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Petr Vrána2,6,9

February 5, 2020

Abstract

In 1986, Thomassen conjectured that every 4-connected line graph is hamiltonian.

The conjecture is still wide open, and, as a possible approach to it, many statements

that are equivalent or related to it have been studied. In this paper, we extend the

statement to the class of line graphs of 3-hypergraphs, and generalize it to Tutte

cycles and paths (note that a line graph of a 3-hypergraph is K1,4-free but can

contain induced claws K1,3, and that a Tutte cycle/path is a cycle/path such that

any component of its complement has at most three vertices of attachment). Among

others, we formulate the following conjectures:

(i) every 2-connected line graph of a 3-hypergraph has a Tutte maximal cycle

containing any two prescribed vertices,

(ii) every 3-connected line graph of a 3-hypergraph has a Tutte maximal cycle

containing any three prescribed vertices,

(iii) every connected line graph of a 3-hypergraph has a Tutte maximal (a, b)-path

for any two vertices a, b,

(iv) every 4-connected line graph of a 3-hypergraph is Hamilton-connected,

and we show that all these (seemingly much stronger) statements are equivalent

with Thomassen’s conjecture.
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1 Introduction

We use standard graph-theoretical terminology and notation, and for concepts and no-
tations not defined here we refer the readers to [2]. Specifically, by a graph we always
mean a simple finite undirected graph; whenever we admit multiple edges and/or loops,
we always speak about a multigraph. An edge that is not a loop is referred to as an open
edge. If F,G are graphs, we write F ⊂ G if F is a subgraph of G (not necessarily induced),
and, for M ⊂ V (G), we use 〈M〉G to denote the induced subgraph of G on M . For F ⊂ G
and M ⊂ V (G), we denote eG(F,M) = {e = uv ∈ E(G)| u ∈ V (F ), v ∈ M}. A graph G
is nontrivial if |E(G)| ≥ 1.

Throughout, dG(x) denotes the degree in G of a vertex x ∈ V (G), δ(G) and ∆(G)
denote the minimum degree and maximum degree of G, respectively, and, for a positive
integer k, we set Vk(G) = {x ∈ V (G)| dG(x) = k} and V≥k(G) = {x ∈ V (G)| dG(x) ≥ k}.
By a clique in G we mean a complete subgraph of G (not necessarily maximal).

A walk in a multigraph G is an alternating sequence of vertices and edges Q =
x0e1x1 . . . x`−1e`x` such that ei ∈ E(G) connects vertices xi−1 and xi, i = 1, . . . , `. Note
that any edge and vertex can occur more times in the sequence. For a, b ∈ V (G), an
(a, b)-walk in G is a walk such that a = x0, b = x`, and for h, f ∈ E(G), an (h, f)-walk in
G is a walk such that e1 = h and e` = f . We will use Int(Q) to denote the set {x1 . . . x`−1}
of interior vertices of Q. A trail ((a, b)-trail, (h, f)-trail) in G is a walk ((a, b)-walk, (h, f)-
walk) with no repeated edges, and a path (an (a, b)-path) is a trail (an (a, b)-trail) with no
repeated vertices, respectively. In the special case when a = b, we say that Q is a closed
walk (closed trail, cycle), respectively, and in this case, we consider all indices modulo `
and we set Int(Q) = V (Q).

A graph G is hamiltonian if it contains a hamiltonian cycle, Hamilton-connected if, for
any a, b ∈ V (G), G contains a hamiltonian (a, b)-path, and, for a positive integer k, G is
k-Hamilton-connected if the graph G − X is Hamilton-connected for any set X ⊂ V (G)
with |X| = k.

The line graph of a graph H is the graph G = L(H) with V (G) = E(H), in which two
vertices are adjacent if and only if the corresponding edges of H share a vertex. If G is a
line graph, different from the triangle K3, then the graph H such that G = L(H) (which
is known to be uniquely determined) will be called the preimage of G and denoted by
H = L−1(G). It is well-known that a noncomplete line graph G is k-connected if and only
if H = L−1(G) is essentially k-edge-connected, i.e., H contains no edge-cut R with |R| < k
such that H − R has at least two nontrivial components. Also note that if e ∈ E(H) is
pendant, then the corresponding vertex xe in G = L(H) is simplicial.

If C is a family of graphs, we say that a graph G is C-free, if G does not contain any
graph in C as an induced subgraph. In the special case when C = {K1,3}, we simply say
that G is claw-free. Note that it is a well-known fact that every line graph is claw-free.

A graph G is cyclically k-edge-connected if G contains no edge-cut R with |R| < k such
that G−R has at least two components containing a cycle. Finally, by a snark we mean
a cubic cyclically 4-edge-connected graph of girth at least 5 which is not 3-edge-colorable.

We will be interested in the following conjectures. The first of them was established
by Thomassen [17].

Conjecture A [17]. Every 4-connected line graph is hamiltonian.
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A (seemingly) stronger version was established by Matthews and Sumner [12].

Conjecture B [12]. Every 4-connected claw-free graph is hamiltonian.

So far, the (seemingly) strongest version of these conjectures was established in [14]
as follows.

Conjecture C [14]. Every 4-connected claw-free graph is 1-Hamilton-connected.

In another direction, the following conjecture on snarks has appeared independently
at different places.

Conjecture D. Every snark has a dominating cycle.

Although all these conjectures seem to be quite different, they turn out to be all
equivalent to Conjecture A. The equivalences were established in [13] for Conjecture B,
in [14] for Conjecture C, and in [3] for Conjecture D.

Theorem E [13, 14, 3]. Conjectures A, B, C and D are equivalent.

Note that all these conjectures are wide open, and so far the strongest positive result
in their direction shows that every 5-connected claw-free graph with minimum degree at
least 6 is 1-Hamilton-connected [9]. More information on other equivalent versions of the
conjectures can be found in the survey paper [4].

A hypergraph H consists of a finite set V (H) of vertices of H and a (multi)set E(H) of
subsets of V (H) that are called the hyperedges ofH. A hypergraph in which all hyperedges
have at most k elements will be called a k-hypergraph. Note that, in hypergraphs, we
admit parallel hyperedges, i.e., multiple copies of the same hyperedge, and also loops. A
hyperedge of cardinality 2 will be sometimes also called an edge of H. Thus, a hypergraph
without hyperedges is a multigraph, and a multigraph without parallel edges and without
loops is a graph.

The line graph (sometimes also called the representative graph) of a hypergraph H is
the graph G = L(H) with V (G) = E(H), in which two vertices are adjacent if and only
if the corresponding hyperedges of H have a vertex in common (note that G = L(H) can
be also viewed as the intersection graph of the set system E(H)). For e ∈ E(H), we will
use the notation x = L(e) for the corresponding vertex x ∈ V (L(H)). For an example of
a 3-hypergraph and its line graph, see Fig. 2 (a), (b).

The following result characterizes graphs that are line graphs of an r-hypergraph.

Theorem F [1, 16]. For every integer r ≥ 1, a graph G is a line graph of an r-
hypergraph if and only if E(G) can be covered by a system of cliques K such that every
vertex of G is in at most r cliques of K.

From Theorem F, we immediately observe that a line graph of an r-hypergraph is
K1,r+1-free, and, specifically, a line graph of a 3-hypergraph is K1,4-free. Also note that,
obviously, every line graph (of a graph) is a line graph of a 3-hypergraph.
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The following fact shows that, in a sense, there are “many” line graphs of a 3-
hypergraph that are not claw-free.

Theorem G [8]. Let G be a graph with maximum degree ∆(G) ≤ 4. Then G is a line
graph of a 3-hypergraph if and only if G is K1,4-free.

Proof. Obviously, if G is a line graph of a 3-hypergraph, then G is K1,4-free by the
above observation. The converse is a direct consequence of Theorem F and of Proposition 3
of [8].

In this paper, we extend Conjectures A – D to the class of line graphs of 3-hypergraphs,
and we show that these seemingly much stronger conjectures are in fact equivalent with
Conjectures A – D.

Note that the first step beyond the class of claw-free graphs, or graphs obtained by
some operations from the line graph preimages of their closure, was done in [15], where
the closure operation from [13] was generalized to the class of {K1,4, K1,4 + e}-free graphs
with minimum degree at least 6, with some consequences related to Conjectures A – D.
However, it can be seen that these classes are in fact independent: in one direction, the
graph consisting of three cliques of order at least 7 sharing a vertex is a line graph of a
3-hypergraph (by Theorem F), but is not (K1,4 + e)-free, and, conversely, the existence of
infinitely many {K1,4, K1,4 + e}-free (even claw-free) graphs that are not a line graph of
a 3-hypergraph follows from Theorem 1 of [8].

Also note that although in claw-free graphs, a connectivity bound implying hamiltonic-
ity is known (recall the strongest known result showing that every 5-connected claw-free
graph with minimum degree at least 6 is 1-Hamilton-connected [9]), the corresponding
problem in the class of line graphs of 3-hypergraphs is still open.

2 Results

For our results, we will need some more terminology. For Q,F ⊂ H with V (Q)∩V (F ) = ∅,
a vertex x ∈ V (Q) such that NH(x) ∩ V (F ) 6= ∅ is called a vertex of attachment of F in
Q. The set of all vertices of attachment of F in Q is denoted VA(F,Q). If C is a cycle
in a graph G, then C is maximal if there is no cycle C ′ in G such that V (C) ( V (C ′), a
component F of G−C is a Tutte component if |VA(F,C)| ≤ 3, and C is a Tutte cycle of G
if either C is a hamiltonian cycle in G, or |V (C)| ≥ 4 and every component of G−C is a
Tutte component. A maximal cycle which is also a Tutte cycle is called a Tutte maximal
cycle.

Note that our definition of a Tutte cycle is the same as in [18], where results on Tutte
cycles in the context of Conjectures A – D appeared for the first time. It would be also pos-
sible to define a Tutte cycle alternatively by the condition |VA(F,C)| ≤ min{3, |V (C)|−1}
(admitting triangles), which would imply some changes in what follows, however, we prefer
our definition to be consistent with [18].

Now, we state the following conjectures.
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Conjecture 1. Let G be a 2-connected line graph of a 3-hypergraph, and let a, b ∈
V (G). Then G has a Tutte maximal cycle C such that a, b ∈ V (C).

Conjecture 2. Let G be a 3-connected line graph of a 3-hypergraph, and let a, b, c ∈
V (G). Then G has a Tutte maximal cycle C such that a, b, c ∈ V (C).

Note that if G is 4-connected, then a Tutte cycle becomes a hamiltonian cycle. Hence
both Conjecture 1 and Conjecture 2 immediately imply Conjecture A.

Similarly, an (a, b)-path P in a graph G is maximal if there is no (a, b)-path P ′ in G
such that V (P ) ( V (P ′), a component F of G− P is a Tutte component if |VA(F, P )| ≤
min{3, |V (P )| − 1}, and P is a Tutte path of G if either P is a hamiltonian path of G, or
every component of G− P is a Tutte component. A maximal (a, b)-path which is also a
Tutte path is called a Tutte maximal (a, b)-path.

Conjecture 3. Let G be a connected line graph of a 3-hypergraph, and let a, b ∈ V (G).
Then G has a Tutte maximal (a, b)-path.

Obviously, if G is 4-connected, then a Tutte path becomes a hamiltonian path. Hence
Conjecture 3 immediately implies the following conjecture.

Conjecture 4. Every 4-connected line graph of a 3-hypergraph is Hamilton-connected.

Since every line graph (of a graph) is a line graph of a 3-hypergraph, Conjecture 4
immediately implies Conjecture A.

The following theorem, which is the main result of this paper, shows that Conjec-
tures 1, 2, 3 and 4, although seemingly much stronger, are in fact equivalent with all the
previous conjectures.

Theorem 5. Conjectures A, B, C, D and Conjectures 1, 2, 3 and 4 are equivalent.

