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Abstract

For an integer i ≥ 1, Zi is the graph obtained by attaching an endvertex of a path of
length i to a vertex of a triangle. We prove that every 3-connected {K1,3, Z7}-free graph
is Hamilton-connected, with one exceptional graph. The result is sharp.
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1 Introduction

In this paper, we generally follow the most common graph-theoretical notation and terminol-
ogy, and for notations and concepts not defined here we refer to [5]. Specifically, by a graph we
always mean a simple finite undirected graph; whenever we admit multiple edges, we always
speak about a multigraph. We use dG(x) to denote the degree of a vertex x in G, and for
i ≥ 1 we set Vi(G) = {x ∈ V (G)| dG(x) = i}. If x ∈ V2(G) with NG(x) = {y1, y2}, then the
operation of replacing the path y1xy2 with the edge y1y2 is called suppressing the vertex x.
The inverse operation is called subdividing the edge y1y2 with the vertex x. We write F ⊂ H if
F is a sub(multi)graph of H, G1 ' G2 if the (multi)graphs G1, G2 are isomorphic, and 〈M〉G
to denote the induced sub(multi)graph on a set M ⊂ V (G). The line graph of a multigraph
H is the graph G = L(H) with V (G) = E(H), in which two vertices are adjacent if and only
if the corresponding edges of H have at least one vertex in common. We say that a vertex
x ∈ V (G) is simplicial if 〈NG(x)〉G is a complete graph, and we use VSI(G) to denote the set
of all simplicial vertices of G.

For x, y ∈ V (G), a path (trail) with endvertices x, y is referred to as an (x, y)-path ((x, y)-
trail), a trail with terminal edges e, f ∈ E(G) is called an (e, f)-trail, and Int(T ) denotes the
set of interior vertices of a trail T . A set of vertices M ⊂ V (G) dominates an edge e, if e
has at least one vertex in M , and a subgraph F ⊂ G dominates e if V (F ) dominates e. A
closed trail T is a dominating closed trail (abbreviated DCT) if T dominates all edges of G,
and an (e, f)-trail is an internally dominating (e, f)-trail (abbreviated (e, f)-IDT) if Int(T )
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dominates all edges of G. A graph is Hamilton-connected if, for any u, v ∈ V (G), G has a
hamiltonian (u, v)-path, i.e., an (u, v)-path P with V (P ) = V (G).

Finally, if F is a family of graphs, we say that G is F-free if G does not contain an induced
subgraph isomorphic to a member of F , and the graphs in F are referred to in this context
as forbidden (induced) subgraphs. If F = {F}, we simply say that G is F -free. Here, the claw
is the graph K1,3, Pi denotes the path on i vertices, and Γi denotes the graph obtained by
joining two triangles with a path of length i (see Fig. 1(d)). Several further graphs that will
be used as forbidden subgraphs are shown in Fig. 1(a), (b), (c). Whenever we will list vertices
of an induced claw K1,3, we will always list its center as the first vertex of the list, and when
listing vertices of an induced subgraph F ' Zi, we will always list first the vertices b1, b2,
and then the vertices a0, a1, . . . , ai. Similarly, when listing vertices of an Si,j,k in a graph (see
Fig. 2(a)), we will always write the list such that i ≤ j ≤ k, and we will use the notation
Si,j,k(v; a1a2 . . . ai; b1b2 . . . bj; c1c2 . . . ck) (in the labeling of vertices as in Fig. 2(a)). The vertex
v will be called the center, and the paths va1 . . . ai, vb1 . . . bj, vc1 . . . ck will be called the
branches of the Si,j,k.
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Figure 1: The graphs Zi, Bi,j and Ni,j,k

We also recall two well-known graphs that will occur as exceptions in some of the results,
namely, the Petersen graph Π and the Wagner graph W (see Fig. 2(b), (c)). It is a well-known
fact that the Wagner graph can be obtained from the Petersen graph by removing an arbitrary
edge and suppressing the two created vertices of degree 2. We will often refer to these graphs
using the labeling of their vertices as indicated in Fig. 2.
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Figure 2: The graph Si,j,k, the Petersen graph Π and the Wagner graph W

Theorem A lists the best known results on pairs of forbidden subgraphs implying Hamilton-
connectedness of a 3-connected graph.

Theorem A [4, 7, 14, 15, 16, 21]. Let G be a 3-connected {K1,3, X}-free graph, where
(i) [7] X = Γ1, or

(ii) [4] X = P9, or
(iii) [21] X = Z6, or
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(iv) [21] X = Bi,j for i+ j ≤ 7, or
(v) [14, 15, 16] X = Ni,j,k for i+ j + k ≤ 7.

Then G is Hamilton-connected.

Note that statement (iii) is an immediate corollary of (iv).

Let W be the family of graphs obtained by attaching at least one pendant edge to each
of the vertices of the Wagner graph W (see Fig. 2(c)), and let G = {L(H)| H ∈ W} be the
family of their line graphs. Then any G ∈ G is 3-connected, non-Hamilton-connected, P10-free,
Bi,j-free for i + j = 8, and Ni,j,k-free for i + j + k = 8. Thus, this example shows that parts
(ii), (iv) and (v) of Theorem A are sharp.

Let W 1 be the graph obtained from W by attaching exactly one pendant edge to each of
its vertices. The following theorem is our main result.

Theorem 1. Let G be a 3-connected {K1,3, Z7}-free graph such that G 6' L(W 1). Then G
is Hamilton-connected.

Proof of Theorem 1, consisting in direct case-distinguishing, is postponed to Section 4.

The exceptional graph L(W 1) is 3-connected {K1,3, Z7}-free and not Hamilton-connected,
showing that the assumption G 6' L(W 1) in Theorem 1 cannot be omitted. Also, for each
graph H ∈ W \ {W 1}, L(H) is 3-connected {K1,3, Z8}-free and not Hamilton-connected,
showing that Theorem 1 is sharp.

Since |V (L(W 1))| = 20, Theorem 1 has the following immediate corollary.

Corollary 2. Let G be a 3-connected {K1,3, Z7}-free graph of order n ≥ 21. Then G is
Hamilton-connected.

In Section 2, we collect necessary known results and facts on line graphs and on closure
operations, and, in Subsection 2.5, we develop a method that allows to overcome the difficulty
that the class of {K1,3, Zi}-free graphs is not stable under closure operations. In Section 3,
we develop a technique that allows to significantly reduce the number of cases to be consid-
ered. Finally, in Section 5, we briefly update the discussion of remaining open cases in the
characterization of forbidden pairs for Hamilton-connectedness from [15] and [21].

2 Preliminaries

In Subsections 2.1 – 2.4, we summarize some known facts that will be needed in our proof
of Theorem 1, and in Subsection 2.5, we introduce a superclass of the class of {K1,3, Zi}-free
graphs that is stable under the closure operations.

2.1 Line graphs of multigraphs and their preimages

While in line graphs of graphs, for a connected line graph G, the graph H such that G = L(H)
is uniquely determined with a single exception of G = K3, in line graphs of multigraphs this
is not true: a simple example are the graphs H1 = Z1 and H2 a double edge with one pendant

3



edge attached to each vertex — while H1 6' H2, we have L(H1) ' L(H2). Using a modification
of an approach from [23], the following was proved in [19].

Theorem B [19]. Let G be a connected line graph of a multigraph. Then there is, up to an
isomorphism, a uniquely determined multigraph H such that a vertex e ∈ V (G) is simplicial
in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

The multigraph H with the properties given in Theorem B will be called the preimage
of a line graph G and denoted H = L−1(G). We will also use the notation a = L(e) and
e = L−1(a) for an edge e ∈ E(H) and the corresponding vertex a ∈ V (G).

An edge-cut R ⊂ E(H) of a multigraph H is essential if H −R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size
at least k. It is a well-known fact that a line graph G is k-connected if and only if L−1(G)
is essentially k-edge-connected. It is also a well-known fact that if X is a line graph, then a
line graph G is X-free if and only if L−1(G) does not contain as a subgraph (not necessarily
induced) a graph F such that L(F ) = X. We give more details on this correspondence in
Subsection 2.5 (Proposition 7).

Harary and Nash–Williams [10] established a correspondence between a DCT in H and a
hamiltonian cycle in L(H). A similar result showing that G = L(H) is Hamilton-connected
if and only if H has an (e1, e2)-IDT for any pair of edges e1, e2 ∈ E(H), was given in [13] (in
fact, part (ii) of the following theorem is slightly stronger than the result from [13], and its
easy proof is given in [14]).

Theorem C [10, 13]. Let H be a multigraph with |E(H)| ≥ 3 and let G = L(H).
(i) [10] The graph G is hamiltonian if and only if H has a DCT.

(ii) [13] For every ei ∈ E(H) and ai = L(ei), i = 1, 2, G has a hamiltonian (a1, a2)-path if
and only if H has an (e1, e2)-IDT.

2.2 Strongly spanning trailable multigraphs

A multigraph H is strongly spanning trailable if for any e1 = u1v1, e2 = u2v2 ∈ E(H) (possibly
e1 = e2), the multigraph H(e1, e2), which is obtained from H by replacing the edge e1 by a
path u1ve1v1 and the edge e2 by a path u2ve2v2, has a spanning (ve1 , ve2)-trail.

We will need the following two results on “small” strongly spanning trailable multigraphs
from [16]. Here, W is the set of multigraphs that are obtained from the Wagner graph W by
subdividing one of its edges and adding at least one edge between the new vertex and exactly
one of its neighbors.

Theorem D [16].
(i) Every 2-connected 3-edge-connected multigraph H with circumference c(H) ≤ 8 other

than the Wagner graph W is strongly spanning trailable.
(ii) Every 3-edge-connected multigraph H with |V (H)| ≤ 9 such that H /∈ {W} ∪W is

strongly spanning trailable.
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2.3 SM-closure

For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G)∪ {y1y2| y1, y2 ∈

NG(x)}) (i.e., G
∗
x is obtained from G by adding all the missing edges with both vertices in

NG(x)). Obviously, if G is claw-free, then so is G
∗
x. Note that in the special case when G is

a line graph and H = L−1(G), G
∗
x is the line graph of the multigraph obtained from H by

contracting the edge L−1(x) into a vertex and replacing the created loop(s) by pendant edge(s).
Also note that clearly x ∈ VSI(G

∗
x) for any x ∈ V (G), and, more generally, VSI(G) ⊂ VSI(G

∗
x)

for any x ∈ V (G).

