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Abstract

The class Ek of hypergraphs with a k-exclusive sum labelling is hereditary, but non-
trivial to characterise even for k = 1. Our main result is a complete description of the
minimal forbidden induced subhypergraphs of E1 that are 3-uniform with maximum
vertex degree 2. We also show that every hypertree has a 1-exclusive sum labelling
and every combinatorial design does not.
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1 Introduction

A sum graph G(V,E) is a graph with V ⊂ N such that {x, y} ∈ E if and only if there exists a
vertex z such that x+ y = z, in which case we say z is a working vertex. In an exclusive sum
graph the working vertices form a set of isolated vertices. A graph G admits a k-exclusive
sum labelling (k-ESL) if G+K̄k is isomorphic to an exclusive sum graph. The class of such
graphs is hereditary and well understood; Miller, Ryan and Ryjáček gave a characterisation
in the form of a universal graph for every k [4].

The above notions may be generalised to hypergraphs by replacing pairs of vertices by
arbitrary sets in the definitions. Let Ek be the class of hypergraphs that have a k-ESL,
which we define formally in the next section. In contrast to graphs (2-uniform hypergraphs),
characterising Ek is non-trivial even for k = 1. In fact, the minimal forbidden induced
subhypergraphs of E1 that are 3-uniform and have maximum degree 2 are a rich, infinite
family of hypergraphs that we describe completely in our main result.

We also study 1-exclusive sum labellings in two special classes of hypergraphs. On the
one hand, we show that all hypertrees have such a labelling by a geometric argument. On the
other, we show that any r-uniform hypergraph on n vertices that happens to be a t-(n, r, λ)
design, for some t, λ, does not have a 1-exclusive sum labelling.

1.1 Related Work

Sum graphs were introduced by Harary [2], and have been widely studied; we omit a list of
results but direct the interested reader to the dynamic survey by Gallian [1]. Exclusive sum
graphs were first studied by Miller et al. [3] and, besides [1], there is also a survey on the
topic by Ryan [5]. As previously mentioned, the class of graphs (i.e. 2-graphs) with a k-ESL
is hereditary; Miller, Ryan and Ryjáček gave a complete characterisation of the class in the
form of a universal graph.

Teichert generalised the notion of sum graphs to hypergraphs [8]. Results on sum hy-
pergraphs can also be found in [1]. The exclusive variant was first studied by Sonntag and
Teichert [6], whose results contrasted significantly with those obtained for graphs.

1.2 Preliminaries

A hypergraph with no empty edges, loops or repeated edges is said to be simple and the
hypergraphs in this paper are simple unless stated otherwise. We may delete a vertex v from
a hypergraph H by removing it and removing all the edges that contain it to obtain a new
hypergraph, denoted by H − v. A hypergraph that can be obtained from H by deleting
vertices is called an induced subhypergraph of H. A class of hypergraphs that is closed under
vertex deletion is said to be hereditary. It is well known and easy to see that a hereditary
class X of hypergraphs may be characterised by the set M of its minimal forbidden induced
subhypergraphs. In such a case we use the notation X = Free(M) and M = Forb(X).

The dual D(H) of a hypergraph H is a hypergraph with V (D(H)) = E(H) and an edge
ηv = {e ∈ E(H) : v ∈ e} for each v ∈ V (H). Note that the dual of a simple hypergraph is
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not necessarily simple and that D(D(H)) = H.
A path of length j in a hypergraph is an ordered list of distinct, alternating vertices and

edges (v0, e0, . . . , ej−1, vj) such that, for 0 ≤ i ≤ j− 1, vi and vi+1 are elements of ei. We say
that the path is from v0 to vj. The distance between two vertices u and u′ is the shortest
length of a path from u to u′. The distance between two edges e and e′ in a hypergraph
H is the distance between the vertices e and e′ in D(H). A cycle of length j is a path
in which v0 = vj. By a hypertree we mean a connected hypergraph with no cycles (i.e., a
Berge-acyclic hypergraph). Note that any pair of edges sharing more than one vertex form
a cycle of length 2; thus, a pair of edges in a hypertree share at most one vertex.

A combinatorial design is a (possibly non-simple) hypergraph with a certain highly sym-
metric structure. In particular, a t-(n, r, λ) design is an r-uniform hypergraph on n vertices
such that every subset of vertices of size t is contained in exactly λ edges.

2 Exclusive sum hypergraphs

The definition of sum graphs can be generalised to hypergraphs in the following way. A
(ρ, σ)-sum hypergraph H(V,E) is a hypergraph with V ⊂ N such that if S ⊆ V then S ∈ E
if and only if ρ ≤ |S| ≤ σ and there exists a vertex z such that

∑
x∈S x = z, in which case

we call z a working vertex as before. We say a (ρ, σ)-sum hypergraph is exclusive if all its
working vertices are isolated, and a k-exclusive (ρ, σ)-sum labelling of a hypergraph H is an
isomorphism from H + K̄k to a (ρ, σ)-sum hypergraph.

