ≥ d− 8. �

Note that, using Claim 1.6, we immediately observe that |V (C)| ≥ 10.

Claim 1.7. The cycle C can be chosen such that jIC(C) = jEC (C) = 1.

Proof. Since both jIC(C) and jEC (C) are odd, hence nonzero, there is a pair AI , AE of

JC-arcs of C such that AI is JC-internal, A
E is JC-external, and AI , AE are consecutive

on C, i.e., at least one of the components of C − (int(AI) ∪ int(AE)) contains no JC-

arc. Let vIi , v
E
i denote the endvertex of AI , AE in Ji (i = 1, 2), respectively, let (vIi )

′

denote the neighbor of vIi on C − AI , and let (vEi )
′ denote the neighbor of vEi on AE.

Then (vI1)
′, (vE1 )

′ ∈ (M0 ∪ M1 ∪ N1 ∪ M2 ∪ N2 ∪ {x0, x1, x2}) \ JC and (vI2)
′, (vE2 )

′ ∈
(Md−2∪Nd−2∪Md−1∪Nd−1∪Md∪{xd, xd−1, xd−2})\JC . By Claim 1.3, distG((v

I
i )

′, P ) ≤ 2

and distG((v
E
i )

′, P ) ≤ 2, implying that distG((v
I
i )

′, (vEi )
′) ≤ 6 for i = 1, 2. Since AI and

AE are consecutive on C, we may assume (up to a symmetry) that there is no JC-arc

between vI1 and vE1 .

Now, if, say, jIC(C) > 1, then the cycle C ′ consisting of AI , AE, the arc vI1CvE1 , and a

shortest ((vI2)
′, (vE2 )

′)-path, has length at most |V (C)| − 2 · 5 + 6 = |V (C)| − 4 since we
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delete from C at least two JC-internal arcs and we add a shortest ((vI2)
′, (vE2 )

′)-path. But

this contradicts the fact that C is shortest possible. Therefore jIC(C) = 1, and analogously

jEC (C) = 1. �

By Claim 1.7, for the rest of the proof we suppose that the cycle C is chosen such that

jIC(C) = jEC (C) = 1.

Claim 1.8. Every (y, y′)-arc of C of length at most |V (C)|
2

is a shortest (y, y′)-path in G.

Proof. Suppose, to the contrary, that there is an arc yCy′ of length at most |V (C)|
2

that

is not a shortest path in G, let Q be a shortest (y, y′)-path in G, and, among all such arcs

in C, choose the arc A1 : yCy′ such that the path Q is shortest possible. By the same

argument as in the proof of Claim 1.7, jIC(Q) ≤ 1 and jEC (Q) ≤ 1.

Let A2 : y
′Cy denote the complementary arc to A1 (i.e., V (A1) ∪ V (A2) = V (C) and

V (A1) ∩ V (A2) = {y, y′}). Then clearly A1, A2 and Q are pairwise internally vertex-

disjoint paths with common endvertices, hence both C1 : yA1y
′←−Qy and C2 : y′A2yQy′

are cycles in G. By the definition of Q and by the assumption that A1 is of length at

most |V (C)|
2

, we have |E(Q)| < |E(A1)| ≤ |E(A2)|, hence both C1 and C2 are shorter than

C. Let A : v1Cv2 be the (only) JC-internal arc of C, and choose the notation such that

v1 ∈ J1 and v2 ∈ J2. According to the position of y and y′ with respect to A, we have the

following three possibilities.

(α) y, y′ /∈ JC . Then either A ⊂ A1, or A ⊂ A2, thus, for each value of jIC(Q), either

jIC(C1) = 1 or jIC(C2) = 1.

(β) y, y′ ∈ JC . Then both y and y′ are vertices of A (possibly A = A1, or {y, y′} ∩
int(A) ̸= ∅). If jEC (Q) = 0, then jIC(C2) = 1, and if jEC (Q) = 1, then jIC(C1) = 1.

(γ) y ∈ JC and y′ /∈ JC . Let z be the vertex in Q ∩ (J1 ∪ J2) such that distQ(z, y) is

maximal (i.e., z is the last vertex of Q in JC , in the orientation from y to y′). Now,

if z ∈ J1, then jIC(C1) = 1, and if z ∈ J2, then jIC(C2) = 1.

In each of the possible cases, we have obtained a contradiction with the choice of C. �

Recall that, by Claim 1.6, |V (C)| ≥ 10. We show that the set V (C) is 3-step

dominating in G. Let, to the contrary, y4 be a vertex at distance 4 from C, and

let Q : y4, y3, y2, y1, y0 be a shortest (y4, C)-path in G (i.e., {y0} = V (C) ∩ V (Q)).

Let y+i
0 (y−i

0 ) denote the i-h successor (predecessor) of y0 on C, respectively, and set

A = y−3Cy+3. Since G is S3,3,3-free, the subgraph G[V (A) ∪ int(Q)] is not isomor-

phic to S3,3,3, and since both Q and C are induced, there is an edge uv ∈ E(G) with

u ∈ V (Q) \ {y0} and v ∈ V (A) \ {y0}. Then u = y1 since Q is shortest, and by Claim 1.8

and since G is triangle-free, v ∈ {y−2
0 , y+2

0 }. By symmetry, let v = y+2
0 . But then

G[(V (Q)∪ V (A)∪ {y+4
0 }) \ {y+1

0 , y−3
0 }] is an induced S3,3,3 with center at y1, a contradic-

tion. Thus, the set V (C) is 3-step dominating in G.