We say that a vertex x ∈ V (G) is eligible if 〈NG(x)〉G is a connected noncomplete graph,
and we use VEL(G) to denote the set of all eligible vertices of G. Note that in the special case
when G is a line graph and H = L−1(G), it is not difficult to observe that x ∈ V (G) is eligible
if and only if the edge L−1(x) is in a triangle or in a multiple edge of H. Based on the fact
that if G is claw-free and x ∈ VEL(G), then G

∗
x is hamiltonian if and only if G is hamiltonian,

the closure cl(G) of a claw-free graph G was defined in [18] as the graph obtained from G
by recursively performing the local completion operation at eligible vertices, as long as this
is possible (more precisely: cl(G) = Gk, where G1, . . . , Gk is a sequence of graphs such that
G1 = G, Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(G), i = 1, . . . , k−1, and VEL(Gk) = ∅). The closure
cl(G) of a claw-free graph G is uniquely determined, is a line graph of a triangle-free graph,
and is hamiltonian if and only if so is G. However, as observed in [6], the closure operation
does not preserve the (non-)Hamilton-connectedness of G.

To overcome this problem, the concept of an SM-closure GM of a claw-free graph G was
defined in [12] by the following construction.

(i) If G is Hamilton-connected, we set GM = cl(G).
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such eligible vertices for which the resulting graph is still not Hamilton-connected,
as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ VEL(Gk), (Gk)

∗
x is Hamilton-connected,

and we set GM = Gk.
A resulting GM is called a strong M-closure (or briefly an SM-closure) of the graph G, and a
graph G equal to its SM-closure is said to be SM-closed. Note that for a given graph G, its
SM-closure is not uniquely determined.

As shown in [19] and [12], if G is SM-closed, then G = L(H), where H does not contain
as a subgraph (not necessarily induced) any of the multigraphs shown in Fig. 3.
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Figure 3: The diamond T1, the multitriangle T2 and the triple edge T3
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The following theorem summarizes basic properties of the SM-closure operation.

Theorem E [12]. Let G be a claw-free graph and let GM be its SM-closure. Then GM has
the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,

(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either

(α) VEL(GM) = ∅ and GM = cl(G), or
(β) VEL(GM) 6= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(GM),

(vi) GM = L(H), where H contains either
(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge,

(vii) if GM contains no hamiltonian (a, b)-path for some a, b ∈ V (GM) and
(α) X is a triangle in H, then E(X) ∩ {L−1

GM (a), L−1
GM (b)} 6= ∅,

(β) X is a multiedge in H, then E(X) = {L−1
GM (a), L−1

GM (b)}.

We will also need the following lemma on SM-closed graphs proved in [20].

Lemma F [20]. Let G be an SM-closed graph and let H = L−1(G). Then H does not
contain a triangle with a vertex of degree 2 in H.

2.4 The core of the preimage of an SM-closed graph

The definition of the core is slightly problematic for multigraphs, therefore we restrict our
observations to the case that we need, i.e., to preimages of 3-connected SM-closed graphs.
The difficulties then do not occur since such a multigraph cannot have pendant multiedges by
Theorem B, and cannot have pendant multitriangles (since there are no multitriangles at all).

Thus, let G be a 3-connected SM-closed graph and let H = L−1(G). The core of H is the
multigraph co(H) obtained from H by removing all pendant edges and suppressing all vertices
of degree 2.

Shao [22] proved the following properties of the core of a multigraph.

Theorem G [22]. Let H be an essentially 3-edge-connected multigraph. Then
(i) co(H) is uniquely determined,

(ii) co(H) is 3-edge-connected,
(iii) V (co(H)) dominates all edges of H,
(iv) if co(H) has a spanning closed trail, then H has a DCT.
(v) if co(H) is strongly spanning trailable, then L(H) is Hamilton-connected.
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2.5 Closure operations and Zi-free graphs

When applying closure techniques to {K1,3, Zi}-free graphs, we encounter a problem consisting
in the fact that, for a {K1,3, Zi}-free graph G and x ∈ VEL(G), the local completion G

∗
x is not

necessarily Zi-free. Although it can be shown [8] that cl(G) finally becomes Zi-free, graphs that
occur during the construction of cl(G), hence also an SM-closure, can contain an induced Zi

(in the terminology of [17], the class of {K1,3, Zi}-free graphs is weakly stable but not stable
under the closure operation). In this paper, we overcome this difficulty by working in a slightly
larger class of graphs which contains all {K1,3, Zi}-free graphs and is stable under the closure.

For a graph F ' Zi, we will use TF to denote the triangle of F and V2(TF ) to denote the
(two-element) set of the vertices in TF that are of degree 2 in F . We define a class ZSI

i as
follows.

For an integer i ≥ 1, ZSI
i is the class of all claw-free graphs G such that every induced

subgraph F ⊂ G, F ' Zi, satisfies |V2(TF ) ∩ VSI(G)| ≥ 1.

Clearly, ZSI
i contains all {K1,3, Zi}-free graphs.

Throughout the rest of this subsection, we will keep the notation of vertices of an induced
Zi as in Fig. 1(a). For an induced F ' Zi in G

∗
x, we will call the edges in E(F ) \ E(G) new

edges, and we will denote E(F ) \ E(G) = new(F ).

Lemma 3. Let G ∈ ZSI
i and x ∈ V (G). Then G

∗
x ∈ ZSI

i .

Proof. Let, to the contrary, G ∈ ZSI
i and x ∈ V (G) be such that G

∗
x contains an induced

subgraph F ' Zi with V2(TF ) ∩ VSI(G
∗
x) = ∅. Then also V2(TF ) ∩ VSI(G) = ∅ (recall that

VSI(G) ⊂ VSI(G
∗
x)), and since G ∈ ZSI

i , we have new(F ) 6= ∅.
Suppose first that new(F ) ∩ E(TF ) = ∅, and let, say, e = ajaj+1 ∈ new(F ) for some

j, 0 ≤ j ≤ i − 1. Then we have ajx, aj+1x ∈ E(G) since e ∈ E(G
∗
x) \ E(G), and vx /∈

E(G) for any v ∈ V (F ) \ {aj, aj+1} since F is induced in G
∗
x. But then the graph F ′ =

〈{b1, b2, a0, . . . , aj, x, aj+1, . . . , ai−1}〉G is an induced Zi in G with V2(TF ′) ∩ VSI(G) = ∅, con-
tradicting the assumption that G ∈ Zi.

Thus, we have new(F ) ⊂ E(TF ). If new(F ) = E(TF ), then 〈{x, b1, b2, a0}〉G ' K1,3, a
contradiction. Hence 1 ≤ |new(F )| ≤ 2.

Let first |new(F )| = 1. If new(F ) = {b1b2}, then 〈{a0, b1, b2, a1}〉G ' K1,3, a contradiction.
Thus, up to a symmetry, new(F ) = {a0b1}. Then necessarily x 6= b2 (otherwise we would have
b2 ∈ VSI(G

∗
x), contradicting the assumption that V2(TF ) ∩ VSI(G

∗
x) = ∅), and b2x ∈ E(G), for

otherwise 〈{a0, b2, x, a1}〉G ' K1,3. Then G contains F ′ = 〈{x, b2, a0, a1, . . . , ai}〉G ' Zi with
V2(TF ′) = {x, b2}, and {x, b2} ∩ VSI(G) = ∅, a contradiction.

Thus, |new(F )| = 2. Then {b1, b2, a0} ⊂ NG(x) and, up to a symmetry, either new(F ) =
{a0b1, a0b2}, or new(F ) = {b1b2, a0b2}, but in the first case F ′ = 〈{b1, b2, x, a0, . . . , ai−1}〉G, and
in the second case F ′ = 〈{b1, x, a0, a1, . . . , ai}〉G is an induced Zi in G with V2(TF ′)∩VSI(G) =
∅, a contradiction.

Next we define a class ZT
i as follows.

For an integer i ≥ 1, ZT
i is the class of all claw-free graphs G satisfying the following

condition:
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(∗) for every induced subgraph F ' Zi in G, there is a vertex xF ∈ VEL(G) such that
V (TF ) ⊂ NG(xF ) and 〈V (F )〉G∗xF 6' Zi.

Clearly, ZT
i contains all {K1,3, Zi}-free graphs.

Lemma 4. Let G ∈ ZT
i and x ∈ VEL(G). Then G

∗
x ∈ ZT

i .

Proof. Let G ∈ ZT
i and x ∈ V (G) be such that G

∗
x contains an induced subgraph F ' Zi

not satisfying condition (∗). Since G ∈ ZT
i , necessarily new(F ) 6= ∅ (where, as in the proof of

Lemma 3, we denote new(F ) = E(F ) \ E(G)).

Suppose first that new(F ) ∩ E(TF ) = ∅, and let, say, ajaj+1 ∈ new(F ) for some j,
0 ≤ j ≤ i − 1. Then we again have NG(x) ∩ V (F ) = {aj, aj+1}, implying that F ′ =
〈{b1, b2, a0, . . . , aj, x, aj+1, . . . , ai−1}〉G ' Zi. Since G ∈ ZT

i , there is a vertex xF ′ ∈ VEL(G)
with the properties given by condition (∗). Since 〈V (F ′)〉G∗xF ′ 6' Zi, xF ′ has, besides V (TF ′) =

V (TF ), another neighbor in V (F ′), and since F does not satisfy (∗), xF ′ is adjacent to x in G,
and x is in G the only neighbor of xF ′ in V (F ′)\V (TF ′). But then 〈{x, xF , aj, aj+1}〉G ' K1,3,
a contradiction. Thus, new(F ) ⊂ V (TF ).