Example. Let G be the graph consisting of 3 cliques of order at least 5 sharing a 4-
clique 〈{a, b, c, d}〉G (see Fig. 1). It is easy to verify that G is a 4-connected line graph
of a 3-hypergraph, however, there is no hamiltonian (a, b)-path in G − c, hence G is not
1-Hamilton-connected. This example indicates that there is probably not much hope to
establish an equivalence with a statement analogous to Conjecture C in line graphs of 3-
hypergraphs since such an equivalence would immediately imply refuting the conjectures.
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Figure 1: A 4-connected line graph of a 3-hypergraph that is not 1-Hamilton-connected.
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3 Proof of Theorem 5

Crucial part of arguments in our proofs will be in a 3-hypergraph H for which G = L(H),
and in a corresponding graph, denoted Gr(H). For this, we will need some more technical
concepts and statements that allow to translate the problem from G to H and Gr(H).

If H is a 3-hypergraph, then Gr(H) denotes the graph obtained from H by subdividing
every edge with a new vertex of degree 2, and by replacing every 3-hyperedge with a new
vertex, adjacent to all three its vertices. The new added vertices will be referred to as
white vertices, and the original vertices of H as black vertices of Gr(H). Thus, in Gr(H),
black vertices correspond to the vertices of H, and white vertices correspond to the edges
and hyperedges of H (see Fig. 2(a) and (c)). We will use Vb(Gr(H)) and Vw(Gr(H))
to denote the set of black vertices and white vertices of Gr(H), respectively. Note that
Gr(H) can contain some multiple edges, however, it is easy to see that the only multiedges
in Gr(H) can be the double edges that appear from loops in H. All other edges in Gr(H)
are simple, therefore, we will keep using for Gr(H) the term “graph”.

Note that Gr(H) is also sometimes called the incidence graph of the hypergraph H,
and denoted IG(H).

••

•••••

• • • •........................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.....................................................................................................................................................................................................................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
. ..................................................................................................

.......
.......
.........
.............................................................

............................................................
...........

...........
............................................................

.............
..

.............
..

............. .............

............. ............. .............

........
.....
........
.....
.......
......

.......
......

.......
......

.......
......

H

(a)

•
••

• •
• • • •
• •

•
••

.......

.......

.......
.......
........
........
........
.........
.........
..... ..........................................................................................

.........
.........
.........
.........
........
.......
.......
.......
..........
..............

..............
..............

..............
...................................................................................

.................................................................................................................................

...................................................................................................................
............................

............................
............................

.................................................................................
.........
.........
.........
.........
.............

............
............

............
.................................................................................

.........
.........
.........
.........
.........
.......
.......
.......
.......
..........................................................................................................................................................................

..........................................................................................................................

................................................................

..........................................
........................................................................................

.......

.......

.......

..

G = L(H)

(b)

••

•••••

• • • •........................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.....................................................................................................................................................................................................................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..................

.................
......................................................................................................................................

.......
.......
.........
.............................................................

sd
.......
.......
.......
.......
.......
....

..........
..........
..........
..........
..........................................

sd sdsdsd sdsd sd sd sdsd sdsd....................................................
.................

.sd Gr(H)

(c)

Figure 2: A 3-hypergraph H, its line graph G = L(H), and the graph Gr(H).

Observe that Gr(H) is a bipartite graph with bipartition (Vb(Gr(H)), Vw(Gr(H))), and
that L(H) can be alternatively viewed as the graph obtained from Gr(H) by joining the
(white) neighbors of every black vertex into a clique, and then removing all black vertices
and possibly created multiple edges (see Fig. 2).

We first recall here some classical concepts and facts that are used to translate hamil-
tonian problems from a line graph G = L(H) to H in the case when H is a (multi)graph.

Given a trail T and an edge e in a multigraph H, we say e is dominated by T if e
is incident to a vertex in Int(T ), and we use DH(T ) to denote the set of all edges of H
dominated by T (note that obviously E(T ) ⊂ DH(T )). A closed trail (an (a, b)-trail for
a, b ∈ V (T ), an (h, f)-trail for h, f ∈ E(T )) T in H is said to be a dominating closed trail,
abbreviated DCT (dominating (a, b)-trail, abbreviated (a, b)-DT; dominating (h, f)-trail,
abbreviated (h, f)-DT), if DH(T ) = E(H) (DH(Int(T )) = E(H); DH(Int(T )) = E(H),
respectively). Note that in the special case of a cubic graph, a dominating closed trail
becomes a dominating cycle.

A classical result by Harary and Nash-Williams [6] shows that a line graph G = L(H)
of order at least 3 is hamiltonian if and only if H contains a dominating closed trail.
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Theorem H [6]. Let H be a graph with at least three edges. Then L(H) is hamiltonian
if and only if H contains a DCT.

The following result relates hamiltonian paths in a line graph to dominating trails in
its preimage.

Theorem I [11]. Let H be a graph with at least three edges. Then L(H) is Hamilton-
connected if and only if H has an (e1, e2)-DT for any pair of edges e1, e2 ∈ E(H).

In our proof, in order to translate the problem from G = L(H) to H and Gr(H), we
will need a refinement of the concept of a dominating (closed) trail based on walks.

If Q = x0e1x1 . . . x`−1e`x` is a walk and e ∈ E(H) is an edge of Q, we say that e is
visited k-times by Q if |{i = 0, . . . `| ei = e}| = k, and we say that Q is a k-walk if every
its edge is visited at most k-times. Specifically, if Q is a 2-walk, then the edges visited
twice (once) by Q will be refereed to as the double (single) edges of Q. Also note that a
1-walk is a trail. With a slight abuse of notation, we will sometimes also view a walk Q
as a subgraph of H (also denoted Q) induced by the edges visited by the walk Q, and we
will write V (Q), E(Q), dQ(x) etc.

We introduce the following notation: for a vertex xi ∈ V (Q), x−i denotes the set of
predecessors of xi, x

+
i denotes the set of successors of xi, x

−E
i denotes the set of preceding

edges of xi, and x+E
i denotes the set of succeeding edges of xi (thus, if xi is a single

vertex, then x−i ={xi−1} and x−Ei ={ei−1}; if xi is visited more times, then xi−1 ∈ x−i and
ei−1 ∈ x−Ei ; similarly for x+

i and x+E
i ).

Now, let W ⊂ V2(H) ∪ V3(H) be an (arbitrary) set of vertices of degree 2 or 3 in
H, and set B = V (H) \W . Let a, b ∈ V (H). We say that an (a, b)-walk Q in H is an
(a, b,W )-quasitrail in H, if Q satisfies the following conditions:
• Q is a 2-walk,
• if a ∈ W , then a− = ∅ and if b ∈ W , then b+ = ∅ (i.e., if some endvertex of Q is

in W , then it is visited only once),
• if e ∈ E(Q) is a double edge of Q, then e = vw, where w ∈ V (Q) ∩ W and
w−E = w+E = {e},
• no edge in a+E ∪ b−E is a double edge of Q or a loop.

Similarly, if Q is a closed walk in H, we say that Q is a closed W -quasitrail in H, if Q is
a closed 2-walk such that any double edge e of Q satisfies e = vw, where w ∈ V (Q) ∩W
and w−E = w+E = {e}.

A vertex x ∈ V (H) ∩ W which is incident to a double edge e ∈ E(Q) such that
x−E = x+E = {e} will be called a special vertex of Q, and the set of all special vertices of
Q will be denoted Vs(Q).

From these definitions we immediately observe that if W = ∅, then Vs(Q) = ∅, and
then an (a, b,W )-quasitrail is an (a, b)-trail, and a closed W -quasitrail is a closed trail.

Clearly, if Q is a quasitrail, then the walk Q − Vs(Q) has only single edges, hence is
a trail. This trail will be called the support of Q and denoted S(Q). (Of course, if Q
is an (a, b,W )-quasitrail, then S(Q) is an (a, b)-trail, and if Q is a closed W -quasitrail,
then S(Q) is a closed trail.) We say that a quasitrail Q is trivial if S(Q) is a trivial (i.e.,
edgeless) trail; otherwise Q is nontrivial.
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An edge e ∈ E(H) is dominated by an (a, b,W )-quasitrail Q (or by a closed W -
quasitrail Q), if e has at least one vertex in V (Q)\ ({a, b}∩B) (or in V (Q)), respectively.
We will use D(Q) to denote the set of all edges of H that are dominated by Q, and we
say that an (a, b,W )-quasitrail (a closed W -quasitrail) Q in H is dominating if D(Q) =
E(H). More generally, an (a, b,W )-quasitrail (a closed W -quasitrail) Q in H is said to
be domination-maximal if there is no (a, b,W )-quasitrail (no closed W -quasitrail) Q′ in
H such that D(Q) ( D(Q′).

Finally, if Q is a closed W -quasitrail in H, then a nontrivial component F of H − Q
is said to be a Tutte component if |eH(F, V (Q) ∩ B)|+ |VA(F,Q) ∩W | ≤ 3, and a closed
W -quasitrail Q in H is called a Tutte closed W -quasitrail in H if either Q is a dominating
closed W -quasitrail of H, or every nontrivial component F in H−Q is a Tutte component.
A domination-maximal closed W -quasitrail in H which is also Tutte is called a Tutte
domination-maximal closed W -quasitrail.

The following result shows that a Tutte cycle in G = L(H), whereH is a 3-hypergraph,
corresponds to a Tutte closed W -quasitrail in Gr(H).

Theorem 6. Let H be a 3-hypergraph, and let G = L(H) and W = Vw(Gr(H)).
(i) Let Q be a closed W -quasitrail in Gr(H), and let AQ ⊂ V (G) be the set of vertices

that correspond to the white vertices of Q. Then there is a cycle CQ in G such
that V (CQ) = AQ.
Moreover, if Q is a Tutte closed W -quasitrail with |Vw(Q)| ≥ 4, then there is a
cycle C̄Q in G such that V (C̄Q) ⊃ V (CQ) and C̄Q is a Tutte cycle.

(ii) Let C be a cycle in G, and let WC ⊂ Vw(Gr(H)) be the set of white vertices in
Gr(H) that correspond to the vertices of C. Then there is a closed W -quasitrail
QC in Gr(H) such that Vw(QC) = WC .
Moreover, if C is a Tutte maximal cycle, then QC is a Tutte closed W -quasitrail.

In the special case of a hamiltonian cycle in G, the following corollary of Theorem 6
can be considered as a generalization of Theorem H.

Corollary 7. Let H be a 3-hypergraph, let G = L(H), and set W = Vw(Gr(H)). Then
the following statements are equivalent:

(i) G is hamiltonian,
(ii) Gr(H) contains a closed W -quasitrail Q such that W ⊂ V (Q),

(iii) Gr(H) contains a dominating closed W -quasitrail.

Proof of Theorem 6. (i). Recall that G = L(H) can be obtained from Gr(H) by
joining the (white) neighbors of every black vertex into a clique, and then removing all
black vertices and possibly created multiple edges. The closed W -quasitrail Q in Gr(H)
can be viewed as an alternating sequence of black and white vertices, in which consecutive
white vertices have a black common neighbor. Since every white vertex has degree two
or three in Gr(H), it appears at most once in Q. Thus, the sequence of white vertices of
Q determines a cycle CQ in G = L(H) with V (CQ) = AQ (for the hypergraph of Fig. 2,
see Fig. 3(a), (b)).

8



••

•••••

• • • •................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.....................................................................................................................................................................................................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
...........
.................

................................................................................................................................................
.......
.......
.........
...........................................................

...............................

.................................................................................................................................................................................................................................
...........................................
.............................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................
.........................................................................................sd

.......

.......

.......

.......

.......

....

..........
..........
..........
..................................................

sd sdsdsd sdsd sd sd sdsd sdsd...................................................
.................sd Q in Gr(H)

(a)

•
••

• •
• • • •
• •

•
••

.......

.......

.......
.......
.......
........
........
........
.........
...... .........................................................................................

.........
.........
.........
..........
.......
.......
.......
.......
............
..............
..............
..............
..............
............................................................................

...........................................................................................................................

