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Abstract

This is the first one in a series of two papers, in which we complete the characterization of
forbidden generalized nets implying Hamilton-connectedness of a 3-connected claw-free
graph. In this paper, we first develop the necessary techniques that allow to handle the
problem, namely:

(i) we strengthen the closure concept for Hamilton-connectedness in claw-free graphs,
introduced by the second and third authors, such that not only the line graph
preimage of a closure, but also its core has certain strong structural properties,

(ii) we prove a special version of the “nine-point-theorem” by Holton et al. that allows
to handle Hamilton-connectedness of “small” {K1,3, Ni,j,k}-free graphs (where
Ni,j,k is the graph obtained by attaching endvertices of three paths of lengths
i, j, k to a triangle),

(iii) by combination of these techniques, as an application, we prove that every 3-
connected {K1,3, N1,3,3}-free graph is Hamilton-connected.

The paper is followed by its second part in which we show that every 3-connected
{K1,3, X}-free graph, where X ∈ {N1,1,5, N2,2,3}, is Hamilton-connected. All the results
on Hamilton-connectedness are sharp.
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1 Introduction

In this paper, by a graph we always mean a simple finite undirected graph; if we admit multiple
edges, we always speak about a multigraph. We follow the most common graph-theoretical
terminology and notation, and for notations and concepts not defined here we refer the reader
e.g. to [6]. Specifically, we use dG(x) to denote the degree of a vertex x in G, and for i ≥ 1 we
set Vi(G) = {x ∈ V (G)| dG(x) = i}. If x ∈ V2(G) with NG(x) = {y1, y2}, then the operation
of replacing the path y1xy2 by the edge y1y2 is called suppressing the vertex x. The inverse
operation is called subdividing the edge y1y2 with the vertex x.

We write F ⊂ G if F is a sub(multi)graph of G (not excluding the possibility F = G),
and 〈M〉G to denote the induced sub(multi)graph on a set M ⊂ V (G). A vertex x ∈ V (G) is
simplicial if 〈NG(x)〉G is a complete graph. For F ⊂ G, a vertex x is said to be a vertex of
attachment of F in G if x ∈ V (F ) and NG(x) ∩ (V (G) \ V (F )) 6= ∅. The set of all vertices of
attachment of a sub(multi)graph F in G is denoted AG(F ).

By a closed trail in G we mean an eulerian subgraph of G, and a connected subgraph with
exactly two vertices of odd degree is called a trail in G. Its vertices of odd degree are its
endvertices, and (any) its edge incident to an endvertex is a terminal edge (note that these
definitions are equivalent with those in [6]). A subtrail of a trail is a subgraph which itself
is a trail. For x, y ∈ V (G), a path (trail) with endvertices x, y is referred to as an (x, y)-
path ((x, y)-trail), a trail with terminal edges e, f ∈ E(G) is called an (e, f)-trail, and Int(T )
denotes the set of interior vertices of a trail T . A set of vertices M ⊂ V (G) dominates an edge
e, if e has at least one vertex in M , and a subgraph F ⊂ G dominates e if V (F ) dominates e.
A closed trail T is a dominating closed trail (abbreviated DCT) if T dominates all edges of G,
and an (e, f)-trail is an internally dominating (e, f)-trail (abbreviated (e, f)-IDT) if Int(T )
dominates all edges of G. A graph is Hamilton-connected if, for any u, v ∈ V (G), G has a
hamiltonian (u, v)-path, i.e., an (u, v)-path P with V (P ) = V (G).

Finally, for a family of graphs F , a graph G is said to be F-free if G does not contain an
induced subgraph isomorphic to a member of F ; the graphs in F are referred to in this context
as forbidden (induced) subgraphs. If F = {F}, we simply say that G is F -free. Here, the claw
is the graph K1,3, Pi denotes the path on i vertices, and Γi denotes the graph obtained by
joining two triangles with a path of length i. Several further graphs that will be often used
as forbidden subgraphs are shown in Fig. 1 (note that the graph Ni,j,k in Fig. 1(c) is often
referred to as the generalized net). Whenever we will later on list vertices of an Si,j,k in
a graph, we will always write the list such that i ≤ j ≤ k, and we will use the notation
Si,j,k(v; a1a2 . . . ai; b1b2 . . . bj; c1c2 . . . ck) (in the labeling of vertices as in Fig. 1(d)).
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Figure 1: The graphs Zi, Bi,j, Ni,j,k and Si,j,k

There are many results on forbidden induced subgraphs implying various Hamilton-type
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graph properties. While for hamiltonicity in 2-connected graphs (recall that 2-connectedness
is the minimum connectivity level for the property), pairs of connected forbidden subgraphs
are completely characterized [13], for Hamilton-connectedness in 3-connected graphs (where
again, 3-connectedness is the minimum connectivity level for the property), the progress is
relatively slow. Theorem A below reflects the history of consecutive improvements of sufficient
conditions for Hamilton-connectedness in terms of pairs of connected forbidden subgraphs.

Theorem A [29, 13, 11, 8, 12, 4, 17, 21]. Let G be a 3-connected {K1,3, X}-free graph,
where

(i) [29] X = N1,1,1, or
(ii) [13] X = Z2, or

(iii) [11] X ∈ {B1,2, Z3, P6}, or
(iv) [8] X = Γ1, or
(v) [12] X ∈ {N1,1,3, N1,2,2, P8}, or

(vi) [4] X = P9, or
(vii) [17] X = N1,2,3, or
(viii) [21] X = N1,2,4.
Then G is Hamilton-connected.

Note that Theorem A(viii) immediately implies that every 3-connected {K1,3, B2,4}-free
or {K1,3, Z4}-free graph is Hamilton-connected.

Let W be the family of graphs obtained by attaching at least one pendant edge to each
of the vertices of the Wagner graph W (see Fig. 2(b)), and let G = {L(H)| H ∈ W} be
the family of their line graphs. Then any G ∈ G is 3-connected, non-Hamilton-connected,
P10-free and Ni,j,k-free for i + j + k = 8. Thus, this example shows that parts (vi) and (viii)
of Theorem A are sharp, and, moreover, the largest generalized nets Ni,j,k that might imply
Hamilton-connectedness are those with i+ j+ k = 7. In view of part (viii) of Theorem A, we
easily see that the only such remaining generalized nets are N1,3,3, N1,1,5 and N2,2,3. In this
series of two papers, we answer these questions in the affirmative. Specifically, the next result,
which is one of the main results of this paper, is also sharp.

Theorem 1. Every 3-connected {K1,3, N1,3,3}-free graph is Hamilton-connected.

Theorem 1 immediately implies as a corollary that also every 3-connected {K1,3, B3,3}-free
graph is Hamilton-connected.

The proof of Theorem 1, which is a careful case analysis, is postponed to Section 5. In
Section 2, we collect necessary known results and facts, and in Sections 3 and 4, we develop
techniques that allow to significantly reduce the number of cases to be considered.

In [20], the second one in this series of two papers, we will use the techniques developed
in Sections 3 and 4 to prove an analogue of Theorem 1 for the remaining graphs Ni,j,k with
i+j+k = 7, namely, for N1,1,5 and N2,2,3. This will complete the characterization of generalized
nets implying Hamilton-connectedness of a 3-connected claw-free graph. We will also include
more details on sharpness and on remaining open cases.
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2 Preliminaries

In this section, we summarize some known facts that will be needed in our proof of Theorem 1.

2.1 Line graphs of multigraphs and their preimages

The line graph of a multigraph H is the graph G = L(H) with V (G) = E(H), in which two
vertices are adjacent if and only if the corresponding edges of H have at least one vertex in
common. While in line graphs of graphs, for a line graph G, the graph H such that G = L(H)
is uniquely determined with a single exception of G = K3, in line graphs of multigraphs this
is not true: a simple example are the graphs H1 = Z1 and H2 a double edge with one pendant
edge attached to each vertex – while H1 6' H2, we have L(H1) ' L(H2) ' T1 (where T1 is the
diamond shown in Fig. 4). Using a modification of an approach from [31], the following was
proved in [26].

Theorem B [26]. Let G be a connected line graph of a multigraph. Then there is, up to an
isomorphism, a uniquely determined multigraph H such that a vertex e ∈ V (G) is simplicial
in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

The multigraph H with the properties given in Theorem B will be called the preimage
of a line graph G and denoted H = L−1(G). We will also use the notation a = L(e) and
e = L−1(a) for an edge e ∈ E(H) and the corresponding vertex a ∈ V (G).

An edge-cut R ⊂ E(H) of a multigraph H is essential if H −R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size at
least k. It is a well-known fact (see [28], Proposition 1.1.3), that a line graph G is k-connected
if and only if L−1(G) is essentially k-edge-connected. It is also a well-known fact that if X is a
line graph, then a line graph G is X-free if and only if L−1(G) does not contain as a subgraph
(not necessarily induced) a graph F such that L(F ) = X (but not necessarily F = L−1(X)).
However, it is straightforward to verify that for the graph Ni,j,k there is exactly one graph F
such that L(F ) = Ni,j,k, namely, the graph L−1(Ni,j,k) = Si+1,j+1,k+1 (see Fig. 1(d)). Thus, we
can conclude that a line graph G is Ni,j,k-free if and only if L−1(G) does not contain as a (not
necessarily induced) subgraph the graph L−1(Ni,j,k) = Si+1,j+1,k+1.

