Forbidden pairs of disconnected graphs for 2-factor of connected graphs

Přemysl Holub ${ }^{1,4,7}$ Zdeněk Ryjáček ${ }^{1,4,7}$ Petr Vrána ${ }^{1,4,7}$
Shipeng Wang ${ }^{2,5,8}$ Liming Xiong ${ }^{3,6,9}$

June 22, 2021

Abstract

Let \mathcal{H} be a set of graphs. A graph G is said to be \mathcal{H}-free if G does not contain H as an induced subgraph for all H in \mathcal{H}, and we call \mathcal{H} a forbidden pair if $|\mathcal{H}|=2$. Faudree et al. (2008) characterized all pairs of connected graphs R, S such that every 2 -connected $\{R, S\}$-free graph of sufficiently large order has a 2 -factor. In 2013, Fujisawa et al. characterized all pairs of connected graphs R, S such that every connected $\{R, S\}$-free graph of sufficiently large order with minimum degree at least two has a 2 -factor.

In this paper, we generalize these two results by considering disconnected graphs R, S. In other words, we characterize all pairs of graphs R, S such that every 2-connected $\{R, S\}$-free graph of sufficiently large order has a 2 -factor. We also characterize all pairs of graphs R, S such that every connected $\{R, S\}$-free graph of sufficiently large order with minimum degree at least two has a 2 -factor.

Keywords: forbidden subgraph; disconnected graph; 2-factor; closure

1 Introduction.

We basically follow the most common graph-theoretical terminology and notation and for concepts not defined here we refer the reader to [2]. All graphs in this paper are simple, finite and undirected.

[^0]Let G be a graph, $u, v \in V(G), X \subseteq V(G)$, and let H be a subgraph of G. Then $N_{G}(v)$ denotes the set, and $d_{G}(v)$ the number, of neighbors of v in $G, d_{H}(v)$ the number of neighbors of v in $H, N_{G}(X)$ the set of vertices of $V(G) \backslash X$ having a neighbor in X, and $N_{H}(X)$ the set of vertices of $V(H) \backslash X$ having a neighbor in X. We use $n(G)$ to denote the order of $G, e(G)$ the size of $G, \alpha(G)$ the independence number of $G, \kappa(G)$ the connectivity of G and $\operatorname{nc}(G)$ the number of components of G. By a clique in G we mean a complete subgraph of G (not necessarily maximal). A pendant vertex is a vertex of degree 1, and a pendant edge is an edge incident with a pendant vertex. The distance between u and v in G is $\operatorname{denoted}^{\operatorname{dist}_{G}}(u, v)$, and, when $u, v \in V(H), \operatorname{dist}_{H}(u, v)$ denotes their distance in the subgraph H of G, i.e., the length of a shortest path between u and v in H. A path joining vertices u and v will be called a (u, v)-path, and, analogously, for vertex subsets $X, Y \subseteq V(G)$, an (X, Y)-path is a path with one endvertex in X and the other endvertex in Y. We also use E_{x} to denote the set of edges between x and all its neighbors.

For $X \subset V(G)($ or $X \subset E(G)),\langle X\rangle_{G}$ denotes the subgraph of G induced by the set of vertices X (or determined by the set of edges X) in G, respectively. A graph G is called H-free if G does not contain H as an induced subgraph. Analogously, for a set \mathcal{H} of graphs, G is called \mathcal{H}-free if G does not contain any graph from \mathcal{H} as an induced subgraph. In this context it is common to call such a graph H (or a member of a class \mathcal{H}) a forbidden subgraph. We use $H_{1} \cup H_{2}$ to denote the disjoint union of two vertex-disjoint graphs H_{1} and H_{2}. Thus, $\left(H_{1} \cup H_{2}\right)$-free means to forbid $H_{1} \cup H_{2}$ as an induced subgraph, it does not mean forbidding H_{1} and/or H_{2}.

We will use the following notations for some special graphs: $K_{i}(i \geq 1)$ - the complete graph on i vertices, $K_{1, r}(r \geq 2)$ - a star, $P_{i}(i \geq 1)$ - the path on i vertices (so $P_{1}=K_{1}, P_{2}=K_{2}$). We use $N_{i, j, k}$ to denote the graph obtained by attaching three vertex-disjoint paths of lengths $i, j, k \geq 0$ to a triangle. In the special case when $i, j \geq 1$ and $k=0$ (or $i \geq 1$ and $j=k=0$), $N_{i, j, k}$ is also denoted $B_{i, j}$ (or Z_{i}), respectively (see Fig. $1(a),(b),(c)$). We use $L_{i}(i \geq 2)$ to denote the graph obtained from K_{i} by adding a pendant edge (so $L_{2}=P_{3}$ and $L_{3}=Z_{1}$).

The Ramsey number $R(k, l)$ is defined as the smallest integer n such that every graph on n vertices contains either a clique on k vertices or an independent set of l vertices. A graph G is called hamiltonian, if it contains a Hamilton cycle, i.e., a cycle containing all vertices of G. A path in G containing all vertices of G is called a Hamilton path. A graph G is called Hamilton-connected if it contains a Hamilton (x, y)-path for each pair x, y of vertices of G. A 2 -factor of a graph is a spanning subgraph whose components are cycles. A graph is called 2factorable if it contains a 2-factor. The Theta graph $\Theta(i, j, k)$ consists of a pair of endvertices joined by three internally disjoint paths of lengths $i+1, j+1, k+1, i \geq j \geq k \geq 1$ (see Fig. 1(d)). Unless otherwise stated, we will always keep the notation of vertices of a $\Theta(i, j, k)$ as in Fig. 1(d).

The first characterization of forbidden pairs of connected subgraphs for hamiltonicity of 2-connected graphs was given by Bedrossian in [1].

Theorem A [1]. Let R, S be a pair of connected graphs such that neither R nor S is an induced subgraph of P_{3}. Then G being a 2-connected $\{R, S\}$-free graph implies that G is

Figure 1: The graphs $Z_{i}, B_{i, j}, N_{i, j, k}$ and $\Theta(i, j, k)$
hamiltonian if and only if (up to a symmetry), $R=K_{1,3}$ and S is an induced subgraph of $P_{6}, B_{1,2}$ or $N_{1,1,1}$.

Faudree and Gould [6] observed that there are only finitely many nonhamiltonian $\left\{K_{1,3}, Z_{3}\right\}$ free graphs, which implies the following improvement of Theorem A.

Theorem B [6]. Let R, S be a pair of connected graphs such that neither R nor S is an induced subgraph of P_{3}. Then every 2-connected $\{R, S\}$-free graph of order at least 10 is hamiltonian if and only if (up to a symmetry), $R=K_{1,3}$ and S is an induced subgraph of $P_{6}, B_{1,2}, N_{1,1,1}$ or Z_{3}.

Faudree et al. [7] characterized all forbidden pairs of connected subgraphs for 2-factor of 2-connected graphs of sufficiently large order.

Theorem C [7]. Let R, S be a pair of connected graphs such that neither R nor S is an induced subgraph of P_{3}. Then every 2-connected $\{R, S\}$-free graph of order at least 10 has a 2 -factor if and only if (up to a symmetry), $R=K_{1,3}$ and S is an induced subgraph of $P_{7}, B_{1,4}, N_{1,1,3}$, or $R=K_{1,4}$ and $S=P_{4}$.

An analogous result for connected graphs with minimum degree 2 was given by Fujisawa and Saito [8].

Theorem D [8]. Let R, S be a pair of connected graphs such that neither R nor S is an induced subgraph of P_{3}. Then there exists a positive integer n_{0} such that every connected $\{R, S\}$-free graph of order at least n_{0} and minimum degree at least two has a 2-factor if and only if (up to symmetry) $R=K_{1,3}$ and S is an induced subgraph of Z_{2}.

Li and Vrána [11] extended Theorem B by considering disconnected graphs R, S.
Theorem E [11]. Let R, S be a pair of graphs such that neither R nor S is an induced subgraph of P_{3} or $3 K_{1}$. Then there exists a positive integer n_{0} such that every 2-connected $\{R, S\}$-free graph of order at least n_{0} is hamiltonian, if and only if (up to a symmetry):
(i) $R=K_{1,3}$ and S is an induced subgraph of $P_{6}, Z_{3}, B_{1,2}, N_{1,1,1}, K_{1} \cup Z_{2}, K_{2} \cup Z_{1}$, or $K_{3} \cup P_{4} ;$
(ii) $R=K_{1, k}$ with $k \geq 4$ and S is an induced subgraph of $2 K_{1} \cup K_{2}$;
(iii) $R=k K_{1}$ with $k \geq 4$ and S is an induced subgraph of L_{l} with $l \geq 3$, or $2 K_{1} \cup K_{l}$ with $l \geq 2$.

In this paper, we extend Theorems C and D in a similar way as Theorem E extends Theorem B. Proofs of Theorems 1, 2 and 3 are postponed to Section 4.

Our first result characterizes all (possibly disconnected) graphs F such that every "sufficiently large" 2 -connected F-free graph has a 2 -factor.

Theorem 1. Let F be a graph. Then G being 2-connected F-free of order at least $R(31,4)$ implies G has a 2-factor if and only if F is an induced subgraph of P_{3} or $4 K_{1}$.

When forbidding a pair of graphs R, S such that every 2-connected $\{R, S\}$-free graph (of sufficiently large order) has a 2-factor, to avoid trivial cases, we suppose that neither R nor S is an induced subgraph of P_{3} or $4 K_{1}$ by virtue of Theorem 1 . The following theorem can be considered as a generalization of Theorem C.

Theorem 2. Let R, S be a pair of graphs such that neither R nor S is an induced subgraph of P_{3} or $4 K_{1}$. Then there exists a positive integer n_{0} such that every 2-connected $\{R, S\}$-free graph of order at least n_{0} has a 2 -factor if and only if (up to a symmetry):
(i) $R=K_{1,3}$ and S is an induced subgraph of $P_{7}, B_{1,4}, N_{1,1,3}, K_{3} \cup Z_{1}, Z_{1} \cup P_{4}, Z_{4} \cup K_{1}, N_{1,1,1} \cup$ K_{2}, or $K_{3} \cup P_{4} \cup K_{1}$;
(ii) $R=K_{1,4}$ and S is an induced subgraph of $P_{3} \cup 2 K_{1}$, or $3 K_{1} \cup K_{2}$;
(iii) $R=K_{1, k}$ with $k \geq 5$ and S is an induced subgraph of $3 K_{1} \cup K_{2}$;
(iv) $R=k K_{1}$ with $k \geq 5$ and S is an induced subgraph of L_{l} with $l \geq 3$, or $3 K_{1} \cup K_{l}$ with $l \geq 2$.

In [8], Fujisawa and Saito proved the following.
Theorem F [8]. Let G be a connected graph order at least 6, independence number $\alpha(G) \leq 2$ and minimum degree at least two. Then G has a 2 -factor.

Similarly as in Theorem 2, to avoid trivial cases, our next main result requires that neither R nor S is an induced subgraph of P_{3} or $3 K_{1}$ (by virtue of Theorem F).

Theorem 3. Let R, S be a pair of graphs such that neither R nor S is an induced subgraph of P_{3} or $3 K_{1}$. Then there exists a positive integer n_{0} such that every connected $\{R, S\}$-free graph of order at least n_{0} and minimum degree at least two has a 2 -factor if and only if (up to a symmetry):
(i) $R=K_{1,3}$ and S is an induced subgraph of $Z_{2}, P_{3} \cup K_{2}, Z_{1} \cup K_{2}$ or $K_{1} \cup K_{2} \cup K_{3}$;
(ii) $R=K_{1, k}$ with $k \geq 4$ and S is an induced subgraph of $2 K_{1} \cup K_{2}$;
(iii) $R=4 K_{1}$ and S is an induced subgraph of L_{l} with $l \geq 3$, or $K_{1} \cup K_{2} \cup K_{l}$ with $l \geq 2$;
(iv) $R=k K_{1}$ with $k \geq 5$ and S is an induced subgraph of L_{l} with $l \geq 3$, or $2 K_{1} \cup K_{l}$ with $l \geq 2$.

In the next section, we will present some necessary results on line graphs and on the closure operation for claw-free graphs, and some further known results that will be needed. In Section 3, we collect partial results that will compose sufficiency parts of the proofs of Theorems 2 and 3. Finally, in Section 4, we complete the proofs of the main results.

2 Preliminaries

The line graph of a graph H, denoted $L(H)$, has $E(H)$ as its vertex set, where two vertices are adjacent in $L(H)$ if and only if the corresponding edges of H have a vertex in common. It is a well-known fact that if G is a connected line graph different from K_{3}, then the graph H such that $L(H)=G$, is uniquely determined. This graph will be called the preimage of G, and denoted $L^{-1}(G)$. A graph is essentially k-edge-connected if every edge cut of size less than k is trivial (no more than one component of the graph after deleting the edge cut contains any edges). It is easy to see that G is k-connected if and only if $L^{-1}(G)$ is essentially k-edge-connected.