Recall that G is bridgeless since JC is not a cutset. Then, by Corollary J, we have

rc(G) ≤ diam(C) + 1 + 3 · 5 ≤ diam(G) + 16.
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4.2 The pair (S2,2,2, N2,2,2)

The proof of Theorem 2 basically follows the same strategy as the proof of Theorem 1.

We first handle the cases with small diameter, show that all bridges are on a diameter

path, and then we again distinguish two cases according to whether the set JC is a cutset

of G or not: in the first case, we obtain a 3-step domination by a diameter path, while

in the second case we obtain a 2-step domination by a certain chordless cycle. However,

there are 2 major differences:

• the graph G does not have to be triangle-free (implying that the sets Oj
i (P ) can

be nonempty and vertices in the sets N1
i (P ) can have three neighbours),

• all distances are smaller since we work with an S2,2,2 instead of an S3,3,3.

Consequently, some parts of the proof are identical with the corresponding parts of the

proof of Theorem 1, some parts are almost identical with only different constants, and

some parts are substantially different. In order to avoid unnecessary (and tedious) repeti-

tions, for the identical parts, we refer to the corresponding parts of the proof of Theorem 1.

Proof of Theorem 2. Let G be an (S2,2,2, N2,2,2)-free graph. First suppose that

d = diam(G) ≤ 4. IfG is bridgeless, then rc(G) ≤ 24 ≤ diam(G)+20 by Theorem B. Thus

we assume that G contains a bridge b = uv. If d = 3, then uv is a two-way dominating

set in G since δ(G) ≥ 2, implying that rc(G) ≤ 4 by Theorem H. Hence we suppose that

d = 4. Let Gu, Gv denote the components of G− b such that u ∈ V (Gu) and v ∈ V (Gv).

Up to a symmetry, suppose that every vertex ofGu is adjacent to u. Then rad(Gu) = 1 and

Gu is bridgeless, and rad(Gv) = 2. If Gv is also bridgeless, then rc(Gv) ≤ 8 by Theorem B,

implying that rc(G) = rc(Gu) + 1 + rc(Gv) ≤ 3 + 1 + 8 = 12. Thus, we assume that Gv

contains a bridge. Since G is S2,2,2-free and δ(G) ≥ 2, Gv contains only one bridge b′, for

otherwise v would be a center of an induced S2,2,2. Moreover, b′ is incident with v. Let

Gv1 , Gv2 denote the components of Gv − b′ such that Gv1 contains v. Then Gv1 , Gv2 are

both bridgeless, rad(Gv2) = 1, and rad(Gv1) = 1 since otherwise v would be a center of

an induced S2,2,2. Thus rc(G) = rc(Gu) + 2 + rc(Gv1) + rc(Gv2) ≤ 3 + 2 + 3 + 3 = 11.

For the rest of the proof, we suppose that d = diam(G) ≥ 5. We choose a diameter

path P : x0, x1, . . . , xd in G. Unless otherwise stated, the sets M j
i , N

j
i , O

j
i and Rj, as

introduced above, will be always understood with respect to this fixed diameter path P .

For these sets M j
i , N

j
i and Oj

i , we can prove the following statement.

Claim 2.1.

(i) M j
i = ∅ for 2 ≤ i ≤ d− 2 and j ≥ 2,

(ii) Oj
i = ∅ for 3 ≤ i ≤ d− 2 and j ≥ 3,

(iii) N j
i = ∅ for 2 ≤ i ≤ d− 2 and j ≥ 3,

(iv) if x ∈ O2
i , 3 ≤ i ≤ d− 2, and y ∈ R1 is such that xy ∈ E(G), then y ∈ O2

i ,

(v) if x ∈ N2
i , 2 ≤ i ≤ d− 2, and y ∈ R1 is such that xy ∈ E(G), then y ∈ N2

i .

Proof. The statements (i), (ii) and (iii) follow from the fact that G is S2,2,2-free or

N2,2,2-free. Now we show (iv). Let x ∈ O2
i for some i, 3 ≤ i ≤ d − 2, let y ∈ R1 be

such that xy ∈ E(G), and let x′
i denote a neighbor of x in O1

i . Then x′
iy ∈ E(G), for
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otherwise the set {x′
i, xi−1, xi, x, y, xi−2, xi−3, xi+1, xi+2} induces an N2,2,2, a contradiction.

The statement (v) can be proved analogously. �

Claim 2.2. The path P contains all bridges of G.

Proof. For the proof of Claim 2.2, we can basically follow the proof of Claim 1.2, and

we refer to Figure 3. Differently from Claim 1.2, for the vertex w in the component BR,

we have only dist(u2, w) = 1, i.e., dist(u1, w) = 2, and for r = dist(v, w) = |E(vQ1w)| =
|E(vQ2w)|, we have r ≥ 2.