It will be useful to state the definition of a k-exclusive (ρ, σ)-sum labelling in another
way. Let H be a hypergraph with ρ ≤ |e| ≤ σ for each edge e in E(H) and let Y be a set of
vertices disjoint from V (H). Then a labelling φ : V (H)∪Y → N+ is a k-exclusive (ρ, σ)-sum
labelling of H if and only if |Y | = k and φ satisfies the following properties:

(P1) φ(x) 6= φ(y) for distinct vertices x, y in V (H) ∪ Y .

(P2)
∑
x∈e

φ(x) is in the image φ(Y ) for each edge e in E(H). We call φ(Y ) the set of isolate

values.
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Figure 1: A 1-exclusive sum labelling of a hypergraph, with isolate value 30.
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(P3) If X ⊆ V (H) ∪ Y , ρ ≤ |X| ≤ σ, X 6∈ E(H) then
∑
x∈X

φ(x) 6= φ(v) for any vertex

v ∈ V (H).

(P4) If X ⊆ V (H) ∪ Y , ρ ≤ |X| ≤ σ, X 6∈ E(H) then
∑
x∈X

φ(x) 6∈ φ(Y ).

If ρ = σ = r we simplify the terminology by referring to k-exclusive r-sum labellings;
when r = 2 we recover the standard definition for graphs. If ρ = 2, σ =∞, we refer simply
to k-exclusive sum labellings.

Let Eρ,σk , Erk and Ek denote the classes of hypergraphs with, respectively, k-exclusive (σ, ρ)-
sum, r-sum and sum labellings. It is easy to see that each of these classes is hereditary.
Whereas E2k is well understood for all k, the situation is very different for general hypergraphs;
the case k = 1 is already non-trivial.

Let Gρ,σ denote the hypergraphs each edge of which have rank at least ρ and at most σ,
and let Gr denote the r-uniform hypergraphs. We now make some observations about the
relationships between the classes of hypergraphs we’ve defined.

Observation 1. If ρ′ ≤ ρ ≤ σ ≤ σ′ then Eρ
′,σ′

k ∩ Gρ,σ ⊆ Eρ,σk .

Proposition 2. Eρ,σk ⊆ E(σ−ρ+1)k.

Proof. Let φ be a k-exclusive (ρ, σ)-sum labelling of a hypergraph H with isolate values
Φ1, . . . ,Φk. We may assume that |V (H)| ≥ σ. Let φ′ be the labelling of the vertices of
H defined by φ′(x) = bφ(x) + c where c and b are distinct primes strictly greater than
|V (H)|. We claim that φ′ is a (σ−ρ+1)k-exclusive sum labelling with isolate values given
by bΦi+c(ρ+j) with j = 0, . . . , σ−ρ.

For each edge e of H, we have
∑

x∈e φ
′(x) = b

∑
x∈e φ(x) + |e|c. Clearly,

∑
x∈e φ(x) = Φi

for some i in {1, . . . , k} and |e| = ρ+j for some j in {0, . . . , σ−ρ} as required. It is also clear
that φ′ satisfies (P1) and (P2).

Suppose that φ′ does not satisfy (P3). Then there is some subset S of V (H) such that
|S| > 1 and

∑
x∈S φ

′(x) = φ′(y) for some vertex y in V (H). Then:

b
∑
x∈S

φ(x) + c|S| = bφ(y) + c∑
x∈S

φ(x) = φ(y) +
c

b
(1− |S|)

The left hand side is an integer by assumption. The right hand side is clearly not an
integer unless |S| = 1, a contradiction.

Now suppose that φ′ does not satisfy (P4). Then there is a subset S of V (H) such that
S 6∈ E(H) and

∑
x∈S φ

′(x) = bΦi + c(ρ+j) for some i in {1, . . . , k} and j in {0, . . . , σ−ρ}.
Then:

b
∑
x∈S

φ(x) + c|S| = bΦi + c(ρ+ j)∑
x∈S

φ(x) = Φi +
c

b
(ρ+ j − |S|)
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Again the left hand side is an integer. The right hand side is not an integer unless
|S| = ρ+j. But then we have that

∑
x∈S φ(x) = Φi, which is a contradiction since S 6∈ E(H).

This completes the proof.

Corollary 3. Erk = Ek ∩ Gr.

Proof. By Observation 1, Ek ∩ Gr ⊆ Erk . By Proposition 2, Erk ⊆ Ek. The result follows.