Ryjáček [13] introduced the closure of a claw-free graph, which became a useful tool for investigation of hamiltonian properties of claw-free graphs. A vertex $x \in V(G)$ is said to be eligible if $\left\langle N_{G}(x)\right\rangle$ is a connected non-complete graph. We will use $V_{E L}(G)$ to denote the set of all eligible vertices of G. For $x \in V_{E L}(G)$, the graph G_{x}^{\prime} obtained from G by adding the edges $\left\{y z: y, z \in N_{G}(x)\right.$ and $\left.y z \notin E(G)\right\}$ is called the local completion of G at x. The closure of a claw-free graph G is the graph $\operatorname{cl}(G)$ obtained from G by recursive performing the local completion operation at eligible vertices, as long as this is possible (more precisely, there is a sequence of graphs G_{1}, \cdots, G_{k} such that $G_{1}=G, G_{i+1}=\left(G_{i}\right)_{x}^{\prime}$ for some vertex $x \in V_{E L}\left(G_{i}\right)$, $i=1, \ldots, k-1$, and $G_{k}=\operatorname{cl}(G)$. The following theorem provides fundamental properties of the closure operation.

Theorem G [13]. Let G be a claw-free graph. Then
(i) $\operatorname{cl}(G)$ is uniquely determined;
(ii) $\mathrm{cl}(G)$ is the line graph of a triangle-free graph;
(iii) G is hamiltonian if and only if $\mathrm{cl}(G)$ is hamiltonian.

Following [3], we say a class \mathcal{H} of graphs is stable under the closure if, for every $G \in \mathcal{H}$, $\mathrm{cl}(\mathrm{G})$ is also in \mathcal{H}. Ryjáček et al. [14] proved that the property of a claw-free graph having a 2 -factor is stable under the closure.

Theorem H [14]. Let G be a claw-free graph. Then G has a 2-factor if and only if $\mathrm{cl}(\mathrm{G})$ has a 2 -factor.

Brousek et al. [3] showed stability of some classes of graphs defined in terms of forbidden pairs.

Theorem I [3]. Let S be a connected graph of order at least 3. If $S \in\left\{K_{3}\right\} \cup\left\{Z_{i}: i>\right.$ $0\} \cup\left\{N_{i, j, k}: i, j, k>0\right\}$, then the class of $\left\{K_{1,3}, S\right\}$-free graphs is stable under the closure.

Later, Li and Vrána considered the analogue of Theorem I for disconnected graphs.
Theorem J [11]. Let S be a disconnected graph of order at least 3. Then the class of $\left\{K_{1,3}, S\right\}$-free graphs is stable, if and only if, for every component C of S, the class of $\left\{K_{1,3}, C\right\}$-free graphs is stable.

Brousek et al. [3] showed that the class of $\left\{K_{1,3}, B_{i, j}\right\}(i, j \geq 1)$-free graphs is not stable. Recently, Du and Xiong considered the stability of $\left\{K_{1,3}, B_{i, j}\right\}(i, j \geq 1)$-free graphs with three pendant vertices.

Theorem K [5]. Let G be a connected claw-free graph with three pendant vertices v_{1}, v_{2}, v_{3}. Then for any pair of $v_{i}, v_{j} \in\left\{v_{1}, v_{2}, v_{3}\right\}$, G has an induced subgraph $B_{l, k}$ containing v_{i}, v_{j} for some $l, k \geq 1$.

Let F be a subgraph of a graph H. We say that F is dominating in H if every edge of H has at least one end in F, and that F is even if every vertex of F has even degree in F. A set \mathcal{D} of even subgraphs and stars with at least three edges in H is called a d-system of H, if every edge of H is contained in a member of \mathcal{D} or incident with a vertex in an even subgraph in \mathcal{D}. Harary and Nash-Williams [10] showed that for a graph H with $|E(H)| \geq 3, L(H)$ is hamiltonian if and only if H has a dominating connected even subgraph. A similar relation between a 2-factor in a line graph G and a d-system in its preimage $L^{-1}(G)$ was established by Gould and Hynds [9].

Theorem L [9]. Let H be a graph with $|E(H)| \geq 3$. Then $L(H)$ has a 2-factor if and only if H has a d-system.

We further list here some classical results which will be used for the proof of the main results of this paper.

Theorem M (Mantel) [12]. Every K_{3}-free graph of order n has at most $n^{2} / 4$ edges.

Theorem N (Chvátal and Erdős) [4]. Let G be a graph on at least three vertices with independence number α and connectivity κ. If $\alpha \leq \kappa$ (or $\alpha \leq \kappa-1$), then G is hamiltonian (or Hamilton-connected), respectively.

The following result for 2-connected graphs is implicit in the proof of the main result of [11]. Since it is actually true for connected graphs, we present its proof here.

Theorem O [11]. Every connected $\left\{k K_{1}, L_{l}\right\}$-free graph, $k, l \geq 3$, of order at least $R(2 l-$ $3, k)+k-2$ is hamiltonian.

Proof. Since G is $k K_{1}$-free, we have $\alpha(G) \leq k-1$. If $\kappa(G) \geq k-1$, then G is hamiltonian by Theorem N. Hence we assume that $\kappa(G) \leq k-2$. Let S be a smallest vertex cut of G. Then $|S| \leq k-2$. Since $G-S$ is $k K_{1}$-free and $n(G) \geq R(2 l-3, k)+k-2, G-S$ contains a clique T of order $2 l-3$. Let v_{1} be a vertex of $G-S$ such that v_{1} and T are in distinct components of $G-S$. Then v_{1} has no neighbor in T. Let $P=v_{1} v_{2} \cdots v_{p}$ be a shortest $\left(v_{1}, T\right)$ path. Then the length of P is at least two, i.e., $p \geq 3$. Let us consider the neighborhood of v_{p-1} in T. If v_{p-1} has at least $l-1$ neighbors in T, then $\left\langle N_{T}\left(v_{p-1}\right) \cup\left\{v_{p-2}\right\}\right\rangle_{G}$ contains an induced L_{l}, a contradiction. Hence we assume that v_{p-1} has at most $l-2$ neighbors in T. Then $\left|V(T) \backslash N_{T}\left(v_{p-1}\right)\right| \geq l-1$ since $|V(T)|=2 l-3$, thus $\left\langle V(T) \backslash N_{T}\left(v_{p-1}\right) \cup\left\{v_{p}, v_{p-1}\right\}\right\rangle_{G}$ contains an induced L_{l}, a contradiction.

Theorem P [8]. Let G be a connected $\left\{K_{1,3}, Z_{2}\right\}$-free graph with minimum degree at least two. Then G is hamiltonian or G is isomorphic to $K_{1}+\left(K_{l} \cup K_{m}\right)$ for some integers l and m with $l, m \geq 2$.

This theorem immediately implies the following consequence.
Corollary 4. Every connected $\left\{K_{1,3}, Z_{1}\right\}$-free graph with minimum degree at least two is hamiltonian.

Lemma 5. Let G be a 2-connected non-2-factorable line graph. Then the graph $H=$ $L^{-1}(G)$ contains a subgraph isomorphic to $\Theta\left(k_{1}, k_{2}, k_{3}\right)$ with $k_{1}, k_{2}, k_{3} \geq 2$.

Proof. Let T be the set of all pendant vertices of H. If there is a cut-edge e in $H-T$, then $H-e$ has two nontrivial components, implying that G is not 2-connected, a contradiction. Hence $H-T$ is 2-edge-connected. Let $B_{1}^{\prime}, \ldots, B_{t}^{\prime}$ be all blocks of $H-T$ and let $\mathcal{F}:=$ $\left\{B_{1}, \ldots, B_{t}\right\}$ be a decomposition of H such that $B_{i} \cap(H-T)=B_{i}^{\prime}, i=1, \ldots, t$. For $1 \leq i \leq t$, each B_{i}^{\prime} contains a cycle since $H-T$ is 2-edge-connected.

If each $L\left(B_{i}\right)$ has a 2 -factor $\mathcal{C}_{i}, i=1, \ldots, t$, then $\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{t}$ is a 2-factor of G, a contradiction. Hence there exists a $B_{i} \in \mathcal{F}$, say, B_{1}, such that $L\left(B_{i}\right)$ has no 2-factor. Then B_{1} has no d-system by Theorem L. Let C be a longest cycle of B_{1}^{\prime}. Suppose that each component of $B_{1}^{\prime}-V(C)$ is trivial (having one vertex only), and let v_{1}, \ldots, v_{s} denote all components (i.e., vertices) of $B_{1}^{\prime}-V(C)$ that have a neighbor in T. Since H is essentially 2-edge-connected, each of v_{1}, \ldots, v_{s} has at least two neighbors on C, and, since C is longest, these two neighbors are not consecutive on C. Then C together with the stars $E_{v_{1}}, \ldots, E_{v_{s}}$ is a d-system of B_{1}, a contradiction. Therefore there is some nontrivial component of $B_{1}^{\prime}-V(C)$; let D denote such a component. Then D contains a nontrivial path P in D with endvertices denoted $x, y, x \neq y$. Since B_{1}^{\prime} is 2-connected, there is a pair of vertices $u, v \in V(C)$ such that $x u, y v \in E\left(B_{1}\right)$. Since C is a longest cycle of $B_{1}^{\prime}, \operatorname{dist}_{C}(u, v) \geq 3$, implying that $|V(C)| \geq 6$. Hence $\langle V(C) \cup V(P)\rangle_{H}$ contains a subgraph isomorphic to $\Theta\left(k_{1}, k_{2}, k_{3}\right)$ with $k_{1}, k_{2}, k_{3} \geq 2$.

Lemma 6. Let G be a 2 -connected $k K_{1}$-free graph, $k \geq 2$, such that $V(G)$ can be partitioned into two sets X and Y satisfying the following:
(i) $\langle X\rangle_{G}$ contains a clique T such that every vertex of X has at least $k+7$ neighbors in T;
(ii) $\alpha\left(\langle Y\rangle_{G}\right) \leq 2$.

Then G has a 2-factor.
Proof. We start with the following fact.
Claim 1. For any set $X^{\prime} \subset X$ with $\left|X^{\prime}\right| \leq 8,\left\langle X \backslash X^{\prime}\right\rangle_{G}$ is hamiltonian.
Proof. By (i), we have $\kappa\left(\langle X\rangle_{G}\right) \geq k+7$. Since G is $k K_{1}$-free, $\alpha\left(\langle X\rangle_{G}\right) \leq \alpha(G) \leq k-1$. For any set $X^{\prime} \subset X$ with $\left|X^{\prime}\right| \leq 8$, we have $\alpha\left(\left\langle X \backslash X^{\prime}\right\rangle_{G}\right) \leq \alpha\left(\langle X\rangle_{G}\right) \leq k-1$ and $\kappa\left(\left\langle X \backslash X^{\prime}\right\rangle_{G}\right) \geq$ $\kappa\left(\langle X\rangle_{G}\right)-8 \geq k+7-8=k-1$. By Theorem $\mathrm{N},\left\langle X \backslash X^{\prime}\right\rangle_{G}$ is hamiltonian.

For $Y=\emptyset, G$ is hamiltonian by Claim 1. Hence we assume that $Y \neq \emptyset$. If $\kappa\left(\langle Y\rangle_{G}\right) \geq 2$, then by $(i i), \alpha\left(\langle Y\rangle_{G}\right) \leq \kappa\left(\langle Y\rangle_{G}\right)$ and hence $\langle Y\rangle_{G}$ is hamiltonian, implying that G has a 2factor with exactly two components by Claim 1 . Hence we assume that $\kappa\left(\langle Y\rangle_{G}\right) \leq 1$. We now consider the following two cases.

Case 1: $\kappa\left(\langle Y\rangle_{G}\right)=1$.
Let v be a cut-vertex in $\langle Y\rangle_{G}$. By $(i i),\langle Y\rangle_{G}-v$ has exactly two components D_{1} and D_{2} such that each of D_{1} and D_{2} is a clique. Since G is 2-connected, there exist two edges between $V\left(D_{1} \cup D_{2}\right)$ and X, say $v_{1} x_{1}, v_{2} x_{2} \in E(G)$, with $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$, and $v_{1} \in V\left(D_{1}\right)$, $v_{2} \in V\left(D_{2}\right), v_{1} \neq v_{2}$. Since both D_{1} and D_{2} are cliques, there is a Hamilton $\left(v_{1}, v_{2}\right)$-path P of $\langle Y\rangle_{G}$. By the definition of X, there is an edge $x_{3} x_{4}$ in T such that $x_{1} x_{3}, x_{4} x_{2} \in E(G)$, and then $v_{1} P v_{2} x_{2} x_{4} x_{3} x_{1} v_{1}$ is a Hamilton cycle of $\left\langle Y \cup\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right\rangle_{G}$. By Claim 1, $\left\langle X \backslash\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right\rangle_{G}$ is hamiltonian, hence G has a 2-factor with exactly two components.

