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Abstract

The generalized bull is the graph Bi,j obtained by attaching endvertices of two disjoint
paths of lengths i, j to two vertices of a triangle. We prove that every 3-connected
{K1,3, X}-free graph, where X ∈ {B1,6, B2,5, B3,4}, is Hamilton-connected. The re-
sults are sharp and complete the characterization of forbidden induced bulls implying
Hamilton-connectedness of a 3-connected {claw,bull}-free graph.
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1 Definitions and notations

In this paper, by a graph we always mean a simple finite undirected graph; whenever we admit
multiple edges, we always speak about a multigraph. We generally follow the most common
graph-theoretical notation and terminology and for notations and concepts not defined here
we refer to [4]. Specifically, a multiple edge of multiplicity at least 2 (exactly 2, exactly 3) is
referred to as a multiedge (double edge, triple edge), respectively. We use dG(x) to denote the
degree of a vertex x in G, and for i ≥ 1 we set Vi(G) = {x ∈ V (G)| dG(x) = i}. If x ∈ V2(G)
with NG(x) = {y1, y2}, then the operation of replacing the path y1xy2 by the edge y1y2 is
called suppressing the vertex x. The inverse operation is called subdividing the edge y1y2 with
the vertex x. We write F ⊂ H if F is a sub(multi)graph of H, G1 ' G2 if the (multi)graphs
G1, G2 are isomorphic, and 〈M〉G to denote the induced sub(multi)graph on a set M ⊂ V (G).
We say that a vertex x ∈ V (G) is simplicial if 〈NG(x)〉G is a complete graph, and we use
VSI(G) to denote the set of all simplicial vertices of G. The circumference of G, denoted c(G),
is the length of a longest cycle in G. The line graph of a multigraph H is the graph G = L(H)
with V (G) = E(H), in which two vertices are adjacent if and only if the corresponding edges
of H have at least one vertex in common.

By a closed trail in G we mean an eulerian subgraph of G, and a connected subgraph with
exactly two vertices of odd degree is called a trail in G. Its vertices of odd degree are its
endvertices, and (any) its edge incident to an endvertex is a terminal edge (note that these
definitions are equivalent with those in [4]). For x, y ∈ V (G), a path (trail) with endvertices
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x, y is referred to as an (x, y)-path ((x, y)-trail), a trail with terminal edges e, f ∈ E(G) is called
an (e, f)-trail, and Int(T ) denotes the set of interior vertices of a trail T . A set of vertices
M ⊂ V (G) dominates an edge e, if e has at least one vertex in M , and a sub(multi)graph
F ⊂ G dominates e if V (F ) dominates e. A closed trail T is a dominating closed trail
(abbreviated DCT) if T dominates all edges of G, and an (e, f)-trail is an internally dominating
(e, f)-trail (abbreviated (e, f)-IDT) if Int(T ) dominates all edges of G. A graph is Hamilton-
connected if, for any u, v ∈ V (G), G has a hamiltonian (u, v)-path, i.e., an (u, v)-path P with
V (P ) = V (G).

Finally, if F is a family of graphs, we say that G is F-free if G does not contain an induced
subgraph isomorphic to a member of F , and the graphs in F are referred to in this context
as forbidden (induced) subgraphs. If F = {F}, we simply say that G is F -free. Here, the
claw is the graph K1,3, Pi denotes the path on i vertices, and Γi denotes the graph obtained
by joining two triangles with a path of length i (see Fig. 2(a)). Several further graphs that
will be used as forbidden subgraphs are shown in Fig. 1 (specifically, the vertex of degree 2
in the triangle of the bull Bi,j will be called its mouth and denoted µ(Bi,j)). Whenever we
will list vertices of an Si,j,k in a graph, we will always write the list such that i ≤ j ≤ k, and
we will use the notation Si,j,k(v; a1a2 . . . ai; b1b2 . . . bj; c1c2 . . . ck) (in the labeling of vertices as
in Fig. 1(d)). Similarly, when listing vertices of an induced claw K1,3, we will always list its
center as the first vertex of the list, and when listing vertices of an induced subgraph F ' Bi,j,
we will always list first µ(F ), and then vertices of the two paths, starting (if possible) with
the shorter one.
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Figure 1: The graphs Zi, Bi,j, Ni,j,k and Si,j,k