Let first x ∈ V (TF ). Then necessarily |new(F )| = 1. If x = a0, then new(F ) = {b1b2},
and then 〈{a0, b1, b2, a1}〉G ' K1,3, a contradiction. Thus, up to a symmetry, x = b1 and
new(F ) = {a0b2}. Let a0u1 . . . ukb2 be a shortest (a0, b2)-path in 〈NG(x)〉G (it exists since
x ∈ VEL(G)). Necessarily k ≥ 1 since a0b2 /∈ E(G). If u1aj ∈ E(G) for some j, 1 ≤ j ≤ i,
then, observing that u1 ∈ VEL(G) (otherwise u1 is a center of a claw in G), we have also
u1 ∈ VEL(G

∗
x), and then 〈V (F )〉(G∗x)∗u1

6' Zi, contradicting the assumption that F does not

satisfy (∗). Hence u1aj /∈ E(G), 1 ≤ j ≤ i, implying that F ′ = 〈{b1, u1, a0, . . . , ai}〉G ' Zi. By
the assumption, G satisfies (∗), hence there is a vertex xF ′ ∈ VEL(G) such that {b1, u1, a0} ⊂
NG(xF ′) and 〈V (F ′)〉G∗xF ′ 6' Zi. But then xF ′ ∈ NG(x), hence b2xF ′ ∈ E(G

∗
x), and then

also 〈V (F )〉(G∗x)∗xF ′
6' Zi, contradicting the assumption that F does not satisfy (∗). Hence

x /∈ V (TF ).

Suppose that |new(F )| = 1. If new(F ) = {b1b2}, then 〈{a0, b1, b2, a1}〉G ' K1,3, a con-
tradiction. Hence, up to a symmetry, we have new(F ) = {a0b1}, implying that {a0, b1} ⊂
NG(x). Then also b2x ∈ E(G), for otherwise 〈{a0, b2, x, a1}〉G ' K1,3, and then F ′ =
〈{b2, x, a0, a1, . . . , ai}〉G ' Zi. Since G ∈ ZT

i , there is a vertex xF ′ ∈ VEL(G) such that
{b2, x, a0} ⊂ NG(xF ′) and 〈V (F ′)〉G∗xF ′ 6' Zi. Then also b1xF ′ ∈ E(G

∗
x) (since {xb1, xxF ′} ⊂

E(G)), and 〈V (F )〉(G∗x)∗xF ′
6' Zi, contradicting the assumption that F does not satisfy (∗).

Thus, we have |new(F )| = 2.

Suppose that new(F ) = {a0b1, a0b2}. Then we have {a0, b1, b2} ⊂ NG(x) and F ′ =
〈{b1, b2, x, a0, . . . , ai−1}〉G ' Zi. Since G satisfies (∗), there is a vertex xF ′ ∈ VEL(G) such
that {b1, b2, x} ⊂ NG(xF ′) and 〈V (F ′)〉G∗xF ′ 6' Zi, implying that xF ′aj ∈ E(G) for some

j, 0 ≤ j ≤ i − 1 (note that we have xF ′a0 ∈ E(G
∗
x), but not necessarily xF ′a0 ∈ E(G)).

If xF ′aj ∈ E(G) with 1 ≤ j ≤ i − 1, then 〈V (F )〉(G∗x)∗xF ′
6' Zi, a contradiction. Hence

xF ′a0 ∈ E(G), and then we have a contradiction by the same argument for the subgraph
F ′′ = 〈{x, xF ′ , a0, . . . , ai}〉G ' Zi.
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Thus, up to a symmetry, we have new(F ) = {b1b2, a0b1}. Then again {a0, b1, b2} ⊂ NG(x)
and F ′ = 〈{b2, x, a0, . . . , ai}〉G ' Zi. By condition (∗) in G, there is a vertex xF ′ ∈ VEL(G) such
that {b2, x, a0} ⊂ NG(xF ′) and 〈V (F ′)〉G∗xF ′ 6' Zi, and then b1xF ′ ∈ E(G

∗
x) and 〈V (F )〉(G∗x)∗xF ′

6'
Zi, a contradiction.

Now we can define a class of graphs Zi, i ≥ 1, by

Zi = ZSI
i ∩ ZT

i .

By Lemmas 3 and 4, we immediately have the following fact.

Theorem 5. Let i ≥ 1 be an integer and let G ∈ Zi and x ∈ VEL(G). Then G
∗
x ∈ Zi.

Theorem 5 has the following immediate corollary.

Corollary 6. Let G be a {K1,3, Zi}-free graph and let GM be an SM-closure of G. Then
GM ∈ Zi.

In our proof of Theorem 1, we will work in the (multi)graph H = L−1(GM), where GM

is an SM-closure of the 3-connected {K1,3, Z7}-free graph under consideration. For this, with
respect to Corollary 6, we need to “translate” the properties of graphs from the class Zi to
the preimage H = L−1(GM).

First of all, it is necessary to note that clearly L(S1,1,i+1) = Zi, but for the graph S2̄,i+1,
obtained by identifying a vertex of a double edge with an endvertex of a path of length
i + 1 (see Fig. 4), we also have L(S2̄,i+1) = Zi. Although apparently L−1(Zi) = S1,1,i+1 by

• • • • . . . •............................................................................................................. ......................................
................

................................................................................................................
...........
. ︸ ︷︷ ︸

i≥1 vertices

Figure 4: The multigraph S2̄,i

Theorem B, it is still possible that, for an induced subgraph X ' Zi of a line graph G, the
subgraph of H = L−1(G), corresponding to X, is isomorphic to S2̄,i+1 (an easy example is the
graph G obtained by replacing an edge of a sufficiently large cycle with a diamond, in which
H = L−1(G) contains a double edge, and every induced Zi in G corresponds to an S2̄,i+1 in
H). However, it turns out that this is not possible if G ∈ Zi.

Proposition 7. Let G ∈ Zi, i ≥ 1, be a line graph, and let H = L−1(G). Let X be an
induced subgraph of G, and let F ⊂ H be the corresponding subgraph of H. Then

(i) H does not contain a subgraph (not necessarily induced) isomorphic to S2̄,i+1,
(ii) X ' Zi if and only if F ' S1,1,i+1,

(iii) every subgraph F ⊂ H, F ' S1,1,i+1, satisfies the following conditions:
(α) at least one branch of length 1 of F is at a pendant edge of H, and
(β) there is a triangle or a double edge in H containing the center of F and at least

one further vertex on the branch of length i+ 1 of F .
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Proof. (i) If S2̄,i+1 ⊂ H, then G contains as an induced subgraph the graph X =
L(S2̄,i+1) ' Zi such that the vertices in V2(TX) correspond to the two edges of the double edge
in S2̄,i+1, hence are nonsimplicial by Theorem B, contradicting the definition of the class ZSI

i .
(ii) It is straightforward to verify that there are exactly two (multi)graphs F such that

L(F ) = Zi, namely, S2̄,i and S1,1,i+1. Statement (ii) then follows from (i).
(iii)(α) SinceG ∈ ZSI

i , every induced subgraphX ' Zi inG satisfies |V2(TX)∩VSI(G)| ≥ 1
by the definition of the class ZSI

i . The rest follows from (ii) and from Theorem B.
(iii)(β) As noted in Subsection 2.3, x ∈ VEL(G) if and only if the edge L−1(x) is in a

triangle or in a double edge in H. The rest follows from (ii) and from condition (∗) in the
definition of the class ZT

i .

In the proof of Theorem 1, we will have to handle the exceptional graph L(W 1). For this,
we will need the following simple technical lemma.

Lemma 8. Let G be a claw-free graph and let GM be its SM-closure. If G 6' L(W 1), then
GM 6' L(W 1).

Proof. Suppose, to the contrary, that GM ' L(W 1). Let G1, . . . , Gk be the sequence of
graphs that yields GM , i.e., G1 = G, Gk = GM and Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi),
i = 1, . . . , k−1. We will use the labeling of vertices of the graph W as in Fig. 2(c), and we will
further denote w′i the neighbor of wi in V1(W 1), yi = L(wiw

′
i), and yij = L(wiwj) for i, j =

1, . . . , 8, wiwj ∈ E(W ). Then clearly VSI(L(W 1)) = {yi| i = 1, . . . , 8}, and VEL(L(W 1)) = ∅.
Since xk−1 ∈ VSI(Gk) and Gk = GM ' L(W 1), we can choose the notation such that

xk−1 = y1. Then y1 ∈ VEL(Gk−1), hence some of the edges in 〈NGk
(y1)〉Gk

are new edges.
Observe that 〈NGk

(y1)〉Gk
is the triangle 〈{y12, y15, y18}〉Gk

. If one edge, say, y15y18, is new,
then 〈{y12, y15, y18, y23}〉Gk−1

' K1,3, a contradiction, and if two or three edges are new, then
〈NGk−1

(y1)〉Gk−1
is not connected, a contradiction again.

3 A special version of the “Nine-point-theorem”

The well-known “Nine-point-theorem” by Holton et al. [11] states that a 3-connected cubic
graph contains a cycle passing through any 9 prescribed vertices, and its strengthened version
by Bau and Holton [3] claims the same for cycles through 12 vertices, with the Petersen graph
as an exception (proved with the help of a computer). For our purposes, we use a special
version, developed in [14], based on another stronger version by Bau and Holton [2] that deals
with a set of vertices and an edge (proved without computer). For this, we need some more
terminology from [1].

Let G be a multigraph, R ⊂ G a spanning subgraph of G, and let R be the set of
components of R. Then G/R is the multigraph with V (G/R) = R, in which, for each edge in
E(G) between two components of R, there is an edge in E(G/R) joining the corresponding
vertices of G/R (note that this means that G/R can have multiple edges even if G is a graph).
The (multi-)graph G/R is said to be a contraction of G. (Roughly, in G/R, components of R
are contracted to single vertices while keeping the adjacencies between them). Clearly, if R is
connected, then G/R = K1, and if R is edgeless, then G/R = G; these two contractions are
called trivial.
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The contraction operation maps V (G) onto V (G/R) (where vertices of a component of R
are mapped on a vertex of G/R). If G/R ' F , then this defines a function α : G→ F which
is called a contraction of G on F .

Throughout the rest of this section, Π denotes the Petersen graph.