We choose the paths Q1, Q2 satisfying (i) and (ii), and we have the inequalities (1),

(2) and (3) as in the proof of Claim 1.2.

We show that t ≥ 2: if t ≤ 1, then from (3) we have s + 1 ≥ s + t ≥ d, from which

s ≥ d− 1, and then (1) implies d ≥ s+ r ≥ d− 1+ r ≥ d− 1+2 = d+1, a contradiction.

Hence t ≥ 2, and, symmetrically, (using (2) instead of (1)), s ≥ 2. Hence the graph F ,

consisting of the paths vQ1x0, vQ2xd and v
←−
Q1w, contains a subgraph isomorphic to the

graph S2,2,2 (with center at v). Since G is S2,2,2-free, F is not an induced subgraph of G.

Now, as in the proof of Claim 1.2, we have an edge h = z1z2 with the same properties,

and, in the same way, we show that p = q. However, since G need not be triangle-free,

inequality (4) now reads

p = q ≥ 1. (4)

As in Claim 1.2, we choose the edge h = z1z2 such that

(iii) subject to (i) and (ii), p = q is maximum.

By (4), and since r ≥ 2, we have q + r ≥ 3, i.e., r ≥ 3 − q. From (2) we then have

d ≥ t+r ≥ t+3−q, from which t−q ≤ d−3. Since the path x0
←−
Q1z1z2Q2xd is an (x0, xd)-

path of length s−p+1+t−q, and P is a diameter path, d ≤ s−p+1+t−q ≤ s−p+1+d−3,
from which we conclude that s − p ≥ 2. Thus, dist(z1, x0) = |E(z1Q1x0)| = s − p ≥ 2.

Symmetrically, dist(z2, xd) = |E(z2Q2xd)| = t− q ≥ 2, and hence |E(z1z2Q2xd)| ≥ 3.

If p = q = 1 the subgraph [{z1z2v, z1Q1x0, z2Q2xd, vQ1w}]G contains an induced N2,2,2,

a contradiction

For p = q ≥ 2, the graph consisting of the paths z1Q1x0, z1z2Q2xd and z1
←−
Q1w contains

a subgraph F ′ isomorphic to S2,2,2 (with center at z1). By the choice (iii), F ′ is an induced

subgraph of G, a contradiction. �

We define the set JC =

(
d−2∪
i=2

(Mi ∪Ni ∪ {xi})
)
∪
(

d−2∪
i=3

Oi

)
.

By Claim 2.1, distG(x, P ) ≤ 2 for each x ∈ JC .

We also show the following observation.

Claim 2.3. Let u ∈ V (G) \ JC and v ∈ JC be such that uv ∈ E(G). Then v ∈
Mi ∪Ni ∪Oi+1 ∪ {x2} for some i ≤ 4, or v ∈Mi ∪Ni ∪Oi ∪ {xd−2} for some i ≥ d− 4.
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Proof. By Claim 2.1(i), (ii) and (iii), we have distG(v, P ) ≤ 2, and by Claim 2.1(iv), (v),

distG(u, P ) ≤ 2. Up to a symmetry, suppose that u ∈ (M0 ∪M1 ∪ N0 ∪ N1 ∪ O1 ∪ O2 ∪
{x0, x1}) \ JC (the case u ∈ (Md ∪Md−1 ∪ Nd ∪ Nd−1 ∪ Od ∪ Od−1 ∪ {xd, xd−1}) \ JC is

symmetric).

If v ∈Mi for some i ≥ 5, then distG(u, P )+ distG(v, P ) ≤ 2 by Claim 2.1(i), implying

that i ≤ 4, for otherwise a path consisting of a shortest (x0, u)-path, the edge uv and

a shortest (v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. If v ∈ Ni for

some i ≥ 5, then distG(u, P ) + distG(v, P ) ≤ 3 by Claim 2.1(v), implying that i ≤ 4,

for otherwise a path consisting of a shortest (x0, u)-path, the edge uv and a shortest

(v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. Analogously, if v ∈ Oi

for some i ≥ 6, then distG(u, P ) + distG(v, P ) ≤ 3 by Claim 2.1(iv), implying that i ≤ 5,

since otherwise a path consisting of a shortest (x0, u)-path, the edge uv and a shortest

(v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. Similarly, if v = xi for

some i ≥ 4, then there is a shorter (x0, xd)-path containing the edge uv, a contradiction

again. Finally, if v = x3 then u ∈M3 ∪N2 ∪N3 ∪N4 ∪O3 ∪O4, contradicting the choice

of u. �

We now distinguish two cases.

Case 1: The set JC is a cutset of G.

We show that there is no vertex at distance greater than 3 from P in G.

Claim 2.4. For every x ∈ V (G) \ JC , distG(x, P ) ≤ 3.

Proof. Let, to the contrary, x ∈ V (G) \ JC be at distance 4 from P in G. Up to a

symmetry, suppose that distG(x, x0) < distG(x, xd). Let Q denote a shortest x, xd-path,

z′i the first vertex of Q in JC (in an orientation of Q from x) and zi the predecessor of z′i
on Q in the same orientation. By Claim 2.1 and by the definition of JC , distG(zi, P ) = 1

and distG(zi, x0) ≤ 2, implying that distG(zi, xd) ≥ d− 2. Then distG(x, zi) ≥ 3, implying

that distG(x, xd) ≥ 3 + d− 2 > d, a contradiction. �

By Claim 2.4, the set V (P ) is 3-step dominating in G, hence by Corollary J and by

Claim 2.2, we have rc(G) ≤ diam(G) + 3 · 5 ≤ diam(G) + 15.