We also recall two well-known graphs that will occur as exceptions in some of the results,
namely, the Petersen graph Π and the Wagner graph W (see Fig. 2(b), (c)). It is a well-known
fact that the Wagner graph can be obtained from the Petersen graph by removing an arbitrary
edge and suppressing the two created vertices of degree 2. We will often refer to these graphs
using the labeling of their vertices as indicated in Fig. 2.
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Figure 2: The graph Γi, the Petersen graph Π and the Wagner graph W
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2 Introduction

There are many results on forbidden induced subgraphs implying various Hamilton-type graph
properties. For hamiltonicity in 2-connected graphs (recall that 2-connectedness is the neces-
sary connectivity level for the property), pairs of forbidden connected subgraphs are completely
characterized [8]. However, for Hamilton-connectedness in 3-connected graphs (where again,
3-connectedness is the necessary connectivity level for the property), the progress is relatively
slow. For forbidden pairs of connected graphs, there is a list of potential candidates: one of
them must be the claw K1,3, and the second one belongs to the list mentioned in Section 6.
Among them, Pi and Ni,j,k are easier to handle since if G is {K1,3, Pi}-free or {K1,3, Ni,j,k}-
free, then so is its closure (more on closures in Section 3), but this is not true for Bi,j, Zi or
Γi. In this paper, we introduce a technique that allows to overcome this problem for bull-free
graphs.

Theorem A below lists the best known results on pairs of forbidden subgraphs implying
Hamilton-connectedness of a 3-connected graph (where, in the statement (iii), W 1 denotes the
graph obtained from the Wagner graph W (see Fig. 2(c)) by attaching exactly one pendant
edge to each of its vertices).

Theorem A [3, 6, 13, 14, 15]. Let G be a 3-connected {K1,3, X}-free graph, where
(i) [6] X = Γ1, or

(ii) [3] X = P9, or
(iii) [20] X = Z6, or X = Z7 and G 6' L(W 1), or
(iv) [15, 13, 14] X = Bi,j for i+ j ≤ 6, or
(v) [15] X = N1,2,4, or

(vi) [13, 14] X ∈ {N1,1,5, N1,3,3, N2,2,3}.
Then G is Hamilton-connected.

Note that statement (iv) is an immediate corollary of (v) and (vi) since Bi,j with i+ j ≤ 6
is an induced subgraph of N1,1,5, N1,2,4 or N1,3,3.

Let W be the family of graphs obtained by attaching at least one pendant edge to each of
the vertices of the Wagner graph W , and let G = {L(H)| H ∈ W} be the family of their line
graphs. Then any G ∈ G is 3-connected, non-Hamilton-connected (there is e.g. no hamiltonian
(L(w1w5), L(w3w7))-path), P10-free, Bi,j-free for i + j = 8, and Ni,j,k-free for i + j + k = 8.
Thus, this example shows that parts (ii), (v) and (vi) of Theorem A are sharp, and also the
next result, which is the main result of this paper, is sharp.

Theorem 1. Let X ∈ {B1,6, B2,5, B3,4}, and let G be a 3-connected {K1,3, X}-free graph.
Then G is Hamilton-connected.

The proof of Theorem 1 is postponed to Section 5. In Section 3, we collect some known results
and facts on line graphs and on closure operations that will be needed. In Subsection 3.5, we
develop a method to overcome the difficulties arising from the fact that the class of {K1,3, Bi,j}-
free graphs is not stable under closure operations. In Section 4, we develop a technique that
allows a significant reduction of the number of cases to be considered. Finally, in Section 6,
we briefly update the discussion of remaining open cases in the characterization of forbidden
pairs of connected graphs for Hamilton-connectedness from [14].
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3 Preliminaries

In Subsections 3.1 – 3.4, we summarize some known facts that will be needed in our proof
of Theorem 1, and in Subsection 3.5, we introduce a class of graphs Bi,j such that every
{K1,3, Bi,j}-free graph is in Bi,j, and for any G ∈ Bi,j, each of its UM-closures also belongs
to Bi,j.