Case 2: $\langle Y\rangle_{G}$ is disconnected.
By $(i i),\langle Y\rangle_{G}$ has exactly two components D_{1}^{\prime} and D_{2}^{\prime} such that each of D_{1}^{\prime} and D_{2}^{\prime} is a clique. For each $i \in\{1,2\},\left\langle X \cup V\left(D_{i}^{\prime}\right)\right\rangle_{G}$ is 2-connected, thus each D_{i}^{\prime} has a Hamilton path P^{i} such that the endvertices of P^{i} are adjacent to two distinct vertices z_{1}^{i}, z_{2}^{i} in X. If $\left\{z_{1}^{1}, z_{2}^{1}\right\}=\left\{z_{1}^{2}, z_{2}^{2}\right\}$, say, $z_{1}^{1}=z_{1}^{2}$ and $z_{2}^{1}=z_{2}^{2}$, then $z_{1}^{1} P^{1} z_{2}^{1} P^{2} z_{1}^{1}$ is a Hamilton cycle of $\left\langle Y \cup\left\{z_{1}^{1}, z_{2}^{1}\right\}\right\rangle_{G}$. Then $\left\langle X \backslash\left\{z_{1}^{1}, z_{2}^{1}\right\}\right\rangle_{G}$ is hamiltonian by Claim 1, implying that G has a 2-factor with exactly two components.
Hence $\left|\left\{z_{1}^{1}, z_{2}^{1}\right\} \cap\left\{z_{1}^{2}, z_{2}^{2}\right\}\right| \leq 1$. Suppose first that $\left|\left\{z_{1}^{1}, z_{2}^{1}\right\} \cap\left\{z_{1}^{2}, z_{2}^{2}\right\}\right|=1$, say, $z_{2}^{1}=z_{1}^{2}$. Then $z_{1}^{1} P^{1} z_{2}^{1} P^{2} z_{2}^{2}$ is a Hamilton path of $\left\langle Y \cup\left\{z_{1}^{1}, z_{2}^{1}, z_{2}^{2}\right\}\right\rangle_{G}$. Hence, by the definition of X, there is an edge $w_{1} w_{2}$ in T such that $z_{1}^{1} w_{1}, z_{2}^{2} w_{2} \in E(G)$, and then $w_{1} z_{1}^{1} P^{1} z_{2}^{1} P^{2} z_{2}^{2} w_{2} w_{1}$ is a Hamilton cycle of $\left\langle Y \cup\left\{z_{1}^{1}, z_{2}^{1}, z_{2}^{2}, w_{1}, w_{2}\right\}\right\rangle_{G}$. By Claim $1,\left\langle X \backslash\left\{z_{1}^{1}, z_{2}^{1}, z_{2}^{2}, w_{1}, w_{2}\right\}\right\rangle_{G}$ is hamiltonian, hence G has a 2 -factor with exactly two components.
Thus, we have $\left\{z_{1}^{1}, z_{2}^{1}\right\} \cap\left\{z_{1}^{2}, z_{2}^{2}\right\}=\emptyset$. By the definition of X, for each $i \in\{1,2\}$, there is an edge $y_{1}^{i} y_{2}^{i}$ in T such that $z_{1}^{i} y_{1}^{i}, y_{2}^{i} z_{2}^{i} \in E(G)$, and then $z_{1}^{i} y_{1}^{i} y_{2}^{i} z_{2}^{i} P^{i} z_{1}^{i}$ is a Hamilton cycle
of $\left\langle V\left(D_{i}^{\prime}\right) \cup\left\{z_{1}^{i}, y_{1}^{i}, y_{2}^{i}, z_{2}^{i}\right\}\right\rangle_{G}(i \in\{1,2\})$. By Claim $1,\left\langle X \backslash\left\{z_{1}^{1}, y_{1}^{1}, y_{2}^{1}, z_{2}^{1}, z_{1}^{2}, y_{1}^{2}, y_{2}^{2}, z_{2}^{2}\right\}\right\rangle_{G}$ is hamiltonian, hence G has a 2 -factor with exactly three components.

3 Auxiliary results

In this section, we collect auxiliary results that will establish sufficiency parts of proofs of Theorems 2 and 3.

3.1 Sufficiency results for Theorem 2

Theorem 7. Let $S \in\left\{K_{3} \cup Z_{1}, Z_{1} \cup P_{4}, Z_{4} \cup K_{1}, K_{3} \cup P_{4} \cup K_{1}, N_{1,1,1} \cup K_{2}\right\}$. Then every 2-connected $\left\{K_{1,3}, S\right\}$-free graph of order at least 2500 has a 2-factor.

Proof. Let, to the contrary, G be a 2-connected non-2-factorable $\left\{K_{1,3}, S\right\}$-free graph of order at least 2500 for some $S \in\left\{K_{3} \cup Z_{1}, Z_{1} \cup P_{4}, Z_{4} \cup K_{1}, K_{3} \cup P_{4} \cup K_{1}, N_{1,1,1} \cup K_{2}\right\}$. By Theorems I and J, the class of $\left\{K_{1,3}, S\right\}$-free graphs is stable. By Theorem H, it is sufficient to consider the case that G is closed. Let H be a triangle-free graph such that $H=L^{-1}(G)$. Since $n(G) \geq 2500$, we have $e(H) \geq 2500$, and, by Theorem M, $n(H) \geq 100$. Since G is S-free, H contains no subgraph (not necessary induced) isomorphic to $L^{-1}(S)$. Recall that G is 2-connected if and only if $L^{-1}(G)$ is essentially 2-edge-connected. Since G has no 2 -factor, by Lemma $5, H$ contains a subgraph Q isomorphic to $\Theta\left(k_{1}, k_{2}, k_{3}\right)$ with $k_{1} \geq k_{2} \geq k_{3} \geq 2$ (recall that we keep the notation of its vertices as in Fig. $1(d)$). Let $N_{i}(Q)=\left\{y \in V(H) \backslash V(Q): \min \left\{\operatorname{dist}_{H}(x, y) \mid x \in V(Q)\right\}=i\right\}$.

Claim 1. $\quad V(H)=V(Q) \cup N_{1}(Q) \cup N_{2}(Q) \cup N_{3}(Q) \cup N_{4}(Q)$.
Proof. Suppose, to the contrary, that $N_{5}(Q) \neq \emptyset$. Then, by the definition of $N_{i}(Q)$, there is a path $P:=w x_{1} x_{2} x_{3} x_{4} x_{5}$ in H such that $w \in V(Q)$ and $x_{i} \in N_{i}(Q)$ for $i=1,2,3,4,5$. One can easily check that $\langle V(Q) \cup V(P)\rangle_{H}$ contains each of the graphs $L^{-1}\left(K_{3} \cup Z_{1}\right), L^{-1}\left(Z_{1} \cup\right.$ $\left.P_{4}\right), L^{-1}\left(Z_{4} \cup K_{1}\right), L^{-1}\left(K_{3} \cup P_{4} \cup K_{1}\right)$ and $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$ (see Fig. 2) as a subgraph, a contradiction.

Figure 2: The preimages of the graphs from Theorem 7

Claim 2. $\quad \sum_{j=1}^{3} k_{j} \leq 9$.

Proof. Let, to the contrary, $\sum_{j=1}^{3} k_{j} \geq 10$. Then, considering the graphs $\Theta(6,2,2), \Theta(5,3,2)$, $\Theta(4,4,2)$ and $\Theta(4,3,3)$ (all Theta graphs with $\sum_{j=1}^{3} k_{j}=10$ and $k_{3} \geq 2$), we observe that each of them contains every graph from the set

$$
\left\{L^{-1}\left(K_{3} \cup Z_{1}\right), L^{-1}\left(Z_{1} \cup P_{4}\right), L^{-1}\left(Z_{4} \cup K_{1}\right), L^{-1}\left(K_{3} \cup P_{4} \cup K_{1}\right), L^{-1}\left(N_{1,1,1} \cup K_{2}\right)\right\}
$$

as a subgraph, a contradiction. We also have the same contradiction whenever $\sum_{j=1}^{3} k_{j}>10$.

By Claim 2, we have $|V(Q)| \leq 11$. We now distinguish the following two cases.
Case 1: $S \in\left\{K_{3} \cup Z_{1}, Z_{1} \cup P_{4}, Z_{4} \cup K_{1}, K_{3} \cup P_{4} \cup K_{1}\right\}$.
Claim 3. Let $x \in V(H)$. Then $\left|N_{H-V(Q)}(x)\right| \leq 1$ if $x \in N_{1}(Q)$, and $\left|N_{H-V(Q)}(x)\right| \leq 2$ otherwise.

Proof. Let first $x \in V(H) \backslash N_{1}(Q)$, and suppose, to the contrary, that x has three neighbors x_{1}, x_{2}, x_{3} outside $V(Q)$. For $x \in V(Q)$, we set $H_{1}=\left\langle V(Q) \cup\left\{x_{1}, x_{2}, x_{3}\right\}\right\rangle_{H}$. For $x \in$ $V(H) \backslash\left(V(Q) \cup N_{1}(Q)\right)$, there is an (x, Q)-path P in H since H is connected, and we set $H_{1}=\left\langle V(Q) \cup V(P) \cup\left\{x_{1}, x_{2}, x_{3}\right\}\right\rangle_{H}$. Secondly, if $x \in N_{1}(Q)$ has two its neighbors x_{1}, x_{2} outside Q, we set $H_{1}=\left\langle V(Q) \cup\left\{x, x_{1}, x_{2}\right\}\right\rangle_{H}$.
In each of the situations, the graph H_{1} contains each of the graphs $L^{-1}\left(K_{3} \cup Z_{1}\right), L^{-1}\left(Z_{1} \cup\right.$ $\left.P_{4}\right), L^{-1}\left(Z_{4} \cup K_{1}\right)$ and $L^{-1}\left(K_{3} \cup P_{4} \cup K_{1}\right)$ as a subgraph, a contradiction.

By Claim 3, every vertex of Q has at most two neighbors outside $V(Q)$, hence $\left|N_{1}(Q)\right| \leq$ $2|V(Q)|$. Also by Claim 3, every vertex $x \in N_{i}(Q)$ has at most one neighbor in $N_{i+1}(Q)$, $i=1,2,3,4$, implying that $\left|N_{i}(Q)\right| \leq\left|N_{i-1}(Q)\right|$ for $i=2,3,4$ since each vertex of $N_{i}(Q)$ has some neighbor in $N_{i-1}(Q)$. By Claim 1, we have $n(H) \leq|V(Q)|+\sum_{i=4}^{4}\left|N_{i}(Q)\right| \leq 9|V(Q)|$. Then, since $|V(Q)| \leq 11$, we have $n(H) \leq 99$, contradicting the fact that $n(H) \geq 100$.

Case 2: $S=N_{1,1,1} \cup K_{2}$.
Since H has no subgraph isomorphic to $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$ and $Q-u_{s}(s=1,2)$ contains a subgraph isomorphic to $L^{-1}\left(N_{1,1,1}\right)$, we clearly have the following two facts.

Claim 4. For each $s \in\{1,2\}$, u_{s} has at most one neighbor outside $V(Q)$.
Claim 5. $\quad H-V(Q)$ does not contain P_{3} as a subgraph.

If $k_{1} \geq 4$, then $\left\langle\left\{u_{1} a_{1}, a_{1} a_{2}, u_{1} b_{1}, b_{1} b_{2}, u_{1} c_{1}, c_{1} c_{2}, a_{k_{1}-1} a_{k_{1}}, a_{k_{1}} u_{2}\right\}\right\rangle_{H} \cong L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$, a contradiction. Hence $k_{j} \leq 3$ for $j=1,2,3$. Therefore, since both $\Theta(3,3,2)$ and $\Theta(3,3,3)$ contain a subgraph isomorphic to $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$, we have $Q \cong \Theta(2,2,2)$ or $\Theta(3,2,2)$. We now consider the following two subcases.