Since E1 is already not very well understood, the above corollary justifies our interest in
the uniform case.

3 Minimal Forbidden Induced Subhypergraphs

We wish to characterise the minimal forbidden induced subhypergraphs of E1. We focus on 3-
uniform hypergraphs with maximum degree 2. To simplify our discussion and our diagrams,
we deal with the duals of such hypergraphs. If H is a 3-uniform hypergraph and ∆(H) ≤ 2
then the dual D(H) is simply a cubic graph, possibly with some edges of size 1 corresponding
to vertices of degree 1. We will call an edge of size 1 a half-edge; where confusion may arise,
we refer to an edge of size 2 as a full edge. It is convenient to consider labelling the edges
of D(H) instead of the vertices of H. We define a dual 1-ESL of D(H) to correspond to a
1-ESL of H; in other words, φ : E(D(H))→ N+ is a dual 1-ESL of D(H) if and only if the
labelling φ′ defined by φ′(v) = φ(ηv) is a 1-ESL of H.

We must be careful to keep in mind that deleting a vertex v in H does not correspond
directly to removing the corresponding edge in D(H). Rather, when we delete a vertex in H
we remove its corresponding edge in D(H) and all the vertices it contains, possibly leaving
behind some half-edges. Thus we will use the notation D(H)− v to indicate the hypergraph
D(H − v).

12

1011

87

9

Figure 2: A dual 1-ESL of the dual of the hypergraph in Figure 1.

In order to state our main theorem, we introduce four types of cubic graphs equipped
with a (not necessarily proper) 2-colouring. For a graph G with vertex set B ∪ R, we give
necessary and sufficient conditions for G to be of each type:
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• Type 1: B and R are independent sets of equal size, G has exactly two half-edges

• Type 2: B and R have equal size, G has exactly one monochromatic edge of each
colour and no half-edges

• Type 3: B and R are independent sets, |B| = |R| + 1, G has exactly three half-edges
all incident to blue vertices

• Type 4: |B| = |R|+2, G has exactly three monochromatic blue edges and no half-edges

Figure 3: From left to right: an example of a graph of Type 1-4.

We are now ready to state our main theorem.

Theorem 4. A 3-uniform hypergraph of maximum vertex degree 2 has a 1-ESL if and only
if none of its induced subhypergraphs have a dual of Type 1-4.

The following proposition gives one direction of the main theorem.

Proposition 5. A graph of Type 1-4 does not have a dual 1-ESL.

Proof. Let G be a graph of Type 1-4. Suppose φ is a dual 1-ESL of G with isolate value K.
For a vertex v in G, let Ev be the set of edges incident with v. Then we have the following:

(|B| − |R|)K =
∑
u∈B

∑
e∈Eu

φ(e)−
∑
u∈R

∑
e∈Eu

φ(e) (1)

In the first two types, the left hand side of this equation is 0 and on the right hand side,
the labels of bichromatic full edges cancel out, leaving a red and a blue (half) edge that must
have the same label. In the third type, the left hand side is K and the right hand side is
the sum of the three half edges, giving a contradiction as they are not incident to the same
vertex. In the fourth type, the left hand side is 2K and the right hand side is twice the sum
of the monochromatic edges, again a contradiction.

We draw the reader’s attention to an important set of hypergraphs. We denote by M the
set of 3-uniform hypergraphs of vertex degree at most 2 that do not have a 1-ESL but all of
whose induced subgraphs have a 1-ESL. Let D(M) be the set of duals of hypergraphs in M .
It follows from Proposition 5 that every graph of Type 1-4 is the dual of a hypergraph with
an induced subhypergraph in M . The rest of the section is devoted to proving that every
graph in D(M) is itself of Type 1-4, which gives the theorem. In order to do this, we define
a potential labelling λ to be an assignment of positive integers to the edges of a graph G such
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Figure 4: A barbell; note that the colours sum to 0 at vertices.

that the function f(v) =
∑

e∈Ev
λ(e) is a constant K. If λ(x) = λ(y) we say that x, y is a

bad pair for λ and if λ(x) + λ(y) + λ(z) = K for x, y, z not incident with the same vertex,
we say that x, y, z is a bad triple. Collectively, we refer to bad pairs and triples as bad sets.
The number of bad sets for λ will be denoted by η(λ). Clearly, λ is a dual 1-ESL of G if and
only if η(λ) = 0. Observe that, by the proof of Proposition 5, a graph G of Type 1-4 has a
set X of edges such that, for any potential labelling λ of G, X is a bad set. We call such a
set of edges a persistent bad set.

