Finite families of forbidden subgraphs for rainbow connection in graphs

Jan Brousek ${ }^{1,2,3,4} \quad$ Přemysl Holub ${ }^{1,2,3,4} \quad$ Zdeněk Ryjáček ${ }^{1,2,3,4}$
Petr Vrána ${ }^{1,2,3,4}$

Feb 19, 2016

Abstract

A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number $\operatorname{rc}(G)$ of G is the minimum number of colors such that G is rainbow-connected. We consider families \mathcal{F} of connected graphs for which there is a constant $k_{\mathcal{F}}$ such that, for every connected \mathcal{F}-free $\operatorname{graph} G, \operatorname{rc}(G) \leq \operatorname{diam}(G)+$ $k_{\mathcal{F}}$, where $\operatorname{diam}(G)$ is the diameter of G. In the paper, we finalize our previous considerations and give a complete answer for any finite family \mathcal{F}.

1 Introduction

We consider finite and simple graphs only, and for terminology and notation not defined here we refer to [3]. To avoid trivial cases, all graphs considered will be connected with at least one edge.

An edge-colored connected graph G is said to be rainbow-connected if each pair of distinct vertices of G is connected by a rainbow path, i.e., by a path whose edges have pairwise distinct colors. Note that the edge coloring need not be proper. The rainbow connection number of G, denoted by $\mathrm{rc}(G)$, is the minimum number of colors such that G is rainbow-connected.

[^0]The concept of rainbow connection was introduced by Chartrand et al. [7]. It is easy to observe that, for any graph $G, \operatorname{rc}(G) \leq|V(G)|-1$, since we can color the edges of a given spanning tree of G with different colors, and the remaining edges with one of the already used colors. In $[7]$, the exact values of $\operatorname{rc}(G)$ were determined for several graph classes. The rainbow connection number has been studied for further graph classes in $[4,8,10,13]$ and for graphs with fixed minimum degree in $[4,11,17]$. The results are surveyed in [14] and in [15].

In [5, 12], it was shown that it is NP-hard to determine the exact value of $\operatorname{rc}(G)$. In fact, it is already NP-complete to decide whether $\operatorname{rc}(G)=2$, and it is also NP-complete to decide whether a given edge-colored graph (with an unbounded number of colors) is rainbow-connected [5]. More generally, it has been shown in [12] that for any fixed $k \geq 2$, it is NP-complete to decide whether $\mathrm{rc}(G)=k$.

For the rainbow connection numbers of graphs the following results are known (and obvious).

Proposition A. Let G be a connected graph of order n. Then
(i) $1 \leq \operatorname{rc}(G) \leq n-1$,
(ii) $\operatorname{rc}(G) \geq \operatorname{diam}(G)$,
(iii) $\operatorname{rc}(G)=1$ if and only if G is complete,
(iv) $\operatorname{rc}(G)=n-1$ if and only if G is a tree.

Note that the difference $\operatorname{rc}(G)-\operatorname{diam}(G)$ can be arbitrarily large. For $G \simeq K_{1, n-1}$ we have $\operatorname{rc}\left(K_{1, n-1}\right)-\operatorname{diam}\left(K_{1, n-1}\right)=(n-1)-2=n-3$. Especially, each bridge requires a single color.

For connected bridgeless graphs, there is the following upper bound on $\operatorname{rc}(G)$, however, note that this bound is quadratic in terms of $\operatorname{rad}(G)$, and, since there is a constant c such that $c \cdot \operatorname{rad}(G) \geq \operatorname{diam}(G)$, also in $\operatorname{diam}(G)$.

Theorem B [1]. For every connected bridgeless graph G with radius r,

$$
\operatorname{rc}(G) \leq r(r+2)
$$

Moreover, for every integer $r \geq 1$, there exists a bridgeless graph G with radius r and $\operatorname{rc}(G)=r(r+2)$.

Let \mathcal{F} be a family of connected graphs. We say that a graph G is \mathcal{F}-free if G does not contain an induced subgraph isomorphic to a graph from \mathcal{F}. Specifically, for $\mathcal{F}=\{X\}$, we say that G is X-free, and for $\mathcal{F}=\left\{X_{1}, \ldots, X_{k}\right\}$, we say that G is $\left(X_{1}, \ldots, X_{k}\right)$-free. The members of \mathcal{F} will be referred to in this context as forbidden induced subgraphs. If $\mathcal{F}=\left\{X_{1}, \ldots, X_{k}\right\}$, we will also refer to the graphs X_{1}, \ldots, X_{k} as a forbidden k-tuple,
and for $|\mathcal{F}|=2,3$ and 4 , we will also speak about forbidden pair, forbidden triple and forbidden quadruple, respectively.

Graphs characterized in terms of forbidden induced subgraphs are known to have many interesting properties. Although, as we know from Theorem $\mathrm{B}, \operatorname{rc}(G)$ can be quadratic in terms of $\operatorname{diam}(G)$ even in bridgeless graphs, it turns out that the upper bound on $\operatorname{rc}(G)$ in terms of $\operatorname{diam}(G)$ can be remarkably lowered under forbidden subgraph conditions.

In [9], the authors considered the question for which families \mathcal{F} of connected graphs, a connected \mathcal{F}-free graph satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, where $k_{\mathcal{F}}$ is a constant (depending on \mathcal{F}), and gave a complete answer for $1 \leq|\mathcal{F}| \leq 2$ by the following two results (where N denotes the net, i.e. the graph obtained by attaching a pendant edge to each vertex of a triangle).

Theorem C [9]. Let X be a connected graph. Then there is a constant k_{X} such that every connected X-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X}$, if and only if $X=P_{3}$.

Theorem D [9]. Let X, Y be connected graphs, $X, Y \neq P_{3}$. Then there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y}$, if and only if (up to a symmetry) either $X=K_{1, r}, r \geq 4$ and $Y=P_{4}$, or $X=K_{1,3}$ and Y is an induced subgraph of N.

In this paper, we will consider an analogous question for a finite family \mathcal{F} with $|\mathcal{F}| \geq 3$. Namely, we will consider the following question.

For which finite families $\mathcal{F}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ (where $k \geq 3$ is an integer) of connected graphs, there is a constant $k_{\mathcal{F}}$ such that a connected graph G being \mathcal{F}-free implies rc $(G) \leq$ $\operatorname{diam}(G)+k_{\mathcal{F}}$?

We give a complete characterization for $|\mathcal{F}|=3$ in Theorem 1 , for $|\mathcal{F}|=4$ in Theorem 9 , and for an arbitrary finite family \mathcal{F} in Theorem 10 .

2 Preliminary results

In this section we summarize some further notations and facts that will be needed for the proofs of our results.

If G is a graph and $A \subset V(G)$, then $G[A]$ denotes the subgraph of G induced by the vertex set A, and $G-A$ the graph $G[V(G) \backslash A]$. Specifically, for $x \in V(G), G-x$ is the graph $G[V(G) \backslash\{x\}]$, and for $e \in E(G), G-e$ is the graph obtained from G by deleting the edge e. An edge $e \in E(G)$ such that $G-e$ is disconnected is called a bridge, and a graph with no bridges is called a bridgeless graph. An edge such that one of its vertices has degree one is called a pendant edge. For $x, y \in V(G)$, a path in G from x
to y will be referred to as an (x, y)-path, and, whenever necessary, it will be considered with orientation from x to y. For a subpath of a path P with origin u and terminus v (also referred to as a $(u, v)-$ arc of P), we will use the notation $u P v$. Similarly, if C is a cycle with a fixed orientation, then $u C v$ denotes the arc of C with origin u and terminus v, in the given orientation of C. If x is a vertex of a path or of a cycle (with a fixed orientation), then x^{-}and x^{+}denote its predecessor and successor, respectively.

For graphs X and G, we write $X \subset G$ if X is a subgraph of $G, X \stackrel{\text { IND }}{\subset} G$ if X is an induced subgraph of G, and $X \simeq G$ if X and G are isomorphic. We use $d_{G}(x)$ for the degree of a vertex x, and, for two vertices $x, y \in V(G)$, we denote by $\operatorname{dist}(x, y)$ the distance between x and y in G. The diameter and the radius of a graph G will be denoted by $\operatorname{diam}(G)$ and $\operatorname{rad}(G)$, respectively. A shortest path joining two vertices at distance $\operatorname{diam}(G)$ will be referred to as a diameter path. We use $\alpha(G)$ for the independence number of G, \bar{G} for the complement of a graph $G, \delta(G)$ for the minimum degree of G, and $\bar{\delta}(G)$ for the average degree of G (i.e., $\left.\bar{\delta}(G)=\frac{1}{|V(G)|} \sum_{x \in V(G)} d_{G}(x)\right)$. Throughout the paper, \mathbb{N} denotes the set of all positive integers.

