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Abstract

An edge e of a graph G is called singular if it is not on a triangle; otherwise, e is
nonsingular. A vertex is called singular if it is adjacent to a singular edge; otherwise,
it is called nonsingular.

We prove the following. Let G be a connected claw-free graph such that every
locally disconnected vertex x ∈ V (G) satisfies the following conditions:

(i) if x is nonsingular of degree 4, then x is on an induced cycle of length at least
4 with at most 4 nonsingular edges,

(ii) if x is not nonsingular of degree 4, then x is on an induced cycle of length at
least 4 with at most 3 nonsingular edges,

(iii) if x is of degree 2, then x is singular and x is on an induced cycle C of length at
least 4 with at most 2 nonsingular edges such that G[V (C) ∩ V2(G)] is a path
or a cycle.

Then G is either hamiltonian, or G is the line graph of the graph obtained from K2,3 by
attaching a pendant edge to its each vertex of degree two. Some results on forbidden
subgraph conditions for hamiltonicity in 3-connected claw-free graphs are also obtained
as immediate corollaries

Keywords: Claw-free graph; Hamiltonian graph; Singular edge; Locally disconnected ver-
tex; Closure; Contractible subgraph

1 Introduction

All graphs considered here are finite and undirected. For terminology and notation not
defined here we refer to [2].
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Let G be a graph with vertex set V (G) and edge set E(G). The claw is the graph K1,3,
the 0-hourglass Γ0 is the unique graph with degree sequence 4, 2, 2, 2, 2 (i.e. two triangles
with exactly one common vertex) and the 1-hourglass Γ1 is the unique simple non-2-edge-
connected graph with degree sequence 3, 3, 2, 2, 2, 2 (see Fig. 1).
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The 1-hourglass Γ1

Figure 1: The graphs K1,3,Γ0,Γ1

A graph is called S-free if it contains no induced subgraph isomorphic to S. Specifically,
a graph is called claw-free for S = K1,3 and hourglass-free for S = Γ0, respectively.

For a vertex x of G, the set NG(x) = {y ∈ V (G) : xy ∈ E(G)} is called the neighborhood
of x in G; the set NG[x] = NG(x) ∪ {x} is called the closed neighborhood of x in G. If F is
a subgraph of a graph H, then a vertex x is said to be a vertex of attachment of F in H if
x ∈ V (F ) and x has a neighbor in V (H) \ V (F ). The set of all vertices of attachment of a
subgraph F in H is denoted by AH(F ).

A vertex v of G is locally connected if G[NG(v)] is connected; otherwise, it is locally
disconnected. We will use VLC(G) (VLD(G)) to denote the set of all locally connected (locally
disconnected) vertices of G, respectively. A graph G is called locally connected if every vertex
of G is locally connected, i.e., VLC(G) = V (G).

Oberly and Sumner proved the following well-known result.

Theorem A [7]. Every connected, locally connected claw-free graph on at least three
vertices is hamiltonian.

For presenting the following two extensions of Theorem A, we need some additional
notations. We use d(x, y) to denote the distance between vertices x, y ∈ V (G). We say that
a vertex v of a graph G is N2-locally connected (N2-locally connected), if the subgraph of G
induced by the edge set {e = xy ∈ E(G) : v 6∈ {x, y} and {x, y} ∩ N(v) 6= ∅} is connected
(by the vertex set {x ∈ V (G) : 1 ≤ d(x, v) ≤ 2} is connected), respectively. A graph G
is said to be N2-locally connected (N2-locally connected) if every vertex of G is N2-locally
connected (N2-locally connected), respectively. It is immediate to observe that every locally
connected graph is N2-locally connected, but the converse is not generally true, and also,
every N2-locally connected graph is N2-locally connected, but the converse is not generally
true. Throughout the paper, we denote Vi(G) = {x|dG(x) = i} and V>i(G) = {x|dG(x) > i}.
An edge e is called a pendant edge if one of its vertices is of degree one; otherwise, it is
nonpendant.