Let x, y be a bad pair for a potential labelling λ. We observe that if x is in an even cycle
C that does not contain y, we can find a potential labelling λ′ that is strictly better than λ
in the sense that η(λ′) < η(λ). We obtain this by giving the edges of C a proper 2-colouring
with colours from {1,−1} and setting:

λ′(z) =


10λ(z) + 1 if z has colour 1

10λ(z)− 1 if z has colour − 1

10λ(z) otherwise

It is clear that λ′ is a potential labelling, and that λ′(x) 6= λ′(y). Furthermore, if λ′(a) =
λ′(b) for some a, b distinct from x, y, then it is easy to see that λ(a) = λ(b). We call C an
improving cycle. We can do the same operation with a path between two half-edges.

There are two other types of improving subgraphs. To describe them, let us define a
barbell to be a pair of distinct odd cycles with a path between them. To obtain an improved
potential labelling with a barbell, we give it a colouring. The edges on the path are given a
proper 2-colouring with colours in {2,−2}. The edges of the cycles are coloured with colours
in {1,−1} according to their distance from the nearest edge of the path. If the nearest edge
of the path has colour 2 (respectively, −2), the edges at even distance from it have colour 1
(respectively, −1) and those at odd distance have colour −1 (respectively, 1). See Figure 4
for an example of this colouring.

Now if x, y are a bad pair for λ and are on a barbell having different colours, then we
can improve λ by setting:
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λ′(z) =



10λ(z) + 1 if z has colour 1

10λ(z)− 1 if z has colour − 1

10λ(z) + 2 if z has colour 2

10λ(z)− 2 if z has colour − 2

10λ(z) otherwise

Again it is clear that λ′ is a potential labelling that is strictly better than λ. We can do
the same operation with an odd cycle and a half-edge with a path between them; we call
such a subgraph a half-barbell. We also observe that if x, y, z are a bad triple for λ, and if
some subset of x, y, z are in an improving subgraph such that their colours do not add up to
zero, then we have λ′(x) + λ′(y) + λ′(z) 6= 10K, and therefore x, y, z are not a bad triple for
λ′. We summarise the above discussion in the following lemma.

Lemma 6. Let G be a graph with a set of edges S that induce either:

1. an even cycle

2. a path between two half-edges

3. a barbell

4. a half-barbell

and let S be coloured as described above. Let x, y, z be edges of G. If x is in S but y isn’t, or
if x and y are in S with different colours, then x, y is not a persistent bad pair. Furthermore
if some subset of x, y, z are in S but their respective colours do not add up to 0, then x, y, z
is not a persistent bad triple.

We now prove several lemmas that restrict the behaviour of persistent bad sets in graphs
in D(M). The following simple observation will be useful.

Observation 7. If G is a simple graph with degree sequence 2, 3, 3, 3, . . . then G has an odd
cycle.

Proof. Suppose there is a proper 2-colouring B,R of G. The sum of the degrees of B must be
equal to the sum of the degrees of R. But (without loss of generality) the sum of the degrees
of B is 2 mod 3, and the sum of the degrees of R is 0 mod 3, giving a contradiction.

Lemma 8. Let G be in D(M). Then G is connected.

Proof. Suppose G is disconnected and let X be a persistent bad set in G. If there is some
component GX of G containing all members of X then GX has no dual 1-ESL which contra-
dicts the definition of M . Let x, y ∈ X and let Gx and Gy be the components of G containing
x and y respectively. Without loss of generality we may assume that x is the only element
of X in Gx.
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If Gx has more than one half-edge, there is a path between them that includes x which
is improving. If Gx has one half-edge, then by Observation 7 there is an odd cycle C in
Gx and a path from the half-edge to C that includes x (either on the path or in C) will be
improving. Thus Gx has no half-edges.

If x is a cut edge, then both sides of the cut have an odd cycle by Observation 7 and the
path between them goes through x and forms an improving barbell.

If x is not a cut edge, then it must be on a cycle C, which must be odd. If Gx has a cut
edge e, then there is an odd cycle C ′ on the side of the cut not containing x and then C,C ′

and the path between them form an improving barbell.
We have shown that Gx is a bridgeless cubic graph. By Petersen’s Theorem, there is a

perfect matching in Gx. But now we can improve any potential labelling φ of G. Let φ′

be a potential labelling of G defined as follows φ′(e) = 10φ(e) for each edge e not in Gx;
φ′(e) = 10φ(e) + 2 for each matched edge in Gx φ

′(e) = 10φ(e)− 1 for each unmatched edge
in Gx. It is easy to see that φ′ is a potential labelling and that X is not a bad set for φ′

which is a contradiction.

From now on we assume that a graph G in D(M) is connected.

Lemma 9. Let G be in D(M) and let X be a persistent bad set. Then no two edges of X
are adjacent.