Case 2: The set JC is not a cutset of G.

First suppose that d = diam(G) ≤ 8. If G is not bridgeless, then all bridges of G are

on P by Claim 2.2, and at least one vertex of each bridge is in JC . But then JC is a

cutset of G, contradicting the assumption of Case 2. Hence G is bridgeless, and then, by

Theorem B, we have rc(G) ≤ rad(G)(rad(G) + 2) ≤ d(d+2). It is easy to verify that, for

d ≤ 8, d(d+2) = d+ d(d+1) ≤ d+72, we have rc(G) ≤ diam(G) + 72, and we are done.

Thus, for the rest of the proof, we suppose that d = diam(G) ≥ 9. We introduce the

following notation:
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J1 =
4∪

i=2

(Mi ∪Ni ∪Oi+1 ∪ {xi}),

J2 =
d−2∪

i=d−4

(Mi ∪Ni ∪Oi ∪ {xi}),

JV = JC \ (J1 ∪ J2).

We further denote P ′ a shortest (x0, xd)-path in G − JC . Note that J1 ∩ J2 = ∅ since

d ≥ 9.

Note that, by Claim 2.3, there is no edge between JV and V (G) \ JC .

As in the proof of Theorem 1, we introduce the concepts of a JC-internal arc and a

JC-external arc and the numbers jIC(C) and jEC , and we define the cycle C to be a shortest

cycle in G such that jIC(C) is odd. Using Claim 2.3 (which is a counterpart of Claim 1.4),

we show in the same way that jEC is also odd.

Claim 2.5. Let A be a JC-internal (v1, v2)-arc of C, let v′1, v
′
2 denote the neighbor of v1

or v2 in V (C) \ int(A), respectively. Then distG(v
′
1, v

′
2) ≥ d− 4.

Proof. By the definition of a JC-internal arc, v
′
1, v

′
2 ̸∈ JC . By symmetry, we can suppose

that v′1 ∈ (M0∪M1∪N1∪M2∪N2∪{x0, x1})\JC . Then distG(v
′
1, P ) ≤ 1 and distG(v

′
2, P ) ≤

1 by Claim 2.1 and since v′1, v
′
2 /∈ JC . Hence distG(x0, v

′
1) ≤ 2 and distG(v

′
2, xd) ≤ 2. Since

distG(x0, v
′
1) + distG(v

′
1, v

′
2) + distG(v

′
2, xd) ≥ d, we get distG(v

′
1, v

′
2) ≥ d− distG(x0, v

′
1)−

distG(v
′
2, xd) ≥ d− 4. �

Note that, using Claim 2.5, we immediately observe that |V (C)| ≥ 10.

Claim 2.6. The cycle C can be chosen such that jIC(C) = jEC (C) = 1.

Proof. Since both jIC(C) and jEC (C) are odd, hence nonzero, there is a pair AI , AE of

JC-arcs of C such that AI is JC-internal, A
E is JC-external, and AI , AE are consecutive

on C, i.e., at least one of the components of C − (int(AI) ∪ int(AE)) contains no JC-arc.

Let vIi , v
E
i denote the endvertex of AI , AE in Ji (i = 1, 2), respectively, let (vIi )

′ denote

the neighbor of vIi on C − AI , and let (vEi )
′ denote the neighbor of vEi on AE. Then

(vI1)
′, (vE1 )

′ ∈ (M0∪M1∪N1∪O1∪O2∪{x0, x1})\JC and (vI2)
′, (vE2 )

′ ∈ (Od−2∪Od∪Md−1∪
Nd−1 ∪Md ∪ {xd, xd−1}) \ JC . By Claim 2.1, distG((v

I
i )

′, P ) ≤ 1 and distG((v
E
i )

′, P ) ≤ 1,

implying that distG((v
I
i )

′, (vEi )
′) ≤ 4 for i = 1, 2. Since AI and AE are consecutive on C,

we may assume (up to a symmetry) that there is no JC-arc between vI1 and vE1 .

Now, if, say, jIC(C) > 1, then the cycle C ′ consisting of AI , AE, the arc vI1CvE1 , and a

shortest ((vI2)
′, (vE2 )

′)-path, has length at most |V (C)| − 2 · 5 + 3 = |V (C)| − 7 since we

delete from C at least two JC-internal arcs and we add a shortest ((vI2)
′, (vE2 )

′)-path. But

this contradicts the fact that C is shortest possible. Therefore jIC(C) = 1, and analogously

jEC (C) = 1. �

By Claim 2.6, for the rest of the proof we suppose that the cycle C is chosen such that

jIC(C) = jEC (C) = 1.
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The next claim is identical with Claim 1.8, and since the proof of Claim 1.8 uses only

metric arguments on cycles and arcs, the proof of Claim 2.7 is also identical with that of

Claim 1.8 (using Claim 2.6, which is a counterpart to Claim 1.7). We therefore include

here only the statement of Claim 2.7, and for its proof, we refer to the proof of Claim 1.8.