Harary and Nash-Williams [15] established a correspondence between a DCT in H and a
hamiltonian cycle in L(H) (the result was given in [15] for graphs, but it is easy to observe
that it is true also for multigraphs). A similar result showing that G = L(H) is Hamilton-
connected if and only if H has an (e1, e2)-IDT for any pair of edges e1, e2 ∈ E(H), was given
in [19]. Since the result was given without proof, and we need a slightly stronger statement,
for the sake of completeness, we include the statement here with its (easy) proof.

Theorem C [15, 19]. Let H be a multigraph with |E(H)| ≥ 3 and let G = L(H).
(i) [15] The graph G is hamiltonian if and only if H has a DCT.

(ii) [19] For every ei ∈ E(H) and ai = L(ei), i = 1, 2, G has a hamiltonian (a1, a2)-path if
and only if H has an (e1, e2)-IDT.
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Proof. (ii) For i = 1, 2, subdivide ei with a vertex vi of degree 2 if ei is nonpendant, or
let vi be the vertex of degree 1 of ei if ei is pendant; join v1, v2 with a path having at least
two interior vertices, let H ′ be the resulting graph, and set G′ = L(H ′). Then clearly G has
a hamiltonian (a1, a2)-path if and only if G′ is hamiltonian, and H has an (e1, e2)-IDT if and
only if H ′ has a DCT. The rest follows from part (i).

2.2 Strongly spanning trailable multigraphs

A multigraph H is strongly spanning trailable if for any e1 = u1v1, e2 = u2v2 ∈ E(H) (possibly
e1 = e2), the multigraph H(e1, e2), which is obtained from H by replacing the edge e1 by a
path u1ve1v1 and the edge e2 by a path u2ve2v2, has a spanning (ve1 , ve2)-trail.

We first recall two well-known graphs that will occur as exceptions in some of the results,
namely, the Petersen graph Π and the Wagner graph W (see Fig. 2). It is a well-known fact
that the Wagner graph can be obtained from the Petersen graph by removing an arbitrary
edge and suppressing the two created vertices of degree 2. We will often refer to these graphs
using the labeling of their vertices as indicated in Fig. 2.
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Figure 2: The Petersen graph Π and the Wagner graph W

We will need the following two results on “small” strongly spanning trailable multigraphs
from [21]. Here, W is the set of multigraphs that are obtained from the Wagner graph W by
subdividing one of its edges and adding at least one edge between the new vertex and exactly
one of its neighbors.

Theorem D [21].
(i) Every 2-connected 3-edge-connected multigraph H with circumference c(H) ≤ 8 other

than the Wagner graph W is strongly spanning trailable.
(ii) Every 3-edge-connected multigraph H with |V (H)| ≤ 9 such that H /∈ {W} ∪W is

strongly spanning trailable.

2.3 A-contractible multigraphs

We will also use the following operation introduced in [24]. The concept was defined in [24] for
graphs, but it is easy to observe that it remains true also for multigraphs. For a multigraph
H and F ⊂ H, H|F denotes the multigraph obtained from H by identifying the vertices of
F as a (new) vertex vF , and by replacing the created loops by pendant edges. Specifically,
if E(F ) = {e}, we simply write G|e. If H is a multigraph, X ⊂ V (H), and A is a partition
of X into subsets, then E(A) denotes the set of all edges a1a2 (not necessarily in H) such
that a1, a2 are in the same element of A. Further HA denotes the multigraph with vertex set
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V (HA) = V (H) and edge set E(HA) = E(H)∪E(A) (where E(H) and E(A) are considered
to be disjoint, i.e., if e1 = a1a2 ∈ E(H) and e2 = a1a2 ∈ E(A), then e1, e2 are parallel edges
in HA).

Let F be a multigraph and let A ⊂ V (F ). Then F is said to be A-contractible, if for every
even subset X ⊂ A and for every partition A of X into two-element subsets, the graph FA

has a DCT containing all vertices of A and all edges of E(A). Note that, in this definition,
we admit X to be empty, in which case FA = F . Also, if F is A-contractible, then F is
A′-contractible for any A′ ⊂ A (since every subset X of A′ is a subset of A). The following
important property of the contractibility concept follows from the results in [24].

Theorem E [24]. Let H be a multigraph and let F ⊂ H be an AH(F )-contractible
submultigraph of H. Then H has a DCT if and only if H|F has a DCT.

Note that if F is collapsible in the sense of Catlin [10], then F is V (F )-contractible, and,
similarly, the A-contractibility concept also generalizes X-collapsibility by Veldman [30]. For
more details, we refer to [24].

In Fig. 3, we give several examples of A-contractible graphs (in the figure, the vertices in
the set A are double-circled). Note that detailed proofs of A-contractibility are for F2 and F3

given in [24].
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Figure 3: Examples of A-contractible graphs

3 Closure operations for Hamilton-connectedness

3.1 M-closure and SM-closure

A vertex x ∈ V (G) is said to be locally connected if 〈N(x)〉G is a connected subgraph of G,
and x is eligible if x is locally connected and 〈N(x)〉G is noncomplete. We will use VEL(G) to
denote the set of all eligible vertices in G. It is easy to observe that in the special case when
G is a line graph and H = L−1(G), a nonsimplicial vertex x ∈ V (G) is locally connected if
and only if the corresponding edge e = L−1G (x) is in a triangle or in a multiedge in H.

For x ∈ V (G), the local completion of G at x is the graphG
∗
x = (V (G), E(G)∪{y1y2| y1, y2 ∈

NG(x)) (i.e., G
∗
x is obtained from G by adding to 〈N(x)〉G all missing edges). Obviously, if G

is claw-free, then so is G
∗
x. Note that in the special case when G is a line graph, H = L−1(G)

and e = L−1(x), we have G
∗
x = L(H|e).

In [23], it was shown that G is claw-free and x ∈ VEL(G), then G
∗
x is hamiltonian if and

only if G is hamiltonian, and the closure cl(G) of a claw-free graph G was defined as the graph
obtained from G by recursively performing the local completion operation at eligible vertices,
as long as this is possible (more precisely: cl(G) = Gk, where G1, . . . , Gk is a sequence of graphs
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such that G1 = G, Gi+1 = (Gi)
∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1, and VEL(Gk) = ∅).
We say that G is closed if G = cl(G).

For a claw-free graph G, the closure cl(G) is uniquely determined, is the line graph of a
triangle-free graph, and is hamiltonian if and only if G is hamiltonian. Note that this allows us
to decide questions about hamiltonicity in a claw-free graph by looking at the corresponding
question in the line graph preimage of the closure. However, as observed in [7], the closure
operation does not preserve (non-)Hamilton-connectedness of G. This motivated the concept
of k-closure as introduced in [5]: for an integer k ≥ 1, a vertex x is k-eligible if 〈N(x)〉G is k-
connected noncomplete, and the k-closure clk(G) is defined analogously as the graph obtained
by recursively performing the local completion operation at k-eligible vertices, as long as this
is possible. The resulting graph is again unique (see [5]). The following facts were conjectured
in [5] and proved in [25].

Theorem F [25]. Let G be a claw-free graph.
(i) If x ∈ V (G) is 2-eligible, then G is Hamilton-connected if and only if G

∗
x is Hamilton-

connected,
(ii) G is Hamilton-connected if and only if cl2(G) is Hamilton-connected.

It is easy to observe that, in general, cl2(G) is not a line graph, and even not a line graph of
a multigraph. To avoid this disadvantage, the second and third authors developed in [26] the
concept of the multigraph closure (or briefly M-closure) clM(G) of a claw-free graph G as the
graph clM(G) obtained from cl2(G) by a sequence of local completions at some (but not all)
eligible vertices, where the eligible vertices are chosen in a special way such that the resulting
graph is a line graph of a multigraph, and the operation still preserves the (non-)Hamilton-
connectedness of G. We do not give technical details of the construction since we will not
need them in our proofs. We only note here that clM(G) can be constructed in polynomial
time, and we refer for more details to [25], [26].

The following result summarizes basic properties of clM(G).

Theorem G [26]. Let G be a claw-free graph and let clM(G) be its M-closure. Then
(i) clM(G) is uniquely determined,

(ii) there is a multigraph H such that clM(G) = L(H),
(iii) clM(G) is Hamilton-connected if and only if G is Hamilton-connected.

We say that G is M-closed if G = clM(G). Consider the multigraphs T1, T2, T3 in Fig. 4.
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Figure 4: The diamond T1, the multitriangle T2 and the triple edge T3

Theorem H [26]. Let G be a claw-free graph and let T1, T2, T3 be the multigraphs shown
in Fig. 4. Then G is M-closed if and only if G is a line graph of a multigraph and L−1(G)
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does not contain a subgraph (not necessarily induced) isomorphic to any of the multigraphs
T1, T2 or T3.

The M-closure operation was further strengthened in [18] in such a way that a closure of
a claw-free graph is the line graph of a multigraph with either at most two triangles and no
multiedge, or with at most one double edge and no triangle.

For a given claw-free graph G, a graph GM is defined in [18] by the following construction.
(i) If G is Hamilton-connected, we set GM = cl(G).