Subcase 2.1: $Q \cong \Theta(3,2,2)$.
Since H has no subgraph isomorphic to $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$, it is easy to check that every vertex in $Q-a_{2}$ has no neighbor outside $V(Q)$. By Claim 5, $V(H)=V(Q) \cup N_{1}(Q) \cup$ $N_{2}(Q)$. Suppose that there is a vertex $x \in N_{2}(Q)$. Then there is a path $x y a_{2}$ in H such that $y \in N_{1}(Q)$. By Claim $5, x$ is a pendant vertex of H. Recall that H is essentially 2-edge-connected since G is 2-connected. Since every vertex of $Q-a_{2}$ has no neighbor outside $V(Q), y a_{2}$ is a cut-edge of H and thus $H-\left\{y a_{2}\right\}$ has two nontrivial components, a contradiction.
Hence $N_{2}(Q)=\emptyset$. Then $V(H)=V(Q) \cup N_{1}(Q)$. Note that every vertex in $N_{1}(Q)$ is adjacent to a_{2}. Since H is triangle-free, every vertex in $N_{1}(Q)$ is a pendant vertex, and since $d_{H}\left(a_{2}\right) \geq 3,\left\langle E\left(Q-\left\{a_{1}, a_{2}, a_{3}\right\}\right), E_{a_{2}}\right\rangle_{H}$ is a d-system of H, a contradiction.
Subcase 2.2: $Q \cong \Theta(2,2,2)$.
By Claim 5, we have $V(H)=V(Q) \cup N_{1}(Q) \cup N_{2}(Q)$. If $|E(H-V(Q))| \geq 2$, then we always find a subgraph isomorphic to $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$ in H, a contradiction. Suppose that $|E(H-V(Q))|=1$. Then, by Claim 5 and since H is essentially 2-edge-connected, there is an edge $x y$ in $H-V(Q)$ such that $x y$ has two neighbors z_{1}, z_{2} in Q. Clearly, $\left\{u_{1}, u_{2}\right\} \cap\left\{z_{1}, z_{2}\right\}=\emptyset$ since otherwise $\langle V(Q) \cup\{x, y\}\rangle_{H}$ contains $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$ as a subgraph, a contradiction. Without loss of generality suppose that $z_{1}=a_{1}$. For $z_{2}=a_{2}$, we have $z_{2} x \notin E(H)$ since H is triangle-free, implying that $z_{2} y \in E(H)$. But then $\langle V(Q) \cup\{x, y\}\rangle_{H}$ contains $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$ as a subgraph, a contradiction. For $z_{2} \in\left\{b_{1}, c_{1}\right\}$, say, $z_{2}=b_{1}$, we set $C:=u_{1} a_{1} x y b_{1} b_{2} u_{2} c_{2} c_{1} u_{1}$ when $y b_{1} \in E(H)$ (or $C:=u_{1} a_{1} x b_{1} b_{2} u_{2} c_{2} c_{1} u_{1}$ otherwise). Clearly C is a cycle in H. If a_{2} has no neighbors outside Q, C is dominating in H, implying that H has a d-system, a contradiction. If a_{2} has some neighbors outside Q, then C together with $E_{a_{2}}$ is a d-system in H, a contradiction again. For $z_{2} \in\left\{b_{2}, c_{2}\right\}$, say, $z_{2}=b_{2}, C:=u_{1} c_{1} c_{2} u_{2} a_{2} a_{1} x y b_{2} b_{1} u_{1}$ when $z_{2} y \in E(G)$ (or $C:=u_{1} c_{1} c_{2} u_{2} a_{2} a_{1} x b_{2} b_{1} u_{1}$ otherwise) is a dominating cycle in H, implying that G is hamiltonian, a contradiction.
Hence $V(H)=V(Q) \cup N_{1}(Q)$ and $N_{1}(Q)$ is an independent set of H. Since $|V(Q)|=8$ and $n(H)=|V(Q)|+\left|N_{1}(Q)\right| \geq 100$, we have $\left|N_{1}(Q)\right| \geq 100-8=92$. Since every vertex in $N_{1}(Q)$ has a neighbor in Q and $|V(Q)|=8$, there is a vertex v of Q such that v has at least 12 neighbors in $N_{1}(Q)$. By Claim $4, v \notin\left\{u_{1}, u_{2}\right\}$, hence $v \in\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right\}$. Without loss of generality, we may assume that $v=a_{1}$. Denote three neighbors v_{1}, v_{2}, v_{3} of a_{1} in $N_{1}(Q)$. Then a_{2} has no neighbor in $N_{1}(Q)$, since otherwise, for some $w \in N_{N_{1}(Q)}\left(a_{2}\right)$, $\left\langle E(Q) \cup\left\{a_{1} v_{1}, a_{1} v_{2}, a_{2} w\right\}\right\rangle_{H}$ contains a subgraph isomorphic to $L^{-1}\left(N_{1,1,1} \cup K_{2}\right)$. Then $\left\langle E\left(Q-\left\{a_{1}, a_{2}\right\}\right), E_{a_{1}}\right\rangle_{H}$ is a d-system of H, a contradiction.

Theorem 8. Every 2-connected $\left\{K_{1, k}, 3 K_{1} \cup K_{2}\right\}$-free graph, $k \geq 2$, of order at least $R(3 k+$ $26, k+2$) has a 2 -factor.

Proof. We claim that G is $(k+2) K_{1}$-free. Let, to the contrary, $S=\left\{v_{1}, v_{2}, \cdots, v_{k+2}\right\}$ be an independent set in G. Since G is connected, there is a vertex u in $G-S$ such that $u v_{1} \in E(G)$. Since G is $K_{1, k}$-free and S is an independent set, u has at most $k-1$ neighbors in S. This implies that there exists a triple of vertices, say v_{k}, v_{k+1}, v_{k+2}, in S such that $u v_{i} \notin E(G)$, and then $\left\{v_{k}, v_{k+1}, v_{k+2}, v_{1}, u\right\}$ induces a $3 K_{1} \cup K_{2}$, a contradiction. Therefore, since $n(G) \geq R(3 k+26, k+2), G$ contains a clique T of order $3 k+26$. Set

$$
X=\left\{x \in V(G): d_{T}(x) \geq k+9\right\} \text { and } Y=V(G) \backslash X
$$

We now claim that $\alpha\left(\langle Y\rangle_{G}\right) \leq 2$. Let, to the contrary, $\left\{y_{1}, y_{2}, y_{3}\right\}$ be an independent set in $\langle Y\rangle_{G}$. Then, by the definition of Y, y_{i} has at most $k+8$ neighbors in $T, 1 \leq i \leq 3$. Since $|V(T)| \geq 3 k+26$, there is an edge $x_{1} x_{2}$ in T such that none of $y_{i}(i=1,2,3)$ is adjacent to any of x_{1}, x_{2}. However, $\left\{y_{1}, y_{2}, y_{3}, x_{1}, x_{2}\right\}$ induces a $3 K_{1} \cup K_{2}$, a contradiction. Thus, G satisfies the assumptions of Lemma 6, and hence it has a 2 -factor.

Theorem 9. Every 2-connected $\left\{k K_{1}, 3 K_{1} \cup K_{l}\right\}$-free graph, $k \geq 4, l \geq 2$, of order at least $R(3 k+l+18, k)$ has a 2 -factor.

Proof. \quad Since G is $k K_{1}$-free and $n(G) \geq R(3 k+l+18, k), G$ contains a clique T of order $3 k+l+18$. Set

$$
X=\left\{x \in V(G): d_{T}(x) \geq k+7\right\} \text { and } Y=V(G) \backslash X
$$

We now claim that $\alpha\left(\langle Y\rangle_{G}\right) \leq 2$. Let, to the contrary, $\left\{y_{1}, y_{2}, y_{3}\right\}$ be an independent set in $\langle Y\rangle_{G}$. By the definition of Y, y_{i} has at most $k+6$ neighbors in $T, 1 \leq i \leq 3$. Since $|V(T)| \geq 3 k+l+18$, there is a subgraph T^{\prime} of T such that $\left|V\left(T^{\prime}\right)\right| \geq l$ and no vertex in T^{\prime} is adjacent to any of $\left\{y_{1}, y_{2}, y_{3}\right\}$. Then $\left\{y_{1}, y_{2}, y_{3}\right\} \cup V\left(T^{\prime}\right)$ induces a $3 K_{1} \cup K_{l}$, a contradiction. Thus, G satisfies the assumptions of Lemma 6, and hence G has a 2 -factor.

Theorem 10. Let G be a 2-connected $\left\{K_{1,4}, P_{3} \cup 2 K_{1}\right\}$-free graph of order at least $R(113,5)$. Then G has a 2-factor.

Proof. We start the proof with the following statement.
Claim 1. G is $5 K_{1}$-free.
Proof. Let, to the contrary, $v_{1}, v_{2}, \ldots, v_{5}$ be an induced $5 K_{1}$ in G. Since G is connected, there is a path P between v_{1} and some of the vertices $v_{2}, v_{3}, v_{4}, v_{5}$. Choose P shortest possible and choose the notation of the vertices such that P is a $\left(v_{1}, v_{2}\right)$-path. Hence none of v_{3}, v_{4}, v_{5} belongs to P. Then $|V(P)| \leq 7$, for otherwise P contains an induced $P_{3} \cup 2 K_{1}$. On the other hand, $|V(P)| \geq 3$, for otherwise $v_{1} v_{2} \in E(G)$. Hence $3 \leq|V(P)| \leq 7$. Let x denote the neighbor of v_{2} on P. By the choice of P, none of v_{3}, v_{4}, v_{5} is adjacent to any internal vertex of P distinct from x (if any), and since G is $K_{1,4}$ free, x is adjacent to at most one of v_{3}, v_{4}, v_{5},
say, to v_{5}. Then v_{3}, v_{4} and the subpath of P of length 2 with one endvertex v_{1} induce a $P_{3} \cup 2 K_{1}$, a contradiction.

Since G is $5 K_{1}$-free and $n \geq R(113,5), G$ contains a clique T of order 113. Set $X=\{x \in$ $\left.V(G), d_{T}(x) \geq 17\right\}$ and $Y=V(G) \backslash X$. Clearly $V(T) \subseteq X$. For $Y=\emptyset$, we know that G is hamiltonian by Theorem N . Hence assume that $Y \neq \emptyset$. If $\alpha\left(\langle Y\rangle_{G}\right) \leq 2$, then G has a 2-factor by Lemma 6 since each $5 K_{1}$-free graph is also $10 K_{1}$-free. Thus, in the rest of the proof, we assume that $\alpha\left(\langle Y\rangle_{G}\right) \geq 3$.

Claim 2. $\quad \alpha\left(\langle Y\rangle_{G}\right)=3$.
Proof. Let, to the contrary, $\alpha\left(\langle Y\rangle_{G}\right) \geq 4$, and let $I=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ be an independent set in Y. Since each of $y_{i}(i=1,2,3,4)$ has at most 16 neighbors in T (by the definition of Y) and T has 113 vertices, T contains a vertex t such that $t y_{i} \notin E(G)$ for every $i=1,2,3,4$. This implies that $y_{1}, y_{2}, y_{3}, y_{4}, t$ induce a $5 K_{1}$, contradicting Claim 1.

Claim 3. $\langle Y\rangle_{G}$ has no induced subgraph isomorphic to $P_{3} \cup K_{1}$.
Proof. Let, to the contrary, $y_{1} y_{2} y_{3}, y_{4}$ be an induced $P_{3} \cup K_{1}$ in $\langle Y\rangle_{G}$. Since each of y_{i} ($i=1,2,3,4$) has at most 16 neighbors in T (by the definition of Y) and T has 113 vertices, there is a vertex t in T such that $t y_{i} \notin E(G)$ for every $i=1,2,3,4$. Then $\left\{y_{1}, y_{2}, y_{3}, y_{4}, t\right\}$ induces a $P_{3} \cup 2 K_{1}$, a contradiction.

Claim 4. For any $X^{\prime} \subset X$ with $\left|X^{\prime}\right| \leq 12,\left\langle X \backslash X^{\prime}\right\rangle_{G}$ is Hamilton-connected.
Proof. Let $X^{\prime} \subset X$ with $\left|X^{\prime}\right| \leq 12$ and let $G^{\prime}=\left\langle X \backslash X^{\prime}\right\rangle_{G}$. For G^{\prime} we have $\kappa\left(G^{\prime}\right) \geq$ $\kappa(G)-12 \geq 17-12=5$, and $\alpha\left(G^{\prime}\right) \leq \alpha(G) \leq 4$ by Claim 1. Thus G^{\prime} is Hamilton-connected by Theorem N.