Claim 2.7. Every (y, y′)-arc of C of length at most |V (C)|
2

is a shortest (y, y′)-path in G.

�

Recall that, by Claim 2.5, |V (C)| ≥ 10. Now, every vertex of G is at distance at

most 2 from C by the same arguments as in the proof of Claim 2.1. But then the

set V (C) is 2-step dominating in G, hence by Corollary J and by Claim 2.2, we have

rc(G) ≤ diam(C) + 1 + 2 · 4 ≤ diam(G) + 9.
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5 Appendix (for referees only, not for publication)

We include here a full proof of Theorem 2, containing also the omitted parts.

Proof of Theorem 2. First suppose that d = diam(G) ≤ 4. If G is bridgeless, then

rc(G) ≤ 24 ≤ diam(G) + 20 by Theorem B. Thus we assume that G contains a bridge

b = uv. If d = 3, then uv is a two-way dominating set in G since δ(G) ≥ 2, implying

that rc(G) ≤ 4 by Theorem H. Hence we suppose that d = 4. Let Gu, Gv denote the

components of G − b such that u ∈ V (Gu) and v ∈ V (Gv). Up to a symmetry, suppose

that every vertex of Gu is adjacent to u. Then rad(Gu) = 1 and Gu is bridgeless, and

rad(Gv) = 2. If Gv is also bridgeless, then rc(Gv) ≤ 8 by Theorem B, implying that

rc(G) = rc(Gu) + 1 + rc(Gv) ≤ 3 + 1 + 8 = 12. Thus, we assume that Gv contains a

bridge. Since G is S2,2,2-free and δ(G) ≥ 2, Gv contains only one bridge b′, for otherwise

v would be a center of induced S2,2,2. Moreover, b′ is incident with v. Let Gv1 , Gv2 denote

the components of Gv − b′ such that Gv1 contains v. Then Gv1 , Gv2 are both bridgeless,

rad(Gv2) = 1, and rad(Gv1) = 1 since otherwise v would be a center of an induced S2,2,2.

Thus rc(G) = rc(Gu) + 2 + rc(Gv1) + rc(Gv2) ≤ 3 + 2 + 3 + 3 = 11.

For the rest of the proof, we suppose that d = diam(G) ≥ 5. We choose a diameter

path P : x0, x1, . . . , xd in G. Unless otherwise stated, the sets M j
i , N

j
i , O

j
i and Rj, as

introduced above, will be always understood with respect to this fixed diameter path P .

For these sets M j
i , N

j
i and Oj

i , we can prove the following statement.

Claim 2.1.

(i) M j
i = ∅ for 2 ≤ i ≤ d− 2 and j ≥ 2,

(ii) Oj
i = ∅ for 3 ≤ i ≤ d− 2 and j ≥ 3,

(iii) N j
i = ∅ for 2 ≤ i ≤ d− 2 and j ≥ 3,

(iv) if x ∈ O2
i , 3 ≤ i ≤ d− 2, and y ∈ R1 is such that xy ∈ E(G), then y ∈ O2

i ,

(v) if x ∈ N2
i , 2 ≤ i ≤ d− 2, and y ∈ R1 is such that xy ∈ E(G), then y ∈ N2

i .

Proof. The statements (i), (ii) and (iii) follow from the fact that G is S2,2,2-free or

N2,2,2-free, respectively. Now we show (iv). Let x ∈ O2
i for some i, 3 ≤ i ≤ d − 2,

let y ∈ R1 be such that xy ∈ E(G), and let x′
i denote a neighbor of x in O1

i . Then

x′
iy ∈ E(G), for otherwise the set {x′

i, xi−1, xi, x, y, xi−2, xi−3, xi+1, xi+2} induces an N2,2,2,

a contradiction. The statement (v) can be proved analogously. �

Claim 2.2. The path P contains all bridges of G.

Proof. Let, to the contrary, b = u1u2 be a bridge with b /∈ E(P ), and choose the notation

such that u1 is in the componentBP ofG−b containing P , and u2 is in the other component

BR of G−b (see Fig. 4). The component BR contains a vertex w with dist(u2, w) = 1 (i.e.,

dist(u1, w) = 2). LetQ1 denote a shortest (w, x0)-path inG andQ2 a shortest (w, xd)-path

in G. Let v be the last common vertex of Q1 and Q2, i.e., a vertex such that the paths

vQ1x0 and vQ2xd are internally vertex-disjoint. Denote s = dist(v, x0) = |E(vQ1x0)|,
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Figure 4: The paths P , Q1 and Q2 in the proof of Claim 2.2

t = dist(v, xd) = |E(vQ2xd)|, and r = dist(v, w) = |E(vQ1w)| = |E(vQ2w)|. Obviously,

r ≥ 2.

Now, choose the paths Q1, Q2 such that

(i) |E(Q1)| is minimum and |E(Q2)| is minimum (as already mentioned), and

(ii) subject to (i), s+ t = |E(vQ1x0)|+ |E(vQ2xd)| is minimum.