Proof. First, let X = {x, y}. If X is a pair of half-edges, the lemma follows immediately
from Lemma 6. If X consists of one half-edge x and one full edge y, then observe that G can
have no other half edge and must be bipartite, otherwise there is an improving subgraph.
But this is a contradiction, as it is easy to see that there is no cubic bipartite graph with
exactly one half-edge.

Suppose X is a pair of full edges x, y. Consider the case in which x is a cut edge. Let
G′ be the graph induced by those edges that are separated from y by x. By Observation 7,
there is an odd cycle in G′. If y is in an even cycle, it is improving and we are done, but if
y is in an odd cycle then there is clearly an improving barbell. Thus y is a cut-edge, and
it is easy to see that there is an improving barbell by Observation 7. Since we have that
x and (by symmetry) y are not cut-edges, they must be in a cycle C (because G is cubic).
Clearly C must be odd. Let v be the vertex incident with x and y and let e be the third edge
incident with v. If there is a path from e to C that does not include v, there is an improving
even cycle. So there is no such cycle and it is easy to see that e is a cut-edge. Let Gxy be
the component of G− e containing x and y; let G′ be the rest of G. There must be an odd
cycle C in G′ and therefore Gxy is bipartite. But now Gxy is of Type 1.

Now, let X = {x, y, z}. Clearly, x, y and z cannot all be incident with the same vertex.
If x, y and z are half-edges and (say) x and y are adjacent, then clearly G is bipartite, or
there is an improving half-barbell. But then G− {x, y} is of Type 1.

Suppose X has two half-edges x, y and one full edge z. Consider the case in which x, y
are incident with a vertex v, and let e be the third edge incident with v. Then if G has an
odd cycle C, every path from C to v must go through z to avoid an improving half-barbell.
In this case, let Gxy be the graph induced by the edges that are on paths from x or y to z
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(including x, y and z as half-edges). Clearly Gxy is bipartite and has no half-edges except
x, y (or there is an improving half-barbell or path respectively), but then Gxy − {x, y, e} is
of Type 3. We deduce that G is itself bipartite, and the same argument shows that z is
not a cut-edge. Therefore G has no half-edge apart from x, y, since otherwise there is an
improving path. We conclude that G− {x, y, e} is of Type 1.

We now consider the case in which x and y are half-edges, z is a full edge, and x and z are
incident with a vertex v. Let e be the third edge incident with v; clearly e is not a half-edge.
Any path from x to y must avoid z otherwise it is improving and so z is a cut-edge. Let Gxy

be the graph induced by the edges that are on paths from x or y to z (including x, y and z
as half-edges). By Observation 7 there is an odd cycle in G \ Gxy and so Gxy is bipartite,
otherwise there is an improving barbell. But now Gxy − {x, z, e} is Type 3.

In the remaining cases, x is a half-edge and y, z are full edges. In the first of these cases,
x and y are incident with a vertex v; let e be the third edge incident with v. If y is in an
even cycle without z then it is improving, but if y is in an odd cycle C without z then C
together with x forms an improving half-barbell. Similarly, z cannot be in a cycle without
y. Now consider the subgraph G′ induced by the edges that are on paths from e to z that
avoid y (including e and z as half-edges). If G′ is non-empty, it must not have a half edge
e′ different from e and z, otherwise a path from e′ to x is improving. Similarly, it cannot
contain an odd cycle. But it is easy to see that G′ is cubic, and therefore it is of Type 1.
We conclude that G′ is empty; that is, y separates e and z. It is easy to see that e is a cut
edge; let G0 be the side of the cut that does not include x. By Observation 7, G0 must have
an odd cycle or a half-edge, but then there is an improving subgraph. This completes the
proof for this case.

Finally, we consider the case in which y and z are incident with a vertex v. Let e be
the third edge incident with v. If y is in an even cycle without z then it is improving, but
if y is in an odd cycle C without z there is a path from C to x that forms an improving
half-barbell. This implies that e is a cut-edge. Let Gyz be the side of the cut containing y
and z, and let G′ be the other side. Suppose first that x is in Gyz. Then there cannot be
another half-edge in Gyz or there is an improving path. If there is an odd cycle C there is a
path from C to x that forms an improving half-barbell. But since Gyz is bipartite, Gyz ∪{e}
is of Type 1. So x must be in G′. As before, there cannot be another half-edge or an odd
cycle in G′. But then G′ ∪ {e} is of Type 1.

Lemma 10. Let G be in D(M). If x, y are a persistent bad pair then either both x and y
are full edges, or both x and y are half edges. Similarly, if x, y, z are a persistent bad triple,
they are either all full edges or all half edges.

