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Abstract

Let G be a graph of order n with an edge coloring c, and let δc(G) denote the
minimum color degree of G, i.e., the largest integer such that each vertex of G is
incident with at least δc(G) edges having pairwise distinct colors. A subgraph
F ⊂ G is rainbow if all edges of F have pairwise distinct colors. In this paper,
we prove that (i) if G is triangle-free and δc(G) > n

3 + 1, then G contains a
rainbow C4, and (ii) if δc(G) > n

2 +2, then G contains a rainbow cycle of length
at least 4.
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1. Introduction

We consider finite simple undirected graphs, and for notations and termi-
nology not defined here we refer e.g. to [1]. By an edge-colored graph we mean a
triple G = (V (G), E(G), c), where (V (G), E(G)) is a (simple finite undirected)
graph and c : E(G)→ Z+. The function c is called an edge coloring of G. If the
edge coloring is clear from the context, we will simply speak of an edge-colored
graph G. If G = (V (G), E(G), c) and H ⊂ G is a subgraph of G, then we
automatically consider H to be edge-colored by the restriction of the function c
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to E(H). An edge set F ⊂ E(G) is called rainbow if no two distinct edges in F
receive the same color, and a graph is called rainbow if its edge set is rainbow.

For an edge e ∈ E(G), c(e) denotes the color of e, and for a vertex u ∈ V (G),
E(u) denotes the set of all edges incident to u. The cardinality of the set
c(E(u)) = {c(e) : e ∈ E(u)} is called the color degree of u and denoted by
dcG(u). The minimum color degree of G is denoted by δc(G) (or simply δc).

For S1, S2 ⊂ V (G), S1∩S2 = ∅, we set E(S1, S2) = {xy ∈ E(G) : x ∈ S1, y ∈
S2} and, in the special case when S1 = {u}, we write E(u, S) for E({u}, S).
For a subgraph F ⊂ G and a vertex u ∈ V (G) \ V (F ), we simply write c(u, F )
for c(E(u, V (F ))) and FC for G− F .

For a subgraph F ⊂ G, we use NF (x) to denote the neighborhood of a vertex
x ∈ V (G) in F , i.e., the set of all vertices that are adjacent to x in F , and we
write dF (x) for the degree of x in F . A path with endvertices x, y ∈ V (G) is
sometimes referred to as an (x, y)-path, and, for a path P and u, v ∈ V (P ), we
use uPv to denote the subpath of P with endvertices u, v.

The existence of rainbow substructures in edge-colored graphs has been
widely studied in the literature. We mention here those of the known results
that are related to our paper; for more information we refer the reader to the
survey paper by Kano and Li [5].

It turns out that the problem of existence of rainbow cycles is closely related
to the problem of existence of cycles in (uncolored) directed graphs. Let D be a
directed graph with vertex set V (D) = {u1, u2, . . . , up} and arc set A(D), and let
G be the underlying (undirected) graph of D. Li [7] constructed an edge-coloring
c : E(G)→ V (D) of G by defining c(uiuj) = uj for each arc uiuj ∈ A(D). It is
easy to see that D has a directed cycle of length ` if and only if (V (G), E(G), c)
has a rainbow cycle of length `. Hence the problem of the existence of rainbow
cycles in edge-colored graphs is a generalization of the corresponding problem
on directed cycles in directed graphs. Indeed, the problems on rainbow cycles
seems to be more difficult than the directed problem. For instance, it is known
that if the minimum out-degree δ+(D) is at least one, then D has a directed
cycle; however, for rainbow cycles, the corresponding problem to determine the
minimum color degree which guarantees the existence of a rainbow cycle is not
solved yet.

Li and Wang [8] constructed an edge-colored bipartite graph and an edge-
colored complete graph, both having minimum color degree log2 n and no rain-
bow cycles. Erdös and Gallai [4] showed that every graph G with m(≥ n) edges
has a cycle of length at least 2m

n−1 . For the number of colors c(G) = |c(E(G))|,
Broersma et at. [2] pointed out that the Erdös and Gallai’s theorem immedi-
ately implies that if c(G) ≥ n, then G contains a rainbow cycle of length at least
2

n−1 c(G). On the other hand, Li et al. [6] constructed an edge-coloring of the
complete graph Kn as follows: let V (Kn) = {u1, . . . , un} and let c : E(Kn) →
V (Kn) be the edge-coloring defined by c(uiuj) = uj for all i < j. Then, obvi-
ously, Kn with this edge-coloring contains no rainbow cycle, and c(Kn) = n−1.
Thus, the lower bound of c(G) obtained by Broersma et al. is best possible. Li
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et al. [6] showed that if e(G) + c(G) ≥ n(n + 1)/2, then G contains a rainbow
triangle, and the above example implies that this lower bound of e(G) + c(G) is
also best possible.