For a set $S \subset V(G)$ and $k \in \mathbb{N}$, the neighborhood at distance k of S is the set $N_{G}^{k}(S)$ of all vertices of G at distance k from S. In the special case when $k=1$, we simply write $N_{G}(S)$ for $N_{G}^{1}(S)$, and if $|S|=1$ with $x \in S$, we write $N_{G}(x)$ for $N_{G}(\{x\})$. For a set $M \subset V(G)$, we set $N_{M}(S)=N_{G}(S) \cap M$ and $N_{M}(x)=N_{G}(x) \cap M$, and for a subgraph $P \subset G$, we write $N_{P}(x)$ for $N_{V(P)}(x)$. Finally, we will also use the closed neighborhood of a vertex $x \in V(G)$ defined by $N_{G}^{k}[x]=\left(\cup_{i=1}^{k} N_{G}^{i}(x)\right) \cup\{x\}$ and of a subgraph $P \subset G$ defined by $N_{G}^{k}[P]=\cup_{i=1}^{k} N_{G}^{i}(V(P)) \cup V(P)$.

A set $D \subset V(G)$ is dominating if every vertex in $V(G) \backslash D$ has a neighbor in D. A dominating set D in a graph G is called a two-way dominating set if D includes all vertices of G of degree 1 . In addition, if $G[D]$ is connected, we call D a connected two-way dominating set. Note that if $\delta(G) \geq 2$, then every (connected) dominating set in G is a (connected) two-way dominating set.

Theorem \mathbf{E} [6]. If D is a connected two-way dominating set in a graph G, then $\operatorname{rc}(G) \leq \operatorname{rc}(G[D])+3$.

We also recall the famous theorem by Ramsey [16].
Theorem \mathbf{F} [16]. For every $a, b \in \mathbb{N}$ there exists a positive integer n such that every graph of order at least n contains either K_{a} or $\overline{K_{b}}$ as an induced subgraph.

The smallest integer n associated with a, b as in Theorem F is called the Ramsey number $R(a, b)$ of a, b.

The following fact is an easy consequence of the Turán's theorem [18, 19]. For its proof see e.g. [2] (Chapter 13 "Stability number", page 280, Corollary 2 of Theorem 5).

Theorem $\mathbf{G}[18,19, \mathbf{2}]$. Let G be a graph of order n and average degree $\bar{\delta}(G)$. Then $\alpha(G) \geq \frac{n}{\delta(G)+1}$.

3 Forbidden triples

For $i, j, k \in \mathbb{N}$, let $S_{i, j, k}$ denote the graph obtained by identifying one endvertex of three vertex disjoint paths of lengths $i, j, k, N_{i, j, k}$ the graph obtained by identifying each vertex of a triangle with an endvertex of one of three vertex disjoint paths of lengths i, j, k, and let K_{t}^{h} denote the graph obtained by attaching a pendant edge to every vertex of a complete graph K_{t} (see Fig. 1).

Figure 1: The graphs $S_{i, j, k}, N_{i, j, k}, K_{1, t}$ and K_{t}^{h}
For $k \in \mathbb{N}$, it is easy to see that if $\mathcal{F}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ and $\mathcal{F}^{\prime}=\left\{X_{1}^{\prime}, X_{2}, \ldots, X_{k}\right\}$, where $X_{1} \stackrel{\text { IND }}{\subset} X_{1}^{\prime}$, then every \mathcal{F}-free graph is also \mathcal{F}^{\prime}-free. More generally, if $\mathcal{F}, \mathcal{F}^{\prime}$ are finite families of connected graphs, we write $\mathcal{F} \stackrel{\text { IND }}{\subset} \mathcal{F}^{\prime}$ if there is a bijection $\varphi: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ such that $X \stackrel{\text { IND }}{\subset} \varphi(X)$ for any $X \in \mathcal{F}$. Clearly, if $\mathcal{F} \stackrel{\text { IND }}{\subset} \mathcal{F}^{\prime}$, then every \mathcal{F}-free graph is also \mathcal{F}^{\prime}-free. We set:

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{\left\{P_{3}\right\}\right\}, \\
& \mathcal{F}_{2}=\left\{\{X, Y\} \mid\{X, Y\} \subset \subset\left\{K_{1,3}, N\right\}\right\}, \\
& \mathcal{F}_{3}=\left\{\left\{K_{1, r}, P_{4}\right\} \mid r \geq 4\right\} .
\end{aligned}
$$

In this notation, Theorems C and D can be equivalently reformulated as follows.
Let \mathcal{F} be a finite family of connected graphs with $1 \leq|\mathcal{F}| \leq 2$. Then there is a constant $k_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, if and only if $\mathcal{F} \in \mathcal{F}_{1}, \mathcal{F} \in \mathcal{F}_{2}$ or $\mathcal{F} \in \mathcal{F}_{3}$.

Now we set

$$
\begin{aligned}
& \overline{\mathcal{F}_{4}}=\left\{\left\{K_{1,3}, K_{s}^{h}, N_{1, j, k}\right\} \mid s>3,1 \leq j \leq k, j+k>2\right\}, \\
& \overline{\mathcal{F}_{5}}=\left\{\left\{K_{1, r}, K_{s}^{h}, P_{\ell}\right\} \mid r>3, s>3, \ell>4\right\}, \\
& \overline{\mathcal{F}_{6}}=\left\{\left\{K_{1, r}, S_{1, j, k}, N\right\} \mid r>3,1 \leq j \leq k, j+k>2\right\},
\end{aligned}
$$

and

$$
\mathcal{F}_{i}=\left\{\{X, Y, Z\} \mid\{X, Y, Z\} \subset \mathcal{I N D} \mathcal{F} \text { for some } \mathcal{F} \in \overline{\mathcal{F}_{i}}\right\}, i=4,5,6 .
$$

The following statement, which is the main result of this section, gives a complete answer to the same question for $|\mathcal{F}|=3$. We exclude the cases which are covered by Theorems C and D.

Theorem 1. Let \mathcal{F} be a finite family of connected graphs with $|\mathcal{F}|=3$ such that $\mathcal{F} \not \supset \mathcal{F}^{\prime}$ for any $\mathcal{F}^{\prime} \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$. Then there is a constant $k_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, if and only if $\mathcal{F} \in \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup \mathcal{F}_{6}$.

Proof of Theorem 1 will be subdivided into several parts. In Proposition 2, we prove the necessity of the triples given by the conditions $(i),(i i)$ and $(i i i)$ of Theorem 1. We then prove several auxiliary statements, and, using them, we establish sufficiency in Proposition 8.

Proposition 2. Let $X, Y, Z \neq P_{3}$ be connected graphs, $\{X, Y, Z\} \not \supset \mathcal{F}^{\prime}$ for any $\mathcal{F}^{\prime} \in$ $\mathcal{F}_{2} \cup \mathcal{F}_{3}$, for which there is a constant $k_{X Y Z}$ such that every connected (X, Y, Z)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y Z}$. Then the graphs X, Y, Z satisfy, up to a permutation, one of the following conditions:
(i) $X=K_{1,3}, Y=K_{s}^{h}(s>3), Z=N_{1, p, q}(p+q>2,1 \leq p \leq q)$,
(ii) $X=K_{1, r}(r>3), Y=K_{s}^{h}(s>3), Z=P_{\ell}(\ell>4)$,
(iii) $X=K_{1, r}(r>3), Y=S_{1, p, q}(p+q>2,1 \leq p \leq q), Z=N$.

Proof. Let $t_{0} \geq 3$ and, for $t \geq t_{0}$, let (see Fig. 1 and Fig. 2):

- G_{1}^{t} be the star $K_{1, t}$;
- G_{2}^{t} be the graph K_{t}^{h};
- $G_{3}^{i, t}(i \geq 1)$ be the graph obtained from the path $P=x_{0}, x_{1}, \ldots, x_{(i+2)(t-1)+3}$ by adding t new vertices y_{0}, \ldots, y_{t-1} with $N_{P}\left(y_{j}\right)=\left\{x_{(i+2) j+1}, x_{(i+2) j+2}\right\}$, and attaching a pendant edge to every $y_{j}, j=0, \ldots, t-1$;
- $G_{4}^{i, t}(i \geq 1)$ be the graph obtained from the path $P=x_{0}, x_{1}, x_{2}, \ldots x_{(t-1) i+2}$ by attaching a pendant edge to each of the vertices $\left\{x_{1}, x_{i+1}, x_{2 i+1}, \ldots, x_{(t-1) i+1}\right\}$.