The following special version of the “nine-point-theorem” was proved in [14].

Theorem H [14]. Let H be a 3-edge-connected multigraph, A ⊂ V (H), |A| = 8, and let
e ∈ E(H). Then either

(i) H contains a closed trail T such that A ⊂ V (T ) and e ∈ E(T ), or
(ii) there is a contraction α : H → Π such that α(e) = xy ∈ E(Π) and α(A) = V (Π)\{x, y}.

We will also need the following auxiliary result from [14].

Lemma I [14]. Let H be a graph such that co(H) = W . If there is a vertex x ∈ V (co(H))
such that NH(x) = Nco(H)(x), then L(H) is Hamilton-connected.

Theorem 9. Let G ∈ Z7 be a 3-connected SM-closed graph such that G 6' L(W 1) and
co(H), where H = L−1(G), is 2-connected, and let e1, e2 ∈ E(H) be such that there is no
(e1, e2)-IDT in H. Then for every set A ⊂ V (co(H)), |A| = 8, there is an (e1, e2)-trail T in H
such that A ⊂ Int(T ).

Proof. First of all, it should be noted here that some parts of the proof of Theorem 9
are (almost) the same as the corresponding parts of the proof of Theorem 9 in [14] and of
Theorem 4 in [21]. Since the other parts are quite different, for the sake of completeness, we
give a complete proof here (including the identical parts).

Let H be a graph satisfying the assumptions of the theorem. By Proposition 7, every
subgraph (not necessarily induced) of H, isomorphic to S1,1,8, has its center in a triangle or a
double edge and at least one of its branches of length 1 at a pendant edge.

Let H ′ be the graph obtained from H by the following construction:
(i) if e1, e2 share a vertex of degree 2, say, ei = viv, i = 1, 2 with v ∈ V2(H), we suppress

v and set h = v1v2,
(ii) otherwise, we subdivide ei (or some edge in co(H) sharing a vertex with ei if ei is

pendant) with a vertex vi, i = 1, 2, and add a new edge h = v1v2.
If there is no contraction α′ : H ′ → Π such that α′(h) = x1x2 ∈ E(Π) and α′(A) = V (Π) \
{x1, x2}, then, by Theorem H, there is a closed trail T ′ in H ′ such that A ⊂ V (T ′) and
h ∈ E(T ′). Returning to H, i.e., subdividing h in case (i), or removing h and suppressing
v1, v2 (and extending the trail to ei if ei is pendant) in case (ii), we obtain an (e1, e2)-trail T
in H with A ⊂ Int(T ).

Thus, we suppose that there is a contraction α′ : H ′ → Π such that α′(h) = x1x2 ∈
E(Π) and α′(A) = V (Π) \ {x1, x2}. In case (i), H contains a subgraph isomorphic to the
Petersen graph with at least one subdivided edge which contains the graph S1,1,8: in the
labeling of vertices as in Fig. 2(b), if, say, the edge p1

1p
1
2 is subdivided with a vertex q, we

have S1,1,8(p1
1; q; p1

5; p1
2p

1
3p

1
4p

2
4p

2
1p

2
3p

2
5p

2
2) as a subgraph of H with both branches of length 1 at

nonpendant edges, a contradiction. Thus, for the rest of the proof, we suppose that H ′ is
obtained by construction (ii).
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Set H0 = co(H), and recall that H0 is 3-edge-connected (since H is essentially 3-edge-
connected). Let R′ be the spanning subgraph of H ′ that defines α′, and suppose that, say,
the component R1 = (α′)−1(x1) of R′ is nontrivial. Since x1 ∈ V (Π), the subgraph R1 is
separated from the rest of H ′ by a 3-edge-cut containing the edge h, implying that in H0, the
subgraph R1− v1 is separated from the rest of H0 by a 2-edge-cut, contradicting the fact that
H0 is 3-edge-connected. Hence (α′)−1(x1), and symmetrically also (α′)−1(x2), are trivial, i.e.,
V ((α′)−1(xi)) = {vi}, i = 1, 2. Removing from H ′ the edge h and suppressing v1 and v2, we
obtain from R′ the corresponding spanning subgraph R of H, and from R, in a standard way
a spanning subgraph R0 of H0. Note that clearly every component of R′ except {v1} and {v2}
corresponds to a nonempty component of R0 since α′ maps H ′ on a cubic graph and hence
every component of R′ must contain a vertex of degree more than 2. Then the components
of R0 define a contraction α : H0 → W , where W is the Wagner graph (see Fig. 2(c); recall
that W can be obtained from Π by removing an edge and suppressing the created vertices of
degree 2).

Case 1: α−1(w) is trivial for any w ∈ V (W ).

Then we have H0 ' W . By Lemma I, every vertex of H0 is incident in H to a pendant edge
or to a subdivided edge.

Subcase 1.1: no edge of H0 is subdivided in H.

Then, by Lemma I, each vertex of H0 is incident in H with at least one pendant edge,
i.e., H0 ∈ W , and at least one vertex, say, w1, is incident in H with at least two pendant
edges since G 6' L(W 1) by the assumption of the theorem. Let w′1, w

′′
1 be two neighbors

of w1 of degree 1 in H, and let w′8 be a neighbor of w8 of degree 1 in H. Then H contains
S1,1,8(w1;w′1;w′′1 ;w2w3w4w5w6w7w8w

′
8). By Proposition 7(iii)(β), w1 is in a triangle or in

a double edge; however, H0 ' W , hence also H, contains neither a triangle nor a double
edge, a contradiction.

Subcase 1.2: at least one edge of H0 is subdivided in H.

Suppose first that some of the edges wiwi+4 (indices modulo 8) is subdivided in H, say,
w1w5 is subdivided with a vertex w15. By Lemma I, w3 has a pendant edge, or some edge
incident to w3 is subdivided. By symmetry, we have the following possibilities:

Case Contradiction
Pendant edge w3w

′
3 S1,1,8(w3;w′3;w4;w2w1w15w5w6w7w8w

′
8)

w2w3 subdivided with w23 S1,1,8(w2;w23;w6;w1w15w5w4w3w7w8w
′
8)

w3w7 subdivided with w37 S1,1,8(w3;w37;w4;w2w1w15w5w6w7w8w
′
8)

where w′8 is a neighbor of w8 in V (H) \ V (H0) which exists by Lemma I (note that w′8
can be a vertex of degree 2, subdividing some of the edges incident to w8, in which case
the last two vertices of the long branch can occur in reverse order).

Thus, we can suppose that none of the edges wiwi+4 is subdivided, thus, say, w1w2 is
subdivided with a vertex w12. Then similarly w3 has a pendant edge or some of the edges
w2w3, w3w4 is subdivided, and we have the following possibilities:
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Case Contradiction
Pendant edge w3w

′
3 S1,1,8(w3;w′3;w4;w2w12w1w5w6w7w8w

′
8)

w2w3 subdivided with w23 S1,1,8(w2;w23;w6;w12w1w5w4w3w7w8w
′
8)

w3w4 subdivided with w34 S1,1,8(w3;w34;w7;w2w12w1w8w4w5w6w
′
6)

where again w′8 (w′6) is a neighbor of w8 (of w6) in V (H)\V (H0), and the last two vertices
of the long branch can occur in reverse order if w′8 (w′6) is of degree 2.

Since the graph H0, hence also H, contains neither a triangle nor a double edge, each of
the above subgraphs contradicts the fact that G ∈ Z7.

Case 2: α−1(w) is nontrivial for some w ∈ V (W ).

Let R0
1, . . . , R

0
8 be the components of the graph R0 that defines α, and choose the notation

such that R0
i = α−1(wi), i = 1, . . . , 8, and such that R0

1 = α−1(w1) is nontrivial. Recall that
∪8

i=1(V (R0
i )) = V (R0) = V (H0). Let Ri be the component of R that corresponds to R0

i ,
i = 1, . . . , 8 (i.e., ∪8

i=1(V (Ri)) = V (R) = V (H)).

We observe that e1, e2 ∈ E(H0) \ E(R0) since, by the construction of H ′, α−1(xi) = vi are
trivial and after deleting the edge h and suppressing the vertices v1, v2, each of the edges
e1, e2 has its vertices in different components of R0, hence also in different components
of R. By Theorem E(vi),(vii), this implies that each Ri is a triangle-free (simple) graph.
Moreover, each R0

i is 2-edge-connected since R0
i = α−1(wi) is separated from the rest of H0

by a 3-edge-cut and a cut-edge in R0
i would create a 2-edge-cut in H0.

We introduce the following notation. For any edge wiwj ∈ E(W ), we set fij = α−1(wiwj)
(i.e., fij joins R0

i and R0
j ), and we denote bij its vertex in R0

i and bji its vertex in R0
j . Thus,

we e.g. have AH0(R
0
1) = {b1

2, b
1
5, b

1
8}, where 2 ≤ |{b1

2, b
1
5, b

1
8}| ≤ 3, and {f12, f15, f18} is the

3-edge-cut that separates R0
1 from the rest of H0.

Claim 1. Let R0
i be a component of R0, 1 ≤ i ≤ 8, and let AH0(R

0
i ) = {bij1 , b

i
j2
, bij3}.

Then there is a vertex di ∈ V (R0
i ) and three internally vertex-disjoint (possibly trivial)

(di, bijk)-paths P i
jk

, k = 1, 2, 3.

Proof. Let P be an arbitrary (possibly trivial) (bij1 , b
i
j2

)-path in R0
i , and let P i

j3
be a

shortest (di, bij3)-path with di ∈ V (P ). Then the vertex di and the paths P i
j1

= diPbij1
P i
j2

= diPbij2 and P i
j3

have the required properties. �

Claim 2. The component R1 contains a cycle C of length at least 4, vertices c2, c5, c8 ∈
V (C) and paths Q1

2, Q
1
5, Q

1
8 (possibly trivial) such that

(i) 2 ≤ |{c2, c5, c8}| ≤ 3,
(ii) Q1

2 is a (c2, b
1
2)-path, Q1

5 is a (c5, b
1
5)-path and Q1

8 is a (c8, b
1
8)-path,

(iii) the paths Q1
2, Q

1
5, Q

1
8 are internally vertex-disjoint.