For directed graphs, the following conjecture by Caccetta and Häggkvist [3]
is well-known: a directed graph with δ+ ≥ d has a directed cycle of length
at most dnd e. For rainbow cycles, the following example can be considered as
an extremal graph for the analogue of the Caccetta-Häggkvist conjecture. Let
V1, . . . , Vd+1 be disjoint sets of vertices such that∑

1≤i≤d+1

|Vi| = n and bn/(d+ 1)c ≤ |Vi| ≤ dn/(d+ 1)e for all 1 ≤ i ≤ d+ 1,

and let Vi = {ui1, . . . , ui|Vi|} for each 1 ≤ i ≤ d + 1. Let G be the graph with

the vertex set
⋃

1≤i≤d+1 Vi and the edge set
⋃

1≤i≤d−1{uiju
i+1
k : uij ∈ Vi, u

i+1
k ∈

Vi+1}. An edge-coloring c : E(G)→ V (G) is defined by c(uiju
i+1
k ) = ui+1

k for all

edges uiju
i+1
k ∈ E(G). Then obviously G contains no rainbow cycle of length at

most d and δc = b n
d+1c+ 1 . Thus, as in the case of directed graphs, we need a

minimum color degree at least bnd c for the existence of a rainbow cycle of length
at most d.

Our research is motivated by the following recent results. For short cycles,
Broersma et al. [2] gave a neighborhood union-type condition by showing that
if |c(E(u) ∪ E(v))| ≥ n − 1 for all pairs u, v ∈ V (G), then G has a rainbow
cycle of length at most four. A minimum degree condition for the existence of
a rainbow triangle was given by Li [7].

Theorem A [7]. Let (V (G), E(G), c) be an edge-colored graph of order
n ≥ 3. If

δc(G) >
n

2
,

then G contains a rainbow triangle.

Li et al. [6] improved Theorem A as follows.

Theorem B [6]. Let (V (G), E(G), c) be an edge-colored graph of order
n ≥ 3 satisfying one of the following conditons:

(i)
∑

u∈V (G)

dc(u) ≥ n(n+ 1)

2
,

(ii) δc(G) ≥ n

2
and G /∈ {Kn/2,n/2,K4,K4 − e}.

Then G contains a rainbow triangle.
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Li [7] also gives the following condition for the existence of a rainbow 4-cycle
in a balanced bipartite graph.

Theorem C [7]. Let (V (G), E(G), c) be an edge-colored balanced bipartite
graph of order 2n. If

δc(G) >
3n

5
+ 1,

then G contains a rainbow C4.

The analogous question in edge-colored triangle-free (not necessarily bipar-
tite) graphs was considered by Wang et al. [9].

Theorem D [9]. Let (V (G), E(G), c) be an edge-colored triangle-free graph
of order n ≥ 9. If

δc(G) ≥ 3−
√

5

2
n+ 1,

then G contains a rainbow C4.

Note that, in Theorem D, 3−
√
5

2

.
= 0.382.

Finally, for long rainbow cycles, we know that there is a rainbow cycle of
length at least 2

n−1 c(G) if c(G) ≥ n, as mentioned before. Li and Wang [8]
showed the following.

Theorem E [8]. Let (V (G), E(G), c) be an edge-colored triangle-free graph
of order n ≥ 8. If

δc(G) ≥ 3

4
n+ 1,

then G contains a rainbow cycle of length at least δc(G)− 3
4 n+ 2.

Note that, for the existence of a rainbow cycle of length at least four, Theorem E
gives a sufficient condition δc(G) ≥ 3

4 n+ 2.

In the present paper, we prove the following two results.

• In Section 2, we give our first main result, Theorem 1, which strengthens
Theorem D by showing the following.

If (V (G), E(G), c) is an edge-colored triangle-free graph of order n such
that δc(G) > n

3 + 1, then G contains a rainbow 4-cycle.

• Our second main result, Theorem 3 in Section 3, strengthens Theorem E
in the special case of a cycle of length at least 4 by showing that even
assumptions similar to those of Theorem A are sufficient for the existence
of a rainbow cycle of length at least 4. Namely, we show the following.

If (V (G), E(G), c) is an edge-colored graph of order n such that δc(G) >
n
2 + 2, then G contains a rainbow cycle of length at least four.