..............................................................................................................
...........................

...........................
...........................

...............................................................................
.........
.........
.........
..........
...........

...........
...........

...........
...............................................................................

........
........
........
........
........
........
.......
.......
.......
......................................................................................................................................................................

.......................................................................................................................

.............................................................

........................................
....................................................................................

.......

.......

.......

..

........................................
..............................................................................................................................................................................................

...............................................................................................................
...................................................................................................................................................................................................................................................................................................................................................................

CQ in G = L(H)

(b)

•
••

• •
• • • •
• •

•
••

.......

.......

.......
.......
.......
........
........
........
.........
...... .........................................................................................

.........
.........
.........
..........
.......
.......
.......
.......
............
..............
..............
..............
..............
............................................................................

...........................................................................................................................

..............................................................................................................
...........................

...........................
...........................

...............................................................................
.........
.........
.........
..........
...........

...........
...........

...........
...............................................................................

........
........
........
........
........
........
.......
.......
.......
......................................................................................................................................................................

.......................................................................................................................

.............................................................

........................................
....................................................................................

.......

.......

.......

..

........................................
....................................................................................................................................................................................................................

.........................................................................
.............................................................................

.....................................................................................................................................................................................................................................................................................................................................................

C̄Q in G = L(H)

(c)

Figure 3: A Tutte closed W -quasitrail in Gr(H) and a Tutte cycle in G = L(H).

Moreover, suppose that Q is Tutte. Then the white vertices of Gr(H) that have a
(black) neighbor on Q but are not on Q, correspond in G to vertices that are not on
CQ but are contained in a clique containing some edge of CQ. Extending CQ through
all such vertices (see Fig. 3(c)), we obtain a cycle C̄Q. By the construction of C̄Q, we
have V (C̄Q) ⊃ V (CQ) = AQ, and the cycle C̄Q corresponds to a closed W -quasitrail Q̄ in
Gr(H) that is obtained from Q by inserting all white vertices that are not on Q but have
a (necessarily black) neighbor on Q, as special vertices of Q̄.

We show that every component of G−C̄Q is a Tutte component. Let D be a component
of G−C̄Q. Then D corresponds to (the white vertices of) some component FD of Gr(H)−
Q̄. By the construction, VA(FD, Q̄) ⊂ Vw(Q̄), implying |VA(D, C̄Q)| = |VA(FD, Q̄)|. Since
FD contains at least one white vertex (otherwise D is empty), FD has at least one edge.

Let F̄D be the component of Gr(H)−Q containing FD (i.e., F̄D contains FD plus the
vertices in VA(FD, Q̄) that are not on Q). Since every (special white) vertex in V (Q̄)\V (Q)
is connected to Q by at least one edge, and all such edges end in black vertices of Q, we
have |VA(FD, Q̄)| ≤ |VA(F̄D, Q) ∩W | + |eGr(H)(F̄D, V (Q) ∩ B)|. Summarizing, we have
|VA(D, C̄Q)| = |VA(FD, Q̄)| ≤ |VA(F̄D, Q) ∩W | + |eGr(H)(F̄D, V (Q) ∩ B)| ≤ 3, since Q is
Tutte. Thus, D is a Tutte component.

Since |V (C̄Q)| = |Vw(Q̄)| ≥ |Vw(Q)| ≥ 4, C̄Q is the requested Tutte cycle in G.

(ii). Let, conversely, C = x1 . . . xk be a cycle in G, let wi ∈ Vw(Gr(H)) be the white
vertex corresponding to xi, i = 1, . . . , k, and set WC = {w1, . . . , wk}. Then w1, . . . , wk is a
sequence of white vertices in Gr(H) such that each vertex occurs only once, and any two
consecutive vertices have a black common neighbor (indices are considered modulo k).
For every i = 1, . . . , k, let w+

i be a black common neighbor of wi and wi+1. Then clearly
the sequence QC = w1w

+
1 w2 . . . w

+
k−1wkw

+
k determines a closed W -quasitrail in Gr(H), in

which wi is a special vertex if an only if w+
k−1 = w+

k , i = 1, . . . , k. Clearly, Vw(QC) = WC .

Moreover, suppose that C is a Tutte maximal cycle, let F be a nontrivial component of
Gr(H)−QC , and let DF be the corresponding component of G−C. If some white vertex w
in F has a black neighbor w+

i0
on Q for some i0 = 1, . . . , k (indices modulo k), and x is the

vertex in G corresponding to w, then both xi0x ∈ E(G) and xi0+1x ∈ E(G), contradicting
the maximality of C. Hence |eGr(H)(F, V (Q) ∩ B)| = 0. Since clearly |VA(F,Q) ∩W | =
|VA(DF , C)|, we have |eGr(H)(F, V (Q)∩B)|+ |VA(F,Q)∩W | = |VA(DF , C)| ≤ 3, since C
is Tutte. Hence all components of Gr(H)−QC are Tutte components, and QC is a Tutte
closed W -quasitrail.
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Proof of Corollary 7. (i) ⇒ (ii). If C is a hamiltonian cycle in G, then WC =
Vw(Gr(H)) (where WC is the the set of white vertices in Gr(H) that correspond to vertices
of C). Thus, the closed W -quasitrail GC , given in Theorem 6(ii), contains all white
vertices of Gr(H).

(ii) ⇒ (iii). Any closed W -quasitrail in Gr(H) containing all white vertices is domi-
nating.

(iii) ⇒ (i). Let Q be a dominating closed W -quasitrail in Gr(H). If Vw(Q) =
Vw(Gr(H)), then the corresponding cycle CQ (see Theorem 6(i)) is a hamiltonian cycle in
G and we are done. If there is a white vertex w ∈ V (Gr(H))\V (Q), then w has a (black)
neighbor on Q since Q is dominating, and w can be inserted in Q as a special vertex.
Inserting all such white vertices, we get a closed W -quasitrail Q̄ with Vw(Q̄) = Vw(Gr(H)),
and then CQ̄ is a hamiltonian cycle in G.

3.1 Auxiliary conjectures

For the proof of the equivalences of Theorem 5, we will need the following equivalent
conjectures.

Conjecture 8. Let H be a 2-edge-connected multigraph and let W ⊂ V2(H) ∪ V3(H)
and e1, e2 ∈ E(H). Then H has a closed W -quasitrail Q such that

(i) e1, e2 ∈ E(S(Q)),
(ii) subject to (i), Q is a domination-maximal closed W -quasitrail,

(iii) subject to (i) and (ii), Q is a Tutte closed W -quasitrail.

Conjecture 9. Let H be a 2-edge-connected multigraph and let W ⊂ V2(H) ∪ V3(H)
and e1 ∈ E(H), v1, v2 ∈ V (H). Then H has a closed W -quasitrail Q such that

(i) e1 ∈ E(S(Q));
(ii) for i = 1, 2, either vi ∈ V (Q), or vi ∈ V (Fi), where Fi is a component of H − Q

such that |eH(Fi, V (Q) ∩ B)| + |VA(Fi, Q) ∩W | ≤ 2, and if both v1 /∈ V (Q) and
v2 /∈ V (Q), then F1 6= F2;

(iii) subject to (i) and (ii), Q is a domination-maximal closed W -quasitrail;
(iv) subject to (i), (ii) and (iii), Q is a Tutte closed W -quasitrail.

If Q is an (a, b,W )-quasitrail in H, then a nontrivial component F of H −Q is called
a Tutte component if |eH(F, Int(Q)∩B)|+ |VA(F,Q)∩W | ≤ min{3, |D(Int(S(Q)))|−1} if
Int(S(Q)) 6= ∅, or |eH(F, Int(Q)∩B)|+ |VA(F,Q)∩W | ≤ 1 if Int(S(Q)) = ∅, respectively.
We say that Q is a Tutte (a, b,W )-quasitrail in H if either D(Q) = E(H), or every
component of H − Q is a Tutte component. A domination-maximal (a, b,W )-quasitrail
which is also Tutte is called a Tutte domination-maximal (a, b,W )-quasitrail.

Conjecture 10. Let H be a 2-edge-connected multigraph, and let W ⊂ V2(H)∪V3(H)
and a, b ∈ W , a 6= b, ab /∈ E(H). Then there is an (a, b,W )-quasitrail Q in H such that

(i) Q is a domination-maximal (a, b,W )-quasitrail,
(ii) subject to (i), Q is a Tutte (a, b,W )-quasitrail.
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Finally, we will also need the following conjecture posed in [10]. Let H be a graph with
δ(H) = 2 and |V2(H)| = 4, and set E+(H) = {uv| u, v ∈ V (H)}. Then H is said to be
V2(H)-dominated if for any two edges e1 = u1v1, e2 = u2v2 ∈ E+(H) with {u1, v1, u2, v2} =
V2(H), the (multi)graph H + {e1, e2} has a dominating closed trail containing e1 and e2,
and H is said to be strongly V2(H)-dominated if H is V2(H)-dominated and for any e = uv
with u, v ∈ V2(H), the (multi)graph H + {e} has a dominating closed trail containing e.

Conjecture J [10]. Every subgraph H of an essentially 4-edge-connected cubic graph
with δ(H) = 2 and |V2(H)| = 4 is strongly V2(H)-dominated.

As shown in [10], Conjecture J is also equivalent with the previous conjectures.

Theorem K [10]. Conjecture J is equivalent with Conjectures A – D.

It is easy to verify that Conjectures 1 and 2 imply Conjecture A, Conjecture 3 im-
plies Conjecture 4, and Conjecture 4 implies Conjecture A. Moreover, we will prove the
following implications.

Proposition 11. Conjecture J implies Conjecture 8.

Proposition 12. Conjecture J implies Conjecture 9.

Proposition 13. Conjecture J implies Conjecture 10.

Proposition 14. Conjecture 8 implies Conjecture 1.

Proposition 15. Conjecture 9 implies Conjecture 2.

Proposition 16. Conjecture 10 implies Conjecture 3.

These implications, together with the fact that Conjecture A and Conjecture J are
equivalent by Theorems E and K, will establish the proof of Theorem 5 (see Fig. 4).

�
 �	Conj. A⇐⇒
Thm. K�
 �	Conj. J =⇒

Prop. 12�
 �	Conj. 9 =⇒
Prop. 15�
 �	Conj. 2 =⇒Easy �
 �	Conj. A

⇓Prop. 13�
 �	Conj. 10 =⇒
Prop. 16 �
 �	Conj. 3 =⇒

Easy �
 �	Conj. 4

⇑Easy

⇑Prop. 11

�
 �	Conj. 8 =⇒
Prop. 14 �
 �	Conj. 1

⇓Easy

Figure 4: Scheme of proof of Theorem 5.
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3.2 Lemmas

Let H be a connected graph, and let e1 = x1x2 and e2 = x3x4 (not excluding the possibility
that some of x1, x2 coincides with some of x3, x4) be two edges in H. We construct the
new (multi)graph, denoted by H(e1, e2), from H by removing the edges e1, e2, by adding
a new vertex z /∈ V (H), and by adding new edges fi = zxi, i = 1, 2, 3, 4, see Fig. 5 (note
that if e.g. x1 = x3, then f1, f3 are parallel edges in H(e1, e2)).
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Figure 5: The (multi)graphs H and H(e1, e2).

Lemma 17. Let H be a 2-edge-connected multigraph, and let e1, e2 be two edges of
H. Suppose that for any essential edge-cut R in H with |R| ≤ 3, each component of
H − R contains at least one of the edges e1, e2. Suppose further that the edges e1, e2 do
not share a vertex of degree 3. Then H(e1, e2) is essentially 4-edge-connected.

Proof. Let, to the contrary, R′ be an essential edge-cut in H(e1, e2) with |R′| ≤ 3. Set
F ′ = {f1, f2, f3, f4}. If R′ ∩ F ′ = ∅, then R′ is also an essential edge-cut in H such that
e1, e2 are contained in the same component of H−R′, a contradiction. Hence |R′∩F ′| ≥ 1.