Proof. Let d1 and P 1
2 , P 1

5 , P 1
8 be the vertex and paths in R0

1 given by Claim 1. Since R0
1 is

nontrivial, at least one of P 1
2 , P

1
5 , P

1
8 is nontrivial. Suppose that, say, P 1

5 is nontrivial. We
consider a (b1

2, b
1
8)-path P and choose two edge-disjoint paths P ′5, P ′′5 such that

• P ′5 is a (b1
5, c2)-path and P ′′5 is a (b1

5, c8)-path for some c2, c8 ∈ V (P ′),
• if c2 6= c8, then c2 is on P between c8 and b1

2, and
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• c2, c8, P ′5 and P ′′5 are chosen such that |E(P ′5)|+ |E(P ′′5 )| is smallest possible.

If c2 6= c8, we choose c5 as the last common vertex of P ′5 and P ′′5 , and we set C0 =
c2Pc8P

′′
5 c5P

′
5c2, Q1

2 = c2P1b
1
2, Q1

8 = c8P1b
1
8, and, say, Q1

5 = c5P
′
5b

1
5. If c2 = c8, we choose c5

as the last common vertex of P ′5 and P ′′5 distinct from the vertex c2 = c8 (possibly c5 = b1
5),

and set C0 = c2P
′
5c5P

′′
5 c2, Q1

2 = c2P1b
1
2, Q1

8 = c8P1b
1
8, and, say, Q1

5 = c5P
′
5b

1
5.

If P2 or P8 is nontrivial, we get C0, Q1
2, Q1

5 and Q1
8 in the same way with the only difference

that possibly c5 = c8 or c2 = c5.

We have obtained a cycle C0 and paths Q1
2, Q1

5 and Q1
8 in R0

1 (note that C0 can possibly be
a triangle or a double edge). Now, let C be the cycle in R1 that corresponds to the cycle
C0, and, with a slight abuse of notation, let Q1

2, Q1
5 and Q1

8 be the corresponding paths in
R1. Then |V (C)| ≥ 4 since R1 is a triangle-free simple graph, and clearly C0, Q1

2, Q1
5 and

Q1
8 have the requested properties. �

For the requested graph S1,1,8, we describe a subgraph of H in which it is contained. Here,
for integers i0, j0, k0, 1 ≤ i0 ≤ j0 ≤ k0, we use S≥i0,≥j0,≥k0 to denote a graph containing an
Si0,j0,k0 as a subgraph. If a component R0

i contains the vertex of degree 3 of the S≥i0,≥j0,≥k0 ,
then it is located in the vertex di and uses the paths P i

jk
, k = 1, 2, 3, given by Claim 1,

and for any other component R0
i , 2 ≤ i ≤ 8, and bij, b

i
k ∈ AH0(R

0
i ), we use Qi

j,k to denote
an arbitrarily chosen (bij, b

i
k)-path in R0

i (of course, if R0
i is trivial, all these paths collapse

to a single vertex). If we relabel the vertices of the cycle C given by Claim 2 such that
C = u1u2 . . . u|V (C)| with u1 = c2, then the requested subgraph, containing S1,1,8, can be
described as S≥1,≥1,≥8(d4;P 4

3 b
3
4;P 4

5 b
5
4;P 4

8Q
8
4,7Q

7
8,6Q

6
7,2Q

2
6,1Q

1
2u1u2u3u4). Since b3

4, b
5
4 ∈ V (H0),

the branches of length 1 of the S1,1,8 are at nonpendant edges, contradicting the fact that
G ∈ Z7.

4 Proof of Theorem 1

The following lemma, combining techniques developed in the previous sections, will be crucial
in our proof.

Lemma 10. Let G be a 3-connected non-Hamilton-connected SM-closed claw-free graph.
Then G has an induced subgraph G̃ (possibly G̃ = G) such that G̃ is 3-connected, non-
Hamilton-connected and SM-closed, and, moreover, H̃0 = co(L−1(G̃)) is 2-connected, and
either c(H̃0) ≥ 9 and |V (H̃)| ≥ 10, or H̃0 ∈ {W} ∪W.

Proof. Let H = L−1(G), and set H0 = co(H). By Theorem G(ii), H0 is 3-edge-connected.
Suppose first that H0 is not 2-connected, let B0

1 , . . . , B
0
b be blocks of H0, let B1, . . . , Bb be

the corresponding subgraphs of H (i.e., B0
i = co(Bi), i = 1, . . . , b), and let B′i be obtained

from Bi by attaching a pendant edge to every vertex which is a cutvertex of H0, i = 1, . . . , b.
Then obviously co(B′i) = co(Bi) = B0

i , and B0
i is 2-connected, i = 1, . . . , b. If every B′i

has an (f1, f2)-IDT for any f1, f2 ∈ E(B′i), then an easy induction shows that G = L(H) is
Hamilton-connected, a contradiction. Hence there is a B′i0 having no (f1, f2)-IDT for some
f1, f2 ∈ E(B′i0).
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Set H̃ = B′i0 and G̃ = L(H̃). Then G̃ is an induced subgraph of G (since H̃ is a subgraph of

H), is 3-connected (since H̃ is essentially 3-edge-connected), non-Hamilton-connected (since
H̃ = B′i0 has no (f1, f2)-IDT) and SM-closed (since a local completion in G̃ is a local completion

in G), and, by the construction, H̃0 = co(H̃) = B0
i0

is 2-connected. By Theorem G(v), H̃0 is

not strongly spanning trailable, implying that, by Theorem D, c(H̃0) ≥ 9 and |V (H̃0)| ≥ 10,
unless H̃0 ' W or H̃0 ∈W.

Proof of Theorem 1. Let G be a 3-connected {K1,3, Z7}-free graph, and suppose, to the
contrary, that G is not Hamilton-connected. By Theorem E, by Corollary 6 and by Lemma 8,
we can suppose that G is SM-closed, G ∈ Z7, and G 6' L(W 1). Let thus H = L−1(G). By
Proposition 7, H contains no subgraph isomorphic to S2̄,8, and every subgraph of H isomorphic
to S1,1,8 has its center in a triangle or a double edge and at least one of its branches of length 1
at a pendant edge.

Set H0 = co(H). By Theorem G(ii), H0 is 3-edge-connected. By Lemma 10, we can
suppose that H0 is 2-connected with c(H0) ≥ 9 and |V (H0)| ≥ 10, unless H0 ' W or
H0 ∈ W. However, if H0 ' W , then, by Theorem 9 and since |V (H0)| = 8, H has an
(e1, e2)-IDT for any e1, e2 ∈ E(H0) and hence also for any e1, e2 ∈ E(H), implying that
G = L(H) is Hamilton-connected, a contradiction. So, let next H0 ∈ W, and let {e1, e2} be
a double edge in H0. By symmetry, we can suppose that V (e1) = V (e2) = {w1, v}, where
v ∈ V2(H) subdivides either the edge w1w2 or the edge w1w5. If {e1, e2} is a double edge
also in H, then e1vw1w2w3w4w5w6w7w8e2 or e1w1w2w3w4w5w6w7w8e2 is an (e1, e2)-IDT in
H, contradicting Theorem E(vii)(β). Thus, by Lemma F, both e1 and e2 are subdivided
in H, say, ei with a vertex vi ∈ V2(H), i = 1, 2. Then, if v subdivides w1w2, H con-
tains the subgraph S1,1,8(v; v1; v2;w2w3w4w5w6w7w8w1), and if v subdivides w1w5, H contains
S1,1,8(v; v1; v2;w5w6w7w8w1w2w3w4). In both cases, we have an S1,1,8 in H with both branches
of length 1 at nonpendant edges, a contradiction.

Thus, we have c(H0) ≥ 9 and |V (H0)| ≥ 10. We consider the possible cases separately.

Throughout the proof, in each of the cases, C always denotes a cycle C = x1x2 . . . xc(H0)

such that
(i) C is a longest cycle in H0,

(ii) subject to (i), C dominates in H maximum number of edges.
We further denote R = V (H) \ V (C), N = {y ∈ V (H0)| NR(y) = ∅}, R0 = R ∩ V (H0), and if
R0 6= ∅, we set R0 = {y1, . . . , y|R0|} and we choose the notation such that y1x1 ∈ E(H0). An
edge xixj with xi, xj ∈ V (C), 1 ≤ i, j ≤ |V (C)|, will be called a chord of C, and we say that
xixj is a k-chord if the shorter one of the two subpaths of C determined by xi and xj has k
interior vertices.

The proof of Theorem 1 consists in a thorough case analysis. In the proof, we will often list
vertices of a subgraph Si,j,k, and there are two general comments to all these situations.
• When some edge e = xixj of the Si,j,k is in E(H0), it can always happen that e is

subdivided in H, i.e., formally, e /∈ E(H). However, it is immediate to see that if this
happens, then the corresponding subgraph of H, which instead of e = xixj contains a
path xizxj with z ∈ V2(H), also contains Si,j,k as a subgraph.
• When a vertex xi ∈ V (C) has a (potential) neighbor z ∈ R and the vertex z occurs as

the last vertex of a branch of the Si,j,k, then such a vertex z can be an endvertex of a
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pendant edge attached to xi, or can be z ∈ V2(H) and z subdivides some of the edges
incident to xi. It should be noted that in the second case, the vertices xi and z can
occur in reverse order in the list (i.e., xi being the last vertex of the branch).

These facts will be always implicitly understood throughout the proof.

Claim 1. Let {e1, e2} ⊂ E(H0) be a double edge in H0. Then
(i) {e1, e2} ⊂ E(H),

(ii) V (e1) = V (e2) ⊂ V (C),
(iii) if |V (H0)| = c(H0), then {e1, e2} ∩ E(C) = ∅.

Proof. Set V (e1) = V (e2) = {u1, u2}, let P be a shortest path from u1 to C (possibly trivial
if u1 ∈ V (C)), and choose the notation such that P is a (u1, x1)-path (possibly u1 = x1 if P
is trivial).