Figure 2: The graphs $G_{3}^{i, t}$ and $G_{4}^{i, t}$
For the graphs G_{1}^{t} and G_{2}^{t}, we have $\operatorname{diam}\left(G_{1}^{t}\right)=2$, but $\operatorname{rc}\left(G_{1}^{t}\right)=t$, and $\operatorname{diam}\left(G_{2}^{t}\right)=3$, but $\operatorname{rc}\left(G_{2}^{t}\right)=t+1$, respectively. For the graph $G_{3}^{i, t}$, we have $\operatorname{diam}\left(G_{3}^{i, t}\right)=(i+2)(t-1)+3$ but $\operatorname{rc}\left(G_{3}^{i, t}\right) \geq(i+2)(t-1)+3+t \geq\left(1+\frac{t}{(i+2)(t-1)+3}\right) \operatorname{diam}\left(G_{3}^{i, t}\right)$, since all edges of the
path P must have distinct colors and none of the pendant edges can be colored with a color used on P. Analogously, for the graph $G_{4}^{i, t}$, we have $\operatorname{diam}\left(G_{4}^{i, t}\right)=(t-1) i+1$, while $\operatorname{rc}\left(G_{4}^{i, t}\right)=(t-1) i+1+t=\left(1+\frac{t}{(t-1) i+1}\right) \operatorname{diam}\left(G_{4}^{i, t}\right)$. Thus, each of the graphs G_{1}^{t}, G_{2}^{t}, $G_{3}^{i, t}, G_{4}^{i, t}$ must contain an induced subgraph isomorphic to some of X, Y, Z.

Consider the graph $G_{1}^{t}=K_{1, t}$. Up to a symmetry, we have $X=K_{1, r}$ for some $r \geq 3$ (for $r \leq 2$, we get $X \stackrel{\text { IND }}{\subset} P_{3}$, which is excluded by the assumptions). Now we consider the graph G_{2}^{t}. Obviously, G_{2}^{t} is $K_{1,3}$-free, hence G_{2}^{t} does not contain X. Thus, up to a symmetry, G_{2}^{t} contains Y, implying $Y=K_{s}^{h}$ for some $s \geq 3$ (for $s \leq 2$ we get $Y \stackrel{\text { IND }}{\subset} P_{4}$, but the pair $X=K_{1, r}, Y=P_{4}$ is excluded by the assumptions).

Now consider the graph $G_{3}^{i, t}$. Clearly $X \stackrel{\text { IND }}{\not \subset} G_{3}^{i, t}$ since $G_{3}^{i, t}$ is $K_{1,3}$-free, hence $Y \stackrel{\text { IND }}{\subset} G_{3}^{i, t}$ or $Z \stackrel{\text { IND }}{\subset} G_{3}^{i, t}$.
Case 1: $G_{3}^{i, t}$ contains Y. Then $Y=N$. Since the pair $X=K_{1,3}, Y=N$ is excluded by the assumptions, $X=K_{1, r}$ with $r>3$. Now we consider the graph $G_{4}^{i, t}$. Clearly $X \stackrel{\text { IND }}{\not \subset} G_{4}^{i, t}$ since $G_{4}^{i, t}$ is $K_{1,4}$-free, and if $Y \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then we get $X=K_{1, r}, r>3$, and $Y=P_{4}$, which is excluded by the assumptions. Thus, $G_{4}^{i, t}$ contains Z and we have $X=K_{1, r}, r>3, Y=N$, and $Z=S_{1, p, q}(1 \leq p \leq q)$. Since the pair $Y=N, Z=K_{1,3}$ is excluded by the assumptions, $q \geq 2$.
Case 2: $G_{3}^{i, t}$ contains Z. Then $Z=N_{1, p, q}$ for some $1 \leq p \leq q$. Consider the graph $G_{4}^{i, t}$. If $X \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then we obtain $X=K_{1,3}, Y=K_{s}^{h}$ and $Z=N_{1, p, q}(q \geq 2)$, since for $q=1,(X, Z)=\left(K_{1,3}, N\right)$, which is excluded by the assumptions. If $Y \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then $Y=P_{4}$ and we get $X=K_{1, r}, Y=P_{4}$ which is also excluded by the assumptions. Finally, if $G_{4}^{i, t}$ contains Z, then $Z=P_{\ell}(\ell>4)$, since for $\ell \leq 4$ we get $(X, Z)=\left(K_{1, r}, P_{4}\right)$, which is excluded by the assumptions. Hence we obtain $X=K_{1, r}(r \geq 3), Y=K_{s}^{h}$ $(s \geq 3)$ and $Z=P_{\ell}(\ell>4)$. But for $r \leq 3$, the triple $\left(K_{1,3}, K_{s}^{h}, P_{\ell}\right)$ is covered by the triple ($K_{1,3}, K_{s}^{h}, N_{1, p, q}$), hence $r>3$ and, analogously, for $s \leq 3$, the triple ($K_{1, r}, N, P_{\ell}$) is covered by the triple $\left(K_{1, r}, N, S_{1, p, q}\right)$. Therefore we obtain $X=K_{1, r}(r>3), Y=K_{s}^{h}$ $(s>3)$ and $Z=P_{\ell}(\ell>4)$.

Now we prove several lemmas and propositions which will be needed for the proof of Proposition 8.

For $c \in V(G)$ and $\ell \in \mathbb{N}$, we set $\alpha_{\ell}(G, c)=\max \left\{|M| \mid M \subset N_{G}^{\ell}[c], M\right.$ is independent $\}$.
Lemma 3. Let $r, s, \ell \in \mathbb{N}$. Then there is a constant $\alpha(r, s, \ell)$ such that, for every $\left(K_{1, r}, K_{s}^{h}\right)$-free connected graph G and for every $c \in V(G), \alpha_{\ell}(G, c)<\alpha(r, s, \ell)$.

Proof. Let $r, s \in \mathbb{N}$. We prove the lemma by induction on ℓ.
For $\ell=1$, we have $\alpha(r, s, 1)=r-1$, for otherwise G contains $K_{1, r}$ as an induced subgraph.

Let, to the contrary, ℓ be the smallest integer for which $\alpha(r, s, \ell)$ does not exist (i.e., $\alpha_{\ell}(G, c)$ can be arbitrarily large), choose a graph G and a vertex $c \in V(G)$ such that $\alpha_{\ell}(G, c) \geq(r-2) R(s(2 r-3), \alpha(r, s, \ell-1))+\alpha(r, s, \ell-1)$, and let $M \subseteq N_{G}^{\ell}[c]$ be an independent set in G of size $\alpha_{\ell}(G, c)$. Let $M^{0}=\left\{x_{1}^{0}, \ldots, x_{k}^{0}\right\}$ be a subset of M such that, for every $x \in M^{0}$, $\operatorname{dist}(c, x)=\ell$. Obviously, $\left|M^{0}\right| \geq(r-2) R(s(2 r-3), \alpha(r, s, \ell-1))$. Let Q_{i} be a shortest $\left(x_{i}^{0}, c\right)$-path in $G, i=1, \ldots, k$. Clearly, the length of each Q_{i} is $\ell, i=1, \ldots, k$. We denote M^{1} the set of all successors of the vertices from M^{0} on Q_{i}, $i=1, \ldots, k$, and x_{i}^{1} the successor of x_{i}^{0} on Q_{i} (note that some distinct vertices in M^{0} can have a common successor in M^{1}). Every vertex in M^{1} has at most $r-2$ neighbors in M^{0} since G is $K_{1, r}$-free. Thus, $\left|M^{1}\right| \geq \frac{\left|M^{0}\right|}{r-2} \geq R(s(2 r-3), \alpha(r, s, \ell-1))$. By the induction assumption and by Theorem $\mathrm{F},\left\langle M^{1}\right\rangle_{G}$ contains a complete subgraph $K_{s(2 r-3)}$ with $s(2 r-3)$ vertices. Choose the notation such that $V\left(K_{s(2 r-3)}\right)=\left\{x_{1}^{1}, \ldots, x_{s(2 r-3)}^{1}\right\}$, and set $\widetilde{M^{0}}=N_{M^{0}}\left(K_{s(2 r-3)}\right)$.

