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Abstract

Let H be a set of graphs. A graph G is said to be H-free if G does not contain H as

an induced subgraph for all H in H, and we call H a forbidden pair if |H| = 2. Faudree et

al. (2008) characterized all pairs of connected graphs R,S such that every 2-connected

{R,S}-free graph of sufficiently large order has a 2-factor. In 2013, Fujisawa et al.

characterized all pairs of connected graphs R,S such that every connected {R,S}-free
graph of sufficiently large order with minimum degree at least two has a 2-factor.

In this paper, we generalize these two results by considering disconnected graphs

R,S. In other words, we characterize all pairs of graphs R,S such that every 2-connected

{R,S}-free graph of sufficiently large order has a 2-factor. We also characterize all pairs

of graphs R,S such that every connected {R,S}-free graph of sufficiently large order

with minimum degree at least two has a 2-factor.

Keywords: forbidden subgraph; disconnected graph; 2-factor; closure

1 Introduction.

We basically follow the most common graph-theoretical terminology and notation and for

concepts not defined here we refer the reader to [2]. All graphs in this paper are simple, finite

and undirected.
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Let G be a graph, u, v ∈ V (G), X ⊆ V (G), and let H be a subgraph of G. Then NG(v)

denotes the set, and dG(v) the number, of neighbors of v in G, dH(v) the number of neighbors

of v in H, NG(X) the set of vertices of V (G) \X having a neighbor in X, and NH(X) the set

of vertices of V (H) \X having a neighbor in X. We use n(G) to denote the order of G, e(G)

the size of G, α(G) the independence number of G, κ(G) the connectivity of G and nc(G)

the number of components of G. By a clique in G we mean a complete subgraph of G (not

necessarily maximal). A pendant vertex is a vertex of degree 1, and a pendant edge is an edge

incident with a pendant vertex. The distance between u and v in G is denoted distG(u, v),

and, when u, v ∈ V (H), distH(u, v) denotes their distance in the subgraph H of G, i.e., the

length of a shortest path between u and v in H. A path joining vertices u and v will be called

a (u, v)-path, and, analogously, for vertex subsets X, Y ⊆ V (G), an (X, Y )-path is a path with

one endvertex in X and the other endvertex in Y . We also use Ex to denote the set of edges

between x and all its neighbors.

For X ⊂ V (G) (or X ⊂ E(G)), ⟨X⟩G denotes the subgraph of G induced by the set of

vertices X (or determined by the set of edges X) in G, respectively. A graph G is called

H-free if G does not contain H as an induced subgraph. Analogously, for a set H of graphs,

G is called H-free if G does not contain any graph from H as an induced subgraph. In this

context it is common to call such a graph H (or a member of a class H) a forbidden subgraph.

We use H1 ∪H2 to denote the disjoint union of two vertex-disjoint graphs H1 and H2. Thus,

(H1 ∪H2)-free means to forbid H1 ∪H2 as an induced subgraph, it does not mean forbidding

H1 and/or H2.

We will use the following notations for some special graphs: Ki (i ≥ 1) - the complete graph

on i vertices, K1,r (r ≥ 2) - a star, Pi (i ≥ 1) - the path on i vertices (so P1 = K1, P2 = K2).

We use Ni,j,k to denote the graph obtained by attaching three vertex-disjoint paths of lengths

i, j, k ≥ 0 to a triangle. In the special case when i, j ≥ 1 and k = 0 (or i ≥ 1 and j = k = 0),

Ni,j,k is also denoted Bi,j (or Zi), respectively (see Fig. 1(a), (b), (c)). We use Li (i ≥ 2) to

denote the graph obtained from Ki by adding a pendant edge (so L2 = P3 and L3 = Z1).

The Ramsey number R(k, l) is defined as the smallest integer n such that every graph on

n vertices contains either a clique on k vertices or an independent set of l vertices. A graph

G is called hamiltonian, if it contains a Hamilton cycle, i.e., a cycle containing all vertices of

G. A path in G containing all vertices of G is called a Hamilton path. A graph G is called

Hamilton-connected if it contains a Hamilton (x, y)-path for each pair x, y of vertices of G. A

2-factor of a graph is a spanning subgraph whose components are cycles. A graph is called 2-

factorable if it contains a 2-factor. The Theta graph Θ(i, j, k) consists of a pair of endvertices

joined by three internally disjoint paths of lengths i + 1, j + 1, k + 1, i ≥ j ≥ k ≥ 1 (see

Fig. 1(d)). Unless otherwise stated, we will always keep the notation of vertices of a Θ(i, j, k)

as in Fig. 1(d).

The first characterization of forbidden pairs of connected subgraphs for hamiltonicity of

2-connected graphs was given by Bedrossian in [1].

Theorem A [1]. Let R, S be a pair of connected graphs such that neither R nor S is

an induced subgraph of P3. Then G being a 2-connected {R, S}-free graph implies that G is
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Figure 1: The graphs Zi, Bi,j, Ni,j,k and Θ(i, j, k)

hamiltonian if and only if (up to a symmetry), R = K1,3 and S is an induced subgraph of

P6, B1,2 or N1,1,1.

Faudree and Gould [6] observed that there are only finitely many nonhamiltonian {K1,3, Z3}-
free graphs, which implies the following improvement of Theorem A.

Theorem B [6]. Let R, S be a pair of connected graphs such that neither R nor S is

an induced subgraph of P3. Then every 2-connected {R, S}-free graph of order at least 10 is

hamiltonian if and only if (up to a symmetry), R = K1,3 and S is an induced subgraph of

P6, B1,2, N1,1,1 or Z3.

Faudree et al. [7] characterized all forbidden pairs of connected subgraphs for 2-factor of

2-connected graphs of sufficiently large order.

Theorem C [7]. Let R, S be a pair of connected graphs such that neither R nor S is

an induced subgraph of P3. Then every 2-connected {R, S}-free graph of order at least 10

has a 2-factor if and only if (up to a symmetry), R = K1,3 and S is an induced subgraph of

P7, B1,4, N1,1,3, or R = K1,4 and S = P4.

An analogous result for connected graphs with minimum degree 2 was given by Fujisawa

and Saito [8].

Theorem D [8]. Let R, S be a pair of connected graphs such that neither R nor S is an

induced subgraph of P3. Then there exists a positive integer n0 such that every connected

{R, S}-free graph of order at least n0 and minimum degree at least two has a 2-factor if and

only if (up to symmetry) R = K1,3 and S is an induced subgraph of Z2.

Li and Vrána [11] extended Theorem B by considering disconnected graphs R, S.

Theorem E [11]. Let R, S be a pair of graphs such that neither R nor S is an induced

subgraph of P3 or 3K1. Then there exists a positive integer n0 such that every 2-connected

{R, S}-free graph of order at least n0 is hamiltonian, if and only if (up to a symmetry):

(i) R = K1,3 and S is an induced subgraph of P6, Z3, B1,2, N1,1,1, K1 ∪ Z2, K2 ∪ Z1, or

K3 ∪ P4;

(ii) R = K1,k with k ≥ 4 and S is an induced subgraph of 2K1 ∪K2;
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(iii) R = kK1 with k ≥ 4 and S is an induced subgraph of Ll with l ≥ 3, or 2K1 ∪Kl with

l ≥ 2.

In this paper, we extend Theorems C and D in a similar way as Theorem E extends

Theorem B. Proofs of Theorems 1, 2 and 3 are postponed to Section 4.

Our first result characterizes all (possibly disconnected) graphs F such that every “suffi-

ciently large” 2-connected F -free graph has a 2-factor.

Theorem 1. Let F be a graph. Then G being 2-connected F -free of order at least R(31, 4)

implies G has a 2-factor if and only if F is an induced subgraph of P3 or 4K1.

When forbidding a pair of graphs R, S such that every 2-connected {R, S}-free graph (of

sufficiently large order) has a 2-factor, to avoid trivial cases, we suppose that neither R nor S

is an induced subgraph of P3 or 4K1 by virtue of Theorem 1. The following theorem can be

considered as a generalization of Theorem C.

Theorem 2. Let R, S be a pair of graphs such that neither R nor S is an induced subgraph

of P3 or 4K1. Then there exists a positive integer n0 such that every 2-connected {R, S}-free
graph of order at least n0 has a 2-factor if and only if (up to a symmetry):

(i) R = K1,3 and S is an induced subgraph of P7, B1,4, N1,1,3, K3∪Z1, Z1∪P4, Z4∪K1, N1,1,1∪
K2, or K3 ∪ P4 ∪K1;

(ii) R = K1,4 and S is an induced subgraph of P3 ∪ 2K1, or 3K1 ∪K2;

(iii) R = K1,k with k ≥ 5 and S is an induced subgraph of 3K1 ∪K2;

(iv) R = kK1 with k ≥ 5 and S is an induced subgraph of Ll with l ≥ 3, or 3K1 ∪Kl with

l ≥ 2.

In [8], Fujisawa and Saito proved the following.

Theorem F [8]. Let G be a connected graph order at least 6, independence number

α(G) ≤ 2 and minimum degree at least two. Then G has a 2-factor.

Similarly as in Theorem 2, to avoid trivial cases, our next main result requires that neither

R nor S is an induced subgraph of P3 or 3K1 (by virtue of Theorem F).