Proof. Suppose that x, y and G are as stated in the first part of the lemma. Without loss of
generality, suppose that x is a half edge and y is a full edge. We first assume that y is a cut
edge. Let Gx be the component of G \ y that contains x. If Gx has a half edge e different
from x then there is a path from e to x which is improving. Additionally, if Gx has an odd
cycle C then there is a path from C to x which forms an improving half barbell. Thus Gx is
bipartite, and since Gx ∪ {y} has exactly two half edges it is of Type 1. We may therefore
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assume that y is not a cut edge, but then it must be in some cycle C. If C is even we are
done, but if C is odd there is a path from C to x which forms an improving half barbell.

Now suppose that x, y, z and G are as stated in the second part of the lemma. There are
two possibilities. Suppose first that, without loss of generality, x is a half edge and y and z
are full edges. Assume that y is a cut edge, and let Gx and Gz be the components of G \ y
containing x and z respectively. If Gx and Gz are distinct, an identical argument to that
above gives the lemma. If z is in an even cycle we are done, but if z is in an odd cycle C
there is a path from C to x which forms an improving half barbell. So z is a cut edge. Let
G′ be the connected component of Gx ∪ {y} that contains x. We know that G′ must also
contain y or we can repeat the above argument again. If G′ contains an odd cycle there is an
improving half barbell, but if G′ is bipartite then G′ ∪ {z} is of Type 3. This contradiction
shows that y is not a cut edge, and by symmetry neither is z. By an analogous argument,
{y, z} is not a cutset. Therefore y is in a cycle C that does not contain z. If C is even we
are done, but if C is odd there is a path from C to x which forms an improving half barbell
(even if the path goes through z).

The second possibility in this case is that, without loss of generality, x and y are half
edges and z is a full edge. It is easy to see that the same argument as before shows that z
is not a cut edge and must be in some cycle C. If C is even we are done, otherwise there is
a path from C to x which forms an improving half barbell.

Lemma 11. If G is in D(M) and X is a persistent bad set in G, then X is not a cutset.

Proof. If X is a set of half edges then there is nothing to prove. Suppose X is a cutset
and let G0 and G1 be the two sides of the cut. If there is a half-edge on both sides of the
cut then there is an improving path between them. Suppose G0 has no half-edges. Then it
must contain an odd cycle C, else G0 ∪X is of Type 1 or Type 3 which is a contradiction.
If G1 contains a half-edge y then there is a path from C to y which forms an improving
half-barbell. So G1 also has no half-edges, and contains an odd cycle C ′. But there is a path
from C to C ′ that forms an improving barbell.

Corollary 12. If x is an element of a persistent bad set X in a graph G in D(M) and x is
not a half-edge, then x is in a cycle that does not contain any other element of X.

Proof. This is true of any set of at least two edges that is not a cut set, the proof is by
induction on the size of X.

Lemma 13. Let G be in D(M), and let X be a persistent bad set in G. There is no half-edge
in G outside of X.

Proof. In the case where X is a set of half-edges, the lemma obviously holds as there will be
an improving path. Suppose X is a persistent bad set of full edges, and that e is a half-edge
in G. Let x be an element of X. By Corollary 12, x is in a cycle C that does not contain
any other element of X. If C is even then it is improving, but if C is odd there is a path
from C to e that forms an improving half-barbell (even if the path contains some element of
X, it is still improving).
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We now know that a graph G in D(M) either has a persistent bad pair of half-edges, a
bad triple of half-edges, a bad pair of full edges or a bad triple of full edges, and that G has
no half-edges outside of X. It remains to prove that these four cases correspond exactly to
the four types of graphs given above.

Proposition 14. Let G be in D(M) and let X be a persistent bad set of half-edges. Then
G is of Type 1 (when |X| = 2) or of Type 3 (when |X| = 3).

Proof. It is enough in both cases to show that the graph is bipartite. Let x be an element
of X. Suppose there is an odd cycle C in G. Since G is connected there is a path from C
to x. This is a half-barbell that clearly cannot include any element of X besides x and is
therefore improving. By Lemma 6, X cannot be a persistent bad set which is a contradiction.
Therefore there is no odd cycle in G and so G is in Type 1 (if |X| = 2) or Type 3 (if |X| = 3)
as required.

Proposition 15. Let G be in D(M) and let x and y be a persistent bad pair of full edges.
Then G is of Type 2.

Proof. Let G, x, y be as stated and suppose G is not of Type 2. We first deal with the case
in which G is 2-edge-connected. Then we claim that there is no path from x to y containing
an even number of edges. Suppose to the contrary that there is such a path P . Let v be a
vertex on P that splits P into two paths of equal parity b, and let z be the edge of v not
on P . Since G is 2-edge-connected, there is a path from x to z, and a path from y to z,
both of which are disjoint from P . In order to avoid an improving even cycle, both of these
paths must have parity b̄. It is easy to see that there must be a path P ′ from x to y with
an even number of edges that is disjoint from P . But then {x, y} ∪ P ∪ P ′ is an improving
cycle which is a contradiction.