Recall that the assumption implies that there is no essential edge-cut R in H such
that |R| ≤ 3 and either e1 ∈ R or e2 ∈ R. If |R′ ∩ F ′| = 1, say f1 ∈ R′ ∩ F ′, then
(R′ − F ′) ∪ {e1} is an essential edge-cut in H, a contradiction. If |R′ ∩ F ′| = 3, then
R′ ⊆ F ′ and hence H − e1 or H − e2 is disconnected, a contradiction again.

Therefore, we may assume that |R′∩F ′| = 2. If R′∩F ′ = {f1, f2}, then (R′−F ′)∪{e1}
is an essential edge-cut of H, a contradiction. Therefore, by symmetry, we may assume
that R′ ∩ F ′ = {f1, f3}. Note that R′ divides H(e1, e2) into two components, say K1 and
K2, such that, without loss of generality, K1 contains x1 and x3, and K2 contains z, x2

and x4. Note that (R′ − F ′) ∪ {e1, e2} is an edge-cut of H that divides H into K1 and
K2 − z. Since R′ is an essential edge-cut in H(e1, e2), |V (K1)| ≥ 2 and |V (K2)| ≥ 2.
So, if |V (K2)| ≥ 3, then R := (R′ − F ′) ∪ {e1, e2} is an essential edge-cut in H with
|R| = |R′| ≤ 3, which contradicts the assumption. Hence we have |V (K2)| = 2. This
directly implies that x2 = x4 and the unique edge in R′−F ′ is incident with it. However,
this implies that x2 has degree exactly three in H(e1, e2) (and hence in H), a contradiction
again.

Lemma 18. Let H be an essentially 4-edge-connected multigraph with δ(H) ≥ 3. If
Conjecture J is true, then all of the following hold:

(i) for any edge e = xy in H, there exists a dominating closed trail T in H such that
x, y ∈ V (T ) but e 6∈ E(T ),
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(ii) for any vertex z of degree four with NH(z) = {x1, x2, x3, x4}, there exists a domi-
nating closed trail T in (H − z) + {x1x2, x3x4} such that x1x2, x3x4 ∈ E(T ),

(iii) for any vertex z of degree four with NH(z) = {x1, x2, x3, x4} and any xi, xj ∈
NH(z), i 6= j, there exists a dominating (xi, xj)-trail T in H−z such that xk ∈ V (T )
for any xk ∈ NH(z) with dH(xk) ≥ 4.

In our proof, we will need the following operation, introduced in [5]. Let H be an
essentially 4-edge-connected multigraph, and let x ∈ V (H) be of degree dH(x) ≥ 4. The
multigraph, obtained from H by deleting x, adding a cycle on dH(x) new vertices, and
joining the new vertices to the original neighbors of x so that all new vertices have degree
three and all neighbors of x have the same degree as in H, is called a cubic inflation of
H at x. The operation is not unique, since it depends on the choice of the edges joining
the new vertices to the original neighbors of x. Fleischner and Jackson [5] proved that
by a suitable choice of these edges, some cubic inflation of H at x is essentially 4-edge-
connected. By repeating this procedure, the resulting graph will eventually be cubic and
still essentially (and hence cyclically) 4-edge-connected.

Theorem L [5]. Let H be an essentially 4-edge-connected multigraph with δ(H) ≥ 3.
Then some cubic inflation of H is also essentially 4-edge-connected.

If δ(H) ≥ 3 and H̃ is a cubic inflation of H, then, for any x ∈ V (H), Cx will denote

the cycle in H̃ corresponding to x if dH(x) ≥ 4; otherwise (if dH(x) = 3), Cx is considered
to be trivial.

Proof of Lemma 18. Let H be an essentially 4-edge-connected multigraph with δ(H) ≥
3. Suppose that Conjecture J is true. By Theorem L, there exists an essentially 4-edge-
connected cubic inflation H̃ of H.

(i) For an edge e = xy in H, let x′y′ be the edge of H̃ corresponding to the edge xy such

that x′ ∈ V (Cx) and y′ ∈ V (Cy), let ux and vx be the neighbors of x′ in H̃ with ux, vx 6= y,

let uy and vy be the neighbors of y′ in H̃ with uy, vy 6= x, and let H ′ = H̃ − {x′, y′}. By
the assumption that Conjecture J is true, the graph H ′ + {uxvx, uyvy} has a dominating
closed trail T ′ containing the edges uxvx and uyvy. By replacing the edges uxvx and uyvy
with the paths uxx

′vx and uyy
′vy, respectively, and contracting all the cycles Cv for all

v ∈ V≥4(H), we obtain a dominating closed trail in H, say, T , such that x, y ∈ V (T ),
however, since x′y′ 6∈ E(T ′), we have e 6∈ E(T ).

(ii) Let z be a vertex of degree four in H with neighbors x1, x2, x3 and x4. Note that Cz

contains four vertices in H̃. For i ∈ {1, 2, 3, 4}, let x′i be the vertex in Cxi
such that x′i

has a neighbor in Cz, and let H ′ = H̃ − V (Cz). By the assumption that Conjecture J is
true, the graph H ′ + {x′1x′2, x′3x′4} has a dominating cycle T ′ containing the edges x′1x

′
2

and x′3x
′
4. Contracting all the cycles Cv for all v ∈ V≥4(H)−{z}, we obtain a dominating

closed trail T in (H − z) + {x1x2, x3x4} such that x1x2, x3x4 ∈ E(T ).

(iii) Similarly to the above, let z be a vertex of degree four in H with neighbors x1, x2, x3

and x4, let x′i be the vertex in Cxi
such that x′i has a neighbor in Cz for i ∈ {1, 2, 3, 4}, and

let H ′ = H̃ −V (Cz). By the assumption that Conjecture J is true, the graph H ′+ {x′ix′j}
has a dominating cycle T ′ containing the edge x′ix

′
j. Contracting all the cycles Cv for all
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v ∈ V≥4(H)− {z}, we obtain a dominating (xi, xj)-trail T in H − z such that xk ∈ V (T )
if dH(xk) ≥ 4.

Before we state the next result, we first observe that the statement of Conjecture 8 is
true for small graphs (this is easy to see for graphs on, say, at most four vertices).

Proposition 19. Let H be a 2-edge-connected multigraph such that the statement of
Conjecture 8 is true for every 2-edge-connected multigraph H ′ with |V (H ′)| < |V (H)|.
Let W ⊂ V2(H)∪V3(H), let Q′ be a Tutte closed W -quasitrail in H, and let Q′′ be a closed
W -quasitrail in H such that D(Q′′) ) D(Q′). Then there is a Tutte closed W -quasitrail
Q such that D(Q) ) D(Q′) and D(Q′) ∩ S(Q′′) ⊂ D(Q′) ∩ S(Q).

Proof. Suppose that there is no such Q. Then for every closed W -quasitrail Q̃ in H,
satisfying D(Q̃) ) D(Q′) and D(Q′)∩S(Q′′) ⊂ D(Q′)∩S(Q̃) (including Q̃ = Q′′), at least

one component of H− Q̃ is non-Tutte. Thus, we can suppose that Q′′ is chosen such that,
among all closed W -quasitrails Q̃ in H, satisfying D(Q̃) ) D(Q′) and D(Q′) ∩ S(Q′′) ⊂
D(Q′) ∩ S(Q̃), the number of non-Tutte components of H − Q′′ is smallest possible.
Let F ′′1 , . . . , F

′′
k′′ be the nontrivial components of H − Q′′, and let F ′′i0 be a non-Tutte

component. Let F ′1, . . . , F
′
k′ be components of H − Q′. Since D(Q′′) ) D(Q′), every F ′′i ,

i = 1, . . . , k′′, is a subgraph of some F ′j0 for some j0 = 1, . . . , k′. Since F ′′i0 is non-Tutte
while F ′j0 is Tutte, F ′′i0 is a proper subgraph of F ′j0 , and F ′j0 contains at least one edge of
Q′′, implying that at least two edges of eH(F ′i0 , V (Q′)) are in E(Q′′). Moreover, we have
|eH(F ′j0 , V (Q′) ∩B)|+ |VA(F ′j0 , Q

′) ∩W | ≤ 3 (where B = V (H) \W ), since F ′j0 is Tutte.

We make some observations concerning vertices in VA(F ′j0 , Q
′) ∩ W . First, if x ∈

VA(F ′j0 , Q
′)∩W is in Vs(Q

′), then, since W ⊂ V2(H)∪ V3(H), there are, besides the edge
x−E = x+E of Q′, one or two other edges incident to x. If both are incident to vertices
in F ′j0 , then |eH({x}, S(Q′))| = 1, and if one of them is incident to a vertex in F ′j0 , we
have |eH(F ′j0 , {x})| = 1. Finally, if x ∈ VA(F ′j0 , Q

′) ∩ W is in S(Q′), then dQ′(x) = 2,
hence |eH(F ′j0 , {x})| = 1 (note that here and throughout the proof, we do not exclude the
possibility that some of these edges under consideration are parallel edges of H).

We define a set of edges R ⊂ E(H) as follows:
• for every x ∈ VA(F ′j0 , Q

′) ∩ Vs(Q′) with |eH(F ′j0 , {x})| = 1, R contains this (only)
edge in eH(F ′j0 , {x}),
• for every x ∈ VA(F ′j0 , Q

′) ∩ Vs(Q′) with |eH(F ′j0 , {x})| = 2, R contains the (only)
double edge of Q′ incident to x,
• for every x ∈ VA(F ′j0 , Q

′) ∩W ∩ S(Q′), R contains the (only) edge in eH(F ′j0 , {x}),
• finally, R contains all edges in eH(F ′j0 , V (Q′) ∩B).

Let V 2
s (F ′j0 , Q

′) denote the set of all vertices x ∈ Vs(Q
′) with |eH(F ′j0 , {x})| = 2. Then

R is an edge-cut separating F̄ = 〈V (F ′j0) ∪ V
2
s (F ′j0 , Q

′)〉H from (the rest of) Q′. By the
construction, |R| = |eH(F ′j0 , V (Q′)∩B)|+ |VA(F ′j0 , Q

′)∩W |. Thus, we have |R| ≤ 3 since
F ′j0 is Tutte, and, on the other hand, |R| ≥ 2 since F ′j0 contains at least one edge of Q′′.

Let uQ1 u
F
1 and uQ2 u

F
2 (where uQi ∈ V (Q′) \ V 2

s (F ′j0 , Q
′) and uFi ∈ V (F̄ ), i = 1, 2),

be the edges in R ∩ E(Q′′), and if |R| = 3, then let f3 = uQ3 u
F
3 be the third edge of

R. Let F̄1 be the multigraph obtained from F̄ by adding a new black vertex z and the
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edges zuF1 , zuF2 , and, if |R| = 3, also zuF3 . By the minimality of H, F̄1 contains a Tutte
domination-maximal closed W -quasitrail T , containing the edges zuF1 and zuF2 .

If |R| = 2, or if |R| = 3 and either Q′′ − V (F ′j0) dominates uQ3 u
F
3 , or uQ3 u

F
3 /∈ D(Q′′),

then, concatenating T − z with Q′′ − V (F ′j0) using the edges uQ1 u
F
1 and uQ2 u

F
2 , we obtain

a closed W -quasitrail Q′′′ in H such that D(Q′′′) ) D(Q′).
It remains to consider the case that |R| = 3 and Q′′ ∩ V (F ′j0) dominates uQ3 u

F
3 . Let

f1 = uF1 u
F
2 be a new added edge (if already uF1 u

F
2 ∈ E(F̄1), then f1 is a parallel edge),

let f2 be a new added loop at (uF3 )+, if uF3 is a special vertex of degree 2 in Q′′, or at
uF3 otherwise. Let F̄2 = F̄1 − {z} + f1 + f2. Since Q′′ ∩ V (F ′j0) dominates uQ3 u

F
3 , the

multigraph F̄2 (or F̄2 − uF3 , if uF3 is special), is 2-edge-connected.
Let W̄2 = W ∩ V (F̄2). By the minimality of H, F̄2 (or F̄2 − uF3 , if uF3 is special,)

contains a Tutte domination-maximal closed W̄2-quasitrail Tf1,f2 , containing f1 and f2.
Concatenating Tf1,f2 − {f1, f2} with Q′′ − V (F ′j0), using the edges uQ1 u

F
1 and uQ2 u

F
2 , we

obtain a closed W -quasitrail Q′′′ in H such that D(Q′′′) ) D(Q′) and the number of
non-Tutte components of H − Q′′′ is smaller than the number of non-Tutte components
of H −Q′′, contradicting the choice of Q′′.