Theorem 3. Let R, S be a pair of graphs such that neither R nor S is an induced subgraph

of P3 or 3K1. Then there exists a positive integer n0 such that every connected {R, S}-free
graph of order at least n0 and minimum degree at least two has a 2-factor if and only if (up

to a symmetry):

(i) R = K1,3 and S is an induced subgraph of Z2, P3 ∪K2, Z1 ∪K2 or K1 ∪K2 ∪K3;

(ii) R = K1,k with k ≥ 4 and S is an induced subgraph of 2K1 ∪K2;

(iii) R = 4K1 and S is an induced subgraph of Ll with l ≥ 3, or K1 ∪K2 ∪Kl with l ≥ 2;

(iv) R = kK1 with k ≥ 5 and S is an induced subgraph of Ll with l ≥ 3, or 2K1 ∪Kl with

l ≥ 2.
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In the next section, we will present some necessary results on line graphs and on the

closure operation for claw-free graphs, and some further known results that will be needed.

In Section 3, we collect partial results that will compose sufficiency parts of the proofs of

Theorems 2 and 3. Finally, in Section 4, we complete the proofs of the main results.

2 Preliminaries

The line graph of a graph H, denoted L(H), has E(H) as its vertex set, where two vertices

are adjacent in L(H) if and only if the corresponding edges of H have a vertex in common.

It is a well-known fact that if G is a connected line graph different from K3, then the graph

H such that L(H) = G, is uniquely determined. This graph will be called the preimage of

G, and denoted L−1(G). A graph is essentially k-edge-connected if every edge cut of size

less than k is trivial (no more than one component of the graph after deleting the edge cut

contains any edges). It is easy to see that G is k-connected if and only if L−1(G) is essentially

k-edge-connected.

Ryjáček [13] introduced the closure of a claw-free graph, which became a useful tool for

investigation of hamiltonian properties of claw-free graphs. A vertex x ∈ V (G) is said to be

eligible if ⟨NG(x)⟩ is a connected non-complete graph. We will use VEL(G) to denote the set

of all eligible vertices of G. For x ∈ VEL(G), the graph G′
x obtained from G by adding the

edges {yz : y, z ∈ NG(x) and yz /∈ E(G)} is called the local completion of G at x. The closure

of a claw-free graph G is the graph cl(G) obtained from G by recursive performing the local

completion operation at eligible vertices, as long as this is possible (more precisely, there is a

sequence of graphs G1, · · · , Gk such that G1 = G, Gi+1 = (Gi)
′
x for some vertex x ∈ VEL(Gi),

i = 1, . . . , k − 1, and Gk = cl(G). The following theorem provides fundamental properties of

the closure operation.

Theorem G [13]. Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined;

(ii) cl(G) is the line graph of a triangle-free graph;

(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

Following [3], we say a class H of graphs is stable under the closure if, for every G ∈ H,

cl(G) is also in H. Ryjáček et al. [14] proved that the property of a claw-free graph having a

2-factor is stable under the closure.

Theorem H [14]. Let G be a claw-free graph. Then G has a 2-factor if and only if cl(G)

has a 2-factor.

Brousek et al. [3] showed stability of some classes of graphs defined in terms of forbidden

pairs.

Theorem I [3]. Let S be a connected graph of order at least 3. If S ∈ {K3} ∪ {Zi : i >

0} ∪ {Ni,j,k : i, j, k > 0}, then the class of {K1,3, S}-free graphs is stable under the closure.
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Later, Li and Vrána considered the analogue of Theorem I for disconnected graphs.

Theorem J [11]. Let S be a disconnected graph of order at least 3. Then the class

of {K1,3, S}-free graphs is stable, if and only if, for every component C of S, the class of

{K1,3, C}-free graphs is stable.

Brousek et al. [3] showed that the class of {K1,3, Bi,j} (i, j ≥ 1)-free graphs is not stable.

Recently, Du and Xiong considered the stability of {K1,3, Bi,j} (i, j ≥ 1)-free graphs with three

pendant vertices.

Theorem K [5]. LetG be a connected claw-free graph with three pendant vertices v1, v2, v3.

Then for any pair of vi, vj ∈ {v1, v2, v3}, G has an induced subgraph Bl,k containing vi, vj for

some l, k ≥ 1.

Let F be a subgraph of a graph H. We say that F is dominating in H if every edge of H

has at least one end in F , and that F is even if every vertex of F has even degree in F . A

set D of even subgraphs and stars with at least three edges in H is called a d-system of H, if

every edge of H is contained in a member of D or incident with a vertex in an even subgraph

in D. Harary and Nash-Williams [10] showed that for a graph H with |E(H)| ≥ 3, L(H) is

hamiltonian if and only if H has a dominating connected even subgraph. A similar relation

between a 2-factor in a line graph G and a d-system in its preimage L−1(G) was established

by Gould and Hynds [9].

Theorem L [9]. Let H be a graph with |E(H)| ≥ 3. Then L(H) has a 2-factor if and only

if H has a d-system.

We further list here some classical results which will be used for the proof of the main

results of this paper.

Theorem M (Mantel) [12]. Every K3-free graph of order n has at most n2/4 edges.

Theorem N (Chvátal and Erdős) [4]. Let G be a graph on at least three vertices with

independence number α and connectivity κ. If α ≤ κ (or α ≤ κ − 1), then G is hamiltonian

(or Hamilton-connected), respectively.

The following result for 2-connected graphs is implicit in the proof of the main result of

[11]. Since it is actually true for connected graphs, we present its proof here.

Theorem O [11]. Every connected {kK1, Ll}-free graph, k, l ≥ 3, of order at least R(2l−
3, k) + k − 2 is hamiltonian.
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Proof. Since G is kK1-free, we have α(G) ≤ k− 1. If κ(G) ≥ k− 1, then G is hamiltonian

by Theorem N. Hence we assume that κ(G) ≤ k − 2. Let S be a smallest vertex cut of G.

Then |S| ≤ k − 2. Since G− S is kK1-free and n(G) ≥ R(2l − 3, k) + k − 2, G− S contains

a clique T of order 2l − 3. Let v1 be a vertex of G − S such that v1 and T are in distinct

components of G−S. Then v1 has no neighbor in T . Let P = v1v2 · · · vp be a shortest (v1, T )-

path. Then the length of P is at least two, i.e., p ≥ 3. Let us consider the neighborhood of

vp−1 in T . If vp−1 has at least l − 1 neighbors in T , then ⟨NT (vp−1) ∪ {vp−2}⟩G contains an

induced Ll, a contradiction. Hence we assume that vp−1 has at most l − 2 neighbors in T .

Then |V (T ) \ NT (vp−1)| ≥ l − 1 since |V (T )| = 2l − 3, thus ⟨V (T ) \ NT (vp−1) ∪ {vp, vp−1}⟩G
contains an induced Ll, a contradiction.

Theorem P [8]. Let G be a connected {K1,3, Z2}-free graph with minimum degree at least

two. Then G is hamiltonian or G is isomorphic to K1 + (Kl ∪Km) for some integers l and m

with l,m ≥ 2.

This theorem immediately implies the following consequence.

Corollary 4. Every connected {K1,3, Z1}-free graph with minimum degree at least two is

hamiltonian.

Lemma 5. Let G be a 2-connected non-2-factorable line graph. Then the graph H =

L−1(G) contains a subgraph isomorphic to Θ(k1, k2, k3) with k1, k2, k3 ≥ 2.

Proof. Let T be the set of all pendant vertices of H. If there is a cut-edge e in H−T , then

H − e has two nontrivial components, implying that G is not 2-connected, a contradiction.

Hence H − T is 2-edge-connected. Let B′
1, . . . , B

′
t be all blocks of H − T and let F :=

{B1, . . . , Bt} be a decomposition of H such that Bi ∩ (H − T ) = B′
i, i = 1, . . . , t. For

1 ≤ i ≤ t, each B′
i contains a cycle since H − T is 2-edge-connected.

If each L(Bi) has a 2-factor Ci, i = 1, . . . , t, then C1 ∪ . . . ∪ Ct is a 2-factor of G, a

contradiction. Hence there exists a Bi ∈ F , say, B1, such that L(Bi) has no 2-factor. Then B1

has no d-system by Theorem L. Let C be a longest cycle of B′
1. Suppose that each component

of B′
1−V (C) is trivial (having one vertex only), and let v1, . . . , vs denote all components (i.e.,

vertices) of B′
1 − V (C) that have a neighbor in T . Since H is essentially 2-edge-connected,

each of v1, . . . , vs has at least two neighbors on C, and, since C is longest, these two neighbors

are not consecutive on C. Then C together with the stars Ev1 , . . . , Evs is a d-system of B1, a

contradiction. Therefore there is some nontrivial component of B′
1 − V (C); let D denote such

a component. Then D contains a nontrivial path P in D with endvertices denoted x, y, x ̸= y.

Since B′
1 is 2-connected, there is a pair of vertices u, v ∈ V (C) such that xu, yv ∈ E(B1). Since

C is a longest cycle of B′
1, distC(u, v) ≥ 3, implying that |V (C)| ≥ 6. Hence ⟨V (C)∪ V (P )⟩H

contains a subgraph isomorphic to Θ(k1, k2, k3) with k1, k2, k3 ≥ 2.
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Lemma 6. Let G be a 2-connected kK1-free graph, k ≥ 2, such that V (G) can be parti-

tioned into two sets X and Y satisfying the following:

(i) ⟨X⟩G contains a clique T such that every vertex of X has at least k+7 neighbors in T ;

(ii) α(⟨Y ⟩G) ≤ 2.

Then G has a 2-factor.

Proof. We start with the following fact.

Claim 1. For any set X ′ ⊂ X with |X ′| ≤ 8, ⟨X \X ′⟩G is hamiltonian.