Now we consider the following two cases.
Case 1: $\langle Y\rangle_{G}$ is disconnected.
By Claim 2, nc $\left(\langle Y\rangle_{G}\right) \leq 3$. First assume that $\langle Y\rangle_{G}$ consists of two components, denoted D_{1} and D_{2}. Then one of D_{1}, D_{2}, say, D_{1}, is a clique, and D_{2} is of diameter 2 or 3 , since $\alpha\left(\langle Y\rangle_{G}\right)=3$. Let $y_{1} \in V\left(D_{1}\right)$ and let P be an induced path in D_{2} of length 2. This yields an induced $P_{3} \cup K_{1}$ in $\langle Y\rangle_{G}$, contradicting Claim 3.
Hence $\langle Y\rangle_{G}$ consists of three components, denoted D_{1}, D_{2}, D_{3}. By Claim 2, each $D_{i}(i=$ $1,2,3$) is a clique. Since G is 2 -connected and since D_{1}, D_{2}, D_{3} are cliques, for each $i=1,2,3$, there are two distinct vertices x_{i}^{1}, x_{i}^{2} in X (possibly $x_{i_{1}}^{j_{1}}=x_{i_{2}}^{j_{2}}$ for some $i_{1}, i_{2} \in\{1,2,3\}$, $\left.j_{1}, j_{2} \in\{1,2\}, i_{1} \neq i_{2}\right)$ such that $\left\langle\left\{x_{i}^{1}, x_{i}^{2}\right\} \cup V\left(D_{i}\right)\right\rangle_{G}$ has a Hamilton $\left(x_{i}^{1}, x_{i}^{2}\right)$-path Q_{i}. Let $M=\left\{x_{1}^{1}, x_{1}^{2}, x_{2}^{1}, x_{2}^{2}, x_{3}^{1}, x_{3}^{2}\right\}$. Then $2 \leq|M| \leq 6$. Choose the vertices $x_{i}^{1}, x_{i}^{2}(i=1,2,3)$ such that $|M|$ is maximal.

Let $Q=Q_{1} \cup Q_{2} \cup Q_{3}$. Suppose that, say, $x_{1}^{1}=x_{2}^{1}=x_{3}^{1}$. Let $\left(x_{1}^{1}\right)^{i}$ denote the successor of x_{1}^{1} on $Q_{i}, i=1,2,3$, and let $x \in T \backslash M$ such that $x x_{1}^{1} \in E(G)$. If x is adjacent to none of $\left(x_{1}^{1}\right)^{i}$, $i=1,2,3$, then $\left\langle\left\{x_{1}^{1},\left(x_{1}^{1}\right)^{1},\left(x_{1}^{1}\right)^{2},\left(x_{1}^{1}\right)^{3}, x\right\}\right\rangle_{G}$ is an induced $K_{1,4}$, a contradiction. Hence x is adjacent to some of $\left(x_{1}^{1}\right)^{i}$, say, to $\left(x_{1}^{1}\right)^{1}$. Then considering a Hamilton $\left(\left(x, x_{1}^{2}\right)\right)$-path Q_{1}^{\prime} in $\left\langle\left\{x, x_{1}^{2}\right\} \cup V\left(D_{1}\right)\right\rangle_{G}$ instead of Q_{1} contradicts the maximality of $|M|$.
Hence $x_{a}^{b}=x_{c}^{d}=x_{e}^{f}$ for no triple of vertices from $M(a, c, e \in\{1,2,3\}, b, d, f \in\{1,2\})$. Therefore Q consists of at most three components and each of them is a path or a cycle. Similarly as in the proof of Lemma 6 , since T is a clique of order 113 , there is an edge $w_{i}^{1} w_{i}^{2}$ in T such that $w_{i}^{j} x_{i}^{j} \in E(G), i=1,2,3$ and $j=1,2$. Set $N=\left\{w_{i}^{j}\right\}$. Then $\langle V(Q) \cup N\rangle_{G}$ has a 2-factor. Since $|M \cup N| \leq 12,\langle X \backslash(M \cup N)\rangle_{G}$ is hamiltonian by Claim 4, implying that G has a 2 -factor.

Case 2: $\langle Y\rangle_{G}$ is connected.
Let V denote a minimal vertex cut in $\langle Y\rangle_{G}$. The following fact is obvious by Claims 2 and 3 .
Claim 5. The subgraph $\langle Y\rangle_{G}-V$ consists of at most three components, and these components are all cliques.

If $\kappa\left(\langle Y\rangle_{G}\right) \geq 3$, then $\langle Y\rangle_{G}$ and $\langle X\rangle_{G}$ are both hamiltonian by Theorem N , implying that G has a 2 -factor. Hence we assume that $1 \leq \kappa\left(\langle Y\rangle_{G}\right) \leq 2$. We now consider the following two subcases.

Subcase 2.1: $\kappa\left(\langle Y\rangle_{G}\right)=2$.
Let $V=\left\{v_{1}, v_{2}\right\}$. By Claim 5, $\langle Y\rangle_{G}-\left\{v_{1}, v_{2}\right\}$ consists of at most three components D_{1}, D_{2}, D_{3} (D_{3} may be empty), and each $D_{i}(i=1,2,3)$ is a clique. If D_{3} is empty, then, since $\langle Y\rangle_{G}$ is 2-connected, $\langle Y\rangle_{G}$ is hamiltonian, implying that G has a 2-factor. Hence we assume that D_{3} is nonempty. Then we have the following fact.

Claim 6. Each of v_{1}, v_{2} is adjacent to every vertex in $D_{1} \cup D_{2} \cup D_{3}$.
Proof. Let, to the contrary, $y_{i} v_{j} \notin E(G)$ for some $y_{i} \in V\left(D_{i}\right), i \in\{1,2,3\}$ and $j \in$ $\{1,2\}$, say, $i=j=1$. Then there are $y_{2} \in V\left(D_{2}\right)$ and $y_{3} \in V\left(D_{3}\right)$ such that $y_{3} v_{1} y_{2}$ is an induced path in G since $\left\{v_{1}, v_{2}\right\}$ is a minimal vertex cut of $\langle Y\rangle_{G}$. However, $\left\{y_{3}, v_{1}, y_{2}, y_{1}\right\}$ induces a $P_{3} \cup K_{1}$, contradicting Claim 3 .

Now, since G is 2-connected, there are two disjoint edges $x_{i} y_{i}(i=1,2)$ between some vertices $x_{i} \in X$ and $y_{i} \in Y$. Choose edges $x_{1} y_{1}, x_{2} y_{2}$ such that $\left|\left\{y_{1}, y_{2}\right\} \cap\left\{v_{1}, v_{2}\right\}\right|$ is minimal. The following possibilities can occur.
(i) Both y_{1} and y_{2} belong to the same component of $\langle Y\rangle_{G}-\left\{v_{1}, v_{2}\right\}$.

Let D_{1} be such a component. Then $\left\langle V\left(D_{1}\right) \cup\left\{x_{1}, x_{2}\right\}\right\rangle_{G}$ has a Hamilton $\left(x_{1}, x_{2}\right)$-path, and, by Claim $6,\left\langle V\left(D_{2}\right) \cup V\left(D_{3}\right) \cup\left\{v_{1}, v_{2}\right\}\right\rangle_{G}$ is hamiltonian, implying that G has a 2-factor since $\langle X\rangle_{G}$ is Hamilton-connected by Claim 4.
(ii) The vertices y_{1}, y_{2} belong to distinct components of $\langle Y\rangle_{G}-\left\{v_{1}, v_{2}\right\}$.

Without loss of generality suppose that $y_{1} \in V\left(D_{1}\right)$ and $y_{2} \in V\left(D_{3}\right)$. Then, by Claim 6, there is a Hamilton $\left(x_{1}, x_{2}\right)$-path in $\left\langle Y \cup\left\{x_{1}, x_{2}\right\}\right\rangle_{G}$, implying that G has a 2-factor since $\langle X\rangle_{G}$ is Hamilton-connected by Claim 4.
(iii) $\left\{y_{1}, y_{2}\right\} \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$.

Without loss of generality suppose that $v_{1}=y_{1}$. Then, since G is $K_{1,4}$-free, x_{1} is adjacent to every vertex of some D_{i}, say, of D_{1}. Thus $y_{2} \notin V\left(D_{2}\right) \cup V\left(D_{3}\right) \cup\left\{v_{2}\right\}$, for otherwise, considering any vertex in D_{1} instead of y_{1} contradicts the choice of $x_{1} y_{1}, x_{2} y_{2}$. This implies that $y_{2} \in V\left(D_{1}\right)$. Take two vertices $t_{1}, t_{2} \in V(T)$ such that $x_{i} t_{i} \in E(G)$. Then $\left\langle V\left(D_{1}\right) \cup\left\{x_{1}, x_{2}, t_{1}, t_{2}\right\}\right\rangle_{G}$ is hamiltonian. By Claim 4, $\left\langle X \backslash\left\{x_{1}, x_{2}, t_{1}, t_{2}\right\}\right\rangle_{G}$ is hamiltonian. By Claim 6, $\left\langle V\left(D_{2}\right) \cup V\left(D_{3}\right) \cup\left\{v_{1}, v_{2}\right\}\right\rangle_{G}$ is hamiltonian. Then G has a 2 -factor with exactly three components.

Subcase 2.2: $\kappa\left(\langle Y\rangle_{G}\right)=1$.
Let $V=\{v\}$. By Claim $5,\langle Y\rangle_{G}-v$ consists of at most three components $D_{1}, D_{2}, D_{3}\left(D_{3}\right.$ may be empty) and each $D_{i}(i=1,2,3)$ is a clique. Suppose that D_{3} is empty. Then, since G is 2-connected, there is a pair of vertex-disjoint edges $x_{1} y_{1}$ and $x_{2} y_{2}$ such that $x_{1}, x_{2} \in X$ and $y_{i} \in V\left(D_{i}\right)(i=1,2)$. Clearly, $\langle Y\rangle_{G}$ has a Hamilton $\left(y_{1}, y_{2}\right)$-path, and since $\langle X\rangle_{G}$ is Hamilton-connected by Claim 4, there is a Hamilton $\left(x_{1}, x_{2}\right)$-path in $\langle X\rangle_{G}$. Thus, G is hamiltonian.
Hence suppose that D_{3} is nonempty. Then the following fact is obvious by Claim 3 .

Claim 7. The vertex v is adjacent to every vertex in Y.

Suppose that some of the components D_{i}, say, D_{3}, contains more than two vertices. Clearly D_{3} is hamiltonian. Since G is 2 -connected, there is an edge $x_{i} y_{i}$ such that $x_{i} \in X$ and $y_{i} \in V\left(D_{i}\right)$ for $i=1,2$. If $x_{1}=x_{2}$, then, by Claim $7,\left\langle V\left(D_{1}\right) \cup V\left(D_{2}\right) \cup\left\{x_{1}\right\}\right\rangle_{G}$ is hamiltonian. By Claim $4,\left\langle X \backslash\left\{x_{1}\right\}\right\rangle_{G}$ is hamiltonian, and then G has a 2-factor. If $x_{1} \neq x_{2}$, then, by Claim $7,\left\langle V\left(D_{1}\right) \cup V\left(D_{2}\right) \cup\left\{x_{1}, x_{2}\right\}\right\rangle_{G}$ has a Hamilton $\left(x_{1}, x_{2}\right)$-path. Since $\langle X\rangle_{G}$ is Hamilton-connected by Claim 4, there is a Hamilton $\left(x_{1}, x_{2}\right)$-path in $\langle X\rangle_{G}$, hence G has a 2-factor with exactly two components.
Hence suppose that $\left|V\left(D_{i}\right)\right| \leq 2$ for each $i=1,2,3$. Then $|Y| \leq 7$. By the definition of Y, every vertex in Y has at most 16 neighbors in T. Since T has 113 vertices, $V(T) \backslash N_{T}(Y) \neq$ \emptyset. Let P be a shortest path between some vertex of $Y \backslash\{v\}$ and some vertex y_{P} of $V(T) \backslash N_{T}(Y)$ (possibly $N_{T}(Y)=\emptyset$). We may assume that $y_{P} \in D_{1}$. If $N_{T}(Y)=\emptyset$, then y_{P} has a neighbor x_{P} in X, and, considering any neighbor t_{P} of x_{P} in T, we get $P=t_{P} x_{P} y_{P}$. On the other hand, if $N_{T}(Y) \neq \emptyset$, then y_{P} has a neighbor x_{P} in T, which is adjacent to each vertex of $V(T) \backslash N_{T}(Y)$, thus also to t_{P}. Obviously, P has length 2.

Claim 8. There is $j \in\{2,3\}$ such that $V\left(D_{1}\right) \cup V\left(D_{j}\right) \subset N_{G}\left(x_{p}\right)$ and $V\left(D_{5-j}\right) \cap$ $N_{G}\left(x_{p}\right)=\emptyset$.

Proof. Let, say, $j=2$. If in each of $D_{j^{\prime}}\left(j^{\prime}=2,3\right)$ there is a vertex $y_{j^{\prime}}$ such that $x_{p} \notin N_{G}\left(y_{j^{\prime}}\right)$, then G contains an induced $P_{3} \cup 2 K_{1}$, a contradiction. Hence x_{p} is adjacent to every vertex of one of $D_{j^{\prime}}$, say, of D_{2}. If some vertex of D_{3} is adjacent to x_{P}, then x_{P} is the center of an induced $K_{1,4}$, a contradiction. Thus there is no edge between x_{P} and $V\left(D_{3}\right)$. By a symmetric argument, each vertex of D_{1} is adjacent to x_{P}.