3.3 Proof of Proposition 11

Proof. First recall that the statement of Conjecture 8 (and hence Proposition 11) is
true for small graphs.

Suppose that Conjecture J is true, and let H be a counterexample to Conjecture 8.
Then H is a 2-edge-connected multigraph such that, for some W ⊂ V2(H) ∪ V3(H) and
e1, e2 ∈ E(H), no domination-maximal closed W -quasitrail containing e1 and e2 is a Tutte
closed W -quasitrail. We choose H such that

(i) H is a minimum counterexample to Conjecture 8 (i.e., |V (H)| is minimum),
(ii) subject to (i), |W | is minimum.

Claim 1. W = ∅.

Proof. Suppose that W 6= ∅ and let u ∈ W . Set W ′ = W \ {u} and B′ = V (H) \W ′ =
B ∪ {u}. By the choice of H and W , H contains a Tutte domination-maximal closed
W ′-quasitrail Q′ such that e1, e2 ∈ S(Q′). Clearly, Q′ is also a closed W -quasitrail in H,
and it is easy to observe that Q′ is Tutte (since the only difference is in u, where, for any
component F of H − Q′, for which u is a vertex of attachment, we have |eH(F, {u})| ≥
|VA(F, {u})| = 1). Thus, Q′ is not domination-maximal (among all closed W -quasitrails in
H). We choose Q′ such that is domination maximal Tutte among all closed W -quasitrails
in H such that e1, e2 ∈ S(Q′).

Let Q′′ be a domination-maximal closed W -quasitrail in H with D(Q′′) ) D(Q′).
To reach a contradiction, we show that Q′′ can be chosen such that it is Tutte and still
satisfies D(Q′′) ) D(Q′). By Proposition 19, this is true. Thus, we have W = ∅. �

Claim 2. For any edge-cut R in H with |R| = 2, each component of H − R contains
one of the edges e1 and e2. In particular, we have δ(H) ≥ 3.
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Proof. Let R be an edge-cut in H with |R| = 2, let K1, K2 be the components of H−R,
and suppose that {e1, e2} ⊂ R ∪E(K1). Denote R = {u1u2, v1v2} with ui, vi ∈ V (Ki) for
i ∈ {1, 2} (not excluding the possibility that u1 = v1 or u2 = v2), and let H1 be obtained
from K1 by adding the edge f1 = u1v1 (if an edge u1v1 already exists in K1, then f1 is
a parallel edge, and if u1 = v1, then f1 is a loop). Then H1 is 2-edge-connected and, by
the minimality of H, H1 contains a Tutte closed domination-maximal W -quasitrail Q1

containing e1 and e2 (or the edge f1, if some of e1 and e2 is contained in R). If possible,
we choose Q1 to contain the edge f1.

If Q1 does not contain f1, then Q1 is a Tutte domination-maximal closed W -quasitrail
also in H, a contradiction. Hence Q1 contains f1, and f1 is a single edge of Q1 since
W = ∅.

Similarly, let H2 be obtained from K2 by adding the edge f2 = u2v2. Again by the
minimality of H, H2 contains a Tutte domination-maximal closed W -trail Q2 containing
f2.

Let Q be the closed W -quasitrail obtained by concatenating Q1−f1 and Q2−f2 using
the edges in R. Note that Q contains both e1 and e2.

Furthermore, since any component of H−Q is either a component of H1−Q1 or H2−
Q2, we see that Q is a Tutte domination-maximal closed W -quasitrail in H, containing
both e1 and e2 exactly once, a contradiction. Therefore the first assertion holds.

If there exists a vertex of degree two, then the edge-cut formed by the two edges
incident with this vertex violates the first assertion, a contradiction. Thus, we have
δ(H) ≥ 3. �

Claim 3. For any essential edge-cut R in H with |R| = 3, each component of H − R
contains at least one of the edges e1 and e2.

Proof. Similarly to the proof of Claim 2, let R be an essential edge-cut in H with
|R| = 3, and let K1, K2 be the components of H−R. Suppose that {e1, e2} ⊂ R∪E(K1),
and let R be chosen such that, subject to this assumption, K2 is as small as possible.
Denote R = {u1u2, v1v2, w1w2} with ui, vi, wi ∈ V (Ki) for i ∈ {1, 2}.

Let H1 be obtained from K1 by adding a new black vertex x /∈ V (K1) and new edges
u1x, v1x and w1x. By the minimality of H, H1 contains a Tutte domination-maximal
closed trail Q1 containing e1 and e2 (or, if some of e1 and e2 is contained in R, then Q1

contains the corresponding “new” edge incident with x). If possible, we choose Q1 to
contain x.

If Q1 does not contain x, then Q1 is a Tutte domination-maximal closed W -trail in H, a
contradiction. Hence Q1 contains x. By symmetry, we may assume that u1x, v1x ∈ E(Q1)
and w1x /∈ E(Q1).

Let H2 be obtained from K2 by adding a new vertex y /∈ V (K2) and new edges yu2, yv2

and yw2. By the minimality of K2, the graph H2 is essentially 4-edge-connected. Thus,
by Lemma 18 (i), there exists a dominating closed trail Q2 in H2 such that Q2 passes
through both y and w2, but yw2 6∈ E(Q2). Since dH2(y) = 3, we have yu2, yv2 ∈ E(Q2).
Now, concatenating Q1− x and Q2− y using the edges u1u2 and v1v2, we obtain a closed
W -quasitrail Q in H containing both e1 and e2. Since u2, v2, w2 ∈ V (Q2)− {y} ⊆ V (Q),
every component of H−Q is a component of H1−Q1 or of H2−Q2. Hence the quasitrail
Q is a Tutte domination-maximal closed W -quasitrail, a contradiction. �

16



Claim 4. The edges e1 and e2 do not share a vertex of degree three.

Proof. Let, to the contrary, x ∈ V3(H) be incident to both e1 and e2, and let f = xy
be the third edge incident to x. Note that the graph H is essentially 4-edge-connected by
Claims 2 and 3. By Lemma 18 (i), there exists a dominating closed trail Q in H such that
Q passes through both x and y, but xy 6∈ E(Q). Note that Q is a Tutte closed domination
maximal W -quasitrail in H. Since dH(x) = 3, we have e1, e2 ∈ E(Q), a contradiction. �

Therefore, by Claims 2–4 and by Lemma 17, the graph H ′ := H(e1, e2) is essentially
4-edge-connected. As in Figure 5, let e1 = x1x2, e2 = x3x4, and let z be the new
vertex. By Lemma 18 (ii), there exists a dominating maximal closed W -quasitrail Q in
(H ′ − z) + {x1x2, x3x4} such that x1x2, x3x4 ∈ E(Q). We immediately see that H =
(H ′− z) + {x1x2, x3x4}, and hence Q is a Tutte domination-maximal closed W -quasitrail
in H with e1, e2 ∈ E(Q) such that e1, e2 are used only once.

3.4 Proof of Proposition 12

Proof. First observe that the statement of Conjecture 9 (and hence Proposition 12) is
true for small graphs (this is easy to see for graphs on, say, at most four vertices).

Suppose that Conjecture J is true, and let H be a counterexample to Conjecture 9.
Then H is a 2-edge-connected multigraph such that, for some W ⊂ V2(H) ∪ V3(H) and
e1 ∈ E(H), v1, v2 ∈ V (H), no domination-maximal closed W -quasitrail Q such that
e1 ∈ E(Q) and for each i = 1, 2, either vi ∈ V (Q) or vi is in a component Fi of H − Q
such that |eH(Fi, V (Q) ∪ B)| + |VA(Fi, Q) ∩ W | ≤ 2, and if both v1, v2 /∈ V (Q), then
F1 6= F2, is a Tutte closed W -quasitrail. We choose H such that

(i) H is a minimum counterexample to Conjecture 9 (i.e., |V (H)| is minimum),
(ii) subject to (i), |W | is minimum.

Claim 1. W = ∅.

Proof. Suppose that W 6= ∅ and let u ∈ W . Set W ′ = W \ {u} and B′ = V (H) \W ′ =
B ∪ {u}. By the choice of H and W , H contains a Tutte domination-maximal closed
W ′-quasitrail Q′ such that e1 ∈ S(Q′) and for each i = 1, 2, either vi ∈ V (Q) or vi is in a
component Fi of H −Q such that |eH(Fi, V (Q) ∪B)|+ |VA(Fi, Q) ∩W | ≤ 2, and if both
v1, v2 /∈ V (Q), then F1 6= F2. Clearly, Q′ is also a closed W -quasitrail in H, and it is easy
to observe that Q′ is Tutte (since the only difference is in u, where, for any component F
of H−Q′, for which u is a vertex of attachment, we have |eH(F, {u})| ≥ |VA(F, {u})| = 1).
Thus, Q′ is not domination-maximal.

Let Q′′ be a domination-maximal closed W -quasitrail in H with D(Q′′) ) D(Q′).
To reach a contradiction, we show that Q′′ can be chosen such that it is Tutte. By
Proposition 19, this is true. Thus, we have W = ∅. �

Claim 2. For any edge-cut R in H with |R| = 2, each component of H − R contains
the edge e1 or at least one of the vertices v1, v2.
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Proof. Let R be an edge-cut in H with |R| = 2, let K1, K2 be the components of
H − R, and suppose that K2 contains neither e1 nor any of the vertices v1, v2. Denote
R = {u1u2, z1z2} with ui, zi ∈ V (Ki) for i ∈ {1, 2} (not excluding the possibility that
u1 = v1 or u2 = v2), and let H1 be obtained from K1 by adding the edge f1 = u1z1 (if
an edge u1z1 already exists in K1, then f1 is be a parallel edge, and if u1 = z1, then f1 is
a loop). Then H1 is 2-edge-connected and, by the minimality of H, H1 contains a Tutte
closed domination-maximal W -quasitrail Q1 containing e1 (or the edge f1, if the edge e1

is contained in R) and satisfying the conditions for v1, v2. If possible, we choose Q1 to
contain the edge f1.

If Q1 does not contain f1, then Q1 is a Tutte domination-maximal closed W -quasitrail
also in H, a contradiction. Hence Q1 contains f1, and f1 is a single edge of Q1 since
W = ∅.

Similarly, let H2 be obtained from K2 by adding the edge f2 = u2z2. Again by the
minimality of H, H2 contains a Tutte domination-maximal closed W -trail Q2 containing
f2.

Let Q be the closed W -quasitrail obtained by concatenating Q1−f1 and Q2−f2 using
the edges in R. Note that Q contains e1 and satisfies the conditions for v1 and v2.

Furthermore, since any component of H−Q is either a component of H1−Q1 or H2−
Q2, we see that Q is a Tutte domination-maximal closed W -quasitrail in H, containing
e1 exactly once and satisfying the conditions for v1 and v2, a contradiction. �

Claim 3. For any essential edge-cut R in H with |R| = 3, each component of H − R
contains the edge e1 or at least one of the vertices v1, v2.

Proof. Similarly to the proof of Claim 2, let R be an essential edge-cut in H with |R| = 3,
and letK1, K2 be the components ofH−R. Suppose that {e1, v1, v2} ⊂ R∪E(K1)∪V (K1),
and let R be chosen such that, subject to this assumption, K2 is as small as possible.
Denote R = {u1u2, z1z2, w1w2} with ui, zi, wi ∈ V (Ki) for i ∈ {1, 2}.