An edge of a graph G is called singular if it is not on a triangle of G; otherwise, it is called
nonsingular. A vertex of a graph G is called singular if it is incident with at least one singular
edge of G; otherwise, it is called nonsingular. The line graph of a graph H, denoted by L(H),
is the graph with E(H) as its vertex set, in which two vertices are adjacent if and only if
the corresponding edges have a vertex in common. Note that a nonpendant singular edge
of a connected graph H of order at least three corresponds to a locally disconnected vertex
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of L(H). If G = L(H) is the line graph of a graph H, then we also say that H is the line
graph preimage of G and denote H = L−1(G), and if x ∈ V (G) is the vertex corresponding
to an edge e ∈ E(H), we will also denote x = L(e) and e = L−1(x). It is well-known that
for any connected line graph G 6= K3, its line graph preimage is uniquely determined. For
any induced subgraph C of a line graph G, we let L−1(C) denote the preimage of C.

Now we can state two results by Bielak [1] and by Tian and Xiong [11].

Theorem B [1]. Let G be a connected, N2-locally connected claw-free graph with δ(G) ≥
2 such that

(1) for every induced subgraph H of G isomorphic to either G1 or G2 in Fig. 2, at least
one vertex in V3(H) ∪ V4(H) is locally connected in G.

Then G is hamiltonian.

• •

•

•
•

• •

•
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................................................................................................
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.....

.......................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

G1

• •

•

•
•

• •

•
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................................................................................................
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.....

.......................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

................................................................................................................................................................

G2

• •

•

•
•

• •

•
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................................................................................................
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.....

.......................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

G3

• •

•

•
•

• •

•
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................................................................................................
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.....

.......................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

................................................................................................................................................................

G4

Figure 2: The graphs G1, G2, G3 and G4

Theorem C [11]. Let G be a connected, N2-locally connected claw-free graph with
δ(G) ≥ 2 satisfying

(2) for every induced subgraph H of G isomorphic to one of {G1, G2, G3, G4} in Fig. 2,
at least one vertex in V3(H) ∪ V4(H) is locally connected in G.

Then G is hamiltonian.

The following result by Tian and Xiong [11] generalizes the results above and also the
results in [6, 8].

Theorem D [11]. Let G be a connected claw-free graph of order at least three satisfying
the following conditions:

(3) every locally disconnected vertex of degree at least 3 in G is on an induced cycle of
length at least 4 with at most 3 nonsingular edges;

(4) every locally disconnected vertex of degree 2 in G is on an induced cycle C ′ with at
most 2 nonsingular edges such that G[V (C ′) ∩ V2(G)] is a path or a cycle.

Then G is hamiltonian.

In this paper, we further extend Theorem D. The following theorem is our main result.

Theorem 1. Let G be a connected claw-free graph such that every vertex x ∈ VLD(G)
satisfies the following conditions:

(I) if x is nonsingular of degree 4 (i.e., G[NG[x]] ' Γ0), then x is on an induced cycle of
length at least 4 with at most 4 nonsingular edges;
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(II) if x is not nonsingular of degree 4 (i.e., G[NG[x]] 6' Γ0), then x is on an induced cycle
of length at least 4 with at most 3 nonsingular edges;

(III) if dG(x) = 2, then x is singular (i.e., G[NG[x]] ' P3), and x is on an induced cycle C
of length at least 4 with at most 2 nonsingular edges such that G[V (C) ∩ V2(G)] is a
path or a cycle.

Then G is either hamiltonian, or G ' L(K ′2,3), where K ′2,3 is the graph obtained from K2,3

by attaching a pendant edge to every its vertex of degree two.

Proof of Theorem 1 is postponed to Section 3. Clearly, the exceptional graph K ′2,3 does
not satisfy condition (3) of Theorem D. Furthermore, we have the following remark.