Now suppose G has a bridge z. By Lemma 11, z is not equal to x or y. There are two
cases to consider. In the first case, there is a path from x to y that does not include z. Let
Gz be the graph induced by edges that are separated from x and y by z, and let G′ be the
graph induced by the remaining edges. By Corollary 12, x is in a cycle C that does not
contain y. Clearly C is odd. By Observation 7 there is an odd cycle C ′ in Gz, and since
there is a path from C to C ′ the graph has an improving barbell.

In the final case there is a bridge z that separates x from y. Let Gx be the graph induced
by edges that are separated from y by z, and let Gy be the graph induced by the edges that
are separated from x by z. We give a 2-colouring to the vertices of G in the following way:
the vertices incident with y are blue, the vertices incident with x are red; the vertices of Gy

that are at odd distance from the vertices incident with y and the vertices of Gx at even
distance from the vertices incident with x are red; all other vertices are blue. Observe that
there cannot be a monochromatic edge in Gx other than x, otherwise x is in an even cycle
without y. Similarly, y is the only monochromatic edge in Gy. It remains only to show that
z is not monochromatic. Clearly y is in an odd cycle Cy and x is in an odd cycle Cx. There
is a path from Cy to Cx that includes z, and this is a barbell. If z is monochromatic then x
and y are at even distance in this barbell, and it is improving. This contradiction completes
the proof.
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Proposition 16. Let G be in D(M) and let x, y and z be a persistent bad triple of full edges.
Then G is of Type 4.

Proof. Let G, x, y and z be as stated and suppose G is not of Type 4. Suppose x, y and z are
all on a cycle C. Clearly, C is an odd cycle, otherwise it is improving. By Lemma 11, {x, y}
is not a cutset, so C has a chord-path P that separates C into two arcs Ax and Ay, which
contain x and y respectively. Without loss of generality, let z be an edge of Ay. Now, Ax∪P
is an odd cycle or else it is improving. Since C is odd, we have that Ay ∪P is an even cycle.
This cycle is improving unless y, z are at odd distance in C. But {y, z} is not a cutset (again
by Lemma 11) so C has another chord-path P ′ which separates C into two arcs A′y and A′z,
which contain y and z respectively. If x is in A′y, then by the same reasoning as above, x and
y are at odd distance in C. But then x and z must also be at odd distance in C, because
C is an odd cycle. By symmetry we deduce that all three pairs are at odd distance in C;
in other words, we may assume that in any cycle C containing x, y and z, each of the three
paths obtained from C by removing x, y and z have an even number of edges.

Now suppose that there is a path P with an odd number of edges connecting x and y
such that z is not in P . Since x, y is not a cutset, there must be another path P ′ such that
P ∪ P ′ ∪ {x, y} is a cycle, which we will denote by C. By the above argument, z is not on
C. To avoid an improving cycle, we must have that P ′ has even length. Since x, y, z is not
a cutset, there must be a path P ′′ from P to P ′ that does not go through x, y, z. This is a
chord-path for C; let Ax and Ay be its arcs containing x and y respectively. Since C is an
odd cycle, Ax and Ay have different parities. But then either Ax ∪ P ′′ or Ay ∪ P ′′ is an even
cycle, which is a contradiction. Therefore any path connecting x to y is odd if and only if it
contains z, and so on by symmetry.

To complete the proof, we give a colouring of the vertices of G according to the parity of
their distances from the vertices incident with x, y or z. The vertices at even distance from
the vertices incident with x, y or z are blue; the vertices at odd distance are red. It remains
to show that there is no monochromatic edge other than x, y, z. Assume the contrary, and let
uv be the closest monochromatic edge to x, y, z. Let Pu, Pv be the shortest paths connecting
x, y, z to u and v respectively. These cannot be disjoint, as otherwise we have either an even
cycle including exactly one of x, y, z or we have an odd path from (say) x to y that does not
include z. Since they are shortest paths, they are properly 2-coloured by the colouring given
above. We may therefore assume that the symmetric difference of Pu and Pv is an odd cycle
C, and the intersection is a path with one end in C and one end in x. But x is an odd cycle
C ′ that does not include y or z. So C ′ ∪Pu ∪Pv is an improving barbell. This contradiction
shows that G is in Type 4 as required.

4 Additional results

4.1 Combinatorial designs

In this section we study (simple) hypergraphs that happen to be combinatorial designs.
Recall that an r-uniform hypergraph on n vertices is a t-(n, r, λ) design if every subset of
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vertices of size t is a subset of exactly λ edges. Such a design is non-trivial if t > 1 and
n > r. We will show that a non-trivial t-design does not have a 1-ESL. We make use of the
following standard result.