Finally, in Section 4, we give a conjecture concerning a possible generalization
of Theorem 3.
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2. Rainbow C4’s in triangle-free graphs

The main result of this section, Theorem 1, is a strengthening of Theorem D

(note that, in Theorem D, 3−
√
5

2

.
= 0, 382).

Theorem 1. Let (V (G), E(G), c) be an edge-colored graph of order n. If G
is triangle-free and

δc(G) >
n

3
+ 1,

then G contains a rainbow 4-cycle.

For the proof of Theorem 1, we will need the following lemma.

Lemma 2. Let (V (G), E(G), c) be an edge-colored graph containing no rain-
bow 4-cycle and let {xyiz}pi=1 be a set of rainbow (x, z)-paths of length two in
G. If {xyi}pi=1 is rainbow, then |{c(yiz)}pi=1| ≤ 3.

Proof. Suppose, to the contrary, that |{c(yiz)}pi=1| ≥ 4, choose the notation
such that |{c(yiz)}4i=1| = 4, and set c(yiz) = ai, i = 1, 2, 3, 4.

Since the paths xy1z and xy2z are rainbow, c(xy1) 6= a1 and c(xy2) 6= a2.
Since the cycle C = xy1zy2x cannot be a rainbow C4, we have c(xy1) = a2 or
c(xy2) = a1. Symmetrically, c(xy3) = a4 or c(xy4) = a3. Thus, we have the
following 4 possibilities.

Case Rainbow C4

c(xy1) = a2, c(xy3) = a4 xy1zy3x
c(xy1) = a2, c(xy4) = a3 xy1zy4x
c(xy2) = a1, c(xy3) = a4 xy2zy3x
c(xy2) = a1, c(xy4) = a3 xy2zy4x

In each of the cases, we have obtained a contradiction. Hence |{c(yiz)}pi=1| ≤ 3.

Proof of Theorem 1. Let G be a graph satisfying the assumptions of The-
orem 1 and suppose, to the contrary, that G contains no rainbow C4. Let
x0 ∈ V (G), and let N1 ⊂ NG(x0) be such that |N1| = |c(x0, N1)| = δc.
Set N1 = {x11, . . . , x1δc}. Similarly, let N2 ⊂ NG(x1δc) \ {x0} be such that
|N2 ∪ {x0}| = |c(x1δc , N2 ∪ {x0})| = δc (hence |N2| = δc − 1), and set N2 =
{x21, . . . , x2δc−1}. Since G is simple and triangle-free, N2 ∩ (N1 ∪ {x0}) = ∅.

Now, let H ⊂ G be the graph with V (H) = {x0} ∪ N1 ∪ N2 and with
E(H) = E(x0, N1) ∪ {x1ix2j ∈ E(N1, N2) : c(x1ix

2
j ) 6= c(x0x1i )}. Note that, by

the definition of H, E(x1δc , N2) ⊂ E(H), and, for every x2j ∈ N2, any (x0, x2j )-
path of length 2 in H is rainbow. Also note that each of the sets N1, N2 is
independent since G is triangle-free. Finally, let M ⊂ G be the graph with
V (M) = N1 ∪N2 and with E(M) = {x1ix2j ∈ E(N1, N2) : c(x1ix

2
j ) = c(x0x1i )}.

We distinguish two cases.
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Case 1: there is a vertex x2j0 ∈ N2 such that dM (x2j0) = 0. Then E(x2j0 , N1) ⊂
E(H) and hence, by Lemma 2, we have |c(x2j0 , N1)| ≤ 3. Obviously x2j0x

0 /∈
E(G) since G is triangle-free. Hence there is a set N3 ⊂ NG(x2j0) \ ({x0} ∪N1)

such that |c(x2j0 , N3)| ≥ δc−3, implying |N3| ≥ δc−3. Since N2 is independent,
N3 ∩N2 = ∅. Hence we have

n ≥ 1 + |N1|+ |N2|+ |N3| = 1 + δc + (δc − 1) + (δc − 3) = 3δc − 3,

from which

δc ≤ n

3
+ 1,

a contradiction.

Case 2: for every x2j ∈ N2, dM (x2j ) ≥ 1. Set NM
1 = {x1i ∈ N1 : dM (x1i ) ≥

1}. Since |N1| = δc and dM (x1δc) = 0, we have |NM
1 | ≤ δc − 1. Recall that

|N2| = δc − 1. Now, if dM (x1i ) < dM (x2j ) for every edge x1ix
2
j ∈ E(M), then

|NM
1 | > |N2|, a contradiction (recall that M is a bipartite graph). Hence there

is an edge x1i0x
2
j0
∈ E(M) such that dM (x1i0) ≥ dM (x2j0).