(ii) If G is not Hamilton-connected, we recursively perform the local completion operation
at such eligible vertices for which the resulting graph is still not Hamilton-connected,
as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ VEL(Gk), (Gk)

∗
x is Hamilton-connected,

and we set GM = Gk.
A resulting GM is called a strong M-closure (or briefly an SM-closure) of the graph G, and a
graph G equal to its SM-closure is said to be SM-closed. Note that, for a given graph G, its
SM-closure GM is not uniquely determined.

It is straightforward to see that if G is SM-closed, then G is also M-closed, implying
G = L(H), where H does not contain any of the multigraphs shown in Fig. 4. The following
theorem summarizes basic properties of the SM-closure operation.

Theorem I [18]. Let G be a claw-free graph and let GM be one of its SM-closures. Then
GM has the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,

(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either

(α) VEL(GM) = ∅ and GM = cl(G), or
(β) VEL(GM) 6= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(GM),

(vi) GM = L(H), where H contains either
(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge,

(vii) if GM contains no hamiltonian (a, b)-path for some a, b ∈ V (GM) and
(α) X is a triangle in H, then E(X) ∩ {L−1

GM (a), L−1
GM (b)} 6= ∅,

(β) X is a multiedge in H, then E(X) = {L−1
GM (a), L−1

GM (b)}.

We will also need the following lemma on SM-closed graphs proved in [27].

Lemma J [27]. Let G be an SM-closed graph and let H = L−1(G). Then H does not
contain a triangle with a vertex of degree 2 in H.
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3.2 The core of the preimage of an SM-closed graph

The concept of the core of a graph is an important tool for studying hamiltonian properties
of line graphs. As the definition is slightly problematic for multigraphs, we restrict our ob-
servations to the case that we need, i.e., to preimages of 3-connected SM-closed graphs. The
difficulties then do not occur since such a multigraph cannot have pendant multiedges by
Theorem B, and cannot have pendant multitriangles by Theorem H.

Thus, let G be a 3-connected SM-closed graph and let H = L−1(G). The core of H is the
multigraph co(H) obtained from H by removing all pendant edges and suppressing all vertices
of degree 2.

Shao [28] proved the following properties of the core of a multigraph.

Theorem K [28]. Let H be an essentially 3-edge-connected multigraph. Then
(i) co(H) is uniquely determined,

(ii) co(H) is 3-edge-connected,
(iii) V (co(H)) dominates all edges of H,
(iv) if co(H) has a spanning closed trail, then H has a DCT,
(v) if co(H) is strongly spanning trailable, then L(H) is Hamilton-connected.

3.3 UM-closure

In this subsection we show that the concept of SM-closure can be further strengthened by
omitting the eligibility assumption in the local completion operation. Specifically, for a given
claw-free graph G, we construct a graph GU by the following construction.

(i) If G is Hamilton-connected, we set GU = K|V (G)|.
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such vertices for which the resulting graph is still not Hamilton-connected, as long
as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ V (Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ V (Gk), (Gk)

∗
x is Hamilton-connected,

and we set GU = Gk.
A graph GU obtained by the above construction will be called an ultimate M-closure (or
briefly an UM-closure) of the graph G, and a graph G equal to its UM-closure will be said to
be UM-closed. Note that since the construction of a UM-closure requires deciding Hamilton-
connectedness, there is not much hope to construct a UM-closure of a claw-free graph in
polynomial time.

Obviously, by the definition, if G is UM-closed, then G is also SM-closed, implying that
G is a line graph and H = L−1(G) has special structure (contains no diamond etc. - see
Theorems H and I (vi), (vii)). In the next theorem, summarizing basic properties of the UM-
closure operation, we will see that for UM-closed graphs, not only H, but also co(H) has these
strong structural properties.

Theorem 2. Let G be a claw-free graph and let GU be one of its UM-closures. Then GU

has the following properties:
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(i) V (G) = V (GU) and E(G) ⊂ E(GU),
(ii) GU is obtained from G by a sequence of local completions at vertices,

(iii) G is Hamilton-connected if and only if GU is Hamilton-connected,
(iv) if G is Hamilton-connected, then GU = K|V (G)|,
(v) if G is not Hamilton-connected, then (GU)

∗
x is Hamilton-connected for any x ∈ V (GU),

(vi) GU = L(H), where co(H) contains no diamond, no mutitriangle and no triple edge,
and either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge, and if co(H)

contains a double edge, then this double edge is also in H,
(vii) if GU contains no hamiltonian (a, b)-path for some a, b ∈ V (GU) and

(α) X is a triangle in co(H), then E(X) ∩ {L−1
GU (a), L−1

GU (b)} 6= ∅,
(β) X is a multiedge in co(H), then E(X) = {L−1

GU (a), L−1
GU (b)}.

For the proof of Theorem 2, we will need three lemmas.

Lemma 3. Let H be a multigraph, F an AH(F )-contractible submultigraph of H, and let
e1, e2 ∈ E(H) \ E(F ). Then H has an (e1, e2)-IDT if and only if H|F has an (e1, e2)-IDT.

Proof. Let H1 be the multigraph obtained from H by subdividing the edges e1, e2 with new
vertices a1, a2, and connecting a1, a2 by a path with new inner vertices b1, b2. Then clearly H
has an (e1.e2)-IDT if and only if H1 has a DCT. By Theorem E, H1 has a DCT if and only if
the multiograph H2 = H1|F has a DCT. Finally, H2 has a DCT if and only if the multigraph
H3, obtained from H2 by removing b1, b2 and suppressing a1, a2 has an (e1, e2)-IDT. However,
H3 = H|F .

Let H be a multigraph, u ∈ V (H) a vertex of degree 2, and let v1, v2 be the neighbors of
u. Then H|(u) denotes the multigraph obtained from H by suppressing the vertex u and by
adding two pendant edges f1 and f2 such that f1 is incident with v1 and f2 is incident with
v2. The following lemma was proved in [18].

Lemma L [18]. Let H be a multigraph, u ∈ V (H) a vertex of degree 2, and let v1, v2 be
the neighbors of u. Set H ′ = H|(u), h = v1v2 ∈ E(H ′), and let f1, f2 ∈ E(H ′) \ E(H) be the
two pendant edges attached to v1 and v2, respectively.

(i) If L(H) is Hamilton-connected, then L(H ′) has a hamiltonian (x, y)-path for every
x, y ∈ V (L(H ′)) for which either L(h) /∈ {x, y}, or L(h) ∈ {x, y} and {x, y} ∩
{L(f1), L(f2)} 6= ∅.

(ii) If L(H ′) is Hamilton-connected, then L(H) has a hamiltonian (x, y)-path for every
x, y ∈ V (L(H)) for which {x, y} 6= {L(uv1), L(uv2)}.

Lemma 4. Let H be a multigraph, and let T = x1x2x3 be a triangle in co(H) such that
the edge x1x2 is subdivided in H by a vertex x12 of degree 2, and the edges x1x3, x2x3 are
possibly (but not necessarily) subdivided in H by vertices x13, x23 of degree 2. Let T ′ be the
subgraph of H corresponding to T . Set ei = xix12, and set fi = xixi3 if xix3 is subdivided or
fi = xix3 otherwise, i = 1, 2. If H contains an (f1, f2)-IDT, then H contains an (e1, e2)-IDT.
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Proof. Let Q be an (f1, f2)-IDT in H. We will consider nontrivial components of Q−E(T ′).
Note that each such component is an (xi, xj)-subtrail of Q for some i, j ∈ {1, 2, 3} (possibly
i = j) with all edges in E(H) \ E(T ′). First observe that since {f1, f2} is an edge-cut of
T ′, separating x3 from x1, x12 and x2, there is no nontrivial (x3, x3)-subtrail of Q among the
components of Q−E(T ′). Thus, if x3 is in a nontrivial subtrail, then it is in an (x3, xi)-subtrail
for some i = 1, 2. Since two distinct subtrails must have distinct endvertices (otherwise they
form one component of Q−E(T ′)), there are at most two such subtrails. Up to a symmetry,
we have the following possibilities.

Number of subtrails Endvertices of subtrails (e1, e2)-IDT in H
1 {x1, x3} x12x1Qx3(x23)x2x12
1 {x1, x2} x12x1Qx2x12
1 {x1, x1} x12x1Qx1(x13)x3(x23)x2x12
2 {x1, x1}, {x2, x2} x12x1Qx1(x13)x3(x23)x2Qx2x12
2 {x1, x3}, {x2, x2} x12x1Qx3(x23)x2Qx2x12

(For the last case, see Fig. 5). In each of the possible cases, we have obtained an (e1, e2)-IDT
in H.
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Figure 5: Transformation of the trail Q into an (e1, e2)-IDT

Proof of Theorem 2. Let G be a claw-free graph and let GU be its UM-closure. The
properties (i) – (v) follow immediately by the construction of GU . Set H = L−1(GU). If GU

is Hamilton-connected, then H is a star and (vi), (vii) are trivially satisfied. So, suppose that
GU is not Hamilton-connected.

(vi) We first show that co(H) contains no diamond, no multitriangle and no triple edge. In
what follows, the common edge of the two triangles of a diamond D will be called the middle
edge of D.

Claim 1. If D is a diamond in co(H), then the middle edge of D is subdivided in H.