Proof. By (i), we have κ(⟨X⟩G) ≥ k+7. Since G is kK1-free, α(⟨X⟩G) ≤ α(G) ≤ k−1. For

any set X ′ ⊂ X with |X ′| ≤ 8, we have α(⟨X \X ′⟩G) ≤ α(⟨X⟩G) ≤ k− 1 and κ(⟨X \X ′⟩G) ≥
κ(⟨X⟩G)− 8 ≥ k + 7− 8 = k − 1. By Theorem N, ⟨X \X ′⟩G is hamiltonian. □

For Y = ∅, G is hamiltonian by Claim 1. Hence we assume that Y ̸= ∅. If κ(⟨Y ⟩G) ≥ 2,

then by (ii), α(⟨Y ⟩G) ≤ κ(⟨Y ⟩G) and hence ⟨Y ⟩G is hamiltonian, implying that G has a 2-

factor with exactly two components by Claim 1. Hence we assume that κ(⟨Y ⟩G) ≤ 1. We now

consider the following two cases.

Case 1: κ(⟨Y ⟩G) = 1.

Let v be a cut-vertex in ⟨Y ⟩G. By (ii), ⟨Y ⟩G−v has exactly two components D1 and D2 such

that each of D1 and D2 is a clique. Since G is 2-connected, there exist two edges between

V (D1 ∪ D2) and X, say v1x1, v2x2 ∈ E(G), with x1, x2 ∈ X, x1 ̸= x2, and v1 ∈ V (D1),

v2 ∈ V (D2), v1 ̸= v2. Since both D1 and D2 are cliques, there is a Hamilton (v1, v2)-path

P of ⟨Y ⟩G. By the definition of X, there is an edge x3x4 in T such that x1x3, x4x2 ∈ E(G),

and then v1Pv2x2x4x3x1v1 is a Hamilton cycle of ⟨Y ∪ {x1, x2, x3, x4}⟩G. By Claim 1,

⟨X\{x1, x2, x3, x4}⟩G is hamiltonian, hence G has a 2-factor with exactly two components.

Case 2: ⟨Y ⟩G is disconnected.

By (ii), ⟨Y ⟩G has exactly two components D′
1 and D′

2 such that each of D′
1 and D′

2 is a

clique. For each i ∈ {1, 2}, ⟨X ∪ V (D′
i)⟩G is 2-connected, thus each D′

i has a Hamilton

path P i such that the endvertices of P i are adjacent to two distinct vertices zi1, z
i
2 in X.

If {z11 , z12} = {z21 , z22}, say, z11 = z21 and z12 = z22 , then z11P
1z12P

2z11 is a Hamilton cycle of

⟨Y ∪ {z11 , z12}⟩G. Then ⟨X\{z11 , z12}⟩G is hamiltonian by Claim 1, implying that G has a

2-factor with exactly two components.

Hence |{z11 , z12} ∩ {z21 , z22}| ≤ 1. Suppose first that |{z11 , z12} ∩ {z21 , z22}| = 1, say, z12 = z21 .

Then z11P
1z12P

2z22 is a Hamilton path of ⟨Y ∪ {z11 , z12 , z22}⟩G. Hence, by the definition of

X, there is an edge w1w2 in T such that z11w1, z
2
2w2 ∈ E(G), and then w1z

1
1P

1z12P
2z22w2w1

is a Hamilton cycle of ⟨Y ∪ {z11 , z12 , z22 , w1, w2}⟩G. By Claim 1, ⟨X\{z11 , z12 , z22 , w1, w2}⟩G is

hamiltonian, hence G has a 2-factor with exactly two components.

Thus, we have {z11 , z12} ∩ {z21 , z22} = ∅. By the definition of X, for each i ∈ {1, 2}, there is

an edge yi1y
i
2 in T such that zi1y

i
1, y

i
2z

i
2 ∈ E(G), and then zi1y

i
1y

i
2z

i
2P

izi1 is a Hamilton cycle
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of ⟨V (D′
i) ∪ {zi1, yi1, yi2, zi2}⟩G (i ∈ {1, 2}). By Claim 1, ⟨X\{z11 , y11, y12, z12 , z21 , y21, y22, z22}⟩G is

hamiltonian, hence G has a 2-factor with exactly three components.

3 Auxiliary results

In this section, we collect auxiliary results that will establish sufficiency parts of proofs of

Theorems 2 and 3.

3.1 Sufficiency results for Theorem 2

Theorem 7. Let S ∈ {K3 ∪ Z1, Z1 ∪ P4, Z4 ∪K1, K3 ∪ P4 ∪K1, N1,1,1 ∪K2}. Then every

2-connected {K1,3, S}-free graph of order at least 2500 has a 2-factor.

Proof. Let, to the contrary, G be a 2-connected non-2-factorable {K1,3, S}-free graph of

order at least 2500 for some S ∈ {K3 ∪ Z1, Z1 ∪ P4, Z4 ∪ K1, K3 ∪ P4 ∪ K1, N1,1,1 ∪ K2}.
By Theorems I and J, the class of {K1,3, S}-free graphs is stable. By Theorem H, it is

sufficient to consider the case that G is closed. Let H be a triangle-free graph such that

H = L−1(G). Since n(G) ≥ 2500, we have e(H) ≥ 2500, and, by Theorem M, n(H) ≥ 100.

Since G is S-free, H contains no subgraph (not necessary induced) isomorphic to L−1(S).

Recall that G is 2-connected if and only if L−1(G) is essentially 2-edge-connected. Since

G has no 2-factor, by Lemma 5, H contains a subgraph Q isomorphic to Θ(k1, k2, k3) with

k1 ≥ k2 ≥ k3 ≥ 2 (recall that we keep the notation of its vertices as in Fig. 1(d)). Let

Ni(Q) = {y ∈ V (H) \ V (Q) : min{distH(x, y)| x ∈ V (Q)} = i}.

Claim 1. V (H) = V (Q) ∪N1(Q) ∪N2(Q) ∪N3(Q) ∪N4(Q).

Proof. Suppose, to the contrary, that N5(Q) ̸= ∅. Then, by the definition of Ni(Q), there is

a path P := wx1x2x3x4x5 in H such that w ∈ V (Q) and xi ∈ Ni(Q) for i = 1, 2, 3, 4, 5. One

can easily check that ⟨V (Q) ∪ V (P )⟩H contains each of the graphs L−1(K3 ∪ Z1), L
−1(Z1 ∪

P4), L
−1(Z4 ∪ K1), L

−1(K3 ∪ P4 ∪ K1) and L−1(N1,1,1 ∪ K2) (see Fig. 2) as a subgraph, a

contradiction. □

• •........................................................................

L−1(K1)

• • •........................................................................

L−1(K2)

• •
•

•
........................................................................

......................................................................................................................................................................

L−1(K3)

• •
•

•
•
•

•
...............................................................................................................................................

......................................................................................................................................................................................................................................................................................................................

L−1(N1,1,1)

• • • • •...............................................................................................................................................

L−1(P4)

•
•

•
• • . . . •........................................................................................................... ......................

..........................................................................................................................

︸ ︷︷ ︸
i≥1 edges

L−1(Zi)

Figure 2: The preimages of the graphs from Theorem 7

Claim 2.
3∑

j=1

kj ≤ 9.
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Proof. Let, to the contrary,
∑3

j=1 kj ≥ 10. Then, considering the graphs Θ(6, 2, 2), Θ(5, 3, 2),

Θ(4, 4, 2) and Θ(4, 3, 3) (all Theta graphs with
∑3

j=1 kj = 10 and k3 ≥ 2), we observe that

each of them contains every graph from the set{
L−1(K3 ∪ Z1), L

−1(Z1 ∪ P4), L
−1(Z4 ∪K1), L

−1(K3 ∪ P4 ∪K1), L
−1(N1,1,1 ∪K2)

}
as a subgraph, a contradiction. We also have the same contradiction whenever

∑3
j=1 kj > 10.

□

By Claim 2, we have |V (Q)| ≤ 11. We now distinguish the following two cases.

Case 1: S ∈ {K3 ∪ Z1, Z1 ∪ P4, Z4 ∪K1, K3 ∪ P4 ∪K1}.

Claim 3. Let x ∈ V (H). Then |NH−V (Q)(x)| ≤ 1 if x ∈ N1(Q), and |NH−V (Q)(x)| ≤ 2

otherwise.

Proof. Let first x ∈ V (H)\N1(Q), and suppose, to the contrary, that x has three neighbors

x1, x2, x3 outside V (Q). For x ∈ V (Q), we set H1 = ⟨V (Q) ∪ {x1, x2, x3}⟩H . For x ∈
V (H) \ (V (Q) ∪N1(Q)), there is an (x,Q)-path P in H since H is connected, and we set

H1 = ⟨V (Q) ∪ V (P ) ∪ {x1, x2, x3}⟩H . Secondly, if x ∈ N1(Q) has two its neighbors x1, x2

outside Q, we set H1 = ⟨V (Q) ∪ {x, x1, x2}⟩H .
In each of the situations, the graph H1 contains each of the graphs L−1(K3 ∪Z1), L

−1(Z1 ∪
P4), L

−1(Z4 ∪K1) and L−1(K3 ∪ P4 ∪K1) as a subgraph, a contradiction. □

By Claim 3, every vertex of Q has at most two neighbors outside V (Q), hence |N1(Q)| ≤
2|V (Q)|. Also by Claim 3, every vertex x ∈ Ni(Q) has at most one neighbor in Ni+1(Q),

i = 1, 2, 3, 4, implying that |Ni(Q)| ≤ |Ni−1(Q)| for i = 2, 3, 4 since each vertex of Ni(Q) has

some neighbor in Ni−1(Q). By Claim 1, we have n(H) ≤ |V (Q)|+
∑4

i=4 |Ni(Q)| ≤ 9|V (Q)|.
Then, since |V (Q)| ≤ 11, we have n(H) ≤ 99, contradicting the fact that n(H) ≥ 100.