Remark 2. We have the following comments to our result.

(a) Note that condition (III) of Theorem 1 is equivalent to condition (4) of Theorem D.

Furthermore, Theorem 1 extends Theorem D. Clearly, any graph satisfying the as-
sumptions of Theorem D also satisfies the assumptions of Theorem 1. Conversely,
there are many graphs satisfying the assumptions of Theorem 1 but not those of Theo-
rem D. For such an example, see Fig. 3 (here, since the unique induced cycle of length
at least four containing x has exactly four nonsingular edges, the graph in Fig. 3 does
not satisfy (3) in Theorem D).
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Figure 3: A graph satisfying the assumptions of Theorem 1 but not of Theorem D.

(b) Note that if G = L(H), then any induced cycle in G corresponds to a cycle of H, and
any cycle of H corresponds to an induced cycle of G. Also, a singular (nonsingular)
edge of G = L(H) corresponds to a path of length two in H whose inner vertex has
degree exactly two (more than two), respectively. More generally, if C is an induced
cycle of length at least 4 in a line graph L(H), then C has exactly ` nonsingular edges
if and only if its preimage L−1(C) has exactly ` vertices of degree greater than 2.

(c) Based on the above observations, it is easy to see that if G is a line graph, then the
conditions (I), (II) and (III) of Theorem 1 in G = L(H) can be translated to properties
of the preimage H as follows:

Every singular edge e ∈ E(H) satisfies the following:
(I’) if both vertices of e are of degree exactly 3, then e is on a cycle C with |V (C)| ≥ 4

and |V (C) ∩ V>2(H)| ≤ 4,
(II’) if e is nonpendant and at least one vertex of e is of degree different from 3, then

e is on a cycle C with |V (C)| ≥ 4 and |V (C) ∩ V>2(H)| ≤ 3,
(III’) if both vertices of e are of degree exactly 2, then e is on a cycle C with

|V (C)| ≥ 4 and |V (C)∩V>2(H)| ≤ 2 such that all edges of C with both vertices
of degree 2 in H determine a path or a cycle.
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Theorem 1 has the following consequences, which are interesting on their own right. To
state them, we need some additional notations.

A graph is said to have the Hourglass k-property if for every induced hourglass Γ0, there
exists a path P (Γ0) joining two vertices of Γ0 whose distance is two in Γ0 such that P (Γ0)
has no inner vertex in Γ0 and it has at most k nonsingular edges. Similarly, a graph is said to
have the Γ1 k-property if for every induced Γ1, there exists a path P (Γ1) joining two vertices
of Γ1 whose distance is three in Γ1 such that P (Γ1) has no inner vertex in Γ1 and it has at
most k nonsingular edges.

Corollary 3. Let G be a connected claw-free graph satisfying the assumptions (II) and
(III) of Theorem 1 such that G has the Hourglass 2-property. Then either G is hamiltonian,
or G is the line graph of the graph K ′2,3.

Proof. By the definition of the Hourglass 2-property, every locally disconnected nonsin-
gular vertex v0 of degree 4 is the center of an induced hourglass Γ0 of G and hence there
exists an induced path P0 joining two vertices of the Γ0 whose distance is two in Γ0 such
that P0 has no inner vertex in Γ0 and it has at most 2 nonsingular edges. Therefore v0 lies
on an induced cycle C = G[E(P0)∪E(P1)] (where P1 is the path of length two of Γ0 joining
the endvertices of P0) such that C has length at least 4 with at most 4 nonsingular edges (2
of which are from Γ0). Therefore, G satisfies condition (I) of Theorem 1. Corollary 3 follows
from Theorem 1.

Corollary 4. Every connected claw-free graph with δ(G) ≥ 3 satisfying conditions (I)
and (II) of Theorem 1 is hamiltonian.

Proof. The assumption δ(G) ≥ 3 implies that G satisfies (III).