Proof. Let, to the contrary, D be a diamond in co(H) such that its middle edge is also an
edge in H. Then in H, the subgraph D′ corresponding to D has at least one subdivided edge
(since G is SM-closed, implying that H is diamond-free). Let thus e = x1x2 ∈ E(D) be such
an edge that is subdivided in D′ by a vertex y of degree 2, and let H ′ = H|(y).

Suppose that L(H ′) is Hamilton-connected. Then, by Lemma L(ii) and by the fact that
L(H) is not Hamilton-connected, H has an (e, f)-IDT if and only if {e, f} 6= {x1y, x2y}, but
then, if T is the triangle of D not containing e and T ′ is the corresponding subgraph of D′, the
multigraph H|T ′ has no (x1y, x2y)-IDT by Lemma 3 (since T ′ is AH(T ′)-contractible - see the
graph F2 in Fig. 3). However, L(H|T ′) can be alternatively obtained from L(H) by a series
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of contractions of edges of H, i.e., of local completions at vertices of L(H), contradicting the
fact that GU = L(H) is UM-closed. Thus, L(H ′) is not Hamilton-connected.

By induction, we conclude that the line graph of the multigraph H1, obtained from H by
suppressing all vertices of degree 2 in D′ and adding a pendant edge to each of the vertices of
the new edges, is not Hamilton-connected (note that the resulting multigraph of the inductive
construction can have different number of pendant edges since e.g. in the second step we apply
the construction to H ′). Moreover, if e is the middle edge of D, then v = L(e) is 2-eligible in
L(H1), hence (L(H1))

∗
v = L(H1|e) (see an example in Fig. 6(a)), is not Hamilton-connected

by Theorem F.
However, the same multigraph as H1|e, with only possibly different number of pendant

edges at vertices, can be alternatively obtained from H by a series of contractions of edges
(i.e., local completions at vertices of GU , see an example in Fig. 6(b)), implying that L(H1|e)
is Hamilton-connected by Theorem 2(v), a contradiction. �
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Figure 6: Two alternative constructions of a part of H1|e

Claim 2. Let D be a diamond in co(H), e = v1v2 the middle edge of D, u ∈ V (H) the
vertex with dH(u) = 2 and uv1, uv2 ∈ V (H), and set yi = L(uvi), i = 1, 2. Then, for any
x1, x2 ∈ V (GU), there is a hamiltonian x1, x2-path in GU if and only if {x1, x2} 6= {y1, y2}.

Proof. Suppose, to the contrary, that co(H) contains a diamond D not satisfying the state-
ment of Claim 2. Then either GU has no hamiltonian (x1, x2)-path for some x1, x2 ∈ V (GU)
such that {x1, x2} 6= {y1, y2}, or GU has a hamiltonian (y1, y2)-path.

In the first case, we again construct H1 from H by suppressing all vertices of degree 2 in
D and adding a pendant edge to each of the vertices of the new edges, observe that the vertex
of L(H1) corresponding to the middle edge of D is 2-eligible, and obtain a contradiction in
the same way as in the proof of Claim 1. Thus, GU has a hamiltonian (y1, y2)-path. But GU

is not Hamilton-connected, hence there is no hamiltonian (z1, z2)-path in GU for some other
two vertices z1, z2 with {z1, z2} 6= {y1, y2}, and we are back in the first case. �

Claim 3. If X is a double edge in co(H), then neither of the edges of X is subdivided in H.

Proof. Set V (X) = {x1, x2}. If X is not a double edge in H, then, by Lemma J, both
edges of X are subdivided in H. Thus, let y1, y2 ∈ V (H) be of degree 2 in H such that
x1yi, x2yi ∈ E(G), i = 1, 2. Set H1 = H|(y2).
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If L(H1) is Hamilton-connected, then, by Lemma L(ii), H has an (e, f)-IDT for all pairs
of edges {e, f} except {x1y2, x2y2}, hence also an {x1y1, x2y1}-IDT, but then we easily also
have an {x1y2, x2y2}-IDT in H, a contradiction. Hence L(H1) is not Hamilton-connected.

The multigraph H1 contains the triangle x1x2y1 with dH1(y1) = 2, thus, by Lemma J,
L(H1) is not SM-closed, hence also not UM-closed. Let Ḡ be a UM-closure of L(H1), and
set H̄ = L−1(Ḡ). By Lemma J, H̄ cannot contain the triangle x1x2y1, implying that, in H̄,
some of its edges is contracted, and the line graph of the resulting multigraph is still not
Hamilton-connected. However, it is easy to see that each of the resulting multigraphs can be
(up to possibly different number of pendant edges at vertices) alternatively obtained from H
by a series of contraction of edges, contradicting the fact that GU = L(H) is UM-closed. �

Now, let D be a diamond in co(H), and set V (D) = {v1, v2, v3, v4}, where v1v2 is the
middle edge of D. By Claim 1, the edge v1v2 is subdivided in H by a vertex, say, u, with
dH(u) = 2, and by Claim 2, H has an (e, f)-IDT if and only if {e, f} 6= {v1u, v2u}. Specifically,
H has an (f1, f2)-IDT, where fi = viv3 if viv3 is not subdivided in H, or fi = viui if viv3 is
subdivided in H by a vertex ui, i = 1, 2. But then, by Lemma 4, H has also a (v1u, v2u)-IDT,
a contradiction. Hence co(H) contains no diamond.

Let next F be a multitriangle in co(H) and set V (F ) = {v1, v2, v3}, where 〈{v1, v2}〉F is a
double edge. Then at least one of the edges v1v3, v2v3 is subdivided in H. Let thus u1 ∈ V (H)
be subdividing v1v3, and possibly also u2 ∈ V (H) be subdividing v2v3. Set H1 = (H|(u1))|(u2) if
v2v3 is subdivided, or H1 = H|(u1) otherwise. By Lemma L(ii), Claim 3 and Theorem I(vii)(β),
L(H1) is not Hamilton-connected. But in L(H1) the vertex L(h), where h is either of the
two edges joining v1, v2, is 2-eligible, hence the graph L(H2), where H2 = H1|h, is also not
Hamilton-connected by Theorem F(i). However, the same multigraph, with only possibly
different number of pendant edges at vertices, can be obtained from H by a series of edge
contractions, contradicting Theorem I(v). Hence co(H) contains no multitriangle.

Finally, co(H) contains no triple edge immediately by Claim 3 and by Theorem I(vi).

(vi)(α), (β). If co(H) contains three triangles, then these triangles are edge-disjoint, for
otherwise we have a diamond in co(H). Then one of the corresponding subgraphs of H contains
neither of the edges e, f for which there is no (e, f)-IDT and can be contracted by Lemma 3,
contradicting the fact that GU = L(H) is UM-closed. Hence co(H) contains at most two
triangles.

Now, if T is a triangle in co(H) and T ′ the corresponding subgraph of H, then co(H)
cannot contain a double edge, for otherwise similarly, by Claim 3 and by Theorem I(vii)(β),
T ′ can be contracted by Lemma 3, a contradiction. Hence co(H) contains either at most two
triangles and no multiedge, or a double edge and no triangle.

The proof of (vii)(α) follows analogously by Lemma 3, and (vii)(β) follows by Claim 3
and by Theorem I(vii)(β).

The following result was first established in [9], and later on reconsidered in [22] in a more
general setting implying its validity without the eligibility assumption.

Theorem M [22]. Let G be a {K1,3, Ni,j,k}-free graph, i, j, k ≥ 1, and let x ∈ V (G). Then
the graph G

∗
x is {K1,3, Ni,j,k}-free.
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Specifically, Theorem M implies that a UM-closure of a {K1,3, Ni,j,k}-free graph is also
{K1,3, Ni,j,k}-free.

4 Variants of the “Nine-point-theorem”

The well-known “Nine-point-theorem” by Holton et al. [16] states that a 3-connected cubic
graph contains a cycle passing through any 9 prescribed vertices. The nine-point-theorem
was strengthened by Bau and Holton [3] to cycles through 12 vertices (with the help of a
computer). For our purposes, we will use another stronger version by Bau and Holton [2] that
deals with a set of vertices and an edge (proved without computer). For this, we will need
some more terminology from [1].

Let G be a multigraph, R ⊂ G a spanning subgraph of G, and let R be the set of
components of R. Then G/R is the multigraph with V (G/R) = R, in which, for each edge in
E(G) between two components of R, there is an edge in E(G/R) joining the corresponding
vertices of G/R (note that this means that G/R can have multiple edges even if G is a graph).
The (multi-)graph G/R is said to be a contraction of G. (Roughly, in G/R, components of R
are contracted to single vertices while keeping the adjacencies between them). Clearly, if R is
connected, then G/R = K1, and if R is edgeless, then G/R = G; these two contractions are
called trivial.

The contraction operation maps V (G) onto V (G/R) (where vertices of a component of R
are mapped on a vertex of G/R). If G/R ' F , then this defines a function α : G→ F which
is called a contraction of G on F .

Note that there is a difference between G/R and the contraction G|F , as defined in Sec-
tion 2: in G/R, the components of R are contracted to single vertices while removing the
created loops, while in G|F , the subgraph F is contracted to a single vertex and the created
loops are replaced by pendant edges.