Case 2: S = N1,1,1 ∪K2.

Since H has no subgraph isomorphic to L−1(N1,1,1 ∪K2) and Q − us (s = 1, 2) contains a

subgraph isomorphic to L−1(N1,1,1), we clearly have the following two facts.

Claim 4. For each s ∈ {1, 2}, us has at most one neighbor outside V (Q).

Claim 5. H − V (Q) does not contain P3 as a subgraph.

If k1 ≥ 4, then ⟨{u1a1, a1a2, u1b1, b1b2, u1c1, c1c2, ak1−1ak1 , ak1u2}⟩H ∼= L−1(N1,1,1 ∪ K2), a

contradiction. Hence kj ≤ 3 for j = 1, 2, 3. Therefore, since both Θ(3, 3, 2) and Θ(3, 3, 3)

contain a subgraph isomorphic to L−1(N1,1,1∪K2), we have Q ∼= Θ(2, 2, 2) or Θ(3, 2, 2). We

now consider the following two subcases.
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Subcase 2.1: Q ∼= Θ(3, 2, 2).

Since H has no subgraph isomorphic to L−1(N1,1,1 ∪K2), it is easy to check that every

vertex in Q − a2 has no neighbor outside V (Q). By Claim 5, V (H) = V (Q) ∪ N1(Q) ∪
N2(Q). Suppose that there is a vertex x ∈ N2(Q). Then there is a path xya2 in H such

that y ∈ N1(Q). By Claim 5, x is a pendant vertex of H. Recall that H is essentially

2-edge-connected since G is 2-connected. Since every vertex of Q − a2 has no neighbor

outside V (Q), ya2 is a cut-edge of H and thus H −{ya2} has two nontrivial components,

a contradiction.

Hence N2(Q) = ∅. Then V (H) = V (Q) ∪ N1(Q). Note that every vertex in N1(Q) is

adjacent to a2. Since H is triangle-free, every vertex in N1(Q) is a pendant vertex, and

since dH(a2) ≥ 3, ⟨E(Q− {a1, a2, a3}), Ea2⟩H is a d-system of H, a contradiction.

Subcase 2.2: Q ∼= Θ(2, 2, 2).

By Claim 5, we have V (H) = V (Q) ∪ N1(Q) ∪ N2(Q). If |E(H − V (Q))| ≥ 2, then we

always find a subgraph isomorphic to L−1(N1,1,1 ∪ K2) in H, a contradiction. Suppose

that |E(H − V (Q))| = 1. Then, by Claim 5 and since H is essentially 2-edge-connected,

there is an edge xy in H − V (Q) such that xy has two neighbors z1, z2 in Q. Clearly,

{u1, u2} ∩ {z1, z2} = ∅ since otherwise ⟨V (Q) ∪ {x, y}⟩H contains L−1(N1,1,1 ∪ K2) as

a subgraph, a contradiction. Without loss of generality suppose that z1 = a1. For

z2 = a2, we have z2x ̸∈ E(H) since H is triangle-free, implying that z2y ∈ E(H).

But then ⟨V (Q) ∪ {x, y}⟩H contains L−1(N1,1,1 ∪ K2) as a subgraph, a contradiction.

For z2 ∈ {b1, c1}, say, z2 = b1, we set C := u1a1xyb1b2u2c2c1u1 when yb1 ∈ E(H) (or

C := u1a1xb1b2u2c2c1u1 otherwise). Clearly C is a cycle in H. If a2 has no neighbors

outside Q, C is dominating in H, implying that H has a d-system, a contradiction.

If a2 has some neighbors outside Q, then C together with Ea2 is a d-system in H, a

contradiction again. For z2 ∈ {b2, c2}, say, z2 = b2, C := u1c1c2u2a2a1xyb2b1u1 when

z2y ∈ E(G) (or C := u1c1c2u2a2a1xb2b1u1 otherwise) is a dominating cycle in H, implying

that G is hamiltonian, a contradiction.

Hence V (H) = V (Q) ∪N1(Q) and N1(Q) is an independent set of H. Since |V (Q)| = 8

and n(H) = |V (Q)|+ |N1(Q)| ≥ 100, we have |N1(Q)| ≥ 100−8 = 92. Since every vertex

in N1(Q) has a neighbor in Q and |V (Q)| = 8, there is a vertex v of Q such that v has

at least 12 neighbors in N1(Q). By Claim 4, v /∈ {u1, u2}, hence v ∈ {a1, a2, b1, b2, c1, c2}.
Without loss of generality, we may assume that v = a1. Denote three neighbors v1, v2, v3 of

a1 in N1(Q). Then a2 has no neighbor in N1(Q), since otherwise, for some w ∈ NN1(Q)(a2),

⟨E(Q) ∪ {a1v1, a1v2, a2w}⟩H contains a subgraph isomorphic to L−1(N1,1,1 ∪ K2). Then

⟨E(Q− {a1, a2}), Ea1⟩H is a d-system of H, a contradiction.

Theorem 8. Every 2-connected {K1,k, 3K1∪K2}-free graph, k ≥ 2, of order at least R(3k+

26, k + 2) has a 2-factor.
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Proof. We claim that G is (k + 2)K1-free. Let, to the contrary, S = {v1, v2, · · · , vk+2}
be an independent set in G. Since G is connected, there is a vertex u in G − S such that

uv1 ∈ E(G). Since G is K1,k-free and S is an independent set, u has at most k − 1 neighbors

in S. This implies that there exists a triple of vertices, say vk, vk+1, vk+2, in S such that

uvi /∈ E(G), and then {vk, vk+1, vk+2, v1, u} induces a 3K1 ∪ K2, a contradiction. Therefore,

since n(G) ≥ R(3k + 26, k + 2), G contains a clique T of order 3k + 26. Set

X = {x ∈ V (G) : dT (x) ≥ k + 9} and Y = V (G) \X.

We now claim that α(⟨Y ⟩G) ≤ 2. Let, to the contrary, {y1, y2, y3} be an independent set

in ⟨Y ⟩G. Then, by the definition of Y , yi has at most k + 8 neighbors in T , 1 ≤ i ≤ 3. Since

|V (T )| ≥ 3k+26, there is an edge x1x2 in T such that none of yi (i = 1, 2, 3) is adjacent to any

of x1, x2. However, {y1, y2, y3, x1, x2} induces a 3K1 ∪K2, a contradiction. Thus, G satisfies

the assumptions of Lemma 6, and hence it has a 2-factor.

Theorem 9. Every 2-connected {kK1, 3K1 ∪Kl}-free graph, k ≥ 4, l ≥ 2, of order at least

R(3k + l + 18, k) has a 2-factor.

Proof. Since G is kK1-free and n(G) ≥ R(3k + l + 18, k), G contains a clique T of order

3k + l + 18. Set

X = {x ∈ V (G) : dT (x) ≥ k + 7} and Y = V (G)\X.

We now claim that α(⟨Y ⟩G) ≤ 2. Let, to the contrary, {y1, y2, y3} be an independent set

in ⟨Y ⟩G. By the definition of Y , yi has at most k + 6 neighbors in T , 1 ≤ i ≤ 3. Since

|V (T )| ≥ 3k + l+ 18, there is a subgraph T ′ of T such that |V (T ′)| ≥ l and no vertex in T ′ is

adjacent to any of {y1, y2, y3}. Then {y1, y2, y3} ∪ V (T ′) induces a 3K1 ∪Kl, a contradiction.

Thus, G satisfies the assumptions of Lemma 6, and hence G has a 2-factor.

Theorem 10. Let G be a 2-connected {K1,4, P3∪2K1}-free graph of order at least R(113, 5).

Then G has a 2-factor.

Proof. We start the proof with the following statement.

Claim 1. G is 5K1-free.

Proof. Let, to the contrary, v1, v2, . . . , v5 be an induced 5K1 in G. Since G is connected,

there is a path P between v1 and some of the vertices v2, v3, v4, v5. Choose P shortest possible

and choose the notation of the vertices such that P is a (v1, v2)-path. Hence none of v3, v4, v5
belongs to P . Then |V (P )| ≤ 7, for otherwise P contains an induced P3 ∪ 2K1. On the other

hand, |V (P )| ≥ 3, for otherwise v1v2 ∈ E(G). Hence 3 ≤ |V (P )| ≤ 7. Let x denote the

neighbor of v2 on P . By the choice of P , none of v3, v4, v5 is adjacent to any internal vertex of

P distinct from x (if any), and since G is K1,4-free, x is adjacent to at most one of v3, v4, v5,
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say, to v5. Then v3, v4 and the subpath of P of length 2 with one endvertex v1 induce a

P3 ∪ 2K1, a contradiction. □

Since G is 5K1-free and n ≥ R(113, 5), G contains a clique T of order 113. Set X = {x ∈
V (G), dT (x) ≥ 17} and Y = V (G) \ X. Clearly V (T ) ⊆ X. For Y = ∅, we know that G is

hamiltonian by Theorem N. Hence assume that Y ̸= ∅. If α(⟨Y ⟩G) ≤ 2, then G has a 2-factor

by Lemma 6 since each 5K1-free graph is also 10K1-free. Thus, in the rest of the proof, we

assume that α(⟨Y ⟩G) ≥ 3.

Claim 2. α(⟨Y ⟩G) = 3.

Proof. Let, to the contrary, α(⟨Y ⟩G) ≥ 4, and let I = {y1, y2, y3, y4} be an independent set

in Y . Since each of yi (i = 1, 2, 3, 4) has at most 16 neighbors in T (by the definition of Y )

and T has 113 vertices, T contains a vertex t such that tyi ̸∈ E(G) for every i = 1, 2, 3, 4. This

implies that y1, y2, y3, y4, t induce a 5K1, contradicting Claim 1. □

Claim 3. ⟨Y ⟩G has no induced subgraph isomorphic to P3 ∪K1.