Set dM (x1i0) = k. Then |NH(x1i0) ∩ N2| ≤ (δc − 1) − k, i.e., there are at
most δc − k − 1 edges from x1i0 to N2 in the subgraph H. Since all edges in M
incident to x1i0 have the same color c(x0x1i0) and since N1 is independent, we
have |c(x1i0 , ({x

0} ∪ N1 ∪ N2))| ≤ δc − k. Hence there is a set N ′2 ⊂ NG(x1i0) \
({x0} ∪N1 ∪N2) such that |c(x1i0 , N

′
2)| ≥ k, implying |N ′2| ≥ k.

Now we consider colors at the vertex x2j0 . Since dM (x2j0) ≤ dM (x1i0) = k,

there are at most k edges in M incident to x2j0 . These edges in M incident to x2j0
can have at most k distinct colors, and, by Lemma 2, the edges in H incident
to x2j0 can have at most 3 distinct colors. Thus, we have |c(x2j0 , N1)| ≤ k + 3.

Since x0x2j0 /∈ E(G), and since N2 is independent, there is a set N3 ⊂ NG(x2j0)\
({x0}∪N1 ∪N2) such that |c(x2j0 , N3)| ≥ δc− k− 3, implying |N3| ≥ δc− k− 3.

Finally, we observe that N ′2 ∩N3 = ∅ since x1i0x
2
j0
∈ E(G) and G is triangle-

free. Hence we have

n ≥ 1 + |N1|+ |N2|+ |N3|+ |N ′2| ≥ 1 + δc + (δc − 1) + (δc − k − 3) + k = 3δc − 3,

from which

δc ≤ n

3
+ 1,

a contradiction.
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3. Rainbow cycles of length at least 4

The following theorem is our second main result.

Theorem 3. Let (V (G), E(G), c) be an edge-colored graph of order n. If

δc(G) >
n

2
+ 2,

then G contains a rainbow cycle of length at least four.

For the proof of Theorem 3, we will need the following lemma.

Lemma 4. Let (V (G), E(G), c) be an edge-colored graph and let P =
u1 . . . up be a longest rainbow path in G. If G has no rainbow cycle of length at
least k (k ≤ |P |), then for any positive integers s, t such that s+ t = k,

|c(u1, ukPup−(t−1)) ∩ c(up, usPup−(k−1))| ≤ 1.

Proof. Suppose that G contains no rainbow cycle of length at least k.

Claim 1. For any a ∈ c(u1, ukPup) and ui ∈ V (ukPup) such that c(u1ui) = a,
there is an edge e ∈ E(u1Pui) such that c(e) = a.

Proof. If there is no edge of color a in u1Pui, then u1Puiu1 is a rainbow cycle
of length at least k, a contradiction. �

Note that also, by symmetry, for any a ∈ c(up, u1Pup−(k−1)) and ui ∈
V (u1Pup−(k−1)) such that c(upui) = a, there is an edge e ∈ E(uiPup) such
that c(e) = a.

Suppose now that c(u1, ukPup−(t−1))∩ c(up, usPup−(k−1)) contains two col-
ors a1, a2. Let u` ∈ V (ukPup−(t−1)) and u`′ ∈ V (usPup−(k−1)) be such that
c(u1u`) = c(upu`′) = a1. Similarly, let um ∈ V (ukPup−(k−1)) and um′ ∈
V (usPup−(k−1)) be such that c(u1um) = c(upum′) = a2. By Claim 1, obviously
`′ < ` and m′ < m. Note that ` 6= m and `′ 6= m′ since the edges u1u` and
u1um, or upu`′ and upum′ , respectively, must have different colors by definition.

By symmetry, we can suppose that `′ < m′. Note that, by Claim 1, there is
an edge e1 in u`′Pu` with c(e1) = a1, and there is an edge e2 in um′Pum with
c(e2) = a2.

If ` < m, then the cycle u1Pu`′upPumu1 is a rainbow cycle of length at least
k (see Fig. 1), a contradiction. Hence m < `, i.e., `′ < m′ < m < `. But now, if
e1 ∈ E(u`′Pum), then u1Pu`′upPumu1 is a rainbow cycle of length at least k
(see Fig. 2a), a contradiction, and if e1 ∈ E(umPu`), then u1u`Pupum′Pu1 is
a rainbow cycle of length at least k (see Fig. 2b), a contradiction again. Thus,
|c(u1, ukPup−(t−1)) ∩ c(up, usPup−(k−1))| ≤ 1.
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Figure 1: The case `′ < m′ and ` < m
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(b)

Figure 2: The case `′ < m′ and m < `

Proof of Theorem 3. Let G be a graph satisfying the assumptions of Theo-
rem 3. Suppose to the contrary, that G contains no rainbow cycle of length at
least 4.