Throughout the rest of this section, Π denotes the Petersen graph.

Theorem N [2]. Let G be a 3-connected cubic graph, A ⊂ V (G), |A| = 8, and let
e ∈ E(G). Then there is a cycle in G which contains A ∪ {e}, unless there is a contraction
α : G→ Π such that α(e) = xy ∈ E(Π) and α(A) = V (Π) \ {x, y}.

Corollary O [2]. Let G be a 3-connected cubic graph, A ⊂ V (G), |A| = 7, and let
e ∈ E(G). Then there is a cycle in G which contains A ∪ {e}.

We will also need the following two easy consequences of Corollary O.

Lemma 5. Let G be a 3-connected cubic graph and let A ⊂ V (G), |A| = 7. Then for any
e, f ∈ E(G), G has an (e, f)-trail T such that A ⊂ Int(T ).

Proof. Let G′ be obtained from G by subdividing the edges e, f with new vertices v1, v2
and adding the edge h = v1v2. By Corollary O, G′ has a cycle C containing A ∪ {h}, and
removing h and suppressing v1, v2, we obtain the requested (e, f)-trail T with A ⊂ Int(T ).
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Lemma 6. Let H be a graph such that co(H) = W . If there is a vertex x ∈ V (co(H))
such that NH(x) = Nco(H)(x), then L(H) is Hamilton-connected.

Proof. Let x ∈ V (co(H)) be such that NH(x) = Nco(H)(x), i.e., x is incident in H to
neither a pendant edge nor a subdivided edge, and set A = V (co(H)) \ {x}. By Lemma 5,
for any e, f ∈ E(H), H has an (e, f)-trail T with A ⊂ Int(T ). However, T is an (e, f)-IDT
in H since all edges incident to v have a vertex on T . Thus, L(H) is Hamilton-connected by
Theorem C(ii).

To apply Theorem N to our proof, we need to transform the line graph preimage to a cubic
graph. This was first done in [14] by an inflation operation which replaces a vertex of high
degree by a cycle. To avoid possible difficulties with edge-connectivity of the created graph,
we modify the inflation operation as follows.

For k ≥ 4, the k-prism Πk is the Cartesian product Ck�K2, and Π′k is the graph obtained
from Πk by subdividing each edge of one of the two k-cycles in Πk by a vertex of degree 2
(for k = 4, see Fig. 7(a)). If z ∈ V (H) is of degree t ≥ 4 and v1, . . . , vt are the neighbors
of z (where we allow repetition in case of multiple edges), then the inflation of H at z is the
graph HI

z obtained from H − z and Π′t with V2(Π
′
t) = {w1, . . . , wt} by adding the edges viwi,

i = 1, . . . , t (for t = 4, see Fig. 7(b)).
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Figure 7: The 4-prism and the inflation operation

Lemma 7. Let H be a 3-edge-connected multigraph, let z ∈ V (H) be of degree dH(z) ≥ 4,
and let F ' Π′k be the subgraph of HI

z replacing the vertex z in HI
z . Then, for every essential

3-edge-cut R of HI
z , R ∩ E(F ) = ∅.

Proof. Let R ⊂ E(HI
z ) be an essential 3-edge-cut of HI

z and suppose that R contains at
least one edge of F . Then RF = R ∩ E(F ) is an edge-cut of F .

Suppose that RF is not essential, i.e., RF separates some vertex u ∈ V (F ) from the rest
of F . If dF (u) = 3, then R is not essential in HI

z , a contradiction. Hence dF (u) = 2, and u
has a neighbor u′ ∈ V (HI

z ) \ V (F ). Set f = uu′. Then f /∈ R since R is essential, and since
dF (u) = 2, we have |R∩E(F )| = 2, implying that R contains one edge in V (HI

z ) \ V (F ), say,
f ′. Then {f, f ′} is an edge-cut of H, contradicting the assumption that H is 3-edge-connected.
Hence RF is essential. Since F is essentially 3-edge-connected, we have R = RF .

It is straightforward to observe that every essential 3-edge-cut of F separates one edge of
F incident to a vertex of degree 2 in F from the rest of F . Thus, let e = uv, dF (u) = 2, be the
edge of F separated by R from the rest of F , and let w be the neighbor of u in V (HI

z ) \V (F ).
Since H is 3-edge-connected, there is a path in H−F joining w with some vertex in V2(F )\{u}.
But this implies that R is not an edge-cut of H, a contradiction.
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If H is a multigraph with δ(H) ≥ 3, then, by successively performing the inflation operation
at every vertex of degree greater than 3, we obtain a cubic graph HI called a cubic inflation
of H. It is straightforward to observe that if H is 3-edge-connected, then HI is a 3-connected
cubic graph. We will use I to denote the inflation operation that assigns HI to H, and, for
a vertex z ∈ V (H) with dH(z) = t, we use I(z) to denote the copy of Π′t replacing z in HI if
t > 3, or the vertex z itself (which we consider to be also in V (HI)) if t = 3, respectively.

Theorem 8. Let H be a 3-edge-connected multigraph, A ⊂ V (H), |A| = 8, and let
e ∈ E(H). Then either

(i) H contains a closed trail T such that A ⊂ V (T ) and e ∈ E(T ), or
(ii) there is a contraction α : H → Π such that α(e) = xy ∈ E(Π) and α(A) = V (Π)\{x, y}.

Proof. If (ii) is true, then (i) cannot be true since otherwise α(T ) is a hamiltonian cycle in
Π, a contradiction. So, suppose that (ii) is not true, i.e., there is no contraction α : H → Π
with the requested properties.

Let HI be a cubic inflation of H. Set A = {a1, . . . , a8} and e = b1b2, choose arbitrary
vertices aIi ∈ I(ai), i = 1, . . . , 8, set AI = {aI1, . . . , aI8}, and choose two vertices bI1 ∈ I(b1)
and bI2 ∈ I(b2) such that eI = bI1b

I
2 ∈ E(HI). We want to show that there is no contraction

αI : HI → Π such that αI(e
I) = xIyI ∈ E(Π) and αI(A

I) = V (Π) \ {xI , yI}.
Suppose, to the contrary, that there is such an αI . Let z ∈ V (H) and w ∈ V (αI(H

I)). We
observe that if α−1I (w) is nontrivial, then cannot be V (I(z)) \ V (α−1I (w)) 6= ∅ and V (I(z)) ∩
V (α−1I (w)) 6= ∅ (specifically, α−1I (w) cannot be a proper subgraph of I(z)), since α−1I (w) is
separated from the rest of HI by an essential 3-edge-cut and we would have a contradiction
with Lemma 7. Thus, for every z ∈ V (H), we have two possibilities: either

(a) V (I(z)) ⊂ V (α−1I (w)) (including possible equality if both are trivial) for some w ∈
V (αI(H

I)), or
(b) every vertex of I(z) is a trivial α−1I (w).

Recall that, by the definition of αI , every vertex of HI is in some α−1I (w).
However, the case (b) provides an embedding of the prism Π′t into the Petersen graph Π,

which is not possible (e.g. since t ≥ 4, implying |V (Π′t)| = 3t > 10 = |V (Π)|). Hence we
have the case (a), i.e., every I(z) is contained in α−1I (w) for some vertex w of αI(H

I) ' Π.
But then the mapping α : H → Π, defined by α(H) = αI(H

I), is a contraction of H on Π
satisfying (ii), a contradiction.

Thus, there is no contraction αI : HI → Π such that αI(e
I) = xIyI ∈ E(Π) and αI(A

I) =
V (Π) \ {xI , yI}. By Theorem N, there is a cycle C in HI containing AI ∪ {eI}. Contracting
back all the inflated prisms I(z), we have a closed trail T in H with the required properties.

Theorem 9. Let X ∈ {N1,1,5, N1,3,3, N2,2,3}, and let G be a 3-connected UM-closed
{K1,3, X}-free graph such that co(H), where H = L−1(G), is 2-connected. Let e1, e2 ∈ E(H)
be such that there is no (e1, e2)-IDT in H. Then for every set A ⊂ V (co(H)), |A| = 8, there
is an (e1, e2)-trail T in H such that A ⊂ Int(T ).

Proof. Let H ′ be the graph obtained from H by the following construction:
(i) if e1, e2 share a vertex of degree 2, say, ei = viv, i = 1, 2 with v ∈ V2(H), we suppress

v and set h = v1v2,
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(ii) otherwise, we subdivide ei (or some edge in co(H) sharing a vertex with ei if ei is
pendant) with a vertex vi, i = 1, 2, and add a new edge h = v1v2.

If there is no contraction α′ : H ′ → Π such that α′(h) = x1x2 ∈ E(Π) and α′(A) = V (Π) \
{x1, x2}, then, by Theorem 8, there is a closed trail T ′ in H ′ such that A ⊂ V (T ′) and
h ∈ E(T ′). Returning to H, i.e., subdividing h in case (i), or removing h and suppressing
v1, v2 (and extending the trail to ei if ei is pendant) in case (ii), we obtain an (e1, e2)-trail T
in H with A ⊂ Int(T ).