Since G is 2 -connected, there is an induced path $Q=y_{Q} x_{Q} t_{Q}$ in G such that $y_{Q} \in$ $V\left(D_{3}\right), x_{Q} \in X$ and $t_{Q} \in V(T)$. By Claim $8, x_{P} \neq x_{Q}$. Since G is $P_{3} \cup 2 K_{1}$-free, $x_{Q}\left(\right.$ or $\left.t_{Q}\right)$ is adjacent to some vertex of $D_{1} \cup D_{2}$. Then, by Claims 7 and $8,\langle Y \cup$ $\left.\left\{x_{P}, x_{Q}\right\}\right\rangle_{G}\left(\right.$ or $\left.\left\langle Y \cup\left\{x_{P}, x_{Q}, t_{Q}\right\}\right\rangle_{G}\right)$ is hamiltonian, and, by Claim $4,\left\langle X \backslash\left\{x_{P}, x_{Q}\right\}\right\rangle_{G}$ (or $\left\langle X \backslash\left\{x_{P}, x_{Q}, t_{Q}\right\}\right\rangle_{G}$) is hamiltonian, implying that G has a 2-factor with exactly two components.

3.2 Sufficiency results for Theorem 3

Theorem 11. Every connected $\left\{K_{1,3}, S\right\}$-free graph of order at least 2500 and minimum degree at least two has a 2-factor for any $S \in\left\{P_{3} \cup K_{2}, Z_{1} \cup K_{2}, K_{1} \cup K_{2} \cup K_{3}\right\}$.

Proof. If G is 2 -connected, then G has a 2 -factor by Theorem 7. Hence we only consider the case that $\kappa(G)=1$. Let v be a cut-vertex of G. Then $G-v$ has exactly two components since G is claw-free. If $S=P_{3} \cup K_{2}$, then each component of $G-v$ is a clique since $n(G) \geq 6$ and G is $P_{3} \cup K_{2}$-free, implying that G has a 2-factor. It remains to consider the following two cases.

Case 1: $S=Z_{1} \cup K_{2}$.
Suppose first that G has a cut-edge $x_{1} x_{2}$. Then $G-x_{1} x_{2}$ has two components D_{1}, D_{2} with $x_{i} \in V\left(D_{i}\right), i=1,2$. Since $\delta(G) \geq 2$ and G is claw-free, each of D_{1}, D_{2} has a triangle. If, say, $d_{D_{1}}\left(x_{1}\right)=1$, we choose a shortest $\left(x_{1}, y\right)$-path P such that y is in a triangle, say, T. Then $V(T) \cup V(P)$ contains an induced Z_{1} in D_{1}. Together with an edge in $D_{2}-x_{2}$ we have an induced $Z_{1} \cup K_{2}$, a contradiction.
Hence for each $i \in\{1,2\}, x_{i}$ has at least two neighbors in D_{i}, implying that $\delta\left(D_{i}\right) \geq 2$. Since $\delta(G) \geq 2$, we have $\left|V\left(D_{i}\right)\right| \geq 3$ for $i=1,2$. Therefore, since G is $Z_{1} \cup K_{2}$-free, each $D_{i}(i=1,2)$ is $\left\{K_{1,3}, Z_{1}\right\}$-free. By Corollary 4 , both D_{1} and D_{2} are hamiltonian, hence G has a 2 -factor.

Now suppose that G is 2-edge-connected. Since G is claw-free and $\delta(G) \geq 2$, each block of G contains a triangle. If G has more than two blocks, then using two appropriate blocks for Z_{1} and one for K_{2} we get an induced $Z_{1} \cup K_{2}$, a contradiction. Thus G has two blocks B_{1}, B_{2} and a cut-vertex v. Then each $B_{i}(i=1,2)$ is $\left\{K_{1,3}, Z_{1}\right\}$-free, and, by Corollary 4, both B_{1} and B_{2} are hamiltonian, implying that G has a 2-factor since $n(G) \geq 2500$.

Case 2: $S=K_{1} \cup K_{2} \cup K_{3}$.
Suppose first that G has a cut-edge $x_{1} x_{2}$. Then $G-x_{1} x_{2}$ has two components D_{1}, D_{2} with $x_{i} \in V\left(D_{i}\right), i=1,2$. Assume that $d_{D_{i}}\left(x_{i}\right)=1$ for some $i \in\{1,2\}$, say, for $i=1$. Let y denote the neighbor of x_{1} in D_{1}. Since $\delta(G) \geq 2$ and G is claw-free, each of D_{1}, D_{2} has a triangle. Then each of D_{1} and $\left\langle\left\{x_{1}\right\} \cup V\left(D_{2}\right)\right\rangle_{G}$ contains an induced $K_{1} \cup K_{2}$.
We now show that $\left|N_{D_{1}-x_{1}}(y)\right|=\left|N_{D_{2}}\left(x_{2}\right)\right|=2$. If, say, x_{2} has at least three neighbors in D_{2}, then $\left\langle N_{D_{2}}\left(x_{2}\right)\right\rangle_{G}$ contains a triangle since G is claw-free, and together with an induced $K_{1} \cup K_{2}$ in D_{1} we have an induced $K_{1} \cup K_{2} \cup K_{3}$ in G, a contradiction. Hence $\left|N_{D_{2}}\left(x_{2}\right)\right| \leq 2$, and, symmetrically, $\left|N_{D_{1}-x_{1}}(y)\right| \leq 2$.
Now, if, say, $N_{D_{2}}\left(x_{2}\right)=\{x\}$, then $x_{2} x$ is a cut-edge of G. Since $\delta(G) \geq 2$, there is a K_{3} in $D_{2}-x_{2}$, and together with an induced $K_{1} \cup K_{2}$ in D_{1} we have an induced $K_{1} \cup K_{2} \cup K_{3}$ in G, a contradiction. Hence $\left|N_{D_{2}}\left(x_{2}\right)\right|=2$, and, symmetrically, $\left|N_{D_{1}-x_{1}}(y)\right|=2$.
Let $N_{D_{1}-x_{1}}(y)=\left\{y_{1}, y_{2}\right\}$ and $N_{D_{2}}\left(x_{2}\right)=\left\{z_{1}, z_{2}\right\}$. Then $y_{1} y_{2}, z_{1} z_{2} \in E(G)$ since G is claw-free. Since $n(G) \geq 8$, there is a vertex $w \in V(G) \backslash\left\{x_{1}, x_{2}, y, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ adjacent to some of $\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\}$, say z_{1}. Then $w z_{2} \notin E(G)$, for otherwise $\left\{x_{1}, y_{1}, y_{2}, w, z_{1}, z_{2}\right\}$ induces a $K_{1} \cup K_{2} \cup K_{3}$, a contradiction. Therefore, since $\delta(G) \geq 2$, w has a neighbor w^{\prime} in $D_{2}-\left\{x_{2}, z_{1}, z_{2}\right\}$, and then $\left\{y, y_{1}, y_{2}, x_{2}, w, w^{\prime}\right\}$ induces a $K_{1} \cup K_{2} \cup K_{3}$, a contradiction.

Hence for each $i=1,2, x_{i}$ has at least two neighbors in D_{i}, thus $\delta\left(D_{i}\right) \geq 2$. Recall that each $D_{i}(i=1,2)$ contains a triangle. Since G is $K_{1} \cup K_{2} \cup K_{3}$-free, $D_{i}-x_{i}$ is $K_{1} \cup K_{2}$-free ($i=1,2$), implying that D_{i} is Z_{2}-free. Then, by Theorem P and since $D_{i}-x_{i}$ is $K_{1} \cup K_{2}$-free, D_{i} is hamiltonian, implying that G has a 2 -factor.

Now suppose that G is 2-edge-connected. Since G is claw-free, every cut-vertex of G belongs to two blocks of G. Note that each block of G contains a triangle. Since G is $K_{1} \cup K_{2} \cup K_{3}{ }^{-}$ free, G has at most three blocks. If G has exactly three blocks B_{1}, B_{2} and B_{3}, then since G is $K_{1} \cup K_{2} \cup K_{3}$-free, each $B_{i}(1 \leq i \leq 3)$ is clique. Since $n(G) \geq 9$, it is easy to see that G contains an induced $K_{1} \cup K_{2} \cup K_{3}$, a contradiction.
Hence G has exactly two blocks B_{1}, B_{2} and a cut-vertex v. If each of B_{1} and B_{2} is hamiltonian, then G contains a 2-factor since $n(G) \geq 2500$. Hence at least one of B_{1}, B_{2}, say, B_{1}, is not hamiltonian. By Theorem A, B_{1} contains an induced P_{6}, let P denote such a path. Since G is claw-free, $N_{B_{1}}(v)$ induces a clique in B_{1}, implying that $\left|N_{B_{1}}(v) \cap V(P)\right| \leq 2$. Then $B_{1}-\left(\{v\} \cup N_{B_{1}}(v)\right)$ contains an induced $K_{1} \cup K_{2}$, implying that G contains an induced $K_{1} \cup K_{2} \cup K_{3}$ since B_{2} has a triangle, a contradiction.

Theorem 12. Every connected $\left\{K_{1, k}, 2 K_{1} \cup K_{2}\right\}$-free graph, $k \geq 4$, of order at least $R(3 k+26, k+2)$ and minimum degree at least two has a 2 -factor.

Proof. If G is 2-connected, then, since every $2 K_{1} \cup K_{2}$-free graph is also $3 K_{1} \cup K_{2}$-free, G has a 2 -factor by Theorem 8. Thus we only consider the case $\kappa(G)=1$. Let v be a cut-vertex
of G. Then $G-v$ has at most $k-1$ components. Since $\delta(G) \geq 2$, every component of $G-v$ has at least two vertices. Therefore, since G is $2 K_{1} \cup K_{2}$-free, $G-v$ has exactly two components D_{1}, D_{2} and each D_{i} is a clique. Since $n(G)$ is large and G is $2 K_{1} \cup K_{2}$-free, v has at least two neighbors in some D_{i}, and then it is easy to see that G has a 2-factor.

Theorem 13. Every connected $\left\{k K_{1}, 2 K_{1} \cup K_{l}\right\}$-free graph, $k \geq 4, l \geq 2$, of order at least $R(2 k+l+4, k)$ and minimum degree at least two has a 2 -factor.

Proof. \quad Since G is $k K_{1}$-free and $n(G) \geq R(2 k+l+4, k), G$ contains a clique T of order $2 k+l+4$. Set

$$
X=\left\{x \in V(G): d_{T}(x) \geq k+3\right\} \text { and } Y=V(G) \backslash X
$$

Claim 1. For any set $X^{\prime} \subset X$ with $\left|X^{\prime}\right| \leq 4,\left\langle X \backslash X^{\prime}\right\rangle_{G}$ is hamiltonian.
Proof. We have $\alpha\left(\left\langle X \backslash X^{\prime}\right\rangle_{G}\right) \leq \alpha\left(\langle X\rangle_{G}\right) \leq k-1$ and $\kappa\left(\left\langle X \backslash X^{\prime}\right\rangle_{G}\right) \geq \kappa\left(\langle X\rangle_{G}\right)-4 \geq$ $k+3-4=k-1$. By Theorem $\mathrm{N},\left\langle X \backslash X^{\prime}\right\rangle_{G}$ is hamiltonian.

We now claim that $\langle Y\rangle_{G}$ is a clique. Let, to the contrary, u_{1}, u_{2} be a pair of nonadjacent vertices in Y. By the definition of Y, each $u_{i}(i=1,2)$ has at most $k+2$ neighbors in T. Since $|V(T)| \geq 2 k+l+4$, there is a subgraph T^{\prime} of T such that $\left|V\left(T^{\prime}\right)\right| \geq l$ and each vertex in T^{\prime} is nonadjacent to any of $\left\{u_{1}, u_{2}\right\}$. Then $\left\{u_{1}, u_{2}\right\} \cup V\left(T^{\prime}\right)$ induces a $2 K_{1} \cup K_{l}$, a contradiction. If Y has at least three vertices, then clearly $\langle Y\rangle_{G}$ is hamiltonian, implying that G has a 2-factor by Claim 1. Hence we assume that Y has at most two vertices y_{1}, y_{2} (possibly $y_{1}=y_{2}$). Since $\delta(G) \geq 2$, each $y_{i}(i=1,2)$ has a neighbor x_{i} in X (possibly $x_{1}=x_{2}$), or, in the case when $y_{1}=y_{2}, y_{1}$ has at least two distinct neighbors x_{1}, x_{2} in X. Let z_{i} be a neighbor of x_{i} in T for $i=1,2$. Let $Y^{\prime}=Y \cup\left\{x_{1}\right\}$ when $x_{1}=x_{2}$, or $Y^{\prime}=Y \cup\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}$ otherwise. Then $\left\langle Y^{\prime}\right\rangle_{G}$ is hamiltonian as well as $\left\langle V(G) \backslash Y^{\prime}\right\rangle_{G}$ is hamiltonian by Claim 1, implying that G has a 2 -factor.