Note that there are graphs that satisfy the assumptions of Corollary 4 but are not 3-
edge-connected. For such an example, see Fig. 3.

Corollary 5. Every 3-edge-connected claw-free graph with Γi (2 − i)-properties for i ∈
{0, 1} is hamiltonian.

Proof. Let G be a 3-edge-connected claw-free graph with Γi (2 − i)-properties for i ∈
{0, 1}. Then, by the definition of the Γ0 2-property and by the same arguments as in the
proof of Corollary 3, G satisfies condition (I) of Theorem 1. Similarly, the condition that
G has Γ1 1-property implies G satisfies the condition (II) of Theorem 1. Now Corollary 5
follows from Corollary 4 since G is 3-edge-connected and hence δ(G) ≥ 3.

Corollary 6. Every 3-edge-connected claw-free Γi-free graph for i ∈ {0, 1} is hamiltonian.

Remark 7. Specifically, Corollary 6 shows that every 3-connected {claw,Γ0,Γ1}-free
graph is hamiltonian. This observation supports the results in [4], identifying all potential
pairs of forbidden subgraphs for hamiltonicity in 3-connected claw-free graphs.

Note that although the assumption on a graph to be 3-connected and {claw,Γ0,Γ1}-free
seems to be too restrictive, there are still many such graphs: for example, every 3-connected
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graph G such that its complement G has girth g(G) ≥ 5, is {claw,Γ0,Γ1}-free since the
complement of the claw contains a triangle and the complements of Γ0 and Γ1 contain a
cycle of length 4.

Also note that none of the above consequences of Theorem 1 can be deduced directly
from Theorem D. The following result by Tian, Xiong and Niu is another similar example
for 3-connected graphs.

Theorem E [12]. Let G be a 3-connected claw-free graph. If every locally disconnected
vertex is on some induced cycle C of length at least 4 with at most 4 nonsingular edges,
then G is hamiltonian.

2 Preliminaries

Let T be a closed trail (i.e., an Eulerian subgraph) in G. We say that T is a dominating
closed trail (abbreviated DCT), if V (G) \ V (T ) is an independent set in G (or, equivalently,
if every edge of G has at least one vertex on T ).

Harary and Nash-Williams [5] proved the following result, relating the existence of a
DCT in a graph to the hamiltonicity of its line graph.

Theorem F [5]. Let G be a graph with at least 3 edges. Then the line graph L(G) is
hamiltonian if and only if G has a DCT.

Let x be a vertex of a claw-free graph G. If the subgraph induced by NG(x) is connected
and noncomplete, x is called eligible; if the subgraph induced by NG(x) is complete, then
x is called simplicial. The set of all eligible vertices in G will be denoted VEL(G). If the
subgraph induced by NG(x) is connected, we add edges joining all pairs of nonadjacent
vertices in NG(x) and obtain the graph G∗x. This operation is called the local completion
of G at x. The closure cl(G) of a graph G is the graph obtained from G by recursively
repeating the local completion operation, as long as this is possible. Clearly, if VEL(G) = ∅,
then G = cl(G), and in this case we say that G is closed.

Theorem G [9]. If G is a claw-free graph, then its closure cl(G) satisfies the follow-
ing:

(i) the closure cl(G) is well-defined;
(ii) there is a triangle-free graph H such that cl(G) = L(H);

(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

We will also use the following strengthening of the closure operation introduced by
Ryjáček and Schelp in [10].

If H is a graph and F ⊂ H is a subgraph of H, then H|F denotes the graph obtained from
H by identifying the vertices of F as a (new) vertex vF , and by replacing the created loops
by pendant edges. Note that H|F may contain multiple edges. If H is a graph, X ⊂ V (H),
and A is a partition of X into subsets, then E(A) denotes the set of all edges a1a2 (not
necessarily in H) such that a1, a2 are in the same element of A. Further HA denotes the
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graph with vertex set V (HA) = V (H) and edge set E(HA) = E(H)∪E(A). Note that E(H)
and E(A) are considered to be disjoint, i.e., if e1 = a1a2 ∈ E(H) and e2 = a1a2 ∈ E(A),
then e1, e2 are parallel edges in HA.