Proof. Let, to the contrary, y1y2y3, y4 be an induced P3 ∪ K1 in ⟨Y ⟩G. Since each of yi
(i = 1, 2, 3, 4) has at most 16 neighbors in T (by the definition of Y ) and T has 113 vertices,

there is a vertex t in T such that tyi /∈ E(G) for every i = 1, 2, 3, 4. Then {y1, y2, y3, y4, t}
induces a P3 ∪ 2K1, a contradiction. □

Claim 4. For any X ′ ⊂ X with |X ′| ≤ 12, ⟨X \X ′⟩G is Hamilton-connected.

Proof. Let X ′ ⊂ X with |X ′| ≤ 12 and let G′ = ⟨X \ X ′⟩G. For G′ we have κ(G′) ≥
κ(G)− 12 ≥ 17− 12 = 5, and α(G′) ≤ α(G) ≤ 4 by Claim 1. Thus G′ is Hamilton-connected

by Theorem N. □

Now we consider the following two cases.

Case 1: ⟨Y ⟩G is disconnected.

By Claim 2, nc(⟨Y ⟩G) ≤ 3. First assume that ⟨Y ⟩G consists of two components, denoted

D1 and D2. Then one of D1, D2, say, D1, is a clique, and D2 is of diameter 2 or 3, since

α(⟨Y ⟩G) = 3. Let y1 ∈ V (D1) and let P be an induced path in D2 of length 2. This yields

an induced P3 ∪K1 in ⟨Y ⟩G, contradicting Claim 3.

Hence ⟨Y ⟩G consists of three components, denoted D1, D2, D3. By Claim 2, each Di (i =

1, 2, 3) is a clique. SinceG is 2-connected and sinceD1, D2, D3 are cliques, for each i = 1, 2, 3,

there are two distinct vertices x1
i , x

2
i in X (possibly xj1

i1
= xj2

i2
for some i1, i2 ∈ {1, 2, 3},

j1, j2 ∈ {1, 2}, i1 ̸= i2) such that ⟨{x1
i , x

2
i } ∪ V (Di)⟩G has a Hamilton (x1

i , x
2
i )-path Qi. Let

M = {x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3}. Then 2 ≤ |M | ≤ 6. Choose the vertices x1

i , x
2
i (i = 1, 2, 3) such

that |M | is maximal.
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Let Q = Q1∪Q2∪Q3. Suppose that, say, x
1
1 = x1

2 = x1
3. Let (x

1
1)

i
denote the successor of x1

1

on Qi, i = 1, 2, 3, and let x ∈ T \M such that xx1
1 ∈ E(G). If x is adjacent to none of (x1

1)
i
,

i = 1, 2, 3, then ⟨{x1
1, (x

1
1)

1
, (x1

1)
2
, (x1

1)
3
, x}⟩G is an induced K1,4, a contradiction. Hence x is

adjacent to some of (x1
1)

i
, say, to (x1

1)
1
. Then considering a Hamilton ((x, x2

1))-path Q′
1 in

⟨{x, x2
1} ∪ V (D1)⟩G instead of Q1 contradicts the maximality of |M |.

Hence xb
a = xd

c = xf
e for no triple of vertices from M (a, c, e ∈ {1, 2, 3}, b, d, f ∈ {1, 2}).

Therefore Q consists of at most three components and each of them is a path or a cycle.

Similarly as in the proof of Lemma 6, since T is a clique of order 113, there is an edge w1
iw

2
i

in T such that wj
ix

j
i ∈ E(G), i = 1, 2, 3 and j = 1, 2. Set N = {wj

i }. Then ⟨V (Q) ∪ N⟩G
has a 2-factor. Since |M ∪N | ≤ 12, ⟨X \ (M ∪N)⟩G is hamiltonian by Claim 4, implying

that G has a 2-factor.

Case 2: ⟨Y ⟩G is connected.

Let V denote a minimal vertex cut in ⟨Y ⟩G. The following fact is obvious by Claims 2 and 3.

Claim 5. The subgraph ⟨Y ⟩G − V consists of at most three components, and these com-

ponents are all cliques.

If κ(⟨Y ⟩G) ≥ 3, then ⟨Y ⟩G and ⟨X⟩G are both hamiltonian by Theorem N, implying that

G has a 2-factor. Hence we assume that 1 ≤ κ(⟨Y ⟩G) ≤ 2. We now consider the following

two subcases.

Subcase 2.1: κ(⟨Y ⟩G) = 2.

Let V = {v1, v2}. By Claim 5, ⟨Y ⟩G − {v1, v2} consists of at most three components

D1, D2, D3 (D3 may be empty), and each Di (i = 1, 2, 3) is a clique. If D3 is empty, then,

since ⟨Y ⟩G is 2-connected, ⟨Y ⟩G is hamiltonian, implying that G has a 2-factor. Hence

we assume that D3 is nonempty. Then we have the following fact.

Claim 6. Each of v1, v2 is adjacent to every vertex in D1 ∪D2 ∪D3.

Proof. Let, to the contrary, yivj ̸∈ E(G) for some yi ∈ V (Di), i ∈ {1, 2, 3} and j ∈
{1, 2}, say, i = j = 1. Then there are y2 ∈ V (D2) and y3 ∈ V (D3) such that y3v1y2 is an

induced path in G since {v1, v2} is a minimal vertex cut of ⟨Y ⟩G. However, {y3, v1, y2, y1}
induces a P3 ∪K1, contradicting Claim 3. □

Now, since G is 2-connected, there are two disjoint edges xiyi (i = 1, 2) between some

vertices xi ∈ X and yi ∈ Y . Choose edges x1y1, x2y2 such that |{y1, y2} ∩ {v1, v2}| is
minimal. The following possibilities can occur.

(i) Both y1 and y2 belong to the same component of ⟨Y ⟩G − {v1, v2}.
Let D1 be such a component. Then ⟨V (D1)∪{x1, x2}⟩G has a Hamilton (x1, x2)-path,

and, by Claim 6, ⟨V (D2)∪ V (D3)∪ {v1, v2}⟩G is hamiltonian, implying that G has a

2-factor since ⟨X⟩G is Hamilton-connected by Claim 4.

14



(ii) The vertices y1, y2 belong to distinct components of ⟨Y ⟩G − {v1, v2}.
Without loss of generality suppose that y1 ∈ V (D1) and y2 ∈ V (D3). Then, by

Claim 6, there is a Hamilton (x1, x2)-path in ⟨Y ∪ {x1, x2}⟩G, implying that G has a

2-factor since ⟨X⟩G is Hamilton-connected by Claim 4.

(iii) {y1, y2} ∩ {v1, v2} ≠ ∅.
Without loss of generality suppose that v1 = y1. Then, since G is K1,4-free, x1 is

adjacent to every vertex of some Di, say, of D1. Thus y2 /∈ V (D2) ∪ V (D3) ∪ {v2},
for otherwise, considering any vertex in D1 instead of y1 contradicts the choice of

x1y1, x2y2. This implies that y2 ∈ V (D1). Take two vertices t1, t2 ∈ V (T ) such

that xiti ∈ E(G). Then ⟨V (D1) ∪ {x1, x2, t1, t2}⟩G is hamiltonian. By Claim 4,

⟨X \ {x1, x2, t1, t2}⟩G is hamiltonian. By Claim 6, ⟨V (D2) ∪ V (D3) ∪ {v1, v2}⟩G is

hamiltonian. Then G has a 2-factor with exactly three components.

Subcase 2.2: κ(⟨Y ⟩G) = 1.

Let V = {v}. By Claim 5, ⟨Y ⟩G− v consists of at most three components D1, D2, D3 (D3

may be empty) and each Di (i = 1, 2, 3) is a clique. Suppose that D3 is empty. Then,

since G is 2-connected, there is a pair of vertex-disjoint edges x1y1 and x2y2 such that

x1, x2 ∈ X and yi ∈ V (Di) (i = 1, 2). Clearly, ⟨Y ⟩G has a Hamilton (y1, y2)-path, and

since ⟨X⟩G is Hamilton-connected by Claim 4, there is a Hamilton (x1, x2)-path in ⟨X⟩G.
Thus, G is hamiltonian.

Hence suppose that D3 is nonempty. Then the following fact is obvious by Claim 3.

Claim 7. The vertex v is adjacent to every vertex in Y .

Suppose that some of the components Di, say, D3, contains more than two vertices.

Clearly D3 is hamiltonian. Since G is 2-connected, there is an edge xiyi such that xi ∈ X

and yi ∈ V (Di) for i = 1, 2. If x1 = x2, then, by Claim 7, ⟨V (D1) ∪ V (D2) ∪ {x1}⟩G
is hamiltonian. By Claim 4, ⟨X \ {x1}⟩G is hamiltonian, and then G has a 2-factor. If

x1 ̸= x2, then, by Claim 7, ⟨V (D1) ∪ V (D2) ∪ {x1, x2}⟩G has a Hamilton (x1, x2)-path.

Since ⟨X⟩G is Hamilton-connected by Claim 4, there is a Hamilton (x1, x2)-path in ⟨X⟩G,
hence G has a 2-factor with exactly two components.