Since d = diam(G), we have

dist(x0, w) = s+ r ≤ d, (1)

dist(xd, w) = t+ r ≤ d. (2)

Since x0
←−
Q1vQ2xd is an (x0, xd)-path and P is a diameter path, we have

dist(x0, v) + dist(xd, v) = s+ t ≥ d. (3)

We show that t ≥ 2: if t ≤ 1, then from (3) we have s + 1 ≥ s + t ≥ d, from which

s ≥ d− 1, and then (1) implies d ≥ s+ r ≥ d− 1+ r ≥ d− 1+2 = d+1, a contradiction.

Hence t ≥ 2, and, symmetrically, (using (2) instead of (1)), s ≥ 2. Hence the graph F ,

consisting of the paths vQ1x0, vQ2xd and v
←−
Q1w, contains a subgraph isomorphic to the

graph S2,2,2 (with center at v). Since G is S2,2,2-free, F is not an induced subgraph of G.

Thus, let h = z1z2 be an arbitrary edge with z1, z2 ∈ V (F ) but h ∈ E(G)\E(F ). Since

both Q1 and Q2 are shortest (hence chordless), up to a symmetry, z1 ∈ V (v+Q1Q1x0)

and z2 ∈ V (v+Q2Q2xd), where v+Q1 and v+Q2 denotes the successor of v on Q1 and

Q2, respectively. Set p = dist(v, z1) = |E(vQ1z1)| and q = dist(v, z2) = |E(vQ2z2)|.
Obviously, p ≥ 1 and q ≥ 1.

We show that p = q. First suppose that p ≥ q+1. Then, considering the paths Q1 and

Q′
2 = wQ1z1z2Q2xd, we have a contradiction with the choice of Q1 and Q2: if p > q + 1,

then Q′
2 is shorter than Q2, contradicting (i), and if p = q + 1, then |E(Q2)| = |E(Q′

2)|,
but |E(z1Q1x0)| + |E(z1Q

′
2xd)| < |E(vQ1x0)| + |E(vQ2xd)|, contradicting (ii) (where z1
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plays the role of v). Hence p < q+1. Symmetrically, q < p+1, implying p = q. Moreover

we have

p = q ≥ 1. (4)

Now, we choose the edge h = z1z2 such that

(iii) subject to (i) and (ii), p = q is maximum.

By (4), and since r ≥ 2, q+r ≥ 3, i.e., r ≥ 3−q. From (2) we then have d ≥ t+r ≥ t+3−q,
from which t − q ≤ d − 3. Since the path x0

←−
Q1z1z2Q2xd is an (x0, xd)-path of length

s − p + 1 + t − q, and P is a diameter path, d ≤ s − p + 1 + t − q ≤ s − p + 1 + d − 3,

from which we conclude that s − p ≥ 2. Thus, dist(z1, x0) = |E(z1Q1x0)| = s − p ≥ 2.

Symmetrically, dist(z2, xd) = |E(z2Q2xd)| = t− q ≥ 2, and hence |E(z1z2Q2xd)| ≥ 3.

If p = q = 1 the subgraph [{z1z2v, z1Q1x0, z2Q2xd, vQ1w}]G contains an induced N2,2,2,

a contradiction

For p = q ≥ 2, the graph consisting of the paths z1Q1x0, z1z2Q2xd and z1
←−
Q1w contains

a subgraph F ′ isomorphic to S2,2,2 (with center at z1). By the choice (iii), F ′ is an induced

subgraph of G, a contradiction. �

We define the set JC =

(
d−2∪
i=2

(Mi ∪Ni ∪ {xi})
)
∪
(

d−2∪
i=3

Oi

)
.

By Claim 2.1, distG(x, P ) ≤ 2 for each x ∈ JC .

We also show the following observation.

Claim 2.3. Let u ∈ V (G) \ JC and v ∈ JC be such that uv ∈ E(G). Then v ∈
Mi ∪Ni ∪Oi+1 ∪ {x2} for some i ≤ 4, or v ∈Mi ∪Ni ∪Oi ∪ {xd−2} for some i ≥ d− 4.

Proof. By Claim 2.1(i), (ii) and (iii), we have distG(v, P ) ≤ 2, and by Claim 2.1(iv), (v),

distG(u, P ) ≤ 2. Up to a symmetry, suppose that u ∈ (M0 ∪M1 ∪ N0 ∪ N1 ∪ O1 ∪ O2 ∪
{x0, x1}) \ JC (the case u ∈ (Md ∪Md−1 ∪ Nd ∪ Nd−1 ∪ Od ∪ Od−1 ∪ {xd, xd−1}) \ JC is

symmetric).