3.1 Line graphs of multigraphs and their preimages

While in line graphs of graphs, for a line graph G, the graph H such that G = L(H) is uniquely
determined with a single exception of G = K3, in line graphs of multigraphs this is not true.
Using a modification of an approach from [22], the following was proved in [18].

Theorem B [18]. Let G be a connected line graph of a multigraph. Then there is, up
to an isomorphism, a uniquely determined multigraph H such that G = L(H) and a vertex
e ∈ V (G) is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge
in H.

The multigraph H with the properties given in Theorem B will be called the preimage
of a line graph G and denoted H = L−1(G). We will also use the notation a = L(e) and
e = L−1(a) for an edge e ∈ E(H) and the corresponding vertex a ∈ V (G).

An edge-cut R ⊂ E(H) of a multigraph H is essential if H −R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size
at least k. It is a well-known fact that a line graph G is k-connected if and only if L−1(G) is
essentially k-edge-connected. It is also a well-known fact that if X is a line graph, then a line
graph G is X-free if and only if L−1(G) does not contain as a sub(multi)graph (not necessarily
induced) a (multi)graph F such that L(F ) = X (but not necessarily F = L−1(X)). However,
it is straightforward to verify that for the graph Bi,j there is exactly one multigraph F such
that L(F ) = Bi,j, namely, the graph L−1(Bi,j) = S1,i+1,j+1 (see Fig. 1(d)).

Harary and Nash-Williams [9] established a correspondence between a DCT in H and a
hamiltonian cycle in L(H) (the result was given in [9] for line graphs of graphs, but it is
easy to see that it is true also for line graphs of multigraphs). A similar result showing that
G = L(H) is Hamilton-connected if and only if H has an (e1, e2)-IDT for any pair of edges
e1, e2 ∈ E(H), was given in [12] (in fact, part (ii) of the following theorem is slightly stronger
than the result from [12], and its easy proof is given in [13]).

Theorem C [9, 12]. Let H be a multigraph with |E(H)| ≥ 3 and let G = L(H).
(i) [9] The graph G is hamiltonian if and only if H has a DCT.

(ii) [12] For every ei ∈ E(H) and ai = L(ei), i = 1, 2, G has a hamiltonian (a1, a2)-path if
and only if H has an (e1, e2)-IDT.

3.2 SM-closure

For a graph G and x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G)∪

{y1y2| y1, y2 ∈ NG(x)}) (i.e., G
∗
x is obtained from G by adding all the missing edges with both
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vertices in NG(x)). Obviously, if G is claw-free, then so is G
∗
x. Note that in the special case

when G is a line graph and H = L−1(G), G
∗
x is the line graph of the (multi)graph obtained

from H by contracting the edge L−1(x) into a vertex and replacing the created loop(s) by
pendant edge(s). Also note that clearly x ∈ VSI(G

∗
x) for any x ∈ V (G), and, more generally,

VSI(G) ⊂ VSI(G
∗
x) for any x ∈ V (G).

We say that a vertex x ∈ V (G) is eligible if 〈NG(x)〉G is a connected noncomplete graph,
and we use VEL(G) to denote the set of all eligible vertices of G. In [17], it was shown that
if G is claw-free and x ∈ VEL(G), then G

∗
x is hamiltonian if and only if G is hamiltonian,

and the closure cl(G) of a claw-free graph G was defined as the graph obtained from G by
recursively performing the local completion operation at eligible vertices, as long as this is
possible (more precisely: cl(G) = Gk, where G1, . . . , Gk is a sequence of graphs such that
G1 = G, Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1, and VEL(Gk) = ∅). We say
that G is closed if G = cl(G). The closure cl(G) of a claw-free graph G is uniquely determined,
is the line graph of a triangle-free graph, and is hamiltonian if and only if so is G. However, as
observed in [5], the closure operation does not preserve (non-)Hamilton-connectedness of G.

For Hamilton-connectedness, the concept of an SM-closure GM of a claw-free graph G was
defined in [11] by the following construction.

(i) If G is Hamilton-connected, we set GM = cl(G).
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such eligible vertices for which the resulting graph is still not Hamilton-connected,
as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ VEL(Gk), (Gk)

∗
x is Hamilton-connected,

and we set GM = Gk.
A resulting graph GM is called a strong M-closure (or briefly an SM-closure) of the graph G,
and a graph G equal to its SM-closure is said to be SM-closed. Note that for a given graph
G, its SM-closure is not uniquely determined.