Hence suppose that |V (Di)| ≤ 2 for each i = 1, 2, 3. Then |Y | ≤ 7. By the definition of Y ,

every vertex in Y has at most 16 neighbors in T . Since T has 113 vertices, V (T )\NT (Y ) ̸=
∅. Let P be a shortest path between some vertex of Y \ {v} and some vertex yP of

V (T ) \ NT (Y ) (possibly NT (Y ) = ∅). We may assume that yP ∈ D1. If NT (Y ) = ∅,
then yP has a neighbor xP in X, and, considering any neighbor tP of xP in T , we get

P = tPxPyP . On the other hand, if NT (Y ) ̸= ∅, then yP has a neighbor xP in T , which

is adjacent to each vertex of V (T ) \NT (Y ), thus also to tP . Obviously, P has length 2.

Claim 8. There is j ∈ {2, 3} such that V (D1) ∪ V (Dj) ⊂ NG(xp) and V (D5−j) ∩
NG(xp) = ∅.
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Proof. Let, say, j = 2. If in each of Dj′ (j′ = 2, 3) there is a vertex yj′ such that

xp /∈ NG(yj′), then G contains an induced P3∪2K1, a contradiction. Hence xp is adjacent

to every vertex of one of Dj′ , say, of D2. If some vertex of D3 is adjacent to xP , then xP

is the center of an induced K1,4, a contradiction. Thus there is no edge between xP and

V (D3). By a symmetric argument, each vertex of D1 is adjacent to xP . □

Since G is 2-connected, there is an induced path Q = yQxQtQ in G such that yQ ∈
V (D3), xQ ∈ X and tQ ∈ V (T ). By Claim 8, xP ̸= xQ. Since G is P3 ∪ 2K1-free,

xQ (or tQ) is adjacent to some vertex of D1 ∪ D2. Then, by Claims 7 and 8, ⟨Y ∪
{xP , xQ}⟩G (or ⟨Y ∪ {xP , xQ, tQ}⟩G) is hamiltonian, and, by Claim 4, ⟨X \ {xP , xQ}⟩G
(or ⟨X \ {xP , xQ, tQ}⟩G) is hamiltonian, implying that G has a 2-factor with exactly two

components.

3.2 Sufficiency results for Theorem 3

Theorem 11. Every connected {K1,3, S}-free graph of order at least 2500 and minimum

degree at least two has a 2-factor for any S ∈ {P3 ∪K2, Z1 ∪K2, K1 ∪K2 ∪K3}.

Proof. If G is 2-connected, then G has a 2-factor by Theorem 7. Hence we only consider

the case that κ(G) = 1. Let v be a cut-vertex of G. Then G− v has exactly two components

since G is claw-free. If S = P3 ∪K2, then each component of G− v is a clique since n(G) ≥ 6

and G is P3 ∪ K2-free, implying that G has a 2-factor. It remains to consider the following

two cases.

Case 1: S = Z1 ∪K2.

Suppose first that G has a cut-edge x1x2. Then G− x1x2 has two components D1, D2 with

xi ∈ V (Di), i = 1, 2. Since δ(G) ≥ 2 and G is claw-free, each of D1, D2 has a triangle. If,

say, dD1(x1) = 1, we choose a shortest (x1, y)-path P such that y is in a triangle, say, T .

Then V (T ) ∪ V (P ) contains an induced Z1 in D1. Together with an edge in D2 − x2 we

have an induced Z1 ∪K2, a contradiction.

Hence for each i ∈ {1, 2}, xi has at least two neighbors in Di, implying that δ(Di) ≥ 2.

Since δ(G) ≥ 2, we have |V (Di)| ≥ 3 for i = 1, 2. Therefore, since G is Z1 ∪K2-free, each

Di (i = 1, 2) is {K1,3, Z1}-free. By Corollary 4, both D1 and D2 are hamiltonian, hence G

has a 2-factor.

Now suppose that G is 2-edge-connected. Since G is claw-free and δ(G) ≥ 2, each block of

G contains a triangle. If G has more than two blocks, then using two appropriate blocks

for Z1 and one for K2 we get an induced Z1 ∪K2, a contradiction. Thus G has two blocks

B1, B2 and a cut-vertex v. Then each Bi (i = 1, 2) is {K1,3, Z1}-free, and, by Corollary 4,

both B1 and B2 are hamiltonian, implying that G has a 2-factor since n(G) ≥ 2500.
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Case 2: S = K1 ∪K2 ∪K3.

Suppose first that G has a cut-edge x1x2. Then G− x1x2 has two components D1, D2 with

xi ∈ V (Di), i = 1, 2. Assume that dDi
(xi) = 1 for some i ∈ {1, 2}, say, for i = 1. Let y

denote the neighbor of x1 in D1. Since δ(G) ≥ 2 and G is claw-free, each of D1, D2 has a

triangle. Then each of D1 and ⟨{x1} ∪ V (D2)⟩G contains an induced K1 ∪K2.

We now show that |ND1−x1(y)| = |ND2(x2)| = 2. If, say, x2 has at least three neighbors in

D2, then ⟨ND2(x2)⟩G contains a triangle since G is claw-free, and together with an induced

K1∪K2 in D1 we have an induced K1∪K2∪K3 in G, a contradiction. Hence |ND2(x2)| ≤ 2,

and, symmetrically, |ND1−x1(y)| ≤ 2.

Now, if, say, ND2(x2) = {x}, then x2x is a cut-edge of G. Since δ(G) ≥ 2, there is a K3 in

D2 − x2, and together with an induced K1 ∪K2 in D1 we have an induced K1 ∪K2 ∪K3 in

G, a contradiction. Hence |ND2(x2)| = 2, and, symmetrically, |ND1−x1(y)| = 2.

Let ND1−x1(y) = {y1, y2} and ND2(x2) = {z1, z2}. Then y1y2, z1z2 ∈ E(G) since G is

claw-free. Since n(G) ≥ 8, there is a vertex w ∈ V (G) \ {x1, x2, y, y1, y2, z1, z2} adjacent

to some of {y1, y2, z1, z2}, say z1. Then wz2 /∈ E(G), for otherwise {x1, y1, y2, w, z1, z2}
induces a K1 ∪K2 ∪K3, a contradiction. Therefore, since δ(G) ≥ 2, w has a neighbor w′ in

D2 − {x2, z1, z2}, and then {y, y1, y2, x2, w, w
′} induces a K1 ∪K2 ∪K3, a contradiction.

Hence for each i = 1, 2, xi has at least two neighbors in Di, thus δ(Di) ≥ 2. Recall that

each Di (i = 1, 2) contains a triangle. Since G is K1 ∪K2 ∪K3-free, Di − xi is K1 ∪K2-free

(i = 1, 2), implying that Di is Z2-free. Then, by Theorem P and since Di−xi isK1∪K2-free,

Di is hamiltonian, implying that G has a 2-factor.

Now suppose that G is 2-edge-connected. Since G is claw-free, every cut-vertex of G belongs

to two blocks of G. Note that each block of G contains a triangle. Since G is K1∪K2∪K3-

free, G has at most three blocks. If G has exactly three blocks B1, B2 and B3, then since G

is K1 ∪K2 ∪K3-free, each Bi (1 ≤ i ≤ 3) is clique. Since n(G) ≥ 9, it is easy to see that G

contains an induced K1 ∪K2 ∪K3, a contradiction.

Hence G has exactly two blocks B1, B2 and a cut-vertex v. If each of B1 and B2 is hamilto-

nian, then G contains a 2-factor since n(G) ≥ 2500. Hence at least one of B1, B2, say, B1,

is not hamiltonian. By Theorem A, B1 contains an induced P6, let P denote such a path.

Since G is claw-free, NB1(v) induces a clique in B1, implying that |NB1(v) ∩ V (P )| ≤ 2.

Then B1−({v} ∪NB1(v)) contains an inducedK1∪K2, implying that G contains an induced

K1 ∪K2 ∪K3 since B2 has a triangle, a contradiction.

Theorem 12. Every connected {K1,k, 2K1 ∪ K2}-free graph, k ≥ 4, of order at least

R(3k + 26, k + 2) and minimum degree at least two has a 2-factor.

Proof. If G is 2-connected, then, since every 2K1 ∪K2-free graph is also 3K1 ∪K2-free, G

has a 2-factor by Theorem 8. Thus we only consider the case κ(G) = 1. Let v be a cut-vertex
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of G. Then G−v has at most k−1 components. Since δ(G) ≥ 2, every component of G−v has

at least two vertices. Therefore, since G is 2K1 ∪K2-free, G− v has exactly two components

D1, D2 and each Di is a clique. Since n(G) is large and G is 2K1 ∪K2-free, v has at least two

neighbors in some Di, and then it is easy to see that G has a 2-factor.

Theorem 13. Every connected {kK1, 2K1 ∪Kl}-free graph, k ≥ 4, l ≥ 2, of order at least

R(2k + l + 4, k) and minimum degree at least two has a 2-factor.

Proof. Since G is kK1-free and n(G) ≥ R(2k + l + 4, k), G contains a clique T of order

2k + l + 4. Set

X = {x ∈ V (G) : dT (x) ≥ k + 3} and Y = V (G)\X.

Claim 1. For any set X ′ ⊂ X with |X ′| ≤ 4, ⟨X \X ′⟩G is hamiltonian.