Thus, we suppose that there is a contraction α′ : H ′ → Π such that α′(h) = x1x2 ∈ E(Π)
and α′(A) = V (Π) \ {x1, x2}. In case (i), H contains a subgraph that can be contracted to a
graph isomorphic to the Petersen graph with at least one subdivided edge; however, this graph
contains each of the graphs S2,2,6, S2,4,4 and S3,3,4: in the labeling of vertices as in Fig. 2(a),
if, say, the edge p11p

1
2 is subdivided with a vertex q, we have S2,2,6(p

1
1; qp

1
2; p

1
5p

1
4; p

2
1p

2
4p

2
2p

2
5p

2
3p

1
3),

S2,4,4(p
1
1; qp

1
2; p

1
5p

1
4p

1
3p

2
3; p

2
1p

2
4p

2
2p

2
5) and S3,3,4(p

1
1; qp

1
2p

1
3; p

1
5p

1
4p

2
4; p

2
1p

2
3p

2
5p

2
2) as subgraphs ofH, a con-

tradiction. Thus, for the rest of the proof, we suppose that H ′ is obtained by construction (ii).

Set H0 = co(H), and recall that H0 is 3-edge-connected (since H is essentially 3-edge-
connected). Let R′ be the spanning subgraph of H ′ that defines α′, and suppose that, say,
the component R1 = (α′)−1(x1) of R′ is nontrivial. Since x1 ∈ V (Π), the subgraph R1 is
separated from the rest of H ′ by a 3-edge-cut containing the edge h, implying that in H0, the
subgraph R1− v1 is separated from the rest of H0 by a 2-edge-cut, contradicting the fact that
H0 is 3-edge-connected. Hence (α′)−1(x1), and symmetrically also (α′)−1(x2), are trivial, i.e.,
V ((α′)−1(xi)) = {vi}, i = 1, 2. Removing from H ′ the edge h and suppressing v1 and v2, we
obtain from R′ the corresponding spanning subgraph R of H, and from R, in a standard way
a spanning subgraph R0 of H0. Note that clearly every component of R′ except {v1} and {v2}
corresponds to a nonempty component of R0 since α′ maps H ′ on a cubic graph and hence
every component of R′ must contain a vertex of degree more than 2. Then the components
of R0 define a contraction α : H0 → W , where W is the Wagner graph (see Fig. 2(b); recall
that W can be obtained from Π by removing an edge and suppressing the created vertices of
degree 2).

Case 1: α−1(w) is trivial for any w ∈ V (W ).

Then we have H0 ' W . By Lemma 6, every vertex of H0 is incident in H to a pendant
edge or to a subdivided edge.

We claim that each of the edges w1w5, w2w6, w3w7, w4w8 (in the labeling of vertices as in
Fig. 2(b)) is subdivided in H. Let, to the contrary, say, w1w5 ∈ E(H). If both w1 and w5

are incident in H to a pendant edge, say, w1w
′
1, w2w

′
2 ∈ E(H) with w′1, w

′
2 ∈ V1(H), we con-

sider the subgraphs T1 ' S1,2,6(w2;w6;w1w
′
1;w3w7w8w4w5w

′
5), T2 ' S2,3,4(w2;w1w

′
1;w6w7w8;

w3w4w5w
′
5) and T3 ' S2,3,4(w3;w2w6;w4w5w

′
5;w7w8w1w

′
1). We have dT1(w6) = dT2(w8) =

dT3(w6) = 1 and, by Lemma 6, each of these vertices must be incident in H to a pendant
edge or to a subdivided edge. However, it is straightforward to see that in each of the
possible cases, each of the subpaths w2w6 of T1, w2w6w7w8 of T2 and w3w2w6 of T3 can
be extended in H by one edge, which yields in H from T1 a subgraph T ′1 ' S2,2,6, from
T2 a subgraph T ′2 ' S2,4,4, and from T3 a subgraph T ′3 ' S3,3,4, a contradiction. Thus, by
symmetry, we can suppose that w1 is not incident in H to a pendant edge.

By Lemma 6, by the assumption that w1w5 ∈ E(H) and by symmetry, we can suppose that
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w1w2 is subdivided in H with a vertex, say, w′ ∈ V2(H). Now we consider the subgraphs
T1 ' S1,2,5(w1;w8;w

′w2;w5w4w3w7w6), T2 ' S2,3,3(w1;w
′w2;w5w4w3;w8w7w6) and T3 '

S2,3,3(w1;w5w4;w
′w2w3;w8w7w6). Then similarly dT1(w6) = dT1(w8) = dT2(w3) = dT2(w6) =

dT3(w4) = dT3(w6) = 1. Moreover, we observe that each of the sets {w6, w8} ⊂ V (T1),
{w3, w6} ⊂ V (T2) and {w4, w6} ⊂ V (T3) is independent in H. Since each of these vertices
must be incident in H to a pendant edge or to a subdivided edge by Lemma 6, we again
easily observe that in each of the possible cases, each of the subpaths w1w8, w1w5w4w3w7w6

of T1, w1w5w4w3, w1w8w7w6 of T2, and w1w5w4, w1w8w7w6 of T3 can be extended in H
by one edge, which again yields in H from T1 a subgraph T ′1 ' S2,2,6, from T2 a subgraph
T ′2 ' S2,4,4, and from T3 a subgraph T ′3 ' S3,3,4, a contradiction. Consequently, we conclude
that w1w5 /∈ E(H), and, by symmetry, wiwi+4 /∈ E(H), i = 1, 2, 3, 4.

Let w′i ∈ V2(H) be the vertex subdividing the edge wiwi+4 in H, i = 1, 2, 3, 4. Then
we have S2,2,6(w1;w

′
1w5;w8w

′
4;w2w

′
2w6w7w

′
3w3), S2,4,4(w1;w

′
1w5;w8w

′
4w4w3;w2w

′
2w6w7) and

S3,3,4(w1;w2w3w4;w8w7w
′
3;w

′
1w5w6w

′
2) as subgraphs of H, a contradiction.

Case 2: α−1(w) is nontrivial for some w ∈ V (W ).

Let R1, . . . , R8 be the components of the graph R that defines α, and choose the notation
such that Ri = α−1(wi), i = 1, . . . , 8, and such that R1 = α−1(w1) is nontrivial. Recall that
∪8i=1(V (Ri)) = V (R) = V (H0).

We observe that e1, e2 ∈ E(H0) \ E(R) since, by the construction of H ′, α−1(xi) = vi are
trivial and after deleting the edge h and suppressing the vertices v1, v2, each of the edges
e1, e2 has its vertices in different components of R. By Theorem 2(vi),(vii), this implies
that each Ri is a triangle-free (simple) graph. Moreover, each Ri is 2-edge-connected since
Ri = α−1(wi) is separated from the rest of H0 by a 3-edge-cut and a cut-edge in Ri would
create a 2-edge-cut in H0.

We introduce the following notation. For any edge wiwj ∈ E(W ), we set fij = α−1(wiwj)
(i.e., fij joins Ri and Rj), and we denote bij its vertex in Ri and bji its vertex in Rj. Thus,
we e.g. have AH0(R1) = {b12, b15, b18}, where 2 ≤ |{b12, b15, b18}| ≤ 3, and {f12, f15, f18} is the
3-edge-cut that separates R1 from the rest of H0.

Claim 1. Let Ri be a component of R, 1 ≤ i ≤ 8, and let AH0(Ri) = {bij1 , b
i
j2
, bij3}.

Then there is a vertex di ∈ V (Ri) and three internally vertex-disjoint (possibly trivial)
(di, bijk)-paths P i

jk
, k = 1, 2, 3.

Proof. Let P be an arbitrary (possibly trivial) (bij1 , b
i
j2

)-path in Ri, and let P i
j3

be a shortest
(di, bij3)-path with di ∈ V (P ). Then the vertex di and the paths P i

j1
= diPbij1 P

i
j2

= diPbij2
and P i

j3
have the required properties. �

Claim 2. The component R1 contains a cycle C of length at least 4, vertices c2, c5, c8 ∈
V (C) and paths Q1

2, Q
1
5, Q

1
8 (possibly trivial) such that

(i) 2 ≤ |{c2, c5, c8}| ≤ 3,
(ii) Q1

2 is a (c2, b
1
2)-path, Q

1
5 is a (c5, b

1
5)-path and Q1

8 is a (c8, b
1
8)-path,

(iii) the paths Q1
2, Q

1
5, Q

1
8 are internally vertex-disjoint.
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Proof.

Let d1 and P 1
2 , P 1

5 , P 1
8 be the vertex and paths in R1 given by Claim 1. Since R1 is nontrivial,

at least one of P 1
2 , P

1
5 , P

1
8 is nontrivial. Suppose that, say, P 1

5 is nontrivial. We consider a
(b12, b

1
8)-path P and choose two edge-disjoint paths P ′5, P

′′
5 such that

• P ′5 is a (b15, c2)-path and P ′′5 is a (b15, c8)-path for some c2, c8 ∈ V (P ),
• if c2 6= c8, then c2 is on P between c8 and b12, and
• c2, c8, P ′5 and P ′′5 are chosen such that |E(P ′5)|+ |E(P ′′5 )| is smallest possible.