Let F be a graph and let A ⊂ V (F ). We say that F is A-contractible, if for every even
subset X ⊂ A and for every partition A of X into two-element subsets, the graph FA has a
DCT containing all vertices of A and all edges of E(A). Note that this definition allows X
to be empty, in which case FA = F . Also, if F is A-contractible, then F is A′-contractible
for any A′ ⊂ A (since every subset X of A′ is a subset of A).

Specifically, if F ⊂ H is a subgraph of H, we say that F is a contractible subgraph of H
if F is AH(F )-contractible. The following important property of the contractibility concept
follows from the results in [10].

Theorem H [10]. Let H be a graph and let F ⊂ H be a contractible subgraph of H.
Then H has a DCT if and only if H|F has a DCT.

For any two sets A,B ⊂ V (F ), A∩B 6= ∅, A|B denotes the set (A\B)∪{vB} ⊂ V (F |B),
and for A ∩ B = ∅, we set A|B = A. The next theorem from [10] shows that a contractible
graph remains contractible after a partial contraction.

Theorem I [10]. Let F be a graph and let A,B ⊂ V (F ). If F is A-contractible, then
F |B is A|B-contractible.

Equivalently, Theorem I says that the family F = {(F,A)| F is A-contractible} is closed
under partial contraction.

Note that if F is a collapsible graph in the sense of Catlin [3], then F is V (F )-contractible.
Similarly, the A-contractibility concept also generalizes the concept of X-collapsibility intro-
duced by Veldman [13]. For more details, we refer to [10].

Several examples of A-contractible graphs are shown in Fig. 4 (where the vertices in the
set A are double-circled).
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Figure 4: Examples of A-contractible graphs

It is easy to observe that if F ⊂ H, then L(H|F ) is the graph obtained from G = L(H) by
replacing the (induced) subgraph M = L(F ) and its neighborhood with a complete graph,
i.e., by the operation of local completion at the subgraph M , denoted G∗M . An induced
subgraph M of a graph G = L(H) is said to be eligible if F = L−1(M) is a contractible
subgraph in H = L−1(G) (i.e., if F is AH(F )-contractible). This idea was used in [10] to
introduce a closure concept, called the contraction closure, in the class of line graphs, as
follows: the C-closure of a line graph G is the graph clC(G) for which there is a sequence of
graphs G1, . . . , Gt such that
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(i) G1 = G, Gt = clC(G),
(ii) Gi+1 = (Gi)

∗
M for some eligible induced subgraph M ⊂ Gi,

(iii) Gt = clC(G) contains no eligible induced subgraph.

Theorem J [10]. Let G be a line graph. Then
(i) clC(G) is uniquely determined,

(ii) G is hamiltonian if and only if clC(G) is hamiltonian.

Thus, clC(G) is a line graph which contains no eligible subgraphs, or, equivalently, if H =
L−1(clC(G)), then H is obtained from H = L−1(G) by recursively contracting contractible
subgraphs, as long as this is possible. Consequently, H contains no contractible subgraphs.

It should be noted here that in [10], the C-closure operation is related to a certain family
C of graphs, called a complete family, however, we do not give details here since for our
proof it is sufficient to consider C to be the family of all line graphs of A-contractible graphs
(in fact, we will only need to consider the family of the graphs in Fig. 4 and their partial
contractions).

Finally, the concept of C-closure can be extended to a closure in the class of all claw-free
graphs by setting cl(G) = clC(cl(G)). Since both cl(G) and clC(G) are unique and preserve
hamiltonicity/nonhamiltonicity, the same holds for cl(G).

We will also need the following result by Tian and Xiong.