Now, using a matching between $K_{s(2 r-3)}$ and $\widetilde{M^{0}}$, we can easily find in G a $K_{s(2 r-3)}^{h}$ with vertices of degree 1 in $\widetilde{M^{0}}$; however, such a $K_{s(2 r-3)}^{h}$ does not have to be induced. To reach a contradiction, we need to find an induced matching of size at least s between $K_{s(2 r-3)}^{h}$ and $\widetilde{M^{0}}$. We define a digraph \vec{H} with $V(\vec{H})=\widetilde{M^{0}}$ and $E(\vec{H})=\left\{x_{i}^{0} x_{j}^{0} \mid x_{j}^{1} \in N_{K_{s(2 r-3)}}\left(x_{i}^{0}\right)\right\}$. Since G is $K_{1, r}$-free, $d_{\overrightarrow{\vec{H}}}^{-}\left(x_{i}^{0}\right) \leq r-2$ (one neighbor is on Q_{i}) for every $x_{i}^{0} \in \overline{M^{0}}$. Hence $\sum_{x_{i}^{0} \in \widetilde{M^{0}}} d_{\vec{H}}^{-}\left(x_{i}^{0}\right) \leq\left|\widetilde{M^{0}}\right|(r-2)$. By the directed version of the "handshaking lemma", we have also $\sum_{x_{i}^{0} \in \widetilde{M^{0}}} d_{\vec{H}}^{+}\left(x_{i}^{0}\right) \leq\left|\widetilde{M^{0}}\right|(r-2)$.

Let H be the symmetrization of \vec{H}. Then $\sum_{x_{i}^{0} \in \widetilde{M^{0}}} d_{H}\left(x_{i}^{0}\right) \leq 2\left|\widetilde{M^{0}}\right|(r-2)$. Hence $\bar{\delta}(H) \leq 2(r-2)$. By Theorem G, $\alpha(H) \geq \frac{|V(H)|}{\bar{\delta}(H)+1} \geq \frac{\left|\widetilde{M}^{0}\right|}{1+2(r-2)}=\frac{\left|\widetilde{M}^{0}\right|}{2 r-3}$, and since $\left|\widetilde{M}^{0}\right| \geq$ $s(2 r-3)$, we have $\alpha(H) \geq \frac{s(2 r-3)}{2 r-3}=s$. Let A denote an independent set in H with $|A| \geq s$. Then G contains an induced K_{s}^{h} with vertex set $V\left(K_{s(2 r-3)}\right) \cup A$, a contradiction.

Lemma 4. Let $r, s, \ell \in \mathbb{N}$. Then there is a constant $B(r, s, \ell)$ such that every connected $\left(K_{1, r}, K_{s}^{h}\right)$-free graph G with $\operatorname{diam}(G) \leq \ell$ has at most $B(r, s, \ell)$ bridges.

Proof. Let, to the contrary, G be a connected ($K_{1, r}, K_{s}^{h}$)-free graph containing more than $\alpha(r, s, \operatorname{diam}(G)) \cdot \operatorname{diam}(G)$ bridges. Let B be the set of all bridges in $G, b=|B|$, and let $c \in V(G)$. For every bridge $e \in B$, take a shortest path P_{e} connecting e with c. Note that some path P_{e} can be a subpath of some other $P_{f}, e, f \in B$. Let \mathcal{P} be the set of all maximal paths $P_{e}, e \in B$, under the ordering by inclusion. On each $P \in \mathcal{P}$, there are at most $\operatorname{diam}(G)$ bridges, implying that $|\mathcal{P}| \geq \frac{b}{\operatorname{diam}(G)}$. Clearly, the endvertices of all $P \in \mathcal{P}$ are independent, therefore $\alpha \geq \alpha(r, s, \operatorname{diam}(G))$, contradicting Lemma 3 .

Proposition 5. Let $r, s, \ell \in \mathbb{N}$. Then there is a constant $K(r, s, \ell)$ such that every connected $\left(K_{1, r}, K_{s}^{h}\right)$-free graph G with $\operatorname{diam}(G) \leq \ell$ satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+K(r, s, \ell)$.

Proof. If G is bridgeless, then $\operatorname{rc}(G) \leq \ell(\ell+2)$ by Theorem B. Thus, suppose that G contains a bridge, and let B be the set of all bridges in G. By Lemma $4,|B| \leq B(r, s, \ell)$. By Theorem B, we can color every component of $G-B$ with at most $\ell(\ell+2)$ colors, and for the bridges we use other at most $B(r, s, \ell)$ colors. Therefore, we obtain $\operatorname{rc}(G) \leq$ $(B(r, s, \ell)+1) \ell(\ell+2)+B(r, s, \ell) \leq \operatorname{diam}(G)+(B(r, s, \ell)+1) \ell(\ell+2)+B(r, s, \ell)$.

Let now G be an $\left(S_{1, p, q}, N_{1, p, q}\right)$-free graph $(p \leq q)$, let x, y be vertices at distance $\ell \geq p+q+1$, let $P: x=x_{0}, x_{1}, \ldots, x_{\ell}=y$ be a shortest (x, y)-path in G, and let $z \in V(G) \backslash V(P)$. We easily observe the following.

- If $\left|N_{P}(z)\right|=1$, then z has no neighbor in $\left\{x_{p}, \ldots, x_{\ell-p}\right\}$ since G is $S_{1, p, q}$-free.
- If $\left|N_{P}(z)\right| \geq 2$ and $\left\{x_{i}, x_{j}\right\} \subset N_{P}(z)$, then $|i-j| \leq 2$, for otherwise there is an (x, y)-path in G shorter than P.

We will use the following notation:

- $M_{i}=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{x_{i-1}, x_{i}\right\}\right\}$ for $1 \leq i \leq \ell$,
- $N_{i}=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z) \supset\left\{x_{i-1}, x_{i+1}\right\}\right\}$ for $1 \leq i \leq \ell-1$,
- $D_{i}=M_{i} \cup N_{i} \cup M_{i+1} \cup\left\{x_{i}\right\}$ for $i=1, \ldots, \ell-1$.

We further set $S=V(P) \cup N(P), R=V(G) \backslash S, \widehat{J}=\bigcup_{i=p+1}^{\ell-p-1} D_{i}$, and $R_{\widehat{J}}=G[V(G) \backslash \widehat{J}]$.
Lemma 6. Let G be an $\left(S_{1, p, q}, N_{1, p, q}\right)$-free graph, let x, y be vertices at distance $\ell \geq p+q+1$, and let $P: x=x_{0}, x_{1}, \ldots, x_{\ell}=y$ be a shortest (x, y)-path in G. Then
(a) $N_{R}\left(M_{i}\right)=\emptyset$ for $i=p+1, \ldots, \ell-p$,
(b) $N_{R}\left(N_{i}\right)=\emptyset$ for $i=p, p+1, \ldots, \ell-p$,
(c) $N_{D_{i}}\left(D_{j}\right)=\emptyset$ for $|i-j|>3$ and $N_{N_{i}}\left(N_{j}\right)=\emptyset$ for $|i-j|>1$,
(d) $N_{R_{\widehat{J}}}\left(D_{i}\right)=\emptyset$ for $i=p+4, \ldots, \ell-p-4$.

Proof. Statement (a) follows from the fact that G is $N_{1, p, q}$-free, and (b) follows from the fact that G is $S_{1, p, q}$-free. To show (c), we observe that if there is a vertex $z \in N_{D_{i}}\left(D_{j}\right)$ for $|i-j|>3$, or $z \in N_{N_{i}}\left(N_{j}\right)$ for $|i-j|>1$, then there is an $\left(x_{0}, x_{\ell}\right)$-path through z shorter than P, a contradiction. For proving (d), let, to the contrary, $z \in N_{R_{\widehat{J}}}\left(D_{i}\right)$. Then $\operatorname{dist}_{G}(z, P)=1$, for otherwise we have a contradiction with $(a),(b)$ or (c). But then there is an $\left(x_{0}, x_{\ell}\right)$-path in G shorter than P, a contradiction again.

Proposition 7. Let $r, s, p, q \in \mathbb{N}$. Then there is a constant $K(r, s, p, q)$ such that every connected ($K_{1, r}, K_{s}^{h}, S_{1, p, q}, N_{1, p, q}$)-free graph G with $\operatorname{diam}(G) \geq 3 p+q+19$ satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+K(r, s, p, q)$.

Proof. Let $d=\operatorname{diam}(G)$ and let $P: x_{0}, x_{1}, \ldots, x_{d}$ be a diameter path in G. Let $M_{i}, N_{i}, D_{i}, \widehat{J}$ be defined as above. We distinguish two possibilities.
Case 1: \widehat{J} is a cutset of G. Then $G-\widehat{J}$ contains two components (since G is $S_{1, p, q}$-free). Denote A_{0} the component containing x_{0} and A_{d} the component containing x_{d}.