Proof. We have α(⟨X \ X ′⟩G) ≤ α(⟨X⟩G) ≤ k − 1 and κ(⟨X \ X ′⟩G) ≥ κ(⟨X⟩G) − 4 ≥
k + 3− 4 = k − 1. By Theorem N, ⟨X \X ′⟩G is hamiltonian. □

We now claim that ⟨Y ⟩G is a clique. Let, to the contrary, u1, u2 be a pair of nonadjacent

vertices in Y . By the definition of Y , each ui (i = 1, 2) has at most k+2 neighbors in T . Since

|V (T )| ≥ 2k+ l+4, there is a subgraph T ′ of T such that |V (T ′)| ≥ l and each vertex in T ′ is

nonadjacent to any of {u1, u2}. Then {u1, u2} ∪ V (T ′) induces a 2K1 ∪Kl, a contradiction. If

Y has at least three vertices, then clearly ⟨Y ⟩G is hamiltonian, implying that G has a 2-factor

by Claim 1. Hence we assume that Y has at most two vertices y1, y2 (possibly y1 = y2). Since

δ(G) ≥ 2, each yi (i = 1, 2) has a neighbor xi in X (possibly x1 = x2), or, in the case when

y1 = y2, y1 has at least two distinct neighbors x1, x2 in X. Let zi be a neighbor of xi in T

for i = 1, 2. Let Y ′ = Y ∪ {x1} when x1 = x2, or Y ′ = Y ∪ {x1, x2, z1, z2} otherwise. Then

⟨Y ′⟩G is hamiltonian as well as ⟨V (G) \ Y ′⟩G is hamiltonian by Claim 1, implying that G has

a 2-factor.

Theorem 14. Every connected {4K1, K1 ∪ K2 ∪ Kl}-free graph, l ≥ 2, of order at least

max{R(l + 4, 4), R(31, 4)} and minimum degree at least two has a 2-factor.

Proof. Since G is 4K1-free and n(G) ≥ R(l + 4, 4), G contains a clique of order l + 4. If

G is 2-connected, then G has a 2-factor by Theorem 1. Hence we only consider the case that

κ(G) = 1.

Suppose first that G has a cut-edge x1x2. Then G−x1x2 has two components D1, D2, thus

one of D1, D2, say, D1, contains a clique of order l+ 4. Since δ(G) ≥ 2, we have |V (D2)| ≥ 3.

Since D1 − x1 has a Kl+3 and G is K1 ∪K2 ∪Kl-free, D2 is K1 ∪K2-free.

If x1 has only one neighbor x in D1, then D1 − {x1, x} contains a Kl+2, implying that D1

contains an inducedK1∪Kl+2. But then G contains an inducedK1∪K2∪Kl+2 since |V (D2)| ≥
3, a contradiction. Similarly, if x2 has only one neighbor y in D2, then D2 − y contains an
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edge since δ(G) ≥ 2, implying that D2 contains an induced K1 ∪K2, a contradiction. Thus

δ(Di) ≥ 2, i = 1, 2.

Since α(G) ≤ 3, we have α(Di) ≤ 2, i = 1, 2. Since |V (D1)| ≥ l+ 4 ≥ 6, D1 has a 2-factor

by Theorem F. Since D2 is {K1,3, K1 ∪K2}-free, D2 is hamiltonian by Corollary 4. Hence G

has a 2-factor.

Now suppose that G is 2-edge-connected. Since α(G) ≤ 3 and κ(G) = 1, G has two

or three blocks, each of order at least 3, and 1 or 2 cut-vertices. If G has three blocks,

then, since n(G) ≥ R(l + 4, 4), one of the blocks contains a Kl+4, and we easily find an

induced K1 ∪ K2 ∪ Kl in G. Thus, we suppose that G has 2 blocks B1, B2 and one cut-

vertex v. Since α(G) ≤ 3, one of B1, B2, say, B2, is a clique and B1 is hamiltonian by

Theorem N, and then G has a 2-factor with 2 components, unless B2 is a triangle. Thus,

let V (B2) = {v, v1, v2}. Since n(G) ≥ R(l + 4, 4), B1 contains a clique K of order at least

l + 4. If there is a vertex x ∈ V (B1) \ (V (K) ∪ {v}) having at most 3 neighbors in K, then

⟨{x}⟩G∪⟨{v1, v2}⟩G∪⟨V (K)\(NK(x)∪{v})⟩G gives an induced K1∪K2∪Kl in G. Thus, every

vertex in V (B1) \ (V (K) ∪ {v}) has at least 4 neighbors in K. Then B1 − v is 2-connected,

hence hamiltonian by Theorem N, and a Hamilton cycle in B1−v and the triangle vv1v2 yield

a 2-factor in G.

4 Proofs of the main results

Given any integer n0, we consider the nine 2-connected non-2-factorable graphs Gi of order at

least n0 shown in Fig. 3.
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Figure 3: 2-connected non-2-factorable graphs of arbitrarily large order

Proof of Theorem 1.

Necessity. For each i ∈ {1, 2, 3, 4}, Gi is non-2-factorable of order at least R(31, 4) and

hence it contains F as an induced subgraph. If F is connected, then, since the largest common

connected induced subgraph of G1, G2 and G3 is P3, F is an induced subgraph of P3. If F

is disconnected, then, since every disconnected induced subgraph of G1 is edgeless and the

independence number of G4 is 4, F is an induced subgraph of 4K1.
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Sufficiency. Let G be a 2-connected graph of order at least R(31, 4). If G is P3-free, then

G is complete and hence hamiltonian. Hence we assume that G is 4K1-free. Since n(G) ≥
R(31, 4), G contains a clique T of order 31. Let X = {x ∈ V (G) : dT (x) ≥ 11} and

Y = V (G)\X. Clearly T ⊂ X. We claim that α(⟨Y ⟩G) ≤ 2. Let, to the contrary, {y1, y2, y3}
be an independent set in Y . By the definition of Y , each yi (1 ≤ i ≤ 3) has at most 10

neighbors in T . Since the order of T is 31, there is a vertex x in T such that x is nonadjacent

to any of {y1, y2, y3}. Then {x, y1, y2, y3} is an independent set of G, contradicting the fact that

G is 4K1-free. Thus G satisfies the conditions of Lemma 6, implying that G has a 2-factor.

Proof of Theorem 2.

Combining Theorems C and E, sufficiency follows from Theorems 7, 8, 9, 10 and O. Hence

it remains to show necessity.

Let R, S be a pair of graphs of order at least three other than P3, 3K1 and 4K1. Consider

the graphs G1, . . . , G9 shown in Fig. 3. For each 1 ≤ i ≤ 9, Gi is non-2-factorable of arbitrarily

large order and hence it contains at least one of R, S as an induced subgraph.

We now show that either R or S is edgeless or a star. Suppose, to the contrary, that neither

R nor S is edgeless or a star, and recall that each of R and S is not an induced subgraph of

P3 and 4K1. If, say, |V (R)| ≤ 3, then R is K3 or K1 ∪K2, and if |V (R)| ≥ 4, then R contains

an induced K1 ∪ K2 when R is disconnected or a tree, or any induced cycle in R contains

an induced K3, C4 or a K1 ∪K2. Thus, in any case, the graph R (and symmetrically also S)

contains some of K3, C4, K1 ∪ K2 as an induced subgraph. We may assume, without loss of

generality, that R is an induced subgraph of G1. Since G1 is {K3, K1∪K2}-free, R contains C4

as an induced subgraph. Since G2 is C4-free, G2 contains S as an induced subgraph, and since

G2 is {C4, K1∪K2}-free, S contains K3 as an induced subgraph. But then G6 is {K3, C4}-free,
implying that G6 is {R, S}-free and hence it has a 2-factor, a contradiction.

In the rest of the proof we assume (up to a symmetry) that R is edgeless or a star. Now

we consider the following four cases.

Case 1: R = K1,3.

For each i ∈ {3, 7, 8}, Gi is K1,3-free and then it contains S as an induced subgraph.

Claim 1. If S is a forest, then ∆(S) ≤ 2. If S has a cycle, then each component of S has

at most one cycle, which is a triangle. Moreover, if S has at least three components, then

S has exactly one cycle, which is a triangle.

Proof. If S is a forest, then, since G3 is K1,3-free and contains S as an induced subgraph,

we have ∆(S) ≤ 2. If S has a cycle, then, since the only common induced cycle of G3 and

G8 is a triangle, any induced cycle of S should be a triangle. In G3, each pair of disjoint

triangles are joined by a path of length at most two, while in G8, the distance between

the two triangles is three. Hence no component of S can contain two triangles, i.e., each

component of S has at most one cycle, which is a triangle. Since G3 contains no induced
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subgraph with two triangles and with at least three components, S has exactly one cycle -

a triangle - when nc(S) ≥ 3. □

Since G3 is 5K1-free and S is an induced subgraph of G3, S is 5K1-free and hence nc(S) ≤ 4.

If S is connected, then S is an induced subgraph of P7, B1,4 or N1,1,3 by Theorem C. Hence

we assume that 2 ≤ nc(S) ≤ 4 and we need to consider the following three possibilities.

Subcase 1.1: nc(S) = 2.

If S has no cycle, then ∆(S) ≤ 2 by Claim 1, and since all maximal induced subgraphs

of G3 with maximum degree at most two and exactly two components are P6 ∪K1 and

P3 ∪ P4, S is an induced subgraph of P6 ∪ K1 or P3 ∪ P4. If S has a cycle, then, by

Claim 1, each component of S has at most one cycle - a triangle. If each component of

S contains exactly one triangle, then, since the maximal common induced subgraph of

G3 and G7 is K3 ∪ Z1, S is an induced subgraph of K3 ∪ Z1. Now, if one component of

S contains exactly one triangle and the other component of S is a path, then, since all

maximal common induced subgraphs of G3 and G7 are Z4 ∪ K1, Z1 ∪ P4, N1,1,1 ∪ K2 or

B1,2 ∪K1, S is an induced subgraph of some of them.

Observing that P6∪K1 is an induced subgraph of Z4∪K1, and that P3∪P4 is an induced

subgraph of Z1∪P4, we summarize that S is an induced subgraph of K3∪Z1, Z4∪K1, Z1∪
P4, N1,1,1 ∪K2 or B1,2 ∪K1.

Subcase 1.2: nc(S) = 3.