Set

A = c(u1, u4Pup−1), B = c(up, u2Pup−3)

and

C0 = (c(u1, P
C) \ c(u1, P )) ∩ (c(up, P

C) \ c(up, P )).

Note that C0 ∩ (A ∪ B) = ∅ and for any a ∈ C0, there is an edge in P whose
color is a (since otherwise P is not a longest rainbow path).

It is easy to observe that c(u1u2) /∈ B and c(upup−1) /∈ A (see Claim 1 in
the proof of Lemma 4). However, possibly c(u1u2) ∈ A or c(upup−1) ∈ B. Set

ε1 =

{
1 if c(u1u2) /∈ A,
0 if c(u1u2) ∈ A;

ε2 =

{
1 if c(upup−1) /∈ B,
0 if c(upup−1) ∈ B;

ε′1 =

{
1 if c(u1up) 6∈ A ∪ {c(u1u2)},
0 otherwise;
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ε′2 =

{
1 if c(u1up) 6∈ B ∪ {c(upup−1)},
0 otherwise.

If u1up /∈ EG, then we define ε′1 = ε′2 = 0. By Lemma 1, |A ∩B| ≤ 1. Hence

|E(P )| ≥ |{e ∈ EP : c(e) ∈ A ∪B}|+ ε1 + ε2 + ε′1ε
′
2

+|{e ∈ EP : c(e) ∈ C0}|
= |A|+ |B| − 1 + |C0|+ ε1 + ε2 + ε′1ε

′
2.

Set

C1 = {c1, c2, . . . , c|C1|} = c(u1, P
C) \ (C0 ∪ c(u1, P )),

C2 = {c′1, c′2, . . . , c′|C2|} = c(up, P
C) \ (C0 ∪ c(up, P )).

Let xi ∈ NPC (u1) be such that c(u1xi) = ci and yi ∈ NPC (up) such that
c(upyi) = c′i. Obviously,

|{x1, . . . , x|C1|} ∩ {y1, . . . , y|C2|}| ≤ 1,

for otherwise there is a rainbow 4-cycle. Therefore,

|V (PC)| ≥ |C0|+ |C1|+ |C2| − 1.

Since |c(u1, P ) \ (A∪{c(u1u2)})| ≤ 2 and |c(up, P ) \ (B ∪{c(upup−1)})| ≤ 2, we
have

|A|+ |C0|+ |C1|+ ε1 + ε′1 + 1 ≥ dc(u1) ≥ δc,
|B|+ |C0|+ |C2|+ ε2 + ε′2 + 1 ≥ dc(up) ≥ δc.

Summarizing, we have

|V (P )| = |E(P )|+ 1 ≥ |A|+ |B|+ |C0|+ ε1 + ε2 + ε′1ε
′
2

and

|V (PC)| ≥ |C0|+ |C1|+ |C2| − 1,

from which

n ≥ |V (P )|+ |V (PC)| ≥ |A|+ |C0|+ |C1|+ ε1 + ε′1ε
′
2 + |B|+ |C0|+ |C2|+ ε2 − 1

≥ 2δc − 4.

This implies δc(G) ≤ n
2 + 2, a contradiction.
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4. Concluding remarks

1. Our results, although improving known results, are still far from the potential
sharpness examples mentioned in the introduction. Therefore, we do not know
whether our results are sharp.

2. We believe that Theorem 3 could be possibly generalized. We propose the
following conjecture.

Conjecture 5. Let (V (G), E(G), c) be an edge-colored graph of order n and
let k be a positive integer. If δc(G) ≥ n+k

2 , then G contains a rainbow cycle of
length at least k.

We include here two examples of colorings of small complete graphs sup-
porting the conjecture. Let V (Kn) = {u1, . . . , un}.

ForK4 consider the following edge-coloring: decomposeK4 into three perfect
matchings and color them with different colors. Thus δc(K4) = 3.

For K6 color edges of two 3-cycles u1u3u5u1 and u2u4u6u2 with the same
color. Decompose all the remaining edges into three perfect matchings (arbi-
trarily) and color these matchings with different colors. Thus δc(K6) = 4.

Note that these graphs have then δc(G) = n+k−2
2 for k = 4. On the other

hand, in each of them every cycle of length at least 4 is not rainbow.
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