Obviously, $\operatorname{rad}\left(A_{0}\right) \leq p+1$ and also $\operatorname{rad}\left(A_{d}\right) \leq p+1$. By Proposition 5, there is a constant $K(r, s, \ell)$ such that $\mathrm{rc}\left(A_{0}\right) \leq \operatorname{diam}\left(A_{0}\right)+K(r, s, 2(p+1)) \leq 2(p+1)+$ $K(r, s, 2(p+1))$ since diam $\left(A_{0}\right) \leq 2 \operatorname{rad}\left(A_{0}\right) \leq 2(p+1)$. Analogously, $\operatorname{rc}\left(A_{d}\right) \leq 2(p+$ $1)+K(r, s, 2(p+1))$. Now we consider the graph $G[\widehat{J}]=G-\left(V\left(A_{0}\right) \cup V\left(A_{d}\right)\right)$. By Lemma $6(a),(b)$, the subpath $x_{p} P x_{d-p}$ of P is a two-way dominating set in $G[\widehat{J}]$ and hence $\operatorname{rc}(G[\widehat{J}]) \leq \operatorname{rc}\left(x_{p} P x_{d-p}\right)+3=d-2 p+3$ by Theorem E. For the graph G we then have $\operatorname{rc}(G) \leq \operatorname{rc}\left(A_{0}\right)+\operatorname{rc}\left(A_{d}\right)+\operatorname{rc}(G[\widehat{J}]) \leq 2(2(p+1)+K(r, s, 2(p+1)))+d-2 p+3=$ $d+2(p+1)+2 K(r, s, 2(p+1))+5$, which completes the proof.
Case 2: \widehat{J} is not a cutset of G. Let $J=\bigcup_{i=p+6}^{d-p-6} D_{i}$. Since $J \subset \widehat{J}$ and \widehat{J} is not a cutset of G, J is not a cutset of G as well. Let $P^{\prime}: x_{0}^{\prime}=x_{0}, x_{1}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}=x_{d}$ be a shortest $\left(x_{0}, x_{d}\right)$-path in $G-J$ (of length $d^{\prime} \geq d$). For the path P^{\prime} we define the sets $M_{i}^{\prime}, N_{i}^{\prime}, D_{i}^{\prime}, J^{\prime}$ analogously as the sets M_{i}, N_{i}, D_{i}, J for P. Note that $J^{\prime} \subset N_{G}\left(P^{\prime}\right)$. We further set $B_{1}=D_{p+6} \cup D_{p+7} \cup D_{p+8}, B_{2}=D_{d-p-6} \cup D_{d-p-7} \cup D_{d-p-8}$, and we define B_{1}^{\prime} and B_{2}^{\prime} analogously. Finally, we also denote $J_{V}=J \backslash\left\{B_{1} \cup B_{2}\right\}$ and $J_{V}^{\prime}=J^{\prime} \backslash\left\{B_{1}^{\prime} \cup B_{2}^{\prime}\right\}$.

Claim 1. For every $x \in N_{G}\left(P^{\prime}\right)$ and every $y \in J, x y \notin E(G)$.
Proof. Let, to the contrary, $x \in N_{G}\left(P^{\prime}\right)$ and $y \in J$ be vertices such that $x y \in E(G)$. Let $j<\frac{d}{2}$ be the maximal index of a vertex x_{j} on P such that $N_{G}\left(x_{j}\right)$ contains a vertex of P^{\prime}, and $j^{\prime}<\frac{d^{\prime}}{2}$ the maximal index of a vertex $x_{j^{\prime}}^{\prime}$ on P^{\prime} such that $x_{j^{\prime}}^{\prime}$ has a neighbor on P. Let x_{a}^{\prime} denote the neighbor of x_{j} on P^{\prime} with maximal index, $x_{a^{\prime}}$ the neighbor of $x_{j^{\prime}}^{\prime}$ on P with maximal index, and x_{i} the vertex of $P \cap P^{\prime}$ with maximal index $\left(i \leq \frac{d}{2}\right)$. By Lemma $6(a)$ and $(b), a^{\prime} \leq p$. Let $P^{\prime \prime}$ denote the path consisting of the subpath $x_{i} P^{\prime} x_{a}^{\prime}$ and the edge $x_{a}^{\prime} x_{j}$.

Now we show that $j \leq p+1$. If $x_{a}^{\prime}=x_{j^{\prime}}^{\prime}$, then, by Lemma $6, N_{R}\left(x_{j}\right)=\emptyset$, implying $j \leq p$. Hence we suppose that $x_{a}^{\prime} \neq x_{j^{\prime}}^{\prime}$. Since P is a shortest $\left(x_{0}, x_{d}\right)$-path in G, $\operatorname{dist}_{P}\left(x_{i}, x_{j}\right) \leq \operatorname{dist}_{P^{\prime \prime}}\left(x_{i}, x_{a}^{\prime}\right)+1$. Analogously, since P^{\prime} is shortest in $G-J$, $\operatorname{dist}_{P}\left(x_{i}, x_{a^{\prime}}\right)+$ $1 \geq \operatorname{dist}_{P^{\prime}}\left(x_{i}, x_{a}^{\prime}\right)+\operatorname{dist}_{P^{\prime}}\left(x_{a}^{\prime}, x_{j^{\prime}}^{\prime}\right)=\operatorname{dist}_{P^{\prime \prime}}\left(x_{i}, x_{a}^{\prime}\right)+\operatorname{dist}_{P^{\prime}}\left(x_{a}^{\prime}, x_{j^{\prime}}^{\prime}\right)$. Comparing these two inequalities, we get

$$
\operatorname{dist}_{P}\left(x_{i}, x_{a^{\prime}}\right)+1-\operatorname{dist}_{P^{\prime}}\left(x_{a}^{\prime}, x_{j^{\prime}}^{\prime}\right) \geq \operatorname{dist}_{P^{\prime \prime}}\left(x_{i}, x_{a}^{\prime}\right) \geq \operatorname{dist}_{P}\left(x_{i}, x_{j}\right)-1,
$$

from which $\operatorname{dist}_{P}\left(x_{i}, x_{a^{\prime}}\right)+1 \geq \operatorname{dist}_{P}\left(x_{i}, x_{j}\right)$ since $\operatorname{dist}_{P^{\prime}}\left(x_{a}^{\prime}, x_{j^{\prime}}^{\prime}\right) \geq 1$. This implies that $a^{\prime}+1 \geq j$, and hence $j \leq p+1$.

Now, for $y \in J$, there is a vertex x_{t} on P such that y is a neighbor of x_{t}. Among all such vertices on P, we choose the vertex x_{t} with maximal index t. Since $y \in J$, we
have $t \geq p+6$. By Lemma $6(a)$ and $(b), \operatorname{dist}_{G}(x, P) \leq 1$, hence there is a vertex x_{u} on P such that $x x_{u} \in E(G)$. Choose x_{u} such that u is minimal. If $x_{u} \notin \widehat{J}$, then the path consisting of the arc $x_{0} P x_{u}$, the edges $x_{u} x, x y, y x_{t}$ and the arc $x_{t} P x_{d}$ is shorter than P, a contradiction.

Thus $x_{u} \in \widehat{J}$, implying that also $x \in \widehat{J}$. Since $x \in N_{G}\left(P^{\prime}\right)$, there is a vertex z on P^{\prime} such that x is a neighbor of z. Since $x \in \widehat{J}, \operatorname{dist}_{G}(z, P) \leq 1$ by Lemma 6 (a) and (b). Let x_{z} denote a neighbor of z on P closest to x_{0}. We already know that $z \leq p+1$. But then the path consisting of the subpath $x_{0} P x_{z}$, the edges $x_{z} z, z x, x y, y x_{t}$ and the subpath $x_{t} P x_{d}$ is shorter than P, a contradiction.

Claim 2. If $x \in J_{V}$ and $y \in V(G) \backslash J$, then $x y \notin E(G)$.
Proof. Let, to the contrary, $x y \in E(G)$. By Lemma 6, we have $\operatorname{dist}_{G}(x, P) \leq 1$. Again by Lemma $6, N_{R}(x)=\emptyset$, implying that $\operatorname{dist}_{G}(y, P) \leq 1$. Thus $\operatorname{dist}_{G}(y, P)=1$, but then the path $x_{0} P x y P x_{d}$ is an $\left(x_{0}, x_{d}\right)$-path in G which is shorter than P, a contradiction.