Lemma 17. ([7]) Let H be a hypergraph and suppose that H is a t-(n, r, λ)-design. Suppose

that X ⊆ V (H), where |X| = s ≤ t. Then there are exactly λs = λ
(v−s
t−s)

(k−s
t−s)

edges in H that

contain all the vertices of X.

Theorem 18. Let H be a simple hypergraph. Suppose H is a non-trivial t-(n, r, λ) design.
Then H has no 1-ESL.

Proof. Let x1, . . . , xn be the vertices of H and suppose that H has a 1-ESL ψ with isolate
value K. Consider the set M of edges, that contain the vertices x1, . . . , xt−1. By Lemma 17,
we have that |M | = λt−1, and therefore:∑

e∈M

∑
x∈e

ψ(x) = Kλt−1

Since every subset of vertices of size t appears in λ edges, there are λ edges in the set M
containing the vertex xi for each i greater than t− 1. So we can write:

Kλt−1 = λt−1

t−1∑
i=1

ψ(xi) + λ
n∑
i=t

ψ(xi)

Analogously, we consider the λt−1 edges containing the vertices x2, x3, . . . , xt and we obtain:

Kλt−1 = λt−1

t∑
i=2

ψ(xi) + λ
n∑

i=t+1

ψ(xi) + λψ(x1)

The difference of the previous two equations gives (λ− λt−1)ψ(x1) = (λ− λt−1)ψ(xt). Since
n 6= r, and therefore λ 6= λt−1, we have that ψ(x1) = ψ(xt), which is a contradiction.

4.2 Hypertrees

Observation 19. Let H ∈ E1. If a component of H has an edge of size 2 then it is isomorphic
to K2.

Proof. Let φ be a 1-ESL of H and let e = {u, v} be an edge in H. Suppose the statement
does not hold. Then there is an edge e′ that shares a vertex with e, say u. But then∑

x∈e′\u φ(x) = K − φ(u) = φ(v). If |e′| = 2 this contradicts (P1); otherwise, it contradicts

(P3).

Theorem 20. Every hypertree in G3,∞ has a 1-ESL.
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Proof. Let H be such a hypertree with n vertices and m edges. We define a vertex labelling
scheme that assigns to each vertex a linear combination of variables {x0, . . . , xn−m} which
are interpreted as variables over Z. We call such a label generic. For clarity we surround
the generic labels with angle brackets e.g. 〈x0 − x1 − x2〉.

Let the edges of H be denoted e1, . . . , em according to a breadth-first search in the edge-
intersection graph starting at an arbitrary edge e1.

We start by labelling the vertices of e1 with labels 〈x1〉, . . . , 〈x|e1|−1〉, 〈x0 − (x1 + · · · +
x|e1|−1)〉. For each subsequent edge ei, we continue in the following way. While there are
multiple unlabelled vertices in ei we choose one and give it a label 〈xj+1〉 where xj was the
previous variable to appear in the list of labels. When there is exactly one unlabelled vertex
u in ei we give it the label 〈x0 −

∑
v∈ei\{u} f(v)〉 where f(v) denotes the label of the vertex

v. Note that the sum of the labels in each edge is equal to x0, and that there are indeed
n−m+ 1 distinct variables in the list of labels. Therefore each point P = (x0, . . . , xn−m) in
Zn−m+1 generates a potential labelling φP of H, with x0 as the isolate value. We claim that
we can choose P such that φP is a 1-ESL.

To ensure that φP (v) is positive for each vertex v, we simply choose each xi so that
xi >>

∑
j>i xj. This follows from the fact that in the generic label of each vertex, the

variable with the smallest index appears positively, which is easy to verify.
We must also ensure that φP gives unique labels to satisfy (P1). Let the generic label of a

vertex u be denoted 〈
∑
cui xi〉. For each pair u, v, we need to pick P to avoid the hyperplane

defined by: ∑
cui xi =

∑
cvi xi

To satisfy (P3), we must ensure that
∑

u∈S φP (u) 6= φP (v) for any multiple subset of
vertices S and any vertex v. This is equivalent to avoiding the hyperplane defined by:∑

u∈S

∑
cui xi =

∑
cvi xi

Finally, to satisfy (P4), we must ensure that
∑

u∈S φP (u) 6= x0 whenever S 6∈ E(H). This
is also equivalent to avoiding a hyperplane, namely the one defined by:∑

u∈S

∑
cui xi = x0

It is clear that we can pick P to avoid this finite set of lower dimensional subspaces. This
completes the proof.
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