Theorem 14. Every connected $\left\{4 K_{1}, K_{1} \cup K_{2} \cup K_{l}\right\}$-free graph, $l \geq 2$, of order at least $\max \{R(l+4,4), R(31,4)\}$ and minimum degree at least two has a 2 -factor.

Proof. Since G is $4 K_{1}$-free and $n(G) \geq R(l+4,4), G$ contains a clique of order $l+4$. If G is 2-connected, then G has a 2 -factor by Theorem 1. Hence we only consider the case that $\kappa(G)=1$.

Suppose first that G has a cut-edge $x_{1} x_{2}$. Then $G-x_{1} x_{2}$ has two components D_{1}, D_{2}, thus one of D_{1}, D_{2}, say, D_{1}, contains a clique of order $l+4$. Since $\delta(G) \geq 2$, we have $\left|V\left(D_{2}\right)\right| \geq 3$. Since $D_{1}-x_{1}$ has a K_{l+3} and G is $K_{1} \cup K_{2} \cup K_{l}$-free, D_{2} is $K_{1} \cup K_{2}$-free.

If x_{1} has only one neighbor x in D_{1}, then $D_{1}-\left\{x_{1}, x\right\}$ contains a K_{l+2}, implying that D_{1} contains an induced $K_{1} \cup K_{l+2}$. But then G contains an induced $K_{1} \cup K_{2} \cup K_{l+2}$ since $\left|V\left(D_{2}\right)\right| \geq$ 3, a contradiction. Similarly, if x_{2} has only one neighbor y in D_{2}, then $D_{2}-y$ contains an
edge since $\delta(G) \geq 2$, implying that D_{2} contains an induced $K_{1} \cup K_{2}$, a contradiction. Thus $\delta\left(D_{i}\right) \geq 2, i=1,2$.

Since $\alpha(G) \leq 3$, we have $\alpha\left(D_{i}\right) \leq 2, i=1,2$. Since $\left|V\left(D_{1}\right)\right| \geq l+4 \geq 6, D_{1}$ has a 2-factor by Theorem F. Since D_{2} is $\left\{K_{1,3}, K_{1} \cup K_{2}\right\}$-free, D_{2} is hamiltonian by Corollary 4. Hence G has a 2 -factor.

Now suppose that G is 2-edge-connected. Since $\alpha(G) \leq 3$ and $\kappa(G)=1$, G has two or three blocks, each of order at least 3 , and 1 or 2 cut-vertices. If G has three blocks, then, since $n(G) \geq R(l+4,4)$, one of the blocks contains a K_{l+4}, and we easily find an induced $K_{1} \cup K_{2} \cup K_{l}$ in G. Thus, we suppose that G has 2 blocks B_{1}, B_{2} and one cutvertex v. Since $\alpha(G) \leq 3$, one of B_{1}, B_{2}, say, B_{2}, is a clique and B_{1} is hamiltonian by Theorem N , and then G has a 2 -factor with 2 components, unless B_{2} is a triangle. Thus, let $V\left(B_{2}\right)=\left\{v, v_{1}, v_{2}\right\}$. Since $n(G) \geq R(l+4,4), B_{1}$ contains a clique K of order at least $l+4$. If there is a vertex $x \in V\left(B_{1}\right) \backslash(V(K) \cup\{v\})$ having at most 3 neighbors in K, then $\langle\{x\}\rangle_{G} \cup\left\langle\left\{v_{1}, v_{2}\right\}\right\rangle_{G} \cup\left\langle V(K) \backslash\left(N_{K}(x) \cup\{v\}\right)\right\rangle_{G}$ gives an induced $K_{1} \cup K_{2} \cup K_{l}$ in G. Thus, every vertex in $V\left(B_{1}\right) \backslash(V(K) \cup\{v\})$ has at least 4 neighbors in K. Then $B_{1}-v$ is 2-connected, hence hamiltonian by Theorem N , and a Hamilton cycle in $B_{1}-v$ and the triangle $v v_{1} v_{2}$ yield a 2-factor in G.

4 Proofs of the main results

Given any integer n_{0}, we consider the nine 2-connected non-2-factorable graphs G_{i} of order at least n_{0} shown in Fig. 3.

Figure 3: 2-connected non-2-factorable graphs of arbitrarily large order

Proof of Theorem 1.

Necessity. For each $i \in\{1,2,3,4\}, G_{i}$ is non-2-factorable of order at least $R(31,4)$ and hence it contains F as an induced subgraph. If F is connected, then, since the largest common connected induced subgraph of G_{1}, G_{2} and G_{3} is P_{3}, F is an induced subgraph of P_{3}. If F is disconnected, then, since every disconnected induced subgraph of G_{1} is edgeless and the independence number of G_{4} is $4, F$ is an induced subgraph of $4 K_{1}$.

Sufficiency. Let G be a 2 -connected graph of order at least $R(31,4)$. If G is P_{3}-free, then G is complete and hence hamiltonian. Hence we assume that G is $4 K_{1}$-free. Since $n(G) \geq$ $R(31,4), G$ contains a clique T of order 31. Let $X=\left\{x \in V(G): d_{T}(x) \geq 11\right\}$ and $Y=V(G) \backslash X$. Clearly $T \subset X$. We claim that $\alpha\left(\langle Y\rangle_{G}\right) \leq 2$. Let, to the contrary, $\left\{y_{1}, y_{2}, y_{3}\right\}$ be an independent set in Y. By the definition of Y, each $y_{i}(1 \leq i \leq 3)$ has at most 10 neighbors in T. Since the order of T is 31 , there is a vertex x in T such that x is nonadjacent to any of $\left\{y_{1}, y_{2}, y_{3}\right\}$. Then $\left\{x, y_{1}, y_{2}, y_{3}\right\}$ is an independent set of G, contradicting the fact that G is $4 K_{1}$-free. Thus G satisfies the conditions of Lemma 6, implying that G has a 2 -factor.

Proof of Theorem 2.

Combining Theorems C and E, sufficiency follows from Theorems 7, 8, 9, 10 and O. Hence it remains to show necessity.

Let R, S be a pair of graphs of order at least three other than $P_{3}, 3 K_{1}$ and $4 K_{1}$. Consider the graphs G_{1}, \ldots, G_{9} shown in Fig. 3. For each $1 \leq i \leq 9, G_{i}$ is non-2-factorable of arbitrarily large order and hence it contains at least one of R, S as an induced subgraph.

We now show that either R or S is edgeless or a star. Suppose, to the contrary, that neither R nor S is edgeless or a star, and recall that each of R and S is not an induced subgraph of P_{3} and $4 K_{1}$. If, say, $|V(R)| \leq 3$, then R is K_{3} or $K_{1} \cup K_{2}$, and if $|V(R)| \geq 4$, then R contains an induced $K_{1} \cup K_{2}$ when R is disconnected or a tree, or any induced cycle in R contains an induced K_{3}, C_{4} or a $K_{1} \cup K_{2}$. Thus, in any case, the graph R (and symmetrically also S) contains some of $K_{3}, C_{4}, K_{1} \cup K_{2}$ as an induced subgraph. We may assume, without loss of generality, that R is an induced subgraph of G_{1}. Since G_{1} is $\left\{K_{3}, K_{1} \cup K_{2}\right\}$-free, R contains C_{4} as an induced subgraph. Since G_{2} is C_{4}-free, G_{2} contains S as an induced subgraph, and since G_{2} is $\left\{C_{4}, K_{1} \cup K_{2}\right\}$-free, S contains K_{3} as an induced subgraph. But then G_{6} is $\left\{K_{3}, C_{4}\right\}$-free, implying that G_{6} is $\{R, S\}$-free and hence it has a 2 -factor, a contradiction.

In the rest of the proof we assume (up to a symmetry) that R is edgeless or a star. Now we consider the following four cases.

Case 1: $R=K_{1,3}$.
For each $i \in\{3,7,8\}, G_{i}$ is $K_{1,3}$-free and then it contains S as an induced subgraph.
Claim 1. If S is a forest, then $\Delta(S) \leq 2$. If S has a cycle, then each component of S has at most one cycle, which is a triangle. Moreover, if S has at least three components, then S has exactly one cycle, which is a triangle.

Proof. If S is a forest, then, since G_{3} is $K_{1,3}$-free and contains S as an induced subgraph, we have $\Delta(S) \leq 2$. If S has a cycle, then, since the only common induced cycle of G_{3} and G_{8} is a triangle, any induced cycle of S should be a triangle. In G_{3}, each pair of disjoint triangles are joined by a path of length at most two, while in G_{8}, the distance between the two triangles is three. Hence no component of S can contain two triangles, i.e., each component of S has at most one cycle, which is a triangle. Since G_{3} contains no induced
subgraph with two triangles and with at least three components, S has exactly one cycle a triangle - when $\operatorname{nc}(S) \geq 3$.

Since G_{3} is $5 K_{1}$-free and S is an induced subgraph of G_{3}, S is $5 K_{1}$-free and hence nc $(S) \leq 4$. If S is connected, then S is an induced subgraph of $P_{7}, B_{1,4}$ or $N_{1,1,3}$ by Theorem C. Hence we assume that $2 \leq \operatorname{nc}(S) \leq 4$ and we need to consider the following three possibilities.

Subcase 1.1: $\operatorname{nc}(S)=2$.
If S has no cycle, then $\Delta(S) \leq 2$ by Claim 1, and since all maximal induced subgraphs of G_{3} with maximum degree at most two and exactly two components are $P_{6} \cup K_{1}$ and $P_{3} \cup P_{4}, S$ is an induced subgraph of $P_{6} \cup K_{1}$ or $P_{3} \cup P_{4}$. If S has a cycle, then, by Claim 1, each component of S has at most one cycle - a triangle. If each component of S contains exactly one triangle, then, since the maximal common induced subgraph of G_{3} and G_{7} is $K_{3} \cup Z_{1}, S$ is an induced subgraph of $K_{3} \cup Z_{1}$. Now, if one component of S contains exactly one triangle and the other component of S is a path, then, since all maximal common induced subgraphs of G_{3} and G_{7} are $Z_{4} \cup K_{1}, Z_{1} \cup P_{4}, N_{1,1,1} \cup K_{2}$ or $B_{1,2} \cup K_{1}, S$ is an induced subgraph of some of them.
Observing that $P_{6} \cup K_{1}$ is an induced subgraph of $Z_{4} \cup K_{1}$, and that $P_{3} \cup P_{4}$ is an induced subgraph of $Z_{1} \cup P_{4}$, we summarize that S is an induced subgraph of $K_{3} \cup Z_{1}, Z_{4} \cup K_{1}, Z_{1} \cup$ $P_{4}, N_{1,1,1} \cup K_{2}$ or $B_{1,2} \cup K_{1}$.
Subcase 1.2: $\mathrm{nc}(S)=3$.
If S has no cycle, then $\Delta(S) \leq 2$ by Claim 1 , and since the only maximal induced subgraph of G_{3} with maximum degree at most two and exactly three components is $P_{4} \cup K_{2} \cup K_{1}, S$ is an induced subgraph of $P_{4} \cup K_{2} \cup K_{1}$. If S has a cycle, then by Claim $1, S$ has exactly one cycle - a triangle. Then, all the maximal induced subgraphs in G_{3} with exactly three components containing exactly one triangle are $Z_{2} \cup 2 K_{1}, Z_{1} \cup K_{1} \cup K_{2}$ and $K_{3} \cup P_{4} \cup K_{1}$, so S is an induced subgraph of $Z_{2} \cup 2 K_{1}, Z_{1} \cup K_{1} \cup K_{2}$ or $K_{3} \cup P_{4} \cup K_{1}$.
Observing that $P_{4} \cup K_{2} \cup K_{1}$ is an induced subgraph of $K_{3} \cup P_{4} \cup K_{1}$, and that $Z_{2} \cup 2 K_{1}$ as well as $Z_{1} \cup K_{2} \cup K_{1}$ are induced subgraphs of $Z_{4} \cup K_{1}$, we summarize that S is an induced subgraph of $K_{3} \cup P_{4} \cup K_{1}$ or $Z_{4} \cup K_{1}$ (which is already mentioned in the previous subcase).
Subcase 1.3: $\mathrm{nc}(S)=4$.
If S has no cycle, then $\Delta(S) \leq 2$ by Claim 1, and since the only maximal induced subgraph of G_{3} with maximum degree at most two and exactly four components is $2 K_{2} \cup 2 K_{1}, S$ is an induced subgraph of $2 K_{2} \cup 2 K_{1}$. If S has a cycle, then by Claim $1, S$ has exactly one cycle - a triangle. Then the maximal induced subgraph containing exactly one triangle in G_{3} with exactly four components is $K_{3} \cup K_{2} \cup 2 K_{1}$, so S is an induced subgraph of $K_{3} \cup K_{2} \cup 2 K_{1}$. Since $2 K_{2} \cup 2 K_{1}$ is an induced subgraph of $K_{3} \cup K_{2} \cup 2 K_{1}$, and $K_{3} \cup K_{2} \cup 2 K_{1}$ is an induced subgraph of $K_{3} \cup P_{4} \cup K_{1}, S$ is an induced subgraph of $K_{3} \cup P_{4} \cup K_{1}$ (which is already mentioned in the previous subcase).