If c2 6= c8, we choose c5 as the last common vertex of P ′5 and P ′′5 , and we set C =
c2Pc8P

′′
5 c5P

′
5c2, Q

1
2 = c2Pb

1
2, Q

1
8 = c8Pb

1
8, and, say, Q1

5 = c5P
′
5b

1
5. If c2 = c8, we choose

c5 as the last common vertex of P ′5 and P ′′5 distinct from the vertex c2 = c8 (possibly
c5 = b15), and set C = c2P

′
5c5P

′′
5 c2, Q

1
2 = c2Pb

1
2, Q

1
8 = c8Pb

1
8, and, say, Q1

5 = c5P
′
5b

1
5.

If P2 or P8 is nontrivial, we get C, Q1
2, Q

1
5 and Q1

8 in the same way with the only difference
that possibly c5 = c8 or c2 = c5. �

By Claim 2, we have, up to a symmetry, the following possibilities (note that W has two
types of symmetries – rotations and reflections, but is not edge-transitive): |{c2, c5, c8}| = 3;
|{c2, c5, c8}| = 2 and c2 = c8; |{c2, c5, c8}| = 2 and c2 = c5. For each of the requested graphs
S2,2,6, S2,4,4 and S3,3,4, we describe a subgraph of H0 in which it is contained, in all three
possible cases. Here, for integers i0, j0, k0, 1 ≤ i0 ≤ j0 ≤ k0, we use S≥i0,≥j0,≥k0 to denote a
graph containing an Si0,j0,k0 as a subgraph. If a component Ri contains the vertex of degree 3
of the S≥i0,≥j0,≥k0 , then it is located in the vertex di and uses the paths P i

jk
, k = 1, 2, 3, given

by Claim 1, and for any other component Ri, 2 ≤ i ≤ 8, and bij, b
i
k ∈ AH0(Ri), we use Qi

j,k

to denote an arbitrarily chosen (bij, b
i
k)-path in Ri (of course, if Ri is trivial, all these paths

collapse to a single vertex). Finally, we relabel the vertices of the cycle C given by Claim 2
such that C = u1u2 . . . u|V (C)| with u1 = c5 (and also u1 = c5 = c2 in the third case). Then,
for each of the graphs S2,2,6, S2,4,4 and S3,3,4, the requested subgraphs can be (for all three
cases) described as follows.

Subgraph Subgraph of H0 in which is contained
S2,2,6 S≥2,≥2,≥6(d

3;P 3
2Q

2
3,6b

6
2;P

3
7Q

7
3,8b

8
7;P

3
4Q

4
3,5Q

5
4,1Q

1
5u1u2u3u4)

S2,4,4 S≥2,≥4,≥4(d
5;P 5

6Q
6
5,2b

2
6;P

5
4Q

4
5,3Q

3
4,7Q

7
3,8b

8
7;P

5
1Q

1
5u1u2u3u4)

S3,3,4 S≥3,≥3,≥4(d
5;P 5

6Q
6
5,7Q

7
6,8b

8
7;P

5
4Q

4
5,3Q

3
4,2b

2
3;P

5
1Q

1
5u1u2u3u4)

In each of the possible cases, we have obtained a contradiction.

5 Proof of Theorem 1

The following lemma, combining techniques developed in the previous sections, will be crucial
in our proof.

Lemma 10. Let G be a 3-connected non-Hamilton-connected UM-closed claw-free graph.
Then G has an induced subgraph G̃ (possibly G̃ = G) such that G̃ is 3-connected, non-
Hamilton-connected and UM-closed, and, moreover, H̃0 = co(L−1(G̃)) is 2-connected, and
either c(H̃0) ≥ 9 and |V (H̃0)| ≥ 10, or H̃0 ' W .
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Proof. Let H = L−1(G), and set H0 = co(H). By Theorem K(ii), H0 is 3-edge-connected.
Suppose first that H0 is not 2-connected, let B0

1 , . . . , B
0
b be blocks of H0, let B1, . . . , Bb be

the corresponding subgraphs of H (i.e., B0
i = co(Bi), i = 1, . . . , b), and let B′i be obtained from

Bi by attaching a pendant edge to every its vertex which is a cutvertex of H0, i = 1, . . . , b.
Then obviously co(B′i) = co(Bi) = B0

i , and B0
i is 2-connected, i = 1, . . . , b. If every B′i

has an (f1, f2)-IDT for any f1, f2 ∈ E(B′i), then an easy induction shows that G = L(H) is
Hamilton-connected, a contradiction. Hence there is a B′i0 having no (f1, f2)-IDT for some
f1, f2 ∈ E(B′i0).

Set H̃ = B′i0 and G̃ = L(H̃). Then G̃ is an induced subgraph of G (since H̃ is a subgraph of

H), is 3-connected (since H̃ is essentially 3-edge-connected), non-Hamilton-connected (since
H̃ = B′i0 has no (f1, f2)-IDT) and UM-closed (since a local completion in G̃ is a local comple-

tion in G), and, by the construction, H̃0 = co(H̃) = B0
i0

is 2-connected. By Theorem K(v), H̃0

is not strongly spanning trailable, implying that, by Theorem D, c(H̃0) ≥ 9 and |V (H̃0)| ≥ 10,
unless H̃0 ' W or H̃0 ∈W.

Suppose that H̃0 ∈W. By Theorem 2(vi), H̃0 contains only one double edge. Let {e1, e2}
be the double edge in H̃0. By the definition of W and by symmetry, there are two pos-
sibilities: V (e1) = V (e2) = {w1z} with zw2 ∈ E(H̃0), or V (e1) = V (e2) = {w1z} with
zw5 ∈ E(H̃0), however, in the first case e1zw2w3w4w5w6w7w8w1e2, and in the second case
e1w1w2w3w4w8w7w6w5ze2 is an (e1, e2)-IDT in H̃, contradicting Theorem 2(vii)(β). Hence
H̃0 /∈W. Thus, we conclude that c(H̃0) ≥ 9 and |V (H̃0)| ≥ 10, unless H̃0 ' W .

Proof of Theorem 1. Let G be a 3-connected {K1,3, N1,3,3}-free graph and suppose, to the
contrary, that G is not Hamilton-connected. By Theorem 2 and Theorem M, we can suppose
that G is UM-closed. Let thus H = L−1(G), and set H0 = co(H). By Theorem K(ii), H0 is
3-edge-connected. By Lemma 10, we can suppose that H0 is 2-connected and c(H0) ≥ 9 and
|V (H0)| ≥ 10, unless H0 ' W . Then, by Theorems 9 and C(ii), we have the following claim.

Claim 1. Let A ⊂ V (H0) be such that |A| = 8. Then A does not dominate all edges of H.

Proof. Since G is not Hamilton-connected, by Theorem C(ii), there are edges e1, e2 ∈ E(H)
such that there is no (e1, e2)-IDT in H. Then, by Theorem 9, there is an (e1, e2)-trail T in H
such that A ⊂ Int(T ). But if A dominates all the edges in H, then T would be an (e1, e2)-IDT
in H. �

Now, if H0 ' W , then |V (H0)| = 8 and V (H0) dominates all edges of H, contradicting
Claim 1. Thus, we have c(H0) ≥ 9 and |V (H0)| ≥ 10. Moreover, H does not contain as a
subgraph the graph S2,4,4. We consider the possible cases separately.

Throughout the proof, in each of the cases, C = x1x2 . . . xc(H0) always denotes a longest
cycle in H0, R = V (H)\V (C), N = {y ∈ V (H0)| NR(y) = ∅}, R0 = R∩V (H0), and if R0 6= ∅,
we set R0 = {y1, . . . , y|R0|} and we choose the notation such that y1x1 ∈ E(H0).

Claim 2. If E(〈R〉H) = ∅, then H0 has no double edge.

Proof. Suppose that H0 has a double edge {e, f}. Then, since V (C) dominates all edges of
H, it follows that H has an (e, f)-IDT. But then, by Theorem 2(vii)(β), G has an (a, b)-path
for every pair a, b ∈ V (G), a contradiction. �
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In the proof, we will often list vertices of a subgraph Si,j,k. There are two general comments
to all these situations.
• When some edge e = xixj of the Si,j,k is in E(H0), it can always happen that e is

subdivided in H, i.e., formally, e /∈ E(H). However, it is immediate to see that if this
happens, then the corresponding subgraph of H, which instead of e = xixj contains a
path xizxj with z ∈ V2(H), also contains Si,j,k as a subgraph.
• When a vertex xi ∈ V (C) has a (potential) neighbor z ∈ R and the vertex z occurs as

the last vertex of a branch of the Si,j,k, then such a vertex z can be an endvertex of a
pendant edge attached to xi, or can be z ∈ V2(H) and z subdivides some of the edges
incident to xi. It should be noted that in the second case, the vertices xi and z can
occur in reverse order in the list (i.e., xi being the last vertex of the branch).

Throughout the proof, we always implicitly understand that there are also these possibilities.

Case 1: c(H0) = 9 and |V (H0)| ≥ 10.

If E(〈R〉H) 6= ∅, we can choose an edge e ∈ E(〈R〉H) and the notation such that e = y1z for
some z ∈ R, and then H contains S2,4,4(x1; y1z;x2x3x4x5;x9x8x7x6), a contradiction. Thus,
R is an independent set in H, i.e., R ⊂ N . Specifically, R0 ⊂ N . By Claim 2, H0 has no
double edge. Since H0 is 3-edge-conncted, y1 has three distinct neighbors on C. Clearly, no
two neighbors of y1 can be consecutive on C since C is longest. Since |V (C)| = 9, we can
choose the notation such that either y1x3 ∈ E(H0), or y1x4 ∈ E(H0) (see Fig. 8).