Lemma K [11]. Let G be a claw-free graph, s and ` nonnegative integers, and let C
be an induced cycle in G with at most s nonsingular edges and with at least s − ` locally
connected vertices. If x ∈ V (C) is locally disconnected in cl(G), then there is an induced
cycle C ′ of length at least 4 in cl(G) with x ∈ V (C ′) ⊆ V (C) and with at most ` nonsingular
edges.

3 Proof of the main result

Proof of Theorem 1. Let G be a claw-free graph satisfying the assumptions of Theorem 1
and suppose, to the contrary, that G is not hamiltonian. Let G′ = cl(G) and H ′ = L−1(G′).

Claim 1. The graph G′ satisfies the assumptions of Theorem 1.

Proof. Let x ∈ VLD(G′). Clearly, VLD(G′) ⊂ VLD(G).

(i) If x satisfies the assumptions of (I) in G′, then clearly x satisfies (I) in G, and the
proof follows by Lemma K with s = ` = 4.

(ii) If x satisfies the assumptions of (II) in G′, then x satisfies in G the conditions (I) or
(II). If x satisfies (II) in G, then the proof follows by Lemma K with s = ` = 3; thus, suppose
that x satisfies (I) in G. Then there is an edge in E(G′) \E(G) containing x, implying that
some neighbor of x on C is simplicial, hence locally connected, and the proof follows by
Lemma K with s = 4 and ` = 3.

(iii) If x satisfies the assumptions of (III) in G′, then clearly x satisfies (III) also in G,
and the proof follows by Lemma K with s = ` = 2. �
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Claim 2. If x ∈ VLD(G′) satisfies the assumptions of condition (III) in G′, then the edge
e = L−1(x) ∈ E(H ′) is in a contractible subgraph of H ′.

Proof. By condition (III) (see also condition (III’) in Remark 2(c)), e is in a cycle C with
|V (C)| ≥ 4 and |V (C)∩V>2(H

′)| ≤ 2 such that all edges of C with both vertices of degree 2
in H ′ determine a path or a cycle (see the graph F1 in Fig. 4). It is straightforward to verify
that AH′(C) = V (C) ∩ V>2(H

′) and C is a contractible subgraph of H ′. �

Claim 3. If x ∈ VLD(G′) satisfies the assumptions of condition (II) in G′, then the edge
e = L−1(x) ∈ E(H ′) is in a contractible subgraph of H ′.

Proof. By condition (II) (see also condition (II’) in Remark 2(c)), e is in a cycle C with
|V (C)| ≥ 4 and |V (C)∩V>2(H

′)| ≤ 3, and at least one vertex of e is in V>2(H
′). We observe

that, by condition (III), the cycle C can be chosen such that C contains no edge with both
vertices in V2(H

′) (otherwise we replace the subpath containing such an edge with the rest
of the cycle given by condition (III)). But then it is straightforward to verify that C is a
contractible subgraph of H ′ (note that again AH′(C) = V (C) ∩ V>2(H

′); see also the graph
F2 in Fig. 4). �

Now set G = clC(G′) and H = L−1(G).

Claim 4. Every vertex x ∈ VLD(G) satisfies condition (I).

Proof. We have x ∈ VLD(G), implying x ∈ VLD(G′), hence, by Claim 1, x satisfies (I),
(II) or (III) in G′. However, if x satisfies (II) or (III) in G′, then, by Claims 2 and 3, x is
simplicial in G, a contradiction. Hence x satisfies (I) in G′, implying that, in H ′, the edge
e = L−1(x) is in a cycle C with |V (C)| ≥ 4 and |V (C) ∩ V>2(H

′)| ≤ 4.
If C is contracted in H, then x is simplicial in H, a contradiction. If C is partially

contracted in H, then some two vertices in V (C) ∩ V>2(H
′) are contracted into one vertex

in H, and the edges of C determine in H a contractible subgraph, a contradiction again.
Hence the edges of C determine the same cycle also in H.