If v ∈Mi for some i ≥ 5, then distG(u, P )+ distG(v, P ) ≤ 2 by Claim 2.1(i), implying

that i ≤ 4, for otherwise a path consisting of a shortest (x0, u)-path, the edge uv and

a shortest (v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. If v ∈ Ni for

some i ≥ 5, then distG(u, P ) + distG(v, P ) ≤ 3 by Claim 2.1(v), implying that i ≤ 4,

for otherwise a path consisting of a shortest (x0, u)-path, the edge uv and a shortest

(v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. Analogously, if v ∈ Oi

for some i ≥ 6, then distG(u, P ) + distG(v, P ) ≤ 3 by Claim 2.1(iv), implying that i ≤ 5,

since otherwise a path consisting of a shortest (x0, u)-path, the edge uv and a shortest

(v, xd)-path is an (x0, xd)-path shorter than P , a contradiction. Similarly, if v = xi for

some i ≥ 4, then there is a shorter (x0, xd)-path containing the edge uv, a contradiction

again. Finally, if v = x3 then u ∈M3 ∪N2 ∪N3 ∪N4 ∪O3 ∪O4, contradicting the choice

of u. �
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We now distinguish two cases.

Case 1: The set JC is a cutset of G.

We show that there is no vertex at distance greater than 3 from P in G.

Claim 2.4. For every x ∈ V (G) \ JC , distG(x, P ) ≤ 3.

Proof. Let, to the contrary, x ∈ V (G) \ JC be at distance 4 from P in G. Up to a

symmetry, suppose that distG(x, x0) < distG(x, xd). Let Q denote a shortest x, xd-path,

z′i the first vertex of Q in JC (in an orientation of Q from x) and zi the predecessor of z′i
on Q in the same orientation. By Claim 2.1 and by the definition of JC , distG(zi, P ) = 1

and distG(zi, x0) ≤ 2, implying that distG(zi, xd) ≥ d− 2. Then distG(x, zi) ≥ 3, implying

that distG(x, xd) ≥ 3 + d− 2 > d, a contradiction. �

By Claim 2.4, the set V (P ) is 3-step dominating in G, hence by Corollary J and by

Claim 2.2, we have rc(G) ≤ diam(G) + 3 · 5 ≤ diam(G) + 15.

Case 2: The set JC is not a cutset of G.

First suppose that d = diam(G) ≤ 8. If G is not bridgeless, then all bridges of G are

on P by Claim 2.2, and at least one vertex of each bridge is in JC . But then JC is a

cutset of G, contradicting the assumption of Case 2. Hence G is bridgeless, and then, by

Theorem B, we have rc(G) ≤ rad(G)(rad(G) + 2) ≤ d(d+2). It is easy to verify that, for

d ≤ 8, d(d+2) = d+ d(d+1) ≤ d+72, we have rc(G) ≤ diam(G) + 72, and we are done.

Thus, for the rest of the proof, we suppose that d = diam(G) ≥ 9. We introduce the

following notation:

J1 =
4∪

i=2

(Mi ∪Ni ∪Oi+1 ∪ {xi}),

J2 =
d−2∪

i=d−4

(Mi ∪Ni ∪Oi ∪ {xi}),

JV = JC \ (J1 ∪ J2).

We further denote P ′ a shortest (x0, xd)-path in G − JC . Note that J1 ∩ J2 = ∅ since

d ≥ 9.

Note that, by Claim 2.3, there is no edge between JV and V (G) \ JC .
If F ⊂ G is a cycle or a path, and AI = v1Fv2 is an arc of F , we say that AI is

JC-internal if V (AI) ⊂ JC , AI is maximal (in terms of the number of vertices) with

this property and v1 ∈ Jj and v2 ∈ J3−j for some j ∈ {1, 2}. We also say that an arc

AE = w1Fw2 is JC-external if no internal vertex of AE belongs to JC , and w1 ∈ Jj
and w2 ∈ J3−j for some j ∈ {1, 2}. We will use jIC(F ) to denote the number of internally

vertex-disjoint JC-internal arcs of F and jEC (F ) for the number of internally vertex-disjoint

JC-external arcs of F . Finally, we say that an arc A of F is a JC-arc if A is JC-internal

or JC-external.

Let now C be a shortest cycle in G such that jIC(C) is odd (note that C exists since

the subgraph G[V (P ) ∪ V (P ′)] certainly contains such a cycle.) We observe that jEC (C)
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is also odd. Clearly, the total number of arcs of C between some vertex of J1 and some

vertex of J2 is even. Since jIC(C) is odd, there must be an arc of C between J1 and J2
which is not JC-internal. Let A′ be such an arc and choose A′ shortest possible. Since

A′ is not JC-internal, A
′ contains some vertex z ∈ V (G) \ JC , and since A′ is shortest,

int(A′)∩ (J1∪J2) = ∅. By Claim 2.3, we also have int(A′)∩JV = ∅, since there is no edge

between z and JV . Thus, A′ is JC-external. This means that every arc of C between J1
and J2 is either JC-internal or JC-external, hence a JC-arc. Thus j

I
C(C) + jEC (C) is even

and, since jIC(C) is odd, jEC (C) must be also odd.

Claim 2.5. Let A be a JC-internal (v1, v2)-arc of C, let v′1, v
′
2 denote the neighbor of v1

or v2 in V (C) \ int(A), respectively. Then distG(v
′
1, v

′
2) ≥ d− 4.