If S has no cycle, then ∆(S) ≤ 2 by Claim 1, and since the only maximal induced subgraph

of G3 with maximum degree at most two and exactly three components is P4∪K2∪K1, S

is an induced subgraph of P4 ∪K2 ∪K1. If S has a cycle, then by Claim 1, S has exactly

one cycle - a triangle. Then, all the maximal induced subgraphs in G3 with exactly three

components containing exactly one triangle are Z2∪ 2K1, Z1∪K1∪K2 and K3∪P4∪K1,

so S is an induced subgraph of Z2 ∪ 2K1, Z1 ∪K1 ∪K2 or K3 ∪ P4 ∪K1.

Observing that P4 ∪K2 ∪K1 is an induced subgraph of K3 ∪P4 ∪K1, and that Z2 ∪ 2K1

as well as Z1 ∪ K2 ∪ K1 are induced subgraphs of Z4 ∪ K1, we summarize that S is an

induced subgraph of K3∪P4∪K1 or Z4∪K1 (which is already mentioned in the previous

subcase).

Subcase 1.3: nc(S) = 4.

If S has no cycle, then ∆(S) ≤ 2 by Claim 1, and since the only maximal induced subgraph

of G3 with maximum degree at most two and exactly four components is 2K2 ∪ 2K1, S is

an induced subgraph of 2K2 ∪ 2K1. If S has a cycle, then by Claim 1, S has exactly one

cycle - a triangle. Then the maximal induced subgraph containing exactly one triangle

in G3 with exactly four components is K3 ∪ K2 ∪ 2K1, so S is an induced subgraph of

K3∪K2∪2K1. Since 2K2∪2K1 is an induced subgraph ofK3∪K2∪2K1, andK3∪K2∪2K1

is an induced subgraph of K3∪P4∪K1, S is an induced subgraph of K3∪P4∪K1 (which

is already mentioned in the previous subcase).
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Summarizing all possibilities in Case 1, we get that S is an induced subgraph of one of the

graphs in {K3 ∪ Z1, Z1 ∪ P4, Z4 ∪K1, N1,1,1 ∪K2, B1,2 ∪K1, K3 ∪ P4 ∪K1}.

Case 2: R = K1,4.

Each of the graphs G3, G4, G6, G9 is K1,4-free, hence each of them contains S as an induced

subgraph. Note that G6 is K3-free. Since S is not an induced subgraph of P3 or 4K1,

considering G4, S is an induced subgraph of some of C4, C5, P4, S1,1,3, P3∪2K1, P3∪K2, 3K1∪
K2, where S1,1,3 denotes the graph obtained from K1,3 by subdividing one edge twice. Since

G3 is {C4, C5, K1,3}-free and G9 is P3 ∪K2-free, it remains that S is an induced subgraph

of P3 ∪ 2K1 or 3K1 ∪K2.

Case 3: R = K1,k with k ≥ 5.

Each of the graphs G3, G4, G5, G6, G9 is K1,5-free, hence each of them contains S as an

induced subgraph. Note that G6 is K3-free. Since S is not an induced subgraph of P3 or

4K1, considering G4, S is an induced subgraph of some of C4, C5, P4, S1,1,3, P3 ∪ 2K1, P3 ∪
K2, 3K1∪K2. Since G3 is {C4, C5, K1,3}-free, G5 is {P4, P3∪K1}-free and G9 is P3∪K2-free,

it remains that S an induced subgraph of 3K1 ∪K2.

Case 4: R = kK1 with k ≥ 5.

For each i ∈ {3, 4, 5}, Gi is 5K1-free, hence each of them contains S as an induced subgraph.

Therefore, S is also 5K1-free, implying that nc(S) ≤ 4. If nc(S) = 1, then, since the maximal

common induced subgraph of G3, G4 and G5 is Ll with l ≥ 3, S is an induced subgraph

of Ll with l ≥ 3. If 2 ≤ nc(S) ≤ 4, then, since the maximum induced subgraph of G5 is

3K1 ∪Kl with l ≥ 2, S is an induced subgraph of 3K1 ∪Kl with l ≥ 2.

Proof of Theorem 3.

Sufficiency follows from Theorem O and Theorems 11, 12, 13 and 14. Hence it remains to

show necessity.

Let R, S be a pair of graphs of order at least three other than P3 and 3K1. Consider the

graphs G1, . . . , G9 shown in Fig. 3 and G10, G11, G12 shown in Fig. 4. For 1 ≤ i ≤ 12, Gi

is non-2-factorable of arbitrarily large order and hence it contains at least one of R, S as an

induced subgraph.
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Figure 4: Connected non-2-factorable graphs with minimum degree 2 of arbitrarily large order

We now show that either R or S is edgeless or a star. Suppose, to the contrary, that neither

R nor S is edgeless or a star, and recall that neither R nor S is an induced subgraph of P3
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or 4K1. If, say, |V (R)| ≤ 3, then R is K3 or K1 ∪ K2, and if |V (R)| ≥ 4, then R contains

an induced K1 ∪ K2 when R is disconnected or a tree, or any induced cycle in R contains

an induced K3, C4 or a K1 ∪K2. Thus, in any case, the graph R (and symmetrically also S)

contains some of K3, C4, K1 ∪ K2 as an induced subgraph. We may assume, without loss of

generality, that R is an induced subgraph of G1. Since G1 is {K3, K1∪K2}-free, R contains C4

as an induced subgraph. Since G2 is C4-free, G2 contains S as an induced subgraph, and since

G2 is {C4, K1∪K2}-free, S contains K3 as an induced subgraph. But then G6 is {K3, C4}-free,
implying that G6 is {R, S}-free and hence it has a 2-factor, a contradiction.

In the rest of the proof we assume (up to a symmetry) that R is edgeless or a star. We

now consider the following four cases.

Case 1: R = K1,3.

Since α(G10) = 3 and S is an induced subgraph of G11, S is 4K1-free and hence nc(S) ≤ 3.

If S is connected, then S is an induced subgraph of Z2 by Theorem D. Hence we assume

that 2 ≤ nc(S) ≤ 3.

Claim 1. If S is a forest, then ∆(S) ≤ 2. If S has a cycle, then S has only one cycle, which

is a triangle.

Proof. If S is a forest, then, since G3 is K1,3-free and contains S as an induced subgraph,

we have ∆(S) ≤ 2. If S has a cycle, then, since the only common induced cycle of G8

and G12 is a triangle, and G12 does not contain two vertex disjoint cycles as an induced

subgraph, S contains only one cycle - a triangle. □

Suppose first that nc(S) = 2. If S is a forest, then ∆(S) ≤ 2 by Claim 1. Since the maximal

induced forest in G10 with maximum degree at most two and exactly two components is

P3 ∪ K2, S is an induced subgraph of P3 ∪ K2. If S has a cycle, then, by Claim 1, S has

only one cycle - a triangle, and considering G10, we observe that S is an induced subgraph

of Z1 ∪K2.

Now suppose that nc(S) = 3. If S is a forest, then ∆(S) ≤ 2 by Claim 1. Since the maximal

induced forest in G10 with maximum degree at most two and exactly three components is

K1 ∪ 2K2, S is an induced subgraph of K1 ∪ 2K2. If S has a cycle - a triangle, considering

G10, we observe that S is an induced subgraph of K1 ∪K2 ∪K3.

Note that K1 ∪ 2K2 is an induced subgraph of K1 ∪K2 ∪K3. Summarizing all possibilities,

we conclude that S is an induced subgraph of P3 ∪K2, Z1 ∪K2 or K1 ∪K2 ∪K3.

Case 2: R = K1,k with k ≥ 4.

Each of the graphs G6, G9, G10 and G11 is K1,4-free, hence each of them contains S as an

induced subgraph. Since any common induced subgraph of G6 and G10 is a forest with

maximum degree at most two, S is a forest with ∆(S) ≤ 2. If nc(S) = 2, then, since the

maximal common induced subgraph of G9 and G11 with maximum degree at most two and

exactly two components is K1 ∪ K2, S is an induced subgraph of K1 ∪ K2. If nc(S) = 3,
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then, since the maximal common induced subgraph of G9 and G11 with maximum degree at

most two and exactly three components is 2K1∪K2, S is an induced subgraph of 2K1∪K2.

Clearly, K1∪K2 is an induced subgraph of 2K1∪K2, hence we conclude that S is an induced

subgraph of 2K1 ∪K2.

Case 3: R = kK1 with k = 4.

For each i ∈ {10, 11}, Gi is 4K1-free and hence it contains S as an induced subgraph.

Therefore, S is also 4K1-free, implying that nc(S) ≤ 3. If nc(S) = 1, then, since the

maximal common induced subgraph of G10 and G11 is Ll with l ≥ 3, S is an induced

subgraph of Ll with l ≥ 3. If 2 ≤ nc(S) ≤ 3, then, since the maximal common induced

subgraph of G10 and G11 is K1∪K2∪Kl with l ≥ 2, S is an induced subgraph of K1∪K2∪Kl

with l ≥ 2.

Case 4: R = kK1 with k ≥ 5.

For each i ∈ {5, 10, 11}, Gi is 4K1-free and hence it contains S as an induced subgraph.

Therefore, S is also 4K1-free, implying that nc(S) ≤ 3. If nc(S) = 1, then, since the maximal

common induced subgraph of G10 and G11 is Ll with l ≥ 3, S is an induced subgraph of Ll

with l ≥ 3. If 2 ≤ nc(S) ≤ 3, then, since the largest common induced subgraph of G5 and

G11 is 2K1 ∪Kl with l ≥ 3, S is an induced subgraph of 2K1 ∪Kl with l ≥ 3.
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