Let e = u1u2 = L−1(x) be the edge corresponding to the vertex x in H ′, and, by the
above observations, also in H, and let C = u1u2u3u4 (where {u1, u2, u3, u4} = V (C)∩V>2(H)
and the edges u2u3, u3u4, u4u1 can be possibly subdivided by a vertex of degree 2). Since
x satisfies (I) in G′, we have dH′(u1) = dH′(u2) = 3. If also dH(u1) = dH(u2) = 3, then x
satisfies (I) also in G and we are done. Thus, it remains to consider the case that, up to a
symmetry, dH(u2) > 3. Then there is a contractible subgraph F ⊂ H ′ such that u2 ∈ V (F )
but u1u2 /∈ E(F ). Then u1u2 ∈ E(H ′) \ E(F ), implying u2 ∈ AH′(F ). By the definition
of A-contractibility, F has a DCT T for X = ∅, and since u1u2 /∈ E(F ) and dH′(u2) = 3,
necessarily u3 ∈ V (T ) ⊂ V (F ). But then, in H, u2 and u3 are contracted into one vertex,
turning C into a contractible subgraph of H, a contradiction. Hence dH(u1) = dH(u2) = 3
and the vertex x satisfies (I) in G. �

Now, by Claim 4, H is a connected graph in which every vertex is of degree 1 or 3, and
every nonpendant edge is in a cycle of length 4 with all vertices of degree 3. If |V3(H)| = 1,
then H = K1,3, G = C3 and there is nothing to do; hence let |V3(H)| ≥ 2, and let C =
u1u2u3u4 be a cycle of length 4 in H. Let u′i be the neighbor of ui outside C, i = 1, 2, 3, 4.
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We distinguish, up to a symmetry, three cases (recall that H is triangle-free, and hence
u′i 6= u′i+1, where u′5 = u′1).

Case 1: u′1 = u′3, u
′
2 = u′4. If u′1u

′
2 ∈ E(H), then V (H) = {u1, u2, u3, u4, u′1, u′2}, H has a

DCT and we are done. Hence suppose that u′1u
′
2 /∈ E(H). Let u′′i be the neighbor of u′i

distinct from ui and ui+2, i = 1, 2. If dH(u′′1) = 3, then it is straightforward to see that the
edge u′1u

′′
1 cannot be in a C4; hence the edge u′1u

′′
1 is pendant. Analogously, the edge u′2u

′′
2 is

also pendant, implying that H has a DCT.

Case 2: u′1 = u′3, u
′
2 6= u′4. Let again u′′1 be the third neighbor of u′1 distinct from u1 and

u3. Suppose that, say, u′4 = u′′1, and let u′′4 be the third neighbor of u′4, distinct from u′1 and
u4. Then neither of the edges u′4u

′′
4, u2u

′
2 can be in a C4, hence dH(u′′4) = dH(u′2) = 1 and H

has a DCT.
Thus, it remains to consider the case when u′′1, u′2, u

′′
4 are three distinct vertices. Then

neither of the edges u′1u
′′
1, u2u

′
2, u4u

′
4 can be in a C4, implying that H ' K ′2,3.

Case 3: u′1 6= u′3, u
′
2 6= u′4. If V (H) = {u1, u2, u3, u4, u′1, u′2, u′3, u′4}, then H has a DCT

and we are done; thus, up to a symmetry, suppose that u1u
′
1 is in a C4. Then, up to

a symmetry, we have u′1u
′
2 ∈ E(H), and both u′1 and u′2 have a third neighbor outside

{u1, u2, u3, u4, u′1, u′2}. But then the graph F = H[{u1, u2, u3, u4, u′1, u′2}] has AH(F ) =
{u′1, u′2, u3, u4} (see the graph F3 in Fig. 4), and F is a contractible subgraph in the graph
H, a contradiction.

4 Concluding Remarks

4.1 Sharpness

In this section, we show that all conditions in Theorem 1 are sharp.