Let H1 be obtained from K1 by adding a new black vertex x /∈ V (K1) and new edges
u1x, z1x and w1x. By the minimality of H, H1 contains a Tutte domination-maximal
closed trail Q1 containing e1 and satisfying the conditions for v1, v2 (or, if some of e1 and
v1, v2 is contained in R, then Q1 contains the corresponding “new” edge incident with x).
If possible, we choose Q1 to contain x.

If Q1 does not contain x, then Q1 is a Tutte domination-maximal closed W -trail in H, a
contradiction. Hence Q1 contains x. By symmetry, we may assume that u1x, z1x ∈ E(Q1)
and w1x /∈ E(Q1).

Let H2 be obtained from K2 by adding a new vertex y /∈ V (K2) and new edges yu2, zv2

and yw2. By the minimality of K2, the graph H2 is essentially 4-edge-connected. Thus,
by Lemma 18 (i), there exists a dominating closed trail Q2 in H2 such that Q2 passes
through both y and w2, but yw2 6∈ E(Q2). Since the degree of y is three in H2, note that
yu2, yz2 ∈ E(Q2).

Now, concatenating Q1 − x and Q2 − y using the edges u1u2 and z1z2, we obtain a
closed W -quasitrail Q in H containing e1 and satisfying the conditions for v1, v2. Since
u2, v2, w2 ∈ V (Q2)− {y} ⊆ V (Q), every component of H −Q is a component of H1 −Q1

or of H2−Q2. Hence the quasitrail Q is a Tutte domination-maximal closed W -quasitrail,
a contradiction. �
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Claim 4. For any essential edge-cut R in H with |R| = 2, each component of H − R
contains either the edge e1 or both the vertices v1, v2.

Proof. Let R be an essential edge-cut in H with |R| = 2, set R = {u1u2, z1z2}, and let
K1, K2 be the components of H −R. Suppose, to the contrary, that K2 contains only the
vertex v1 (recall that K2 must contain at least one of e1, v1, v2 by Claim 2). We choose
K2 smallest possible and contract it to a vertex z. We denote the resulting graph H1. By
the minimality of H, H1 contains a Tutte domination-maximal closed W -quasitrail Q1

containing e1 and satisfying the conditions for z, v2 (or, if some of e1 and v1, v2 is contained
in R, then Q1 contains the corresponding “new” edge incident with z). If possible, we
choose Q1 to contain z. If Q1 does not contain z, then Q1 is a Tutte domination-maximal
closed W -trail in H, a contradiction. Hence Q1 contains z. Similarly, let H2 be obtained
from K2 by adding the edge f2 = u2z2. Again by the minimality of H, H2 contains
a Tutte domination-maximal closed W -trail Q2 containing f2 and a loop on the vertex
v1. Now, concatenating Q1 − z and Q2 − f1 using the edges u1u2 and z1z2, we obtain a
closed W -quasitrail Q in H containing e1 and satisfying the conditions for v1, v2. Since
u2, z2, v1 ∈ V (Q2)−{f2} ⊆ V (Q), every component of H −Q is a component of H1−Q1

or of H2−Q2. Hence the quasitrail Q is a Tutte domination-maximal closed W -quasitrail,
a contradiction. �

Claim 5. Neither v1 nor v2 is incident with e1.

Proof. Let, to the contrary, e1 = v1x for some x ∈ V (H). Let H ′ be obtained from H
by adding a loop f at the vertex v2. By Proposition 11, H ′ contains a Tutte domination-
maximal closed W -quasitrail Q′ containing e1 and f . Then Q = Q′ − f is a Tutte
domination-maximal closed W -quasitrail containing e1, v1 and v2, a contradiction. �

Claim 6. H is essentially 3-edge-connected.

Proof. Let, to the contrary, R = {u1u2, w1w2} be an essential edge-cut in H, and let
K1, K2 be components of H − R. By Claim 4, we can choose the notation such that
e1 ∈ E(K1), v1, v2 ∈ V (K2), and ui, wi ∈ V (Ki), i = 1, 2, Let Hi be obtained from
Ki by adding a new edge fi = uiwi, i = 1, 2. By Proposition 11, H1 contains a Tutte
domination-maximal closed W -quasitrail Q1 containing e1 and f1. By the minimality of
H, H2 contains a Tutte domination-maximal closed W -quasitrail Q2 containing f2 and
satisfying the conditions for v1, v2. Concatenating Q1−f1 and Q2−f2, using the edges u1u2

and w1w2, we obtain a Tutte domination-maximal closed W -quasitrail in H containing
e1 and satisfying the conditions for v1, v2, a contradiction. �

Set H+ = H+v1v2. By Claims 2–5 and by Lemma 17, the graph H ′ := H+(e1, v1v2) is
essentially 4-edge-connected. As in Figure 5, let e1 = x1x2, e2 = v1v2, and let z be the new
vertex. By Lemma 18 (iii), there exists a dominating maximal closed W -quasitrail Q in
(H ′−z)+{x1x2} such that x1x2 ∈ E(Q). We immediately see that H = (H ′−z)+{x1x2}.
If both v1 /∈ V (Q) and v2 /∈ V (Q), then F1 6= F2, since otherwise we have a contradiction
with Claim 6. Hence Q is a Tutte domination-maximal closed W -quasitrail in H with
e1 ∈ E(Q) and satisfying the conditions for v1, v2 such that e1 is used only once.
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3.5 Proof of Proposition 13

Proof. Suppose that Conjecture J is true. By Propositions 11 and 12 (which are
already proved), this assumption implies that Conjectures 8 and 9 are also true. Let H
be a counterexample to Conjecture 10. Then H is a 2-edge-connected multigraph such
that, for some W ⊂ V2(H) ∪ V3(H) and a, b ∈ W , ab /∈ E(H), there exists no Tutte
domination-maximal (a, b,W )-quasitrail in H.

Claim 1. H contains a Tutte (a, b,W )-quasitrail.

Proof. We distinguish three cases.

Case 1: dH(a) = dH(b) = 2. Set e = ab and H̄ = H + e. By Conjecture 8, H̄ contains a

Tutte closed W -quasitrail Q̄ such that e = ab ∈ S(Q̄) and Q̄ is domination-maximal. Let
Q be the (a, b,W )-quasitrail in H obtained by removing the edge e from Q̄.

If Q̄ can be chosen such that |D(Int(S(Q)))| ≥ 4, then, since a, b ∈ W , since a
component of H−Q is also a component of H−Q̄, and since Q̄ is Tutte, for any component
F ofH−Q we have |eH(F, Int(Q)∩B)|+|VA(F,Q)∩W | = |eH(F, Q̄∩B)|+|VA(F, Q̄)∩W | ≤
3 = min{3, |D(Int(S(Q)))| − 1}, implying that Q is Tutte. Thus, it remains to consider
the case that |D(Int(S(Q)))| ≤ 3.

Suppose first that there is an edge f = xy ∈ E(H) such that {x, y} ∩ {a, b} =
∅, and, additionally to the above choice, choose Q̄ such that S(Q̄) contains e and f
(which is possible by Conjecture 8). Then |V (Q)| ≥ 4 and |D(Int(S(Q)))| ≥ 3. If
dH(u) ≥ 3 for some u ∈ Int(Q), then |D(Int(S(Q)))| ≥ 4 and we are in the previous
case. Hence if Int(S(Q)) 6= ∅, then all vertices in Int(Q) are of degree 2, and then,
for any nontrivial component F of H − Q, we have VA(F,Q) ⊂ {a, b}, implying that
|eH(F, Int(Q) ∩ B)| + |VA(F,Q) ∩W | ≤ 2 = min{3, |D(Int(S(Q)))| − 1} and Q is Tutte.
If Int(S(Q)) = ∅, then Q = ab, and since H is 2-edge-connected and dH(a) = dH(b) = 2,
for any nontrivial component F of H − Q, we have VA(F,Q) = {a, b} and, since F is
nontrivial, Q is not domination-maximal, a contradiction.

Hence H − {a, b} is edgeless, implying that H − Q has no nontrivial component and
Q is Tutte.

Case 2: dH(a) = 3 and dH(b) = 2. Choose an edge ea = aw incident to a and set H− =

H − ea and H̄− = H− + e, where e = ab. Then dH−(a) = dH−(b) = 2 and, if H̄− is
2-edge-connected, we are in Case 1. Thus, suppose that H̄− is not 2-edge-connected.

LetH1 be a maximal 2-edge-connected subgraph of H̄− containing e, and let v ∈ V (H1)
be the cutvertex of H̄− separating w from (the rest of) H1. Let H+

1 be obtained from
H1 by adding a loop f at the vertex v. By Conjecture 8, H+

1 contains a Tutte closed
W -quasitrail Q+ with e, f ∈ S(Q+). Let Q be the (a, b,W )-quasitrail in H obtained from
Q+ by removing e and f . By the construction, obviously |D(Int(S(Q)))| ≥ 3, and by the
fact that VA(H−H+

1 , H
+
1 ) = {a, v}, and by analogous arguments as in Case 1, we observe

that Q is Tutte.

Case 3: dH(a) = dH(b) = 3. Choose edges ea = aw1 and eb = bw2, and set H− =

H − ea − eb and H̄− = H− + e. Then again dH−(a) = dH−(b) = 2.
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Suppose first that H̄− is disconnected, i.e., {ea, eb} is an edge-cut of H. Let H1 be
the component of H̄− containing e, and H2 = H̄− − H1. Then H1 is 2-edge-connected,
and if Q+ can be chosen such that |D(Int(S(Q)))| ≥ 3, then in H1 we are in Case 1. The
resulting Tutte (a, b,W )-quasitrail in H1 is Tutte also in H since VA(H2, H1) = {a, b}.
The remaining small cases are solved by a similar easy argument as in Case 1.

Hence we suppose that H̄− is connected. Let H1 be a maximal 2-edge-connected
subgraph of H̄− containing the edge e. We distinguish four subcases.

Subcase 3.1: V (H1) ( V (H̄−) and w1, w2 are in the same component of H̄− −H1. Let

v ∈ V (H1) be the cutvertex of H̄− separating w1 and w2 from (the rest of) H1, let f be
a loop on v, and set H+

1 = H1 + f . As in Case 2, let Q+ be a Tutte closed W -quasitrail
in H+

1 with e, f ∈ S(Q+), and let Q = Q+− e− f . Then Q is a Tutte (a, b,W )-quasitrail
in H1, and Q is Tutte also in H since VA(H −H1, H1) = {a, b, v}.

Subcase 3.2: V (H1) ( V (H̄−) and w1, w2 are in different components of H̄− −H1. Let

vi ∈ V (H1) be the cutvertex of H̄− separating wi from (the rest of) H1, i = 1, 2. If
v1 = v2, then we set v = v1 = v2 and H+

1 = H1 + f , where f is a loop on v, and proceed
in the same way as in Subcase 3.1. Thus, we suppose that v1 6= v2. By Conjecture 9, H1

has a Tutte closed W -quasitrail Q+ such that e ∈ S(Q+) and v1, v2 satisfy the conditions
given in Conjecture 9. Then Q = Q+− e is a Tutte (a, b,W )-quasitrail in H1, and, by the
properties of v1 and v2 given in Conjecture 9, Q is Tutte also in H.

Subcase 3.3: V (H1) ( V (H̄−), w1 ∈ V (H1) and w2 ∈ V (H̄− −H1). Let v2 ∈ V (H1) be

the cutvertex of H̄− separating w2 from (the rest of) H1, and set H+
1 = H1 + e (where

e = ab). If v2 = w1, we set H++
1 = H+

1 + f , where f is a loop on v2 = w1, and, by
Conjecture 8, we have a Tutte closed W -quasitrail Q+ in H++

1 with e, f ∈ S(Q+), from
which Q = Q+−e−f is a requested Tutte (a, b,W )-quasitrail in H. Thus, we suppose that
v2 6= w1. By Conjecture 9, H+

1 has a Tutte closed W -quasitrail Q+ such that e ∈ S(Q+)
and v1, v2 satisfy the conditions of Conjecture 9, and then Q = Q+ − e is a requested
Tutte (a, b,W )-quasitrail in H.