Claim 3. The set $J \cup J^{\prime}$ is a cutset of G.
Proof. Suppose, to the contrary, that $J \cup J^{\prime}$ is not a cutset of G, and let $P^{\prime \prime}: x_{0}=$ $x_{0}^{\prime \prime}, x_{1}^{\prime \prime}, \ldots, x_{d^{\prime \prime}}^{\prime \prime}=x_{d}$ be a shortest $\left(x_{0}, x_{d}\right)$-path in $G-\left(J \cup J^{\prime}\right)$. For the path $P^{\prime \prime}$ we define the sets $M_{i}^{\prime \prime}, N_{i}^{\prime \prime}, D_{i}^{\prime \prime}, J^{\prime \prime}$ analogously as the sets M_{i}, N_{i}, D_{i}, J for P. Consider the subgraph $S_{x_{0}}$ of G consisting of the paths $x_{0} P x_{d-p-9}$ (a subpath of P), $x_{0} P^{\prime} x_{d^{\prime}-p-9}^{\prime}$ (a subpath of P^{\prime}) and $x_{0} P^{\prime \prime} x_{d^{\prime \prime}-p-9}^{\prime \prime}$ (a subpath of $\left.P^{\prime \prime}\right)$. Note that the paths P, P^{\prime} and $P^{\prime \prime}$ are not necessarily vertex-disjoint, hence the subgraph $S_{x_{0}}$ is not necessarily induced in G, and can have several vertices of degree more than 2 .

We take a minimal (with respect to the number of vertices) subgraph $S_{\text {min }}$ of $G\left[S_{x_{0}}\right]$ such that $S_{\text {min }}$ is isomorphic to $S_{i_{1}, j_{1}, k_{1}}$ (for some $i_{1}, j_{1}, k_{1} \in \mathbb{N}$), and contains the vertices $x_{d-p-9}, x_{d^{\prime}-p-9}^{\prime}$ and $x_{d^{\prime \prime}-p-9}^{\prime \prime}$. We show that $S_{\text {min }}$ is induced. Suppose, to the contrary, that there is an edge $u v$ in $G\left[V\left(S_{\min }\right)\right]$ which is not an edge of $S_{\text {min }}$. By the minimality of $S_{\min }$, both u and v are neighbors of the (only) vertex $z \in V\left(S_{\min }\right)$ of degree 3 in $S_{\min }$. If there are two such edges (satisfying the conditions for $u v$), then we have a contradiction with the minimality of $S_{\min }$. Thus, there is exactly one such edge $u v$, but then there is an induced copy of $N_{i_{1}-1, j_{1}-1, k_{1}}$. By Claim 2, there are no edges between $P \cap J$ and $\left(P^{\prime} \cap J^{\prime}\right) \cup\left(P^{\prime \prime} \cap J^{\prime \prime}\right)$. Analogously, there are no edges between $P^{\prime} \cap J^{\prime}$ and $P^{\prime \prime} \cap J^{\prime \prime}$ by Claim 2 used for $G-J$. Thus, since $d \geq 3 p+q+19, G$ contains an induced copy of $N_{1, p, q}$, a contradiction. This contradiction shows that $S_{\min }$ is induced in G, but then, since $d \geq 3 p+q+19, S_{\min }$ contains an induced $S_{1, p, q}$, our final contradiction.

If $F \subset G$ is a cycle or a path, and $A: v_{1} F v_{2}$ is an arc of F, then A is said to be J_{V} crossing if $v_{1} \in B_{j}$ and $v_{2} \in B_{3-j}$ for some $j \in\{1,2\}$, and $V\left(v_{1}^{+} F v_{2}^{-}\right) \subset J_{V}$. We will use $j_{V}(F)$ to denote the number of internally vertex-disjoint J_{V}-crossing arcs of F. For the set J_{V}^{\prime}, the concept of a J_{V}^{\prime}-crossing arc and the number $j_{V}^{\prime}(F)$ are defined analogously.

Let now C_{0} be a shortest cycle in G such that $j_{V}\left(C_{0}\right)$ is odd (note that C_{0} exists since the subgraph $G\left[V(P) \cup V\left(P^{\prime}\right)\right]$ certainly contains such a cycle.) We show that $j_{V}^{\prime}\left(C_{0}\right)>0$ (i.e., C_{0} contains a $J_{V^{\prime}}^{\prime}$-crossing arc). By Claim 3, $J \cup J^{\prime}$ is a cut set, therefore some arc of C_{0} passes through J_{V}^{\prime}. Let $Q \subset C_{0}$ denote such an arc. By Claim 1, $N_{G}^{2}\left[P^{\prime}\right]=N_{G-J}^{2}\left[P^{\prime}\right]$ and therefore Lemma 6 and Claim 2 are applicable also to P^{\prime}. Thus, by Claim 2 used for $G-J$, there are no edges between any vertex of J_{V}^{\prime} and any vertex of $G-\left(J \cup J^{\prime}\right)$, implying that Q contains some vertex of B_{1}^{\prime} and some vertex of B_{2}^{\prime}. The desired arc is then obtained as a shortest subarc of Q with all internal vertices in J_{V}^{\prime} and with one endvertex in B_{1}^{\prime} and the other in B_{2}^{\prime}. Hence $j_{V}^{\prime}\left(C_{0}\right)>0$. Moreover, also by Claim 3, we observe that $j_{V}^{\prime}\left(C_{0}\right)$ is odd.

Claim 4. $\quad j_{V}\left(C_{0}\right)=j_{V}^{\prime}\left(C_{0}\right)=1$.
Proof. Suppose, to the contrary, that $j_{V}\left(C_{0}\right) \geq 3$, and choose the orientation of C_{0} and two J_{V}-crossing arcs $A^{1}: v_{1}^{1} C_{0} v_{2}^{1}$ and $A^{2}: v_{1}^{2} C_{0} v_{2}^{2}$ in C_{0} such that $v_{1}^{i} \in B_{1}$ and $v_{2}^{i} \in B_{2}, i=1,2$, and such that the arc $A^{\prime}: v_{2}^{2} C_{0} v_{1}^{1}$ satisfies $j_{V}\left(A^{\prime}\right)=0$ and $j_{V}^{\prime}\left(A^{\prime}\right) \geq 1$ (by Claim 3, it is straightforward to verify that this is always possible). Set $t=\left\lceil\frac{d}{2}\right\rceil$. By Lemma $6(c)$, there are vertices $w_{1} \in V\left(A^{1}\right) \cap D_{t}$ and $w_{2} \in V\left(A^{2}\right) \cap D_{t}$. Then, for the cycle $C_{0}^{\prime}: w_{1}^{-} w_{1} x_{t} w_{2} w_{2}^{+} C_{0} w_{1}^{-}$we have $j_{V}\left(C_{0}^{\prime}\right)=1$, and C_{0}^{\prime} is shorter than C_{0}, a contradiction. The proof for $j_{V}^{\prime}\left(C_{0}\right)$ is symmetric.

Claim 5. Every $\left(y, y^{\prime}\right)$-arc of C_{0} of length at most $\frac{\left|V\left(C_{0}\right)\right|}{2}$ is a shortest $\left(y, y^{\prime}\right)$-path in G.
Proof. Suppose, to the contrary, that there is an arc $y C_{0} y^{\prime}$ that is not a shortest path in G, let Q be a shortest $\left(y, y^{\prime}\right)$-path in G, and, among all such arcs in C_{0}, choose the $\operatorname{arc} A_{1}: y C_{0} y^{\prime}$ such that the path Q is shortest possible. By the same argument as in the proof of Claim 4, $j_{V}(Q) \leq 1$ and $j_{V}^{\prime}(Q) \leq 1$.

Let $A_{2}: y^{\prime} C_{0} y$ denote the complementary arc to A_{1} (i.e., $V\left(A_{1}\right) \cup V\left(A_{2}\right)=V\left(C_{0}\right)$ and $\left.V\left(A_{1}\right) \cap V\left(A_{2}\right)=\left\{y, y^{\prime}\right\}\right)$. Then clearly A_{1}, A_{2} and Q are pairwise internally vertexdisjoint paths with common endvertices, hence both $C_{1}: y A_{1} y^{\prime} \overleftarrow{Q} y$ and $C_{2}: y^{\prime} A_{2} y Q y^{\prime}$ (where \overleftarrow{Q} denotes Q traversed in the opposite orientation) are cycles in G. By the definition of Q and by the assumption of Claim 5, we have $|E(Q)|<\left|E\left(A_{1}\right)\right| \leq\left|E\left(A_{2}\right)\right|$, hence both C_{1} and C_{2} are shorter than C_{0}. Let $A: v_{1} C_{0} v_{2}$ be the (only) J_{V}-crossing arc of C_{0}. According to the position of y and y^{\prime} with respect to A, we have, up to symmetry, the following three possibilities.
(α) $y, y^{\prime} \notin J_{V}$. Then either $A \subset A_{1}$, or $A \subset A_{2}$, thus, for each value of $j_{V}(Q)$, either $j_{V}\left(C_{1}\right)=1$ or $j_{V}\left(C_{2}\right)=1$.
(β) $y, y^{\prime} \in J_{V}$. Then both y and y^{\prime} are internal vertices of A, hence $j_{V}\left(A_{1}\right)=0$. If $j_{V}^{\prime}(Q)=0$, then $j_{V}\left(C_{2}\right)=1$, and if $j_{V}^{\prime}(Q)=1$, then $j_{V}\left(C_{1}\right)=1$.
$(\gamma) y \notin J_{V}$ and $y^{\prime} \in J_{V}$. In this case, we first observe that we can suppose that $V(Q) \cap B_{1}=\emptyset$ or $V(Q) \cap B_{2}=\emptyset$. Let, to the contrary, A_{Q} be a $J_{V^{-}}$-crossing arc of Q, let $t, p+10 \leq t \leq d-p-10$, be such that either $x_{t}=y^{\prime}$ or $x_{t} y^{\prime} \in E(G)$ (this is always possible since, by Lemma $6, V\left(x_{p+10} P x_{d-p-10}\right)$ is a dominating set in J_{V}), and let $w \in V\left(A_{Q}\right) \cap D_{t}$. Then (similarly as in the proof of Claim 4), the $\left(y, y^{\prime}\right)$-path $Q^{\prime}: y Q w\left(x_{t}\right) y^{\prime}$ is not longer than Q and contains vertices of only one of B_{1}, B_{2}. Now, if Q passes through B_{1}, then $j_{V}\left(C_{2}\right)=1$, and if Q passes through B_{2}, then $j_{V}\left(C_{1}\right)=1$.
In each of the possible cases, we have obtained a contradiction with the choice of C_{0}.