(i) If {e1, e2} 6⊂ E(H), then, by Lemma F, both e1 and e2 are subdivided in H, say, ei with
a vertex vi ∈ V2(H), i = 1, 2. Then the graph S1,1,≥8(u1; v1; v2;Px1x2x3x4x5x6x7x8x9) contains
a subgraph S1,1,8 with both branches of length 1 at nonpendant edges, a contradiction. Hence
{e1, e2} is a double edge also in H.

(ii) If, say, u2 /∈ V (C), then, for the same choice of P as above, H contains the subgraph
S2̄,≥8(u1;u2;Px1x2x3x4x5x6x7x8x9), containing an S2̄,8, a contradiction.

(iii) If, say, V (e1) = V (e2) = x1x2, then T = e1x2x3 . . . xc(H0)x1e2 is an (e1, e2)-IDT in H,
contradicting Theorem E(vii)(β). �

Note that clearly a double edge in H is a double edge also in H0; thus, by Claim 1(i),
{e1, e2} is a double edge in H if and only if {e1, e2} is a double edge in H0.

Claim 2. If c(H0) ≥ 10, then no chord of C is subdivided in H.

Proof. Let, say, x1xi ∈ E(H0) with 3 ≤ i ≤ c(H0)− 1 be subdivided in H with a vertex v ∈
V2(H). Then H contains the subgraph S1,1,8(x1; v;xc(H0);x2x3x4x5x6x7x8x9), a contradiction
(note that the edges x1v, x1xc(H0) are nonpendant). �

Case 1: c(H0) = 9 and |V (H0)| ≥ 10.

Claim 3. For any u ∈ V (H0), |NR0(u)| ≤ 1.

Proof. Let, to the contrary, v1, v2 ∈ NR0(u) for some u ∈ V (H0). If u ∈ V (C), say,
u = x1, then H contains S1,1,8(u; v1; v2;x2x3x4x5x6x7x8x9), a contradiction; and if u is at
distance 1 from C, say, ux1 ∈ E(H0), then H contains S1,1,8(u; v1; v2;x1x2x3x4x5x6x7x8), a
contradiction again (note that the edges uv1, uv2 are nonpendant since v1, v2 ∈ V (H0), and
none of the edges under consideration can be a double edge by Claim 1).

Thus, u is at distance at least 2 from C. Let P be a shortest path from u to C, and
choose the notation such that P is a (u, x1)-path and v1 is the successor of u on P . Since
δ(H0) ≥ 3, u has, besides v1 and v2, another neighbor v3 ∈ V (H0), and then H contains
S1,1,≥8(u; v2; v3; v1Px1x2x3x4x5x6x7), a contradiction. �

By Claim 3, we have δ(〈R0〉H0) ≤ 1.
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Subcase 1.1: E(〈R0〉H0) 6= ∅.
Let y1y2 ∈ E(〈R0〉H). Since δ(H0) ≥ 3, by Claim 3 and by Claim 1(ii), each of y1, y2 has
two neighbors on C and these neighbors are distinct. Moreover, any two neighbors of any
of y1, y2 must be at distance at least 2 on C, and any neighbor of y1 must be from any
neighbor of y2 at distance at least 3 on C, for otherwise there is a cycle longer than C.
However, this implies |V (C)| ≥ 3 + 3 + 2 + 2 = 10 > 9 = |V (C)|, a contradiction.

Subcase 1.2: E(〈R0〉H0) = ∅.
Since δ(H0) ≥ 3 and by Claim 1(ii), every vertex y ∈ R0 has in H0 three distinct neighbors
on C. Since C is longest, no two neighbors of a y ∈ R0 can be consecutive on C. Let
y1 ∈ R0. By symmetry, we can choose the notation such that NC(y1) ⊃ {x1, x3, x5},
NC(y1) = {x1, x4, x7}, or NC(y1) = {x1, x3, x6}.
We set R1 = R \ {y1} and N1 = {y ∈ V (H0)| NR1(y) = ∅}.

Claim 4. Let y1 ∈ R0.
(i) If NC(y1) ⊃ {x1, x3, x5}, then {x1, x5, x7, x8} ⊂ N1.
(ii) If NC(y1) = {x1, x4, x7}, then {x2, x3, x5, x6, x8, x9} ⊂ N1.
(iii) If NC(y1) = {x1, x3, x6}, then {x4, x5, x8} ⊂ N1.

Proof. (i) If x1 /∈ N1, then there is a vertex x′1 ∈ NR1(x1), and H contains the subgraph
S1,1,8(x3;x2;x4; y1x5x6x7x8x9x1x

′
1), a contradiction; if x8 /∈ N1, then there is a vertex

x′8 ∈ NR1(x8), and H contains S1,1,8(x1;x2;x9; y1x3x4x5x6x7x8x
′
8), a contradiction again

(note that here, and in all the following cases, the branches of length 1 are at nonpendant
edges). The remaining cases are symmetric.

(ii) If x2 /∈ N1, then there is a vertex x′2 ∈ NR1(x2), and H contains the subgraph
S1,1,8(x4;x3; y1;x5x6x7x8x9x1x2x

′
2), a contradiction. The remaining cases are symmetric.

(iii) There are the following possibilities.

Neighbor of xi in R1 Contradiction
x′4 ∈ NR1(x4) S1,1,8(x6;x5; y1;x7x8x9x1x2x3x4x

′
4)

x′5 ∈ NR1(x5) S1,1,8(x3;x4; y1;x2x1x9x8x7x6x5x
′
5)

x′8 ∈ NR1(x8) S1,1,8(x6;x7; y1;x5x4x3x2x1x9x8x
′
8)

In each of the cases, we have obtained a contradiction. �

Subcase 1.2.1: |R0| ≥ 2.

Let y1, y2 ∈ R0. If NC(y1) ⊃ {x1, x3, x5}, then, by Claim 3 and by Claim 4(i), NC(y2) ⊂
{x2, x4, x6, x9}. Since |NC(y2)| ≥ 3, either x2, x9 ∈ NC(y2), or x2, x4 ∈ NC(y2) (in H0),
but in the first case the cycle C ′ = x1y1x3x4x5x6x7x8x9y2x2x1, and in the second case
the cycle C ′′ = x1x2y2x4x3y1x5x6x7x8x9x1 is longer than C, a contradiction.

If NC(y1) = {x1, x4, x7}, then, by Claim 3 and by Claim 4(ii), NC(y2) = ∅, a contra-
diction.

If NC(y1) = {x1, x3, x6}, then, by Claim 3 and by Claim 4(iii), NC(y2) ⊂ {x2, x7, x9},
and the cycle C ′ = x1x2y2x9x8x7x6x5x4x3y1x1 is longer than C, a contradiction.

Subcase 1.2.2: |R0| = 1.

Then the set V (C) ∪ {y1} dominates all edges of H.

17



Subcase 1.2.2.1: NC(y1) ⊃ {x1, x3, x5}.
Recall that, by Claim 4(i), {x1, x5, x7, x8} ⊂ N1. If x1x7 /∈ E(H0), then the set
A1 = (V (C) ∪ {y1}) \ {x1, x7} with |A1| = 8 dominates all edges of H and G =
L(H) is Hamilton-connected by Theorem 9, a contradiction. Hence x1x7 ∈ E(H0).
Similarly, considering the set A2 = (V (C)∪{y1})\{x1, x8} with |A2| = 8, Theorem 9
implies x1x8 ∈ E(H0). Then the edges x1x7, x1x8, x7x8, x8x9 and x1x9 determine
a diamond in H0. If some of the edges x1x7, x1x8 is subdivided in H, say, x1x7

with a vertex x17 ∈ V2(H), then H contains S1,1,8(x1; y1;x17;x2x3x4x5x6x7x8x9), a
contradiction. Hence x1x7 ∈ E(H), and, similarly, x1x8 ∈ E(H). If some of the
edges x7x8, x8x0, x1x9 is subdivided in H, say, x8x9 with a vertex x89 ∈ V2(H), then
H contains S1,1,8(x1; y1;x9;x2x3x4x5x6x7x8x89). Hence x8x9 ∈ E(H), and, similarly,
x7x8 ∈ E(H) and x1x9 ∈ E(H). But then the edges x1x7, x1x8, x7x8, x8x9 and x1x9

determine a diamond also in H, a contradiction.

Subcase 1.2.2.2: NC(y1) = {x1, x4, x7}.
Recall that, by Claim 4(ii), {x2, x5} ⊂ N1. By Theorem 9 for the set A = V (C) ∪
{y1} \ {x2, x5} with |A| = 8, we have x2x5 ∈ E(H0), but then the cycle C ′ =
x1y1x4x3x2x5x6x7x8x9x1 is longer than C, a contradiction.

Subcase 1.2.2.3: NC(y1) = {x1, x3, x6}.
Recall that, by Claim 4(iii), {x4, x8} ⊂ N1. Theorem 9 for the set A = V (C) ∪
{y1} \ {x4, x8} with |A| = 8 then implies x4x8 ∈ E(H0). We observe that, moreover,
x4 ∈ N , since if x1y1 ∈ E(H0), then the cycle C ′ = x1x2x3y1x4x5x6x7x8x9x1 is longer
than C, a contradiction.

Then, if NH0(y1) = NH(y1), the set A = V (C) \ {x4} dominates all edges of H and
G = L(H) is Hamilton-connected by Theorem 9; hence y1 is adjacent to some vertex
y2 ∈ R \ R0. If x2 ∈ N , then the cycle C ′ = x1y1x3x4x5x6x7x8x9x1 dominates more
edges than C, contradicting the choice of C. Hence there is a vertex x′2 ∈ NR(x2).
But then H contains S1,1,8(x6;x5;x7; y1x1x9x8x4x3x2x

′
2), a contradiction.

Case 2: c(H0) = |V (H0)| = 10.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 2.1: C has a 1-chord.