Subcase 3.4: V (H1) = V (H̄−). If w1 = w2, we proceed in the same way as in Subcase 3.1,
using Conjecture 8, and if w1 6= w2, we proceed in the same way as in Subcase 3.2, using
Conjecture 9. �

Now, by Claim 1, we can choose Q such that Q is domination-maximal among all
Tutte (a, b,W )-quasitrails in H. Thus, Q is not Tutte domination-maximal.

Let Q′ be a domination-maximal closed (a, b,W )-quasitrail in H with D(Q′) ) D(Q).
To reach a contradiction, we show that Q′ can be chosen such that it is Tutte. So, suppose
the opposite, and choose Q′ such that the number of non-Tutte components of H −Q′ is
smallest possible.

Let F ′1, . . . , F
′
k′ be the components ofH−Q′. By the assumption, some F ′i , i = 1, . . . , k′,

are not Tutte components. We choose Q′ such that the number of non-Tutte components
among F ′1, . . . , F

′
k′ is smallest possible, and we show that Q′ is Tutte. Let, to the contrary,

F ′i0 be a non-Tutte component. Let F1, . . . , Fk be components of H −Q. Since D(Q′) )
D(Q), every F ′i , i = 1, . . . , k′, is a subgraph of some Fj0 for some j0 = 1, . . . , k. Since F ′i0
is non-Tutte while Fj0 is Tutte, F ′i0 is a proper subgraph of Fj0 , and Fj0 contains at least
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one edge of Q′, implying that at least one edge of eH(Fi0 , V (Q)) is in E(Q′). Moreover,
we have |eH(Fj0 , V (Int(Q)) ∩B)|+ |VA(Fj0 , Q) ∩W | ≤ 3 since Fj0 is Tutte.

We make some observations concerning vertices in VA(Fj0 , Q) ∩ W . First, if x ∈
VA(Fj0 , Q) ∩ W is in Vs(Q) or x ∈ {a, b}, then, since W ⊂ V2(H) ∪ V3(H), there are,
besides the edge x−E = x+E of Q′, one or two other edges incident to x. If both are
incident to vertices in Fj0 , then |eH({x}, S(Q))| = 1, and if one of them is incident to a
vertex in Fj0 , we have |eH(Fj0 , {x})| = 1. Finally, if x ∈ VA(Fj0 , Q) ∩W is in Int(S(Q)),
then dQ(x) = 2, hence |eH(Fj0 , {x})| = 1 (note that here and throughout the proof, we
do not exclude the possibility that some of these edges under consideration are parallel
edges of H).

We define a set of edges R ⊂ E(H) as follows:
• for every x ∈ VA(Fj0 , Q) ∩ Vs(Q) with |eH(Fj0 , {x})| = 1, R contains this (only)

edge in eH(Fj0 , {x}),
• for every x ∈ VA(Fj0 , Q) ∩ Vs(Q) with |eH(Fj0 , {x})| = 2, R contains the (only)

double edge of Q incident to x,
• for every x ∈ VA(Fj0 , Q)∩W∩S(Int(Q)), R contains the (only) edge in eH(Fj0 , {x}),
• for every x ∈ {a, b} with |eH(Fj0 , {x})| = 1, R contains this (only) edge in
eH(Fj0 , {x}),
• for every x ∈ {a, b} with |eH(Fj0 , {x})| = 2, R contains the first or the last edge

on Q,
• finally, R contains all edges in eH(Fj0 , V (Int(Q)) ∩B).

Let V 2
s (Fj0 , Q) denote the set of all vertices x ∈ Vs(Q) ∪ {a, b} with |eH(Fj0 , {x})| = 2.

Then R is an edge-cut separating F̄ = 〈V (Fj0) ∪ V 2
s (Fj0 , Q)〉H from (the rest of) Q. By

the construction, |R| = |eH(Fj0 , Int(Q)∩B)|+ |VA(Fj0 , Int(Q))∩W |+ |VA(Fj0 , {a, b})| =
|eH(Fj0 , Int(Q) ∩ B)| + |VA(Fj0 , Q) ∩ W | ≤ min{3, |D(Int(Q))| − 1} since Fj0 is Tutte.
Thus, we have |R| ≤ 3. On the other hand, |R| ≥ 2 since H is 2-edge-connected.

Let uQ1 u
F
1 and uQ2 u

F
2 (where uQi ∈ V (Q) \ V 2

s (Fj0 , Q) and uFi ∈ V (F̄ ), i = 1, 2), be the
edges in R ∩ E(Q′), and if |R| = 3, then let f3 = uQ3 u

F
3 be the third edge of R. Let F̄1

be the multigraph obtained from F̄ by adding a new black vertex z and the edges zuF1 ,
zuF2 , and, if |R| = 3, also zuF3 . By Conjecture 8, F̄1 contains a Tutte domination-maximal
closed W -quasitrail T , containing the edges zuF1 and zuF2 .

Suppose first that either |R| = 2, or |R| = 3 and either Q′ − V (Fj0) dominates uQ3 u
F
3

and uF3 /∈ {a, b}, or uQ3 u
F
3 /∈ D(Q′). Then, concatenating T −z with Q′−V (Fj0) using the

edges uQ1 u
F
1 and uQ2 u

F
2 , we obtain a closed W -quasitrail Q′′ in H such that D(Q′′) ) D(Q).

Next we consider the case that |R| = 3 andQ′∩V (Fj0) dominates uQ3 u
F
3 . Let f1 = uF1 u

F
2

be a new added edge (if already uF1 u
F
2 ∈ E(F̄1), then f1 is a parallel edge), let f2 be a new

added loop at (uF3 )+, if uF3 is a special vertex of degree 2 in Q′, or at uF3 otherwise. Let
F̄2 = F̄1−{z}+f1 +f2. Since Q′∩V (Fj0) dominates uQ3 u

F
3 , the multigraph F̄2 (or F̄2−uF3 ,

if uF3 is special), is 2-edge-connected. Let W̄2 = W ∩ V (F̄2). By Conjecture 8, F̄2 (or
F̄2−uF3 , if uF3 is special), contains a Tutte domination-maximal closed W̄2-quasitrail Tf1,f2 ,
containing f1 and f2. Concatenating Tf1,f2 − {f1, f2} with Q′ − V (Fj0), using the edges
uQ1 u

F
1 and uQ2 u

F
2 , we obtain an (a, b,W )-quasitrail Q′′ in H such that D(Q′′) ) D(Q).
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Finally, it remains to consider the case that |R| = 3, Q′ − V (Fj0) dominates uQ3 u
F
3

and uF3 ∈ {a, b}. By the definition of Fj0 , u
Q
3 u

F
3 and Q′, we have |eH(Fj0 , {uF3 })| = 2

and uF3 ∈ V (F̄ ) \ V (Fj0). Let w1, w2 be the neighbors of uF3 in Fj0 , and set e1 = uF1 u
F
2

and Q′F = Q′ ∩ V (Fj0). Then Q′F + e1 is a nontrivial closed W -quasitrail in Fj0 + e1.
Let FQ be a maximal 2-edge-connected subgraph of Fj0 + e1 containing the closed trail
S(Q′F + e1). If wi /∈ V (FQ), then we denote by vi the vertex in FQ which is a cutvertex
of Fj0 separating wi from FQ; otherwise, we set vi = wi, i = 1, 2. By Conjecture 9, there
is a closed W -quasitrail QF in FQ such that QF contains e1 and has the properties given
by Conjecture 9 with respect to v1 and v2. Concatenating QF − e1 with Q′ − V (Fj0),
using the edges uQ1 u

F
1 and uQ2 u

F
2 , we again obtain an (a, b,W )-quasitrail Q′′ in H such

that D(Q′′) ) D(Q).

In each of the cases, we have obtained an (a, b,W )-quasitrail Q′′ in H satisfying
D(Q′′) ) D(Q) such that the number of non-Tutte components og H − Q′′ is smaller
than the number of non-Tutte components of H −Q′, contradicting the choice of Q′.

3.6 Proof of Proposition 14

Proof. Suppose that Conjecture 8 is true, and let G be a 2-connected line graph of
a 3-hypergraph H and a, b ∈ V (G). We choose such a hypergraph H such that it has
minimum number of hyperedges. Since a 3-hyperedge with one or two vertices of degree
one can be replaced by an edge without changing the line graph, every 3-hyperedge of H
has all three vertices of degree at least two. Secondly, we replace all pendant edges in H
by loops (which can be done without changing the line graph). By these two choices, we
have δ(H) ≥ 2. If all edges ofH are loops, thenH is a star, G is a clique and the statement
is trivially true. Thus, we can suppose that H contains open edges. Additionally, subject
to the above choice of H, we choose H such that Gr(H) has minimum number of black
vertices.

Recall that G = L(H) can be obtained from Gr(H) by joining the (white) neighbors
of every black vertex into a clique, and then removing all black vertices and possibly
created multiple edges. Thus, if Gr(H) contains a bridge e, then the white vertex of e is
a cutvertex of G, contradicting the assumption that G is 2-connected. Hence Gr(H) is
2-edge-connected.

Let e1 and e2 be the (3-hyper)edges of H for which L(e1) = a and L(e2) = b (not
excluding the possibility that e1 or e2 is a loop). For i ∈ {1, 2}, the (hyper)edge ei
corresponds to a white vertex wi in Gr(H). We define a Tutte cycle C in G as follows. By
Conjecture 8 (which is supposed to be true), Gr(H) contains a Tutte domination-maximal
closed W -quasitrail Q such that e1, e2 ∈ E(S(Q)), where W is the set of white vertices of
Gr(H).

Set C = C̄Q, where C̄Q is the cycle given in Theorem 6(i). Then we have a, b ∈ V (C),
and all components of G− C are Tutte components (note that to show that C is Tutte,
we need to verify that |V (C)| ≥ 4).

Claim 1. The cycle C is maximal among all cycles such that all components of their
complement are Tutte and the corresponding closed W -quasitrail in Gr(H) contains the
edges e1 and e2.
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Proof. We recall that the edges of Gr(H) that are dominated by Q but not on Q
correspond in G to vertices that are not on C ′ but are contained in a clique containing
some edge of C ′. The rest follows from the definition of Q. �

Recall that to show that C is a Tutte cycle, it remains to show that |V (C)| ≥ 4. Thus,
suppose that |V (C)| = 3, and let Q be the corresponding closed W -quasitrail in Gr(H)
by Theorem 6. Then |Vw(Q)| = 3. Since e1, e2 ∈ E(S(Q)), we have E(S(Q)) 6= ∅.

If Q has one black vertex, then Q is a star with black center and possibly multiple edges
to the three white vertices, and then Q has at least one multiple edge since E(S(Q)) 6= ∅.
But then, choosing e1 in a multiple edge of Q, and e2 outside Q, we get a closed W -
quasitrail Q′ in Gr(H) contradicting the maximality of Q. Thus, Q has at least two black
vertices.

Then it is straightforward to verify that there are three possible cases for the structure
of Q, shown in Fig. 6, where

- the dashed lines indicate possible edges to vertices outside Q, and
- the double-circled vertices cannot have any neighbors outside Q, which for the

rightmost vertex in case (b) follows by structural properties of Gr(H), and for all
other double-circled vertices follows from the fact that a neighbor outside Q would
create a clique in G allowing to extend C, contradicting its maximality.

(Note that case (a) also includes the possibility that the right white vertex is connected
to the left black vertex by an edge that is in Gr(H) but not in Q.)
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Figure 6: Three possible structures of Q if Vw(Q) = 3 and Vb(Q) ≥ 2.

Then, in cases (a) and (b), we can remove the leftmost black vertex, and in case (c),
we can replace the three black vertices by one black vertex adjacent to the three white
vertices, without changing the line graph. In all three cases, we have reduced the number
of black vertices of Gr(H), contradicting the choice of H. This contradiction proves that
|V (C)| ≥ 4. Thus, C is a Tutte cycle containing a and b.