1. Let H be the graph obtained from the graph K2,3 by subdividing one edge with a
vertex of degree 2 and attaching to each of its (four) vertices of degree 2 a pendant edge,
and set G = L(H) (see Fig. 5(a)). Then VLD(G) = V4(G), G satisfies conditions (II) and
(III) (since there are no such vertices), every its locally disconnected vertex is nonsingular of
degree 4 and is on an induced cycle of length at least 4 with 5 nonsingular edges; however, G
is nonhamiltonian. This example shows that, in the requirement “with at most 4 nonsingular
edges” of condition (I), 4 cannot be relaxed to 5.

Moreover, an infinite family of such examples can be obtained by taking an arbitrary
graph G1 satisfying the assumptions of Theorem 1 and having two simplicial vertices y1, y2
of degree 2 with a common neighbor, and identifying xi with y1, i = 1, 2 (one such example
is in Fig. 5(b)).

2. Let H be obtained from K2,2t+1, t ≥ 1, by attaching at least two pendant edges to every
vertex of degree two, and let G = L(H). Then G satisfies (I) and (III) (since there are no
such vertices), and all locally disconnected vertices are not nonsingular of degree 4 and are on
an induced cycle of length 4 with 4 nonsingular edges. However, G is nonhamiltonian. This
example shows that, in the requirement “with at most 3 nonsingular edges” of condition (II),
3 cannot be relaxed to 4.
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Figure 5: Sharpness examples

3. Let H1 = K2,2t+1, t ≥ 1, choose a vertex x ∈ V2(H1), let H be obtained from H1 by
attaching a pendant edge to each vertex of degree 2 distinct from x and by subdividing one
of the edges incident to x, and set G = L(H) (see Fig. 5(c)). Then G satisfies (I) (since
there is no such vertex) and satisfies (II), but its vertex of degree 2 is in an induced cycle
with 3 nonsingular edges. This example shows that, in the requirement “with at most 2
nonsingular edges” of condition (III), 2 cannot be relaxed to 3.

4. Let H1 = K2,2t+1, t ≥ 1, let H be obtained from H1 by subdividing each of the edges
incident to one of its vertices of degree 2t + 1 with one new vertex of degree 2, and set
G = L(H) (see Fig. 5(d)). Then G satisfies (I) and (II), each its vertex of degree 2 is on a
cycle of length 6 with 2 nonsingular edges, but in each such cycle, the vertices of degree 2
induce neither a path nor a cycle. However, G is nonhamiltonian. This example shows that
the requirement that G[V (C) ∩ V2(G)] is a path or a cycle in condition (III) is necessary.

4.2 A generalization

It is easy to observe that, by Lemma K, Theorem 1 can be slightly extended as follows.

Theorem 8. Let G be a connected claw-free graph of order at least three such that every
vertex x ∈ VLD(G) satisfies the following conditions:

(I”) if x is nonsingular of degree 4 (i.e., G[NG[x]] ' Γ0), then x is on an induced cycle of
length at least 4 with at most 4 nonsingular edges;

(II”) if x is not nonsingular of degree 4 (i.e., G[NG[x]] 6' Γ0), then there is an integer s ≥ 0
such that x is on an induced cycle of length at least 4 with at most s nonsingular
edges and with at least s− 3 locally connected vertices;

(III”) if x is singular of degree 2 (i.e., G[NG[x]] ' P3), then there is an integer s ≥ 0 such
that x is on an induced cycle C with at most s nonsingular edges and with at least
s− 2 locally connected vertices and such that G[V (C) ∩ V2(G)] is a path or a cycle.

Then G is either hamiltonian, or G ' L(K ′2,3).

Proof. If G satisfies the assumptions of Theorem 8, then, by Lemma K, cl(G) satisfies
the assumptions of Theorem 1.

Acknowledgment. The authors thank Wanpeng Lei who pointed out a gap in the original
proof of Theorem 1.
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