Summarizing all possibilities in Case 1 , we get that S is an induced subgraph of one of the graphs in $\left\{K_{3} \cup Z_{1}, Z_{1} \cup P_{4}, Z_{4} \cup K_{1}, N_{1,1,1} \cup K_{2}, B_{1,2} \cup K_{1}, K_{3} \cup P_{4} \cup K_{1}\right\}$.

Case 2: $R=K_{1,4}$.
Each of the graphs $G_{3}, G_{4}, G_{6}, G_{9}$ is $K_{1,4}$-free, hence each of them contains S as an induced subgraph. Note that G_{6} is K_{3}-free. Since S is not an induced subgraph of P_{3} or $4 K_{1}$, considering G_{4}, S is an induced subgraph of some of $C_{4}, C_{5}, P_{4}, S_{1,1,3}, P_{3} \cup 2 K_{1}, P_{3} \cup K_{2}, 3 K_{1} \cup$ K_{2}, where $S_{1,1,3}$ denotes the graph obtained from $K_{1,3}$ by subdividing one edge twice. Since G_{3} is $\left\{C_{4}, C_{5}, K_{1,3}\right\}$-free and G_{9} is $P_{3} \cup K_{2}$-free, it remains that S is an induced subgraph of $P_{3} \cup 2 K_{1}$ or $3 K_{1} \cup K_{2}$.

Case 3: $R=K_{1, k}$ with $k \geq 5$.
Each of the graphs $G_{3}, G_{4}, G_{5}, G_{6}, G_{9}$ is $K_{1,5}$-free, hence each of them contains S as an induced subgraph. Note that G_{6} is K_{3}-free. Since S is not an induced subgraph of P_{3} or $4 K_{1}$, considering G_{4}, S is an induced subgraph of some of $C_{4}, C_{5}, P_{4}, S_{1,1,3}, P_{3} \cup 2 K_{1}, P_{3} \cup$ $K_{2}, 3 K_{1} \cup K_{2}$. Since G_{3} is $\left\{C_{4}, C_{5}, K_{1,3}\right\}$-free, G_{5} is $\left\{P_{4}, P_{3} \cup K_{1}\right\}$-free and G_{9} is $P_{3} \cup K_{2}$-free, it remains that S an induced subgraph of $3 K_{1} \cup K_{2}$.

Case 4: $R=k K_{1}$ with $k \geq 5$.
For each $i \in\{3,4,5\}, G_{i}$ is $5 K_{1}$-free, hence each of them contains S as an induced subgraph. Therefore, S is also $5 K_{1}$-free, implying that $\operatorname{nc}(S) \leq 4$. If $\operatorname{nc}(S)=1$, then, since the maximal common induced subgraph of G_{3}, G_{4} and G_{5} is L_{l} with $l \geq 3, S$ is an induced subgraph of L_{l} with $l \geq 3$. If $2 \leq \operatorname{nc}(S) \leq 4$, then, since the maximum induced subgraph of G_{5} is $3 K_{1} \cup K_{l}$ with $l \geq 2, S$ is an induced subgraph of $3 K_{1} \cup K_{l}$ with $l \geq 2$.

Proof of Theorem 3.

Sufficiency follows from Theorem O and Theorems 11, 12, 13 and 14. Hence it remains to show necessity.

Let R, S be a pair of graphs of order at least three other than P_{3} and $3 K_{1}$. Consider the graphs G_{1}, \ldots, G_{9} shown in Fig. 3 and G_{10}, G_{11}, G_{12} shown in Fig. 4. For $1 \leq i \leq 12, G_{i}$ is non-2-factorable of arbitrarily large order and hence it contains at least one of R, S as an induced subgraph.

Figure 4: Connected non-2-factorable graphs with minimum degree 2 of arbitrarily large order
We now show that either R or S is edgeless or a star. Suppose, to the contrary, that neither R nor S is edgeless or a star, and recall that neither R nor S is an induced subgraph of P_{3}
or $4 K_{1}$. If, say, $|V(R)| \leq 3$, then R is K_{3} or $K_{1} \cup K_{2}$, and if $|V(R)| \geq 4$, then R contains an induced $K_{1} \cup K_{2}$ when R is disconnected or a tree, or any induced cycle in R contains an induced K_{3}, C_{4} or a $K_{1} \cup K_{2}$. Thus, in any case, the graph R (and symmetrically also S) contains some of $K_{3}, C_{4}, K_{1} \cup K_{2}$ as an induced subgraph. We may assume, without loss of generality, that R is an induced subgraph of G_{1}. Since G_{1} is $\left\{K_{3}, K_{1} \cup K_{2}\right\}$-free, R contains C_{4} as an induced subgraph. Since G_{2} is C_{4}-free, G_{2} contains S as an induced subgraph, and since G_{2} is $\left\{C_{4}, K_{1} \cup K_{2}\right\}$-free, S contains K_{3} as an induced subgraph. But then G_{6} is $\left\{K_{3}, C_{4}\right\}$-free, implying that G_{6} is $\{R, S\}$-free and hence it has a 2 -factor, a contradiction.

In the rest of the proof we assume (up to a symmetry) that R is edgeless or a star. We now consider the following four cases.

Case 1: $R=K_{1,3}$.
Since $\alpha\left(G_{10}\right)=3$ and S is an induced subgraph of G_{11}, S is $4 K_{1}$-free and hence nc $(S) \leq 3$. If S is connected, then S is an induced subgraph of Z_{2} by Theorem D. Hence we assume that $2 \leq \mathrm{nc}(S) \leq 3$.

Claim 1. If S is a forest, then $\Delta(S) \leq 2$. If S has a cycle, then S has only one cycle, which is a triangle.

Proof. If S is a forest, then, since G_{3} is $K_{1,3}$ free and contains S as an induced subgraph, we have $\Delta(S) \leq 2$. If S has a cycle, then, since the only common induced cycle of G_{8} and G_{12} is a triangle, and G_{12} does not contain two vertex disjoint cycles as an induced subgraph, S contains only one cycle - a triangle.

Suppose first that $\operatorname{nc}(S)=2$. If S is a forest, then $\Delta(S) \leq 2$ by Claim 1. Since the maximal induced forest in G_{10} with maximum degree at most two and exactly two components is $P_{3} \cup K_{2}, S$ is an induced subgraph of $P_{3} \cup K_{2}$. If S has a cycle, then, by Claim 1, S has only one cycle - a triangle, and considering G_{10}, we observe that S is an induced subgraph of $Z_{1} \cup K_{2}$.
Now suppose that $\operatorname{nc}(S)=3$. If S is a forest, then $\Delta(S) \leq 2$ by Claim 1. Since the maximal induced forest in G_{10} with maximum degree at most two and exactly three components is $K_{1} \cup 2 K_{2}, S$ is an induced subgraph of $K_{1} \cup 2 K_{2}$. If S has a cycle - a triangle, considering G_{10}, we observe that S is an induced subgraph of $K_{1} \cup K_{2} \cup K_{3}$.
Note that $K_{1} \cup 2 K_{2}$ is an induced subgraph of $K_{1} \cup K_{2} \cup K_{3}$. Summarizing all possibilities, we conclude that S is an induced subgraph of $P_{3} \cup K_{2}, Z_{1} \cup K_{2}$ or $K_{1} \cup K_{2} \cup K_{3}$.

Case 2: $R=K_{1, k}$ with $k \geq 4$.
Each of the graphs G_{6}, G_{9}, G_{10} and G_{11} is $K_{1,4}$-free, hence each of them contains S as an induced subgraph. Since any common induced subgraph of G_{6} and G_{10} is a forest with maximum degree at most two, S is a forest with $\Delta(S) \leq 2$. If nc $(S)=2$, then, since the maximal common induced subgraph of G_{9} and G_{11} with maximum degree at most two and exactly two components is $K_{1} \cup K_{2}, S$ is an induced subgraph of $K_{1} \cup K_{2}$. If $\operatorname{nc}(S)=3$,
then, since the maximal common induced subgraph of G_{9} and G_{11} with maximum degree at most two and exactly three components is $2 K_{1} \cup K_{2}, S$ is an induced subgraph of $2 K_{1} \cup K_{2}$. Clearly, $K_{1} \cup K_{2}$ is an induced subgraph of $2 K_{1} \cup K_{2}$, hence we conclude that S is an induced subgraph of $2 K_{1} \cup K_{2}$.

Case 3: $R=k K_{1}$ with $k=4$.
For each $i \in\{10,11\}, G_{i}$ is $4 K_{1}$-free and hence it contains S as an induced subgraph. Therefore, S is also $4 K_{1}$-free, implying that $\operatorname{nc}(S) \leq 3$. If $\operatorname{nc}(S)=1$, then, since the maximal common induced subgraph of G_{10} and G_{11} is L_{l} with $l \geq 3, S$ is an induced subgraph of L_{l} with $l \geq 3$. If $2 \leq \operatorname{nc}(S) \leq 3$, then, since the maximal common induced subgraph of G_{10} and G_{11} is $K_{1} \cup K_{2} \cup K_{l}$ with $l \geq 2, S$ is an induced subgraph of $K_{1} \cup K_{2} \cup K_{l}$ with $l \geq 2$.

Case 4: $R=k K_{1}$ with $k \geq 5$.
For each $i \in\{5,10,11\}, G_{i}$ is $4 K_{1}$-free and hence it contains S as an induced subgraph. Therefore, S is also $4 K_{1}$-free, implying that nc $(S) \leq 3$. If nc $(S)=1$, then, since the maximal common induced subgraph of G_{10} and G_{11} is L_{l} with $l \geq 3, S$ is an induced subgraph of L_{l} with $l \geq 3$. If $2 \leq \operatorname{nc}(S) \leq 3$, then, since the largest common induced subgraph of G_{5} and G_{11} is $2 K_{1} \cup K_{l}$ with $l \geq 3, S$ is an induced subgraph of $2 K_{1} \cup K_{l}$ with $l \geq 3$.

References

[1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity (Ph.D. thesis). Memphis State University, 1991.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory. Springer, 2008.
[3] J. Brousek, Z. Ryjáček, O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs. Discrete Math. 196 (1999), 29-50.
[4] V. Chvátal, P. Erdős, A note on hamiltonian circuits. Discrete Math. 2 (1972), 111-113.
[5] J. Du, L. Xiong, The locally structure of claw-free graphs without induced generalized bull. Graphs and Combin. 35 (2019), 1091-1103.
[6] R. Faudree, R. Gould, Characterizing forbidden pairs for hamiltonian properties. Discrete Math. 173 (1997), 45-60.
[7] J. Faudree, R. Faudree, Z. Ryjáček, Forbidden subgraphs that imply 2-factors. Discrete Math. 308 (2008), 1571-1582.
[8] J. Fujisawa, A. Saito, A pair of forbidden subgraphs and 2-factor. Combinatorics, Probability and Computing 21 (2012), 149-158.
[9] R. Gould, E. Hynds, A note on cycles in 2-factors of line graphs. Bull. Inst. Combin. Appl. 26 (1999), 46-48.
[10] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965), 701-709.
[11] B. Li, P. Vrána, Forbidden pairs of disconnected graphs implying hamiltonicity. J. Graph Theory 84 (2017), 249-261.
[12] W. Mantel, Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Opgaven 28, Wiskundige OpgavenMet de Oplossingen 10 (1907), 60-61.
[13] Z. Ryjáček, On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997), 217-224.
[14] Z. Ryjáček, A. Saito, R. Schelp, 2-factor, and cycle coverings in claw-free graphs. J. Graph Theory 32 (1999), 109-117.

[^0]: ${ }^{1}$ European Centre of Excellence NTIS, Department of Mathematics, University of West Bohemia, Univerzitní 8, 30100 Pilsen, Czech Republic
 ${ }^{2}$ Institute of Applied System Analysis, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
 ${ }^{3}$ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
 ${ }^{4}$ e-mail \{holubpre, ryjacek, vranap\}@kma.zcu.cz
 ${ }^{5}$ e-mail spwang22@yahoo.com
 ${ }^{6}$ e-mail lmxiong@bit.edu.cn
 ${ }^{7}$ Research partly supported by project GA20-09525S of the Czech Science Foundation.
 ${ }^{8}$ Research supported by Natural Science Foundation of China No. 12001242.
 ${ }^{9}$ Research supported by Natural Science Foundation of China No. 11871099.