It remains to show that C can be chosen to be maximal. Let C̄ be a cycle in G which
is maximal among all Tutte cycles containing a and b such that the corresponding closed
W -quasitrail in Gr(H) is Tutte. If C̄ is maximal among all cycles containing a and b,
then C̄ is a requested Tutte maximal cycle containing a and b and we are done. Thus,
suppose that there is a maximal cycle C̄ ′ containing a and b such that V (C̄ ′) ) V (C̄),
and C̄ ′ is not a Tutte cycle.

Let Q̄ and Q̄′ be the closed W -quasitrail in Gr(H) that corresponds to C̄ and C̄ ′,
respectively, by Theorem 6. ThenD(Q̄′) ) D(Q̄) since V (C̄ ′) ) V (C̄). By Proposition 19,
there is a Tutte closed W -quasitrail Q̄′′ in Gr(H) such that D(Q̄′′) ) D(Q̄). Consequently,
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the corresponding cycle C̄ ′′ in G is a Tutte cycle containing a and b such that V (C̄ ′′) )
V (C̄), contradicting the choice of C̄.

3.7 Proof of Proposition 15

Proof. Suppose that Conjecture 9 is true, and let G be a 3-connected line graph of a
3-hypergraph H and a, b, c ∈ V (G). Similarly as in the proof of Proposition 14, we choose
H such that it has minimum number of hyperedges, and replace all pendant edges in H
by loops (which can be both done without changing the line graph), and get δ(H) ≥ 2.
If all edges of H are loops, then H is a star, G is a clique and the statement is trivially
true; hence we suppose that H contains open edges.

Set H̄ = Gr(H), let v1, v2, v3 be the vertices in H̄ corresponding to a, b and c, respec-
tively, and let e1 be an arbitrary edge in H̄ containing the vertex v3. Let Q be a Tutte
closed W -quasitrail in H̄ with the properties given in Conjecture 9 (which is supposed to
be true).

We show that v1, v2 ∈ V (Q). Suppose, to the contrary, that e.g. v1 /∈ V (Q). Then v1 ∈
V (F ), where F is a component of H̄−Q such that |eH̄(F, V (Q)∩B)|+|VA(F,Q)∩W | ≤ 2.
Observe that, by the choice of Q, |eH̄(F, V (Q) ∩ B)| = 0: if f ∈ eH̄(F, V (Q) ∩ B), then
f is an edge joining some black vertex b in Q to a (necessarily white) vertex w in F ,
but then, adding to Q the walk bwb, we increase the number of white vertices in Q.
Thus, |eH̄(F, V (Q)∩B)| = 0. But then the white vertices in VA(F,Q) determine a vertex
cut of size 2 in G, contradicting the 3-connectedness assumption. Hence v1 ∈ V (Q).
Analogously v2 ∈ V (Q), and obviously also v3 ∈ V (Q) since Q contains the edge e1.

Rest of the proof follows the same arguments as those in the proof of Proposition 14,
therefore we only sketch the remaining steps and leave details to the reader:
• the sequence of white vertices in Q determines a cycle C ′ in G, containing a, b and
c, which can be extended to a cycle C by adding all vertices in cliques containing
an edge of C ′,
• we observe that all components of G − C are Tutte components, and that C is

maximal among all cycles that contain a, b and c, and all components of their
complement are Tutte components,
• we show that |V (C)| ≥ 4, using the three possibilities shown in Fig. 6, implying

that C is a Tutte cycle containing a, b and c,
• using Proposition 19 and Theorem 6, we show that C can be chosen to be maximal.

3.8 Proof of Proposition 16

Proof. Suppose that Conjecture 10 is true, let G be a connected line graph of a 3-
hypergraph H, and let u, v ∈ V (G). As in the proofs of Propositions 14 and 15, we choose
H with minimum number of hyperedges, replace all pendant edges by loops, and suppose
that H contains open edges (for otherwise G is a clique and the statement is trivially
true).
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Case 1: G is 2-connected. Set H̄ = Gr(H), and let a, b ∈ V (H̄) be the vertices corre-
sponding to u and v, respectively. Note that a, b ∈ Vw(H̄), and that H̄ is 2-edge-connected
(since otherwise the white vertex of a bridge in H̄ corresponds to a cutvertex of G, con-
tradicting the 2-connectedness assumption).

By Conjecture 10, let Q be an (a, b,W )-quasitrail in H̄, having the properties given in
Conjecture 10. As in the proof of Theorem 6, Q can be viewed as an alternating sequence
of black and white vertices, which starts at a ∈ Vw(H̄) and ends at b ∈ Vw(H̄), and in
which consecutive white vertices have a black common neighbor. The sequence of white
vertices of Q then determines a (u, v)-path PQ in G. Note that, by the construction,
V (PQ) corresponds to Vw(Q), hence |V (PQ)| = |Vw(Q)|.

If V (P ′) ) V (PQ) for some (u, v)-path P ′ in G, then for the corresponding (a, b,W )-
quasitrail Q′ in H̄ we have Vw(Q′) ) Vw(Q), contradicting (i) and (ii) of Conjecture 10.
Thus, PQ is maximal.

Let F be a component ofG−PQ, and let FH be the corresponding nontrivial component
of H̄ − Q. By (i) and (ii) of Conjecture 10, we have |eH̄(FH , V (Q) ∩ B)| = 0 and
VA(FH , Q) ⊂ Vw(Q). Hence |VA(F, PQ)| = |eH̄(FH , V (Q) ∩ B)| + |VA(FH , Q) ∩ W | ≤
min{3, |D(Int(S(Q)))|−1} since Q is Tutte. If |V (PQ)| ≥ 4, then also |D(Int(S(Q)))| ≥ 4,
and then min{3, |D(Int(S(Q)))| − 1} = 3 = min{3, |V (PQ)| − 1}, implying that PQ is a
Tutte path. The small cases for |V (PQ)| ≤ 3 will be considered separately.

If |V (PQ)| = 2, then also |Vw(Q)| = 2, and V (Q) = {a, w, b}, where w is a black
common neighbor of a and b. By (i) and (ii) of Conjecture 10, dH̄(w) = 2. By the
2-connectedness assumption of Case 1, there is a nontrivial component FH of H̄ − Q
with VA(FH , Q) = {a, b}. Thus, |VA(FH , Q) ∩ W | = 2, while |D(Int(S(Q)))| − 1 = 1,
contradicting the fact that Q is Tutte.

It remains to consider the case |V (PQ)| = 3. Set Vw(Q) = {a, c, b}. Then we have the
following three possibilities (see also Fig 7, where the dashed lines indicate edges that are
possible but not necessary):

(a) a, b, c have one black common neighbor w on Q and c is a special vertex of Q,
(b) a, b, c have one black common neighbor w on Q and c is not a special vertex of Q

(implying that wc is a double edge of H̄),
(c) b+ = c− = w1 and c+ = b− = w2 with w1 6= w2 and w1, w2 ∈ Vb(Q).
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Figure 7: Three possible structures of Q if Vw(Q) = 3.

In case (a), by (i) and (ii) of Conjecture 10, we have dH̄(w) = 3, implying that
min{3, |D(Int(S(Q)))| − 1} = 2. If, for some nontrivial component FH of H̄ −Q, we have
VA(FH , Q) = {a, b, c}, then |(VA(FH , Q) ∩W )| = 3 and FH is not Tutte, a contradiction.
Hence, by the 2-connectedness assumption, |(VA(FH , Q) ∩W )| = 2 for every nontrivial
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component FH of H̄ − Q, implying |VA(F, PQ)| = 2 for every component F of G − PQ.
Since min{3, |V (PQ)| − 1} = 2, F is Tutte in G.

In case (b), first observe that dH̄(w) = 4 by (i) and (ii) of Conjecture 10, and that
dH̄(c) = 2 by the choice of H (since if dH̄(c) = 3, then the double edge wc can be
replaced by a single edge, i.e., the hyperedge of H corresponding to c can be replaced
by an edge, without changing G = L(H)). Thus, by the 2-connectedness assumption,
we have VA(FH , Q) = {a, b} for every nontrivial component FH of H̄ −Q. Consequently,
|VA(F, PQ)| = 2, and, since also min{3, |V (PQ)| − 1} = 2, PQ is Tutte.

In case (c) similarly observe that dH̄(w1) = dH̄(w2) = 2 by (i) and (ii) of Conjecture 10.
Suppose that c has a neighbor outside Q. By the 2-connectedness assumption and by
symmetry, we can suppose that there is a (c, b)-path Pc in H̄−w2. Let Q′ be the (a, b)-path
obtained by replacing in Q the subpath cw2b by Pc. If |V (Pc)| ≥ 4, then D(Q′) ) D(Q),
contradicting (i) of Conjecture 10, hence |V (Pc)| = 3. Set V (Pc) = {c, wc, b}. Obviously,
wc ∈ Vb(H̄). If dH̄(wc) ≥ 3, then similarly D(Q′) ) D(Q); hence dH̄(wc) = 2. By the
2-connectedness assumption, there is an (a, b)-path in H̄ − w1, hence dH̄(b) = 3. Then
b and c correspond in H to two 3-hyperedges sharing two vertices of degree 2, but then
these hyperedges can be replaced by edges without changing the line graph, contradicting
the choice of H. This contradiction proves that dH̄(c) = 2. Then, by the 2-connectedness
assumption, for any nontrivial component FH of H̄ − Q, we have VA(FH , Q) = {a, b},
hence |VA(F, PQ)| = 2. Since also min{3, |V (PQ)| − 1} = 2, PQ is a Tutte path.

Case 2: G has a cutvertex.
Let P ′ be a shortest (u, v)-path in G, and, for each nontrivial block B of G with

|V (B) ∩ V (P ′)| ≥ 2, let P ′B be the Tutte maximal path between the two cutvertices of
G which are in V (B) ∩ V (P ′), obtained by Case 1 (or, for the first/last block, between
u/v and the first/last cutvertex of G which is on P ′, respectively). The requested Tutte
maximal (u, v)-path P is obtained by replacing the subpath P ′∩B with the Tutte maximal
path P ′B, for every nontrivial block B with |V (B) ∩ V (P ′)| ≥ 2.

4 Concluding remarks

1. Motivated by Theorem G, we can also state the following conjecture on 4-regular
graphs, which turns out to be also equivalent to all the previous ones.

Conjecture 20. Every 4-connected 4-regular K1,4-free graph is Hamilton-connected.

Theorem 21. Conjecture 20 is equivalent with Conjectures A, B, C, D, 1, 2, 3 and 4.

Proof. Suppose that Conjecture 20 is true. Then, by Theorem G, every 4-connected
4-regular line graph of a 3-hypergraph, hence also every 4-connected 4-regular line graph
(of a graph) is Hamilton-connected. Specifically, every line graph of a snark is Hamilton-
connected, hence hamiltonian, and, by Theorem H, every snark has a dominating cycle,
implying that Conjecture D is true.

Conversely, if Conjecture A is true, then, by Theorem 5, every 4-connected line graph
of a 3-hypergraph is Hamilton-connected, and Theorem G implies Conjecture 20.
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2. We would also like to recall the following question, raised in [7].

Question M [7]. If r ≥ 4 and G is r-connected and K1,r-free, is G hamiltonian?

Specifically, for r = 4, we obtain the question whether every 4-connected K1,4-free
graph is hamiltonian. Although this statement is much stronger than the other conjectures
considered in this paper, it still remains wide open, and no progress on Question M is
known so far.

References

[1] C. Berge: Hypergraphs. Combinatorics of finite sets. Translated from the French.
North-Holland Mathematical Library, 45. North-Holland Publishing Co., Amsterdam
(1989).

[2] J.A. Bondy, U.S.R. Murty: Graph Theory. Springer, 2008.

[3] H.J. Broersma, G. Fijavž, T. Kaiser, R. Kužel, Z. Ryjáček, P. Vrána: Contractible
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