Claim 6. If $v \in V\left(C_{0}\right) \cap B_{1}$ and $w \in V\left(C_{0}\right) \cap B_{2}$, then $\operatorname{dist}_{G}(v, w) \geq p+q+1$.
Proof. By Lemma 6, $\operatorname{dist}_{G}(v, P) \leq 1$ and $\operatorname{dist}_{G}(w, P) \leq 1$. Let $v \in D_{i_{0}}$ and $w \in D_{i_{1}}$ (for some $i_{0} \in\{p+6, p+7, p+8\}$ and $i_{1} \in\{d-p-6, d-p-7, d-p-8\}$). Since $d \geq 3 p+q+19, \operatorname{dist}_{G}\left(x_{i_{0}-1}, x_{i_{1}+1}\right) \geq d-2(p+7) \geq p+q+5$. Clearly dist ${ }_{G}\left(x_{i_{0}-1}, v\right) \leq 2$ and $\operatorname{dist}_{G}\left(w, x_{i_{1}+1}\right) \leq 2$. Then $\operatorname{dist}_{G}\left(x_{i_{0}-1}, v\right)+\operatorname{dist}_{G}(v, w)+\operatorname{dist}_{G}\left(w, x_{i_{1}+1}\right) \geq p+q+5$, implying that $\operatorname{dist}_{G}(v, w) \geq p+q+1$.

By a symmetric argument to that of Claim 6, we also have $\operatorname{dist}_{G}\left(v^{\prime}, w^{\prime}\right) \geq p+q+1$ for any $v^{\prime} \in V\left(C_{0}\right) \cap B_{1}^{\prime}$ and $w^{\prime} \in V\left(C_{0}\right) \cap B_{2}^{\prime}$. Consequently, the length of C_{0} is at least $2(p+q+1)$.

Summarizing, we have the cycle C_{0} of length at least $\left|V\left(C_{0}\right)\right| \geq 2(p+q+1)$ such that every path $Q \subset C_{0}$ of length at most $\frac{\left|V\left(C_{0}\right)\right|}{2}$ is shortest possible. Clearly C_{0} has length at most $2 d+1$. By Lemma $6, C_{0}$ is a two-way dominating set in G. Therefore $\mathrm{rc}(G) \leq \operatorname{rc}\left(C_{0}\right)+3 \leq \operatorname{diam}\left(C_{0}\right)+4 \leq \operatorname{diam}(G)+4$.

The following result completes the proof of Theorem 1 by establishing sufficiency.
Proposition 8. Let (X, Y, Z) be one of the following triples of graphs:
(i) $X=K_{1,3}, Y=K_{s}^{h}(s>3), Z=N_{1, j, k}(j+k>2,1 \leq j \leq k)$,
(ii) $X=K_{1, r}(r>3), Y=K_{s}^{h}(s>3), Z=P_{\ell}(\ell>4)$,
(iii) $X=K_{1, r}(r>3), Y=S_{1, j, k}(j+k>2,1 \leq j \leq k), Z=N$.

Then there is a constant $k_{X Y Z}$ such that every connected (X, Y, Z)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{X Y Z}$.

Proof. It is straightforward to verify that in each of the cases (i), (ii) and (iii), every (X, Y, Z)-free graph is $\left(K_{1, r_{0}}, K_{s_{0}}^{h}\right)$-free, for suitable values of $r_{0}, s_{0} \in \mathbb{N}$. Thus, for graphs with small diameter, the proof follows immediately from Proposition 5. Similarly, for large diameter, every (X, Y, Z)-free graph is also ($K_{1, r_{0}}, K_{s_{0}}^{h}, S_{1, j_{0}, k_{0}}, N_{1, j_{0}, k_{0}}$)-free in each of the cases (i), (ii) and (iii) for suitable values of $r_{0}, s_{0}, j_{0}, k_{0} \in \mathbb{N}$. Hence, for large diameter, the proof follows from Proposition 7.

4 Forbidden quadruples

In this section, we prove an analogous result which characterizes all forbidden quadruples \mathcal{F} for which there is a constant $k_{\mathcal{F}}$ such that $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$ for any connected \mathcal{F}-free graph G. We exclude the cases which are covered by Theorems C, D and 1 . We set

$$
\overline{\mathcal{F}_{7}}=\left\{\left\{K_{1, r}, K_{s}^{h}, N_{1, j, k}, S_{1, \bar{j}, \bar{k}}\right\} \mid r>3, s>3,1 \leq j \leq k, j+k>2,1 \leq \bar{j} \leq \bar{k}, \bar{j}+\bar{k}>2\right\},
$$ and

$$
\mathcal{F}_{7}=\left\{\{X, Y, Z, W\} \mid\{X, Y, Z, W\} \stackrel{\text { IND }}{\subset} \mathcal{F} \text { for some } \mathcal{F} \in \overline{\mathcal{F}_{7}}\right\} .
$$

Theorem 9. Let \mathcal{F} be a finite family of connected graphs with $|\mathcal{F}|=4$ such that $\mathcal{F} \not \supset \mathcal{F}^{\prime}$ for any $\mathcal{F}^{\prime} \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots \cup \mathcal{F}_{6}$. Then there is a constant $k_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, if and only if $\mathcal{F} \in \mathcal{F}_{7}$.

Proof. Sufficiency follows immediately from Proposition 5 (for bounded diameter) and Proposition 7 (for large diameter), respectively. Thus, it remains to prove necessity. The proof basically follows the proof of Proposition 2, with only some parts different. For the sake of completeness, we include a complete proof here.

Let $\mathcal{F}=\{X, Y, Z, W\}$. Let $t_{0} \geq 3$ and, for $t \geq t_{0}$, let $G_{1}^{t}, G_{2}^{t}, G_{3}^{i, t}, G_{4}^{i, t}$ be the graphs used in the proof of Proposition 2 (see Fig. 1 and Fig. 2).

We first consider the graph $G_{1}^{t}=K_{1, t}$. Then, up to a symmetry, we have $X=K_{1, r}$ for some $r \geq 3$ (for $r \leq 2$, we get $X \stackrel{\text { ind }}{\subset} P_{3}$, which is excluded by the assumptions).

Secondly, we consider the graph G_{2}^{t}. Obviously, G_{2}^{t} is $K_{1,3}$-free, implying $X \stackrel{\text { IND }}{ } \not G_{2}^{t}$. Thus, up to a symmetry, $Y \stackrel{\text { iND }}{\subset} G_{2}^{t}$, implying $Y=K_{s}^{h}$ for some $s \geq 3$ (for $s \leq 2$, we get $Y \subset P_{4}$, but the pair $X=K_{1,4}, Y=P_{4}$ is excluded by the assumptions).

Now we consider the graph $G_{3}^{i, t}$. Clearly $X \not \subset \subset G_{3}^{i, t}$ since $G_{3}^{i, t}$ is $K_{1,4}$-free, hence, up to a symmetry, $Y \stackrel{\text { IND }}{\subset} G_{3}^{i, t}$ or $Z \stackrel{\text { IND }}{\subset} G_{3}^{i, t}$.