Let x1x3 ∈ E(H0). We observe that no edge of C except possibly x1x2 and x2x3 is
subdivided in H, for if e.g. x3x4 is subdivided with a vertex x34 ∈ V2(H), then H contains
S1,1,8(x3;x1;x2;x34x4x5x6x7x8x9x10), a contradiction. If there is an x′10 ∈ NR(x10), then
H contains S1,1,8(x3;x1;x2;x4x5x6x7x8x9x10x

′
10), and if there is an x′9 ∈ NR(x9), then

H contains S1,1,8(x1;x10;x2;x3x4x5x6x7x8x9x
′
9), a contradiction. Hence {x9, x10} ⊂ N ,

and, symmetrically, {x5, x6} ⊂ N . Considering the set A = V (C) \ {x6, x9} with |A| = 8,
Theorem 9 implies x6x9 ∈ E(H). Similarly, by Theorem 9, for the set A = V (C)\{x6, x10}
we have x6x10 ∈ E(H), and for the set A = V (C)\{x5, x10} we have x5x10 ∈ E(H) (recall
that none of these chords of C is subdivided in H by Claim 2). But then x5, x6, x9 and
x10 are vertices of a diamond in H, a contradiction.

Subcase 2.2: C has a 3-chord.
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Let x1x5 ∈ E(H0). Since δ(H0) ≥ 3 and R0 = ∅, x3 must be in a chord.

Subcase 2.2.1: x3 is in a 2-chord.

By symmetry, let x3x6 ∈ E(H0). Then {x5, x7} ⊂ N , since if x′5 ∈ NR(x5), then
H contains S1,1,8(x3;x2;x4;x6x7x8x9x10x1x5x

′
5), and if x′7 ∈ NR(x7), then H contains

S1,1,8(x3;x2;x4;x6x5x1x10x9x8x7x
′
7). If x5x7 /∈ E(H), then the set A = V (C) \ {x5, x7}

dominates all edges of H and G = L(H) is Hamilton-connected by Theorem 9, a
contradiction. Hence x5x7 ∈ E(H), and we are back in Subcase 2.1 (recall that,
throughout the proof, we implicitly use Claim 2, i.e., the fact that for |i − j| > 1,
xixj ∈ E(H) if and only if xixj ∈ E(H0)).

Subcase 2.2.2: x3 is in a 3-chord.

Let x3x7 ∈ E(H0). Then, similarly as above, we have x6 ∈ N (otherwise H con-
tains S1,1,8(x3;x2;x4;x7x8x9x10x1x5x6x

′
6)), and also x8 ∈ N (otherwise H contains

S1,1,8(x3;x2;x4;x7x6x5x1x10x9x8x
′
8)). Theorem 9 for A = V (C) \ {x6, x8} then implies

x6x8 ∈ E(H0), and we are back in Subcase 2.1.

Subcase 2.2.3: x3 is in a 4-chord.

Then x3x8 ∈ E(H0), and considering S1,1,8(x3;x2;x4;x8x9x10x1x5x6x7x
′
7) for an x′7 ∈

NR(x7) and S1,1,8(x3;x2;x4;x8x7x6x5x1x10x9x
′
9) for an x′9 ∈ NR(x9), we have {x7, x9} ⊂

N . Theorem 9 for A = V (C) \ {x7, x9} then implies x7x9 ∈ E(H0), and we are back in
Subcase 2.1.

Subcase 2.3: C has only 4-chords.

If some edge of C is subdivided in H, say, x′1 ∈ V2(H) with NH(x′1) = {x1, x2}, then
H contains S1,1,8(x1;x′1;x10;x6x5x4x3x2x7x8x9), a contradiction. If some vertex of C
is incident to a pendant edge, say, x1x

′
1 ∈ E(H) with x′1 ∈ V1(H), then H contains

S1,1,8(x1;x′1;x10;x2x3x4x5x6x7x8x9). By Proposition 7(iii)(β), the vertex x1 is in a trian-
gle, but it is impossible to create a triangle using only edges of C and 4-chords. Thus,
V (C) = N , i.e., R = ∅. By the assumption of the subcase, say, x1x3 /∈ E(H), implying
that the set A = V (C)\{x1, x3} with |A| = 8 dominates all edges of H. Thus, G = L(H)
is Hamilton-connected by Theorem 9, a contradiction.

Subcase 2.4: C has only 2-chords and 4-chords, and at least one 2-chord.

Let T be a triangle in H0. Then V (T ) ⊂ V (C) = V (H0), implying that each edge of T
is an edge of C, a 2-chord of C or a 4-chord of C. However, a 2-chord spans 3 edges of
C, and a 4-chord spans 5 edges of C, implying that the sum of distances of vertices of T
along C is odd, contradicting the fact that |V (C)| = 10. Thus, H0 is triangle-free, and
since a triangle in H is also a triangle in H0 by Lemma F, H is also triangle-free.

Now, if, say, x1 is incident to a pendant edge x1x
′
1 ∈ E(H) with x1 ∈ V1(H), then H

contains S1,1,8(x1;x′1;x10;x2x3x4x5x6x7x8x9), hence x1 is in a triangle, contradicting the
fact that H is triangle-free. By symmetry, there are no pendant edges in H.

By the assumption, C has a 2-chord, let thus x1x4 ∈ E(H0). Since x5x7 /∈ E(H0) by
Subcase 2.1, if x5, x7 ∈ N , then G = L(H) is Hamilton-connected by Theorem 9 for the
set A = V (C) \ {x5, x7}, a contradiction. Hence at most one of the vertices x5, x7 is in
N , i.e., at least one of the edges x4x5, x5x6, x6x7, x7x8 is subdivided in H. Applying
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the same argument to the 1-chords x6x8, x7x9 and x8x10, and to the 3-chords x5x9 and
x6x10, we conclude that among the edges x5x6, x6x7, x7x8 x8x9 and x9x10, at least two of
them are subdivided in H. Then, if, say, x6x7 is subdivided with x′6 ∈ V2(H) and x8x9

is subdivided with x′8 ∈ V2(H), we have S1,1,8(x4;x1;x3;x5x6x
′
6x7x8x

′
8x9x10) (other cases

are analogous).

Case 3: c(H0) ≥ 10 and |V (H0)| > c(H0).

Set c(H0) = t. Then H contains S1,1,8(x1; y1;xt;x2x3x4x5x6x7x8x9) (note that the edge x1y1

is nonpendant since y1 ∈ R0).

Case 4: c(H0) = |V (H0)| = 11.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 4.1: C has a 1-chord.

Let x1x3 ∈ E(H0). Then H contains S1,1,8(x3;x1;x2;x4x5x6x7x8x9x10x11), a contradic-
tion.

Subcase 4.2: C has a 3-chord.

Let x1x5 ∈ E(H0). Since δ(H0) ≥ 3, x3 is in a chord.

By symmetry, there are the following possibilities.

Chord containing x3 Contradiction
2-chord x3x6 S1,1,8(x3;x2;x4;x6x5x1x11x10x9x8x7)
3-chord x3x7 S1,1,8(x3;x2;x4;x7x6x5x1x11x10x9x8)
4-chord x3x8 S1,1,8(x3;x2;x4;x8x7x6x5x1x11x10x9)

Subcase 4.3: C has a 2-chord.

Let x1x4 ∈ E(H0). By the previous subcases, C has only 2-chords and 4-chords. We
consider the possible chords containing x2.

Subcase 4.3.1: x2 is in the 2-chord x2x10.

We show that {x4, x6, x8} ⊂ N .

Neighbor of xi in R Contradiction
x′4 ∈ NR(x4) S1,1,8(x2;x1;x3;x10x9x8x7x6x5x4x

′
4)

x′6 ∈ NR(x6) S1,1,8(x4;x3;x5;x1x11x10x9x8x7x6x
′
6)

x′8 ∈ NR(x8) S1,1,8(x10;x9;x11;x2x3x4x5x6x7x8x
′
8)

Thus, {x4, x6, x8} ⊂ N . By the previous subcases, {x4, x6, x8} is an independent set.
Then the set A = V (C) \ {x4, x6, x8} with |A| = 8 dominates all edges of H and
G = L(H) is Hamilton-connected by Theorem 9, a contradiction.

Subcase 4.3.2: x2 is in the 2-chord x2x5.

Since δ(H0) ≥ 3, x3 is in a chord. If x3 is in a 2-chord, we are in a situation symmetric
to Subcase 4.3.1, which implies a contradiction. Thus, by Subcases 4.1 and 4.2, x3 is
in a 4-chord, and, by symmetry, we can suppose that x3x8 ∈ E(H0) (recall that we
already have x1x4, x2x5 ∈ E(H0), hence the second case x3x9 ∈ E(H0) is symmetric).
We show that {x1, x3, x10} ⊂ N .
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Neighbor of xi in R Contradiction
x′1 ∈ NR(x1) S1,1,8(x5;x4;x6;x2x3x8x9x10x11x1x

′
1)

x′3 ∈ NR(x3) S1,1,8(x5;x4;x6;x2x1x11x10x9x8x3x
′
3)

x′10 ∈ NR(x10) S1,1,8(x1;x11;x2;x4x5x6x7x8x9x10x
′
10)

Thus, {x1, x3, x10} ⊂ N . Since the set {x4, x6, x8} is independent by the previous
subcases, the set A = V (C) \ {x1, x3, x10} with |A| = 8 dominates all edges of H and
G = L(H) is Hamilton-connected by Theorem 9, a contradiction.

Subcase 4.3.3: x2 is in the 4-chord x2x7.

Then {x3, x11} ⊂ N , since if there is a vertex x′3 ∈ NR(x3), then H contains the
subgraph S1,1,8(x7;x6;x2;x8x9x10x11x1x4x3x

′
3), and if there is an x′11 ∈ NR(x11), then

H contains S1,1,8(x4;x1;x3;x5x6x7x8x9x10x11x
′
11).

We consider the set A = V (C)\{x3, x6, x11}. We have x3x6 /∈ E(H0) and x3x11 /∈ E(H0)
by the previous subcases. If A is independent, then G = L(H) is Hamilton-connected
by Theorem 9, a contradiction. Hence necessarily x6x11 ∈ E(H0), and then H contains
S1,1,8(x2;x1;x3;x7x8x9x10x11x6x5x4).

Subcase 4.3.4: x2 is in the 4-chord x2x8.

Since this is the only remaining subcase, by symmetry, x3 is in the 4-chord x3x8. Then
H contains S1,1,8(x8;x2;x3;x9x10x11x1x4x5x6x7).