• • • • • • • • •
x1 x2 x3 x4 x5 x6 x7 x8 x9


.........................
...................

................
..............

.............
............
...........
...........
...

•
y1 • · · · •................................................................................................

.............
.............
.............
.............

.............
.............

.............
.............

.............

.... . . . . . . . . . . . .
..
..

...
..............

R0

Figure 8: The situation in Case 1

Subcase 1.1: y1x3 ∈ E(H0).

If x2z ∈ E(H) for some z ∈ R, then H contains S2,4,4(x1;x2z; y1x3x4x5;x9x8x7x6), a
contradiction. Hence x2 ∈ N . We set A = {x1, x3, x4, x5, x6, x7, x8, x9}. Then |A| = 8
and A dominates all edges of H, contradicting Claim 1.

Subcase 1.2: y1x4 ∈ E(H0).

Similarly, if x9z ∈ E(H) for some z ∈ R, we have S2,4,4(x4;x3x2;x5x6x7x8; y1x1x9z) in H,
a contradiction; hence R0 ∪ {x9} ⊂ N . We set A = {x1, x2, x3, x4, x5, x6, x7, x8}. Then
again |A| = 8 and A dominates all edges of H, contradicting Claim 1.

Case 2: c(H0) = |V (H0)| = 10.

Since H0 is 3-edge-connected, we have dH0(x1) ≥ 3, and since c(H0) = |V (H0)|, x1 has,
besides x2 and x10, another neighbor on C. By Theorem 2(vi), we can suppose that x1 is
not in a triangle. Thus, by symmetry, x1 is adjacent to x4, x5 or x6.

Subcase 2.1: x1x4 ∈ E(H0).
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We show that {x6, x7, x8, x9} ⊂ N . Let thus z ∈ R. If x6z ∈ E(H), then we have
S2,4,4(x1;x2x3;x4x5x6z;x10x9x8x7) in H, and if x7z ∈ E(H), we have in H the sub-
graph S2,4,4(x4;x3x2;x5x6x7z;x1x10x9x8); the cases x8z ∈ E(H) and x9z ∈ E(H) are
symmetric. Thus, {x6, x7, x8, x9} ⊂ N . Now, if x6x8 /∈ E(H0), then the set A =
{x1, x2, x3, x4, x5, x7, x9, x10} dominates all edges of H and |A| = 8, contradicting Claim 1.
Hence x6x8 ∈ E(H0), and, symmetrically, x7x9 ∈ E(H0). But then 〈{x6, x7, x8, x9}〉H is
a diamond or a K4 in H0, contradicting Theorem 2.

Subcase 2.2: x1x6 ∈ E(H0).

Then x7 ∈ N for otherwise, for some z ∈ R with zx7 ∈ E(H), H contains the subgraph
S2,4,4(x6;x7z;x5x4x3x2;x1x10x9x8). Symmetrically, x10 ∈ N . Then the set A = V (C) \
{x7, x10} dominates all edges in H, unless x7x10 ∈ E(H0). Since |A| = 8, we have
x7x10 ∈ E(H0) by Claim 1, but then, for the vertex x7, we are back in Subcase 2.1.

Subcase 2.3: x1x5 ∈ E(H0).

Then x4 ∈ N (otherwise we have S2,4,4(x1;x10x9;x2x3x4z;x5x6x7x8) in H for some z ∈ R
with zx4 ∈ E(H)), and, symmetrically, x2 ∈ N . Considering the set A = V (C) \ {x2, x4}
with |A| = 8, we have x2x4 ∈ E(H0) by Claim 1. Then x3 ∈ N , for otherwise we have
S2,4,4(x2;x3z;x4x5x6x7;x1x10x9x8) in H for some z ∈ R, zx3 ∈ E(H). Since dH0(x3) ≥ 3
and x3 ∈ N , x3 has, besides x2 and x4, another neighbor on C. Then, by the previous
cases, since H0 does not contain a diamond and by symmetry, the only possibility is that
x3x7 ∈ E(H0). Then x6 ∈ N , for otherwise we have S2,4,4(x3;x2x1;x4x5x6z;x7x8x9x10)
in H for some z ∈ R, zx6 ∈ E(H). Thus, we have x3, x6 ∈ N , and considering the set
A = V (C) \ {x3, x6} with |A| = 8, we have x3x6 ∈ E(H0) by Claim 1. But then, for the
vertex x3, we are back in Subcase 2.1.

Case 3: c(H0) = 10 and |V (H0)| ≥ 11.

First observe that E(〈R〉H) = ∅: if, say, y1z ∈ E(H) for some z ∈ R, then we have
S2,4,4(x1; y1z;x2x3x4x5;x10x9x8x7) in H, a contradiction. Hence R is an independent set,
implying R ⊂ N . By Claim 2, H0 has no double edge, hence y1 has three distinct neigh-
bors on C. If y1x4 ∈ E(H0), we have S2,4,4(x1;x2x3; y1x4x5x6;x10x9x8x7) in H, and if
y1x6 ∈ E(H0), we have S2,4,4(x1;x2x3; y1x6x5x4;x10x9x8x7) in H. Hence each of the sub-
paths of C determined by any two neighbors of y1 on C has odd number of interior vertices.
This implies that, up to a symmetry, either {x1, x3, x7} ⊂ NC(y1), or {x1, x3, x5} ⊂ NC(y1).
But if {x1, x3, x7} ⊂ NC(y1), we have S2,4,4(y1;x1x2;x3x4x5x6;x7x8x9x10) in H, hence
{x1, x3, x5} ⊂ NC(y1).

Then x2 ∈ N (otherwise we have S2,4,4(x1;x2z; y1x5x4x3;x10x9x8x7) in H for some z ∈ R,
zx2 ∈ E(H0)), and, symmetrically, x4 ∈ N . Since also y1 ∈ N , considering the set A =
V (C) \ {x2, x4} with |A| = 8, by Claim 1, H0 contains some of the edges x2y1, x4y1, x2x4.
However, each of these edges can be used to extend C through y1, contradicting the fact
that C is a longest cycle.

Case 4: c(H0) = |V (H0)| ≥ 11.

Set t = c(H0) = |V (H0)|. Since dH0(x1) ≥ 3, x1 has in H0, besides x2 and xt, another
neighbor on C. Since H0 has at most two triangles and t ≥ 11, we can choose the notation
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such that x1 is not in a triangle, i.e., x1x3 /∈ E(H0). Then we have, up to a symmetry, the
following possibilities:

Case Possible values of t, i S2,4,4 in H
x1x4 ∈ E(H0) t ≥ 11 S2,4,4(x1;x2x3;x4x5x6x7;xtxt−1xt−2xt−3)
x1x5 ∈ E(H0) t ≥ 12 S2,4,4(x1;x2x3;x5x6x7x8;xtxt−1xt−2xt−3)
x1xi ∈ E(H0) t ≥ 11, 6 ≤ i ≤ b t

2
+ 1c S2,4,4(x1;xixi+1;x2x3x4x5;xtxt−1xt−2xt−3)

Thus, the only remaining case is x1x5 ∈ E(H0) for t = 11. By the same argument for
x3 we have, up to a symmetry, x3x5 ∈ E(H0) or x3x7 ∈ E(H0). If x3x5 ∈ E(H0), then
for x4 we have, by symmetry and since H0 does not contain a diamond, the only possibil-
ity x4x8 ∈ E(H0), and then we have S2,4,4(x8;x7x6;x4x5x3x2;x9x10x11x1) in H (note that
the argument does not use the edge x1x5), and if x3x7 ∈ E(H0), we immediately have
S2,4,4(x1;x5x4;x2x3x7x6;x11x10x9x8) in H.

Case 5: c(H0) ≥ 11 and |V (H0)| > c(H0).

Set c(H0) = t. Immediately E(〈R〉H) = ∅, since if e.g. y1z ∈ E(H) for some z ∈ R, we
have S2,4,4(x1; y1z;x2x3x4x5;xtxt−1xt−2xt−3) in H. Thus, R ⊂ N and C is dominating in H,
implying that y1 cannot be connected to C by a double edge by Claim 2. Since dH0(y1) ≥ 3,
y1 has in H0, besides x1, another neighbor on C. We consider the following possibilities:

Case Possible values of t, i S2,4,4 in H
y1x4 ∈ E(H0) t ≥ 11 S2,4,4(x1;x2x3; y1x4x5x6;xtxt−1xt−2xt−3)
y1x5 ∈ E(H0) t ≥ 11 S2,4,4(x1;x2x3; y1x5x6x7;xtxt−1xt−2xt−3)
y1xi ∈ E(H0) t ≥ 11, 6 ≤ i ≤ b t

2
+ 1c S2,4,4(x1; y1xi;x2x3x4x5;xtxt−1xt−2xt−3)

Thus, the only remaining case is y1x3 ∈ E(H0). Since dH0(y1) ≥ 3, y1 has in H0, besides x1
and x3, another neighbor xi on C, i 6= 1, 3, and then, for some two of the three vertices x1,
x3, xi, we are back in some of the previous cases.
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