Proof. By the definition of a JC-internal arc, v
′
1, v

′
2 ̸∈ JC . By symmetry, we can suppose

that v′1 ∈ (M0∪M1∪N1∪M2∪N2∪{x0, x1})\JC . Then distG(v
′
1, P ) ≤ 1 and distG(v

′
2, P ) ≤

1 by Claim 2.1 and since v′1, v
′
2 /∈ JC . Hence distG(x0, v

′
1) ≤ 2 and distG(v

′
2, xd) ≤ 2. Since

distG(x0, v
′
1) + distG(v

′
1, v

′
2) + distG(v

′
2, xd) ≥ d, we get distG(v

′
1, v

′
2) ≥ d− distG(x0, v

′
1)−

distG(v
′
2, xd) ≥ d− 4. �

Note that, using Claim 2.5, we immediately observe that |V (C)| ≥ 10.

Claim 2.6. The cycle C can be chosen such that jIC(C) = jEC (C) = 1.

Proof. Since both jIC(C) and jEC (C) are odd, hence nonzero, there is a pair AI , AE of

JC-arcs of C such that AI is JC-internal, A
E is JC-external, and AI , AE are consecutive

on C, i.e., at least one of the components of C − (int(AI) ∪ int(AE)) contains no JC-arc.

Let vIi , v
E
i denote the endvertex of AI , AE in Ji (i = 1, 2), respectively, let (vIi )

′ denote

the neighbor of vIi on C − AI , and let (vEi )
′ denote the neighbor of vEi on AE. Then

(vI1)
′, (vE1 )

′ ∈ (M0∪M1∪N1∪O1∪O2∪{x0, x1})\JC and (vI2)
′, (vE2 )

′ ∈ (Od−2∪Od∪Md−1∪
Nd−1 ∪Md ∪ {xd, xd−1}) \ JC . By Claim 2.1, distG((v

I
i )

′, P ) ≤ 1 and distG((v
E
i )

′, P ) ≤ 1,

implying that distG((v
I
i )

′, (vEi )
′) ≤ 4 for i = 1, 2. Since AI and AE are consecutive on C,

we may assume (up to a symmetry) that there is no JC-arc between vI1 and vE1 .

Now, if, say, jIC(C) > 1, then the cycle C ′ consisting of AI , AE, the arc vI1CvE1 , and a

shortest ((vI2)
′, (vE2 )

′)-path, has length at most |V (C)| − 2 · 5 + 3 = |V (C)| − 7 since we

delete from C at least two JC-internal arcs and we add a shortest ((vI2)
′, (vE2 )

′)-path. But

this contradicts the fact that C is shortest possible. Therefore jIC(C) = 1, and analogously

jEC (C) = 1. �

By Claim 2.6, for the rest of the proof we suppose that the cycle C is chosen such that

jIC(C) = jEC (C) = 1.

Claim 2.7. Every (y, y′)-arc of C of length at most |V (C)|
2

is a shortest (y, y′)-path in G.

Proof. Suppose, to the contrary, that there is an arc yCy′ of length at most |V (C)|
2

that

is not a shortest path in G, let Q be a shortest (y, y′)-path in G, and, among all such arcs
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in C, choose the arc A1 : yCy′ such that the path Q is shortest possible. By the same

argument as in the proof of Claim 2.6, jIC(Q) ≤ 1 and jEC (Q) ≤ 1.

Let A2 : y
′Cy denote the complementary arc to A1 (i.e., V (A1) ∪ V (A2) = V (C) and

V (A1) ∩ V (A2) = {y, y′}). Then clearly A1, A2 and Q are pairwise internally vertex-

disjoint paths with common endvertices, hence both C1 : yA1y
′←−Qy and C2 : y′A2yQy′

are cycles in G. By the definition of Q and by the assumption that A1 is of length at

most |V (C)|
2

, we have |E(Q)| < |E(A1)| ≤ |E(A2)|, hence both C1 and C2 are shorter than

C. Let A : v1Cv2 be the (only) JC-internal arc of C, and choose the notation such that

v1 ∈ J1 and v2 ∈ J2. According to the position of y and y′ with respect to A, we have the

following three possibilities.

(α) y, y′ /∈ JC . Then either A ⊂ A1, or A ⊂ A2, thus, for each value of jIC(Q), either

jIC(C1) = 1 or jIC(C2) = 1.

(β) y, y′ ∈ JC . Then both y and y′ are vertices of A (possibly A = A1, or {y, y′} ∩
int(A) ̸= ∅). If jEC (Q) = 0, then jIC(C2) = 1, and if jEC (Q) = 1, then jIC(C1) = 1.

(γ) y ∈ JC and y′ /∈ JC . Let z be the vertex in Q ∩ (J1 ∪ J2) such that distQ(z, y) is

maximal (i.e., z is the last vertex of Q in JC , in the orientation from y to y′). Now,

if z ∈ J1, then jIC(C1) = 1, and if z ∈ J2, then jIC(C2) = 1.

In each of the possible cases, we have obtained a contradiction with the choice of C. �

Recall that, by Claim 2.5, |V (C)| ≥ 10. Now, every vertex of G is at distance at

most 2 from C by the same arguments as in the proof of Claim 2.1. But then the

set V (C) is 2-step dominating in G, hence by Corollary J and by Claim 2.2, we have

rc(G) ≤ diam(C) + 1 + 2 · 4 ≤ diam(G) + 9.
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