Subcase 4.4: C has only 4-chords.

By parity, some vertex of C is in two 4-chords. Choose the notation such that x1x6, x1x7 ∈
E(H0). The possible 4-chords containing x2 are x2x7 and x2x8. However, if x2x7 ∈ E(H0),
then the edges x1x2, x6x7, x1x6, x1x7 and x2x7 determine a diamond in H0. If, say, x1x2 is
subdivided in H with a vertex x′1, then H contains S1,1,8(x2;x′1;x7;x3x4x5x6x1x11x10x9).
Hence x1x2 ∈ E(H), and, symmetrically, x6x7 ∈ E(H). Since also x1x6, x1x7, x2x7 ∈
E(H) by Claim 2, the chord x2x7 implies a diamond in H, a contradiction. Thus, x2x8 ∈
E(H0). Then the possible 4-chords containing x10 are x4x10 and x5x10, however, if x4x10 ∈
E(H0), then H contains S1,1,8(x10;x9;x11;x4x5x6x1x7x8x2x3), and if x5x10 ∈ E(H0), then
H contains S1,1,8(x10;x9;x11;x5x6x1x7x8x2x3x4).

Case 5: c(H0) = |V (H0)| = 12.

Since δ(H0) ≥ 3, every vertex of C is in a chord. If x1x3 ∈ E(H0), then H contains
the subgraph S1,1,8(x3;x1;x2;x4x5x6x7x8x9x10x11), and if x1x4 ∈ E(H0), then H contains
S1,1,8(x4;x1;x3;x5x6x7x8x9x10x11x12). By symmetry, C has no 1-chords and no 2-chords.

Subcase 5.1: C has a 3-chord.

Let x1x5 ∈ E(H0). We consider possible chords containing x3. By symmetry, there are
the following possibilities.

Chord containing x3 Contradiction
3-chord x3x7 S1,1,8(x3;x2;x4;x7x6x5x1x12x11x10x9)
4-chord x3x8 S1,1,8(x3;x2;x4;x8x7x6x5x1x12x11x10)
5-chord x3x9 S1,1,8(x3;x2;x4;x9x8x7x6x5x1x12x11)
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Subcase 5.2: C has a 4-chord.

Let x1x6 ∈ E(H0).Then, for a chord containing x3, we have the following possibilities.

Chord containing x3 Contradiction
4-chord x3x8 S1,1,8(x3;x2;x4;x8x9x10x11x12x1x6x7)
5-chord x3x9 S1,1,8(x3;x2;x4;x9x10x11x12x1x6x7x8)
4-chord x3x10 S1,1,8(x3;x2;x4;x10x11x12x1x6x7x8x9)

Subcase 5.3: C has only 5-chords.

Then H contains S1,1,8(x1;x2;x12;x7x6x5x4x3x9x10x11).

Case 6: c(H0) = |V (H0)| = 13.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 6.1: C has a k-chord for some k, 1 ≤ k ≤ 3.

By symmetry, we can suppose that x1xk+2 ∈ E(H0), 1 ≤ k ≤ 3. Then H contains the
subgraph S1,1,8(x1;x2;x13;xk+2xk+3 . . . xk+9).

Subcase 6.2: C has a 4-chord.

Let x1x6 ∈ E(H0). By the previous subcases and by symmetry, possible chords contain-
ing x10 are x10x2 or x10x3, and then H contains S1,1,8(x6;x5;x7;x1x13x12x11x10x2x3x4) if
x10x2 ∈ E(H0), or S1,1,8(x3;x2;x4;x10x11x12x13x1x6x7x8) if x10x3 ∈ E(H0).

Subcase 6.3: C has only 5-chords.

Let x1x7 ∈ E(H0). By symmetry, we have x4x10 ∈ E(H0), and then H contains
S1,1,8(x4;x3;x5;x10x11x12x13x1x7x8x9).

Case 7: c(H0) = |V (H0)| = 14.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 7.1: C has a k-chord for some k, 1 ≤ k ≤ 4.

By symmetry, we can suppose that x1xk+2 ∈ E(H0), 1 ≤ k ≤ 4. Then H contains the
subgraph S1,1,8(x1;x2;x14;xk+2xk+3 . . . xk+9).

Subcase 7.2: C has a 5-chord.

Let x1x7 ∈ E(H0). The vertex x4 is in a chord and, by the previous subcases and by
symmetry, x4x10 ∈ E(H0) or x4x11 ∈ E(H0). However, in the first case H contains
the subgraph S1,1,8(x4;x3;x5;x10x11x12x13x14x1x7x8), and in the second case H contains
S1,1,8(x4;x3;x5;x11x12x13x14x1x7x8x9).

Subcase 7.3: C has only 6-chords.

Then H contains S1,1,8(x1;x2;x14;x8x7x6x5x4x3x10x11).

Case 8: c(H0) = |V (H0)| = 15.

Since δ(H0) ≥ 3, every vertex of C is in a chord.
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Subcase 8.1: C has a k-chord for some k, 1 ≤ k ≤ 5.

By symmetry, we can suppose that x1xk+2 ∈ E(H0), 1 ≤ k ≤ 5. Then H contains the
subgraph S1,1,8(x1;x2;x15;xk+2xk+3 . . . xk+9).

Subcase 8.2: C has only 6-chords.

Let x1x8 ∈ E(H0). Up to a symmetry, the only possibility for a 6-chord containing x12 is
x5x12, and then H contains S1,1,8(x1;x8;x15;x2x3x4x5x12x11x10x9).

Case 9: c(H0) = |V (H0)| = 16.

Subcase 9.1: C has a k-chord for some k, 1 ≤ k ≤ 6.

By symmetry, we can suppose that x1xk+2 ∈ E(H0), 1 ≤ k ≤ 6. Then H contains the
subgraph S1,1,8(x1;x2;x16;xk+2xk+3 . . . xk+9).

Subcase 9.2: C has only 7-chords.

Then H contains S1,1,8(x1;x2;x16;x9x8x7x6x5x4x3x11).

Case 10: c(H0) = |V (H0)| ≥ 17.

Set c(H0) = t. By symmetry, we can choose the notation such that x1xi ∈ E(H0) for some
i, 3 ≤ i ≤ b t

2
c+ 1, and then H contains S1,1,8(x1;x2;xi;xt;xt−1xt−2xt−3xt−4xt−5xt−6xt−7).

5 Concluding remarks

1. Throughout the proof of Theorem 1, whenever we reached a contradiction by finding in H
a subgraph F ' S1,1,8, we always (often implicitly) used the fact that F does not satisfy the
conditions of Proposition 7, or, equivalently, that G = L(H) fails to satisfy the conditions of
the class Z7. This means that we have in fact proved the following slightly stronger result.

Theorem 11. Let G be a 3-connected claw-free graph such that G 6' L(W 1) and every
induced subgraph F ' Z7 in G satisfies the following conditions:

(i) |V2(TF ) ∩ VSI(G)| ≥ 1,
(ii) there is a vertex xF ∈ VEL(G) such that V (TF ) ⊂ NG(xF ) and 〈V (F )〉G∗xF 6' Z7.

Then G is Hamilton-connected.

2. Similarly as the main results of [14], [15] and [21], Theorem 1 admits another slight
extension. For s ≥ 0, a graph G is s-Hamilton-connected if the graph G −M is Hamilton-
connected for any set M ⊂ V (G) with |M | ≤ s. Obviously, an s-Hamilton-connected graph
must be (s + 3)-connected. Since an induced subgraph of a {K1,3, Z7}-free graph is also
{K1,3, Z7}-free, we immediately have the following fact, which extends Corollary 2 and shows
that, in {K1,3, Z7}-free graphs, the obvious necessary condition is also sufficient.

Corollary 12. Let s ≥ 0 be an integer, and let G be a {K1,3, Z7}-free graph of order
n ≥ s+ 21. Then G is s-Hamilton-connected if and only if G is (s+ 3)-connected.
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Note that it would be possible to replace the condition n ≥ s + 21 with an assumption
involving the exceptional graph; however, the resulting conditions would be, in our opinion,
too technical and therefore not interesting. We leave details to the reader.

3. We can now update the discussion of potential pairs X, Y of connected graphs that
might imply Hamilton-connectedness of a 3-connected {X, Y }-free graph, summarized in [15]
and [21].

As shown in [7], up to a symmetry, necessarily X = K1,3, and, summarizing the discussions
from [4], [7], [9] and [15], there are the following possibilities for Y (see Fig. 1 for the graphs
Zi, Bi,j, Ni,j,k and Γi):

(i) Y ∈ {Γ1,Γ3}, or Y = Γ5 for n = |V (G)| ≥ 21,
(ii) Y = Pi with 4 ≤ i ≤ 9,

(iii) Y = Zi with i ≤ 6, or Y = Z7 for n = |V (G)| ≥ 21,
(iv) Y = Bi,j with i+ j ≤ 7,
(v) Y = Ni,j,k with i+ j + k ≤ 7.

Best known results in the direction of each of these subgraphs are summarized in Theo-
rem A, and we summarize the current status of the problem in the following table.

The graph Y Possible Best known Reference Open
Γi Γ1, Γ3, Γ5 for n ≥ 21 Γ1 [7] Γ3; Γ5 for n ≥ 21
Pi 4 ≤ i ≤ 9 P9 [4] —
Zi i ≤ 7 Z7 This paper —
Bi,j i+ j ≤ 7 i+ j ≤ 7 [21] —
Ni,j,k i+ j + k ≤ 7 i+ j + k ≤ 7 [14, 15, 16] —

Thus, the only remaining open cases are the pairs {K1,3,Γ3} (for all graphs), and {K1,3,Γ5}
for n ≥ 21 (or, possibly, for G 6' L(W 1)).
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[12] R. Kužel, Z. Ryjáček, J. Teska, P. Vrána: Closure, clique covering and degree conditions
for Hamilton-connectedness in claw-free graphs. Discrete Math. 312 (2012), 2177-2189.

[13] D. Li, H.-J. Lai, M. Zhan: Eulerian subgraphs and Hamilton-connected line graphs.
Discrete Appl. Math. 145 (2005), 422-428.
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