Case 1: $G_{3}^{i, t}$ contains Y. Then $Y=N$. Since the pair $X=K_{1,3}, Y=N$ is excluded by the assumptions, $X=K_{1, r}$ with $r>3$. Now we consider the graph $G_{4}^{i, t}$. Clearly $X \stackrel{\text { IND }}{\not \subset} G_{4}^{i, t}$ since $G_{4}^{i, t}$ is $K_{1,4}$-free, and if $Y \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then we get $X=K_{1, r}, r>3$ and
$Y=P_{4}$, which is excluded by the assumptions. Hence, up to a symmetry, $Z \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, but then $X=K_{1, r}, r>3, Y=N$ and $Z=S_{1, j, k}(1 \leq j \leq k)$, which is also excluded by the assumptions.

Case 2: $G_{3}^{i, t}$ contains Z. Then $Z=N_{1, j, k}$ for some $1 \leq j \leq k$. Consider the graph $G_{4}^{i, t}$. If $X \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then $X=K_{1,3}, Y=K_{s}^{h}$ and $Z=N_{1, j, k}(k \geq 2)$, which is excluded by the assumptions, if $Y \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then $Y=P_{4}$ and we get $X=K_{1, r}, Y=P_{4}$ which is excluded by the assumptions, and if $Z \stackrel{\text { IND }}{\subset} G_{4}^{i, t}$, then we get $X=K_{1, r}(r \geq 3), Y=K_{s}^{h}(s \geq 3)$ and $Z=P_{\ell}(\ell>3)$, which is also excluded by the assumptions. Thus, $G_{4}^{i, t}$ contains W. Then we get $W=S_{1, \bar{j}, \bar{k}}$ for some $\bar{j}, \bar{k} \in \mathbb{N}, 1 \leq \bar{j} \leq \bar{k}$, which gives the quadruple $(X, Y, Z, W)=\left(K_{1, r}, K_{s}^{h}, N_{1, j, k}, S_{1, \bar{j}, \bar{k}}\right)$ with $r \geq 3, s \geq 3,1 \leq j \leq k, j+k>2$ and $1 \leq \bar{j} \leq \bar{k}$.

However, if $r=3$, then $K_{1,3} \stackrel{\text { IND }}{\subset} S_{1, \bar{j}, \bar{k}}$ and we get the triple $\left(K_{1,3}, K_{t}^{h}, N_{1, j, k}\right)$, which is excluded by the assumptions, hence $r>3$. Analogously, for $s=3, K_{3}^{h} \stackrel{\text { IND }}{\subset} N_{1, j, k}$ and we get the triple ($K_{1, r}, N, S_{1, \bar{j}, \bar{k}}$) which is also excluded by the assumptions, thus $s>3$. Finally, for $\bar{j}=\bar{k}=1, S_{1,1,1} \stackrel{\text { IND }}{\subset} K_{1, r}$ and we get the triple $\left(S_{1,1,1}=K_{1,3}, K_{s}^{h}, N_{1, j, k}\right)$, which is also excluded by the assumptions, hence $\bar{k} \geq 2$. Thus, we obtain the quadruple $(X, Y, Z, W)=\left(K_{1, r}, K_{s}^{h}, N_{1, j, k}, S_{1, \bar{j}, \bar{k}}\right)$ with $r>3, s>3,1 \leq j \leq k, j+k>2,1 \leq \bar{j} \leq \bar{k}$ and $\bar{j}+\bar{k}>2$.

5 Forbidden k-tuples for any $k \in \mathbb{N}$

In Theorems C, D, 1 and 9 , we have given a characterization of all families \mathcal{F} with $|\mathcal{F}| \leq 4$. Now, let $\mathcal{F}=\left\{X_{1}, \ldots, X_{k}\right\}$ with $k \geq 5$. Then, repeating the proof of Theorem 9, we easily observe that some four of the graphs X_{1}, \ldots, X_{k}, say, $X_{1}, X_{2}, X_{3}, X_{4}$, must satisfy the conditions given by Theorem 9. But now, for any graphs X_{5}, \ldots, X_{k}, every $\left(X_{1}, \ldots, X_{k}\right)$ free graph is trivially also ($X_{1}, X_{2}, X_{3}, X_{4}$)-free. Thus, considering k-tuples for $k \geq 5$ does not give anything new. A similar observation can be also applied to the cases of a single forbidden subgraph (Theorem C), to forbidden pairs (Theorem D), and to forbidden triples (Theorem 1).

Before stating our final result, we recall the notation of the families of forbidden subgraphs under consideration:

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{\left\{P_{3}\right\}\right\}, \\
& \mathcal{F}_{2}=\left\{\{X, Y\} \mid\{X, Y\} \subset \subset\left\{K_{1,3}, N\right\}\right\}, \\
& \mathcal{F}_{3}=\left\{\left\{K_{1, r}, P_{4}\right\} \mid r \geq 4\right\} . \\
& \overline{\mathcal{F}_{4}}=\left\{\left\{K_{1,3}, K_{s}^{h}, N_{1, j, k}\right\} \mid s>3,1 \leq j \leq k, j+k>2\right\}, \\
& \overline{\mathcal{F}_{5}}=\left\{\left\{K_{1, r}, K_{s}^{h}, P_{\ell}\right\} \mid r>3, s>3, \ell>4\right\}, \\
& \overline{\mathcal{F}_{6}}=\left\{\left\{K_{1, r}, S_{1, j, k}, N\right\} \mid r>3,1 \leq j \leq k, j+k>2\right\},
\end{aligned}
$$

$\mathcal{F}_{i}=\left\{\{X, Y, Z\} \mid\{X, Y, Z\} \stackrel{\text { IND }}{\subset} \mathcal{F}\right.$ for some $\left.\mathcal{F} \in \overline{\mathcal{F}_{i}}\right\}, i=4,5,6$,
$\overline{\mathcal{F}_{7}}=\left\{\left\{K_{1, r}, K_{s}^{h}, N_{1, j, k}, S_{1, \bar{j}, \bar{k}}\right\} \mid r>3, s>3,1 \leq j \leq k, j+k>2,1 \leq \bar{j} \leq \bar{k}, \bar{j}+\bar{k}>2\right\}$,
and
$\mathcal{F}_{7}=\left\{\{X, Y, Z, W\} \mid\{X, Y, Z, W\} \subset \mathcal{F}\right.$ for some $\left.\mathcal{F} \in \overline{\mathcal{F}_{7}}\right\}$.
Now we can summarize our observations in the following theorem.
Theorem 10. Let \mathcal{F} be a finite family of connected graphs. Then there is a constant $k_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $\mathrm{rc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, if and only if \mathcal{F} contains a subfamily $\mathcal{F}^{\prime} \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots \cup \mathcal{F}_{7}$.

References

[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, and D. Ramaswamy, Rainbow connection number and radius, Graphs and Combinatorics 30 (2014), 275-285.
[2] C. Berge, Graphs, North-Holland, 1991.
[3] J.A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
[4] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electron. J. Comb. 15 (2008), \#57.
[5] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optimization 21 (2011), 330-347.
[6] L. S. Chandran, A. Das, D. Rajendraprasad, and N. M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012), 206-218.
[7] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008), 85-98.
[8] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček, I. Schiermeyer, The rainbow connection number in 2-connected graphs, Discrete Math. 313 (19) (2013), 1884-1892.
[9] P. Holub, Z. Ryjáček, I. Schiermeyer, and P. Vrána, Rainbow connection and forbidden subgraphs, Discrete Math. 338 (10) (2015), 1706-1713.
[10] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Disscuss. Math. Graph Theory 31 (2011), 313-320.
[11] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010), 185-191.
[12] V. B. Le and Z. Tuza, Finding optimal rainbow connection is hard, Preprint, Rostock Inst. für Informatik, 2009.
[13] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013), 603-611.
[14] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs. Combin. 29 (1) (2013), 1-38.
[15] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[16] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Society 30 (1930), 264-286.
[17] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Lecture Notes Computer Science 5874 (2009), 432-437.
[18] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, (Hungarian) Mat. Fiz. Lapok 48 (1941), 436-452.
[19] P. Turán, On the Theory of Graphs, Colloq. Math. 3 (1954), 19-30.

[^0]: ${ }^{1}$ Department of Mathematics, University of West Bohemia; Centre of Excellence ITI - Institute for Theoretical Computer Science, Charles University; European Centre of Excellence NTIS - New Technologies for the Information Society; P.O. Box 314, 30614 Pilsen, Czech Republic
 ${ }^{2}$ e-mail \{brousek, holubpre, ryjacek, vrana\}@kma.zcu.cz
 ${ }^{3}$ Research partly supported by the DAAD-PPP project "Rainbow connection and cycles in graphs" with project-ID 56268242 (German) and 7AMB13DE003 (Czech), respectively.
 ${ }^{4}$ Research partly supported by project P202/12/G061 of the Czech Science Foundation.