As shown in [18] and [11], if G is SM-closed, then G = L(H), where H does not contain
any of the multigraphs shown in Fig. 3.
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Figure 3: The diamond T1, the multitriangle T2 and the triple edge T3

The following theorem summarizes basic properties of the SM-closure operation.

Theorem D [11]. Let G be a claw-free graph and let GM be some of its SM-closures.
Then GM has the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,
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(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either

(α) VEL(GM) = ∅ and GM = cl(G), or
(β) VEL(GM) 6= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(GM),

(vi) GM = L(H), where H contains either
(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge,

(vii) if GM contains no hamiltonian (a, b)-path for some a, b ∈ V (GM) and
(α) X is a triangle in H, then E(X) ∩ {L−1

GM (a), L−1
GM (b)} 6= ∅,

(β) X is a multiedge in H, then E(X) = {L−1
GM (a), L−1

GM (b)}.

We will also need the following lemma on SM-closed graphs proved in [19].

Lemma E [19]. Let G be an SM-closed graph and let H = L−1(G). Then H does not
contain a triangle with a vertex of degree 2 in H.

3.3 The core of the preimage of an SM-closed graph

The definition of the core is slightly problematic for multigraphs, therefore we restrict our
observations to the case that we need. Thus, let G be a 3-connected SM-closed graph and
let H = L−1(G). The core of H is the multigraph co(H) obtained from H by removing all
pendant edges and suppressing all vertices of degree 2.

Shao [21] proved the following properties of the core of a multigraph.

Theorem F [21]. Let H be an essentially 3-edge-connected multigraph. Then
(i) co(H) is uniquely determined,

(ii) co(H) is 3-edge-connected,
(iii) V (co(H)) dominates all edges of H,
(iv) if co(H) has a spanning closed trail, then H has a DCT.

3.4 UM-closure

As shown in [13], the concept of SM-closure can be further strengthened by omitting the
eligibility assumption for the application of the local completion operation (which was defined
in Subsection 3.2 for any vertex x ∈ V (G)). Specifically, for a given claw-free graph G, we
construct a graph GU by the following construction.

(i) If G is Hamilton-connected, we set GU = K|V (G)|.
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such vertices for which the resulting graph is still not Hamilton-connected, as long
as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ V (Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
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• for any x ∈ V (Gk), (Gk)
∗
x is Hamilton-connected,

and we set GU = Gk.
A graph GU obtained by the above construction is called an ultimate M-closure (or briefly a
UM-closure) of the graph G, and a graph G equal to its UM-closure is said to be UM-closed.

Obviously, if G is UM-closed, then G is also SM-closed, implying that G is a line graph and
H = L−1(G) has a special structure (contains no diamond etc. – see Fig. 3 and Theorem D
(vi), (vii)). The next theorem shows that for UM-closed graphs, not only H, but also co(H)
has these strong structural properties.

Theorem G [13]. Let G be a claw-free graph and let GU be some of its UM-closures.
Then GU has the following properties:

(i) V (G) = V (GU) and E(G) ⊂ E(GU),
(ii) GU is obtained from G by a sequence of local completions at vertices,

(iii) G is Hamilton-connected if and only if GU is Hamilton-connected,
(iv) if G is Hamilton-connected, then GU = K|V (G)|,
(v) if G is not Hamilton-connected, then (GU)

∗
x is Hamilton-connected for any x ∈ V (GU),

(vi) GU = L(H), where co(H) contains no diamond, no multitriangle and no triple edge,
and either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge, and if co(H)

contains a double edge, then this double edge is also in H,
(vii) if GU contains no hamiltonian (a, b)-path for some a, b ∈ V (GU) and

(α) X is a triangle in co(H), then E(X) ∩ {L−1
GU (a), L−1

GU (b)} 6= ∅,
(β) X is a multiedge in co(H), then E(X) = {L−1

GU (a), L−1
GU (b)}.

The following lemma will be crucial in our proof of Theorem 1 (recall that W denotes the
Wagner graph, see Fig. 2(c)).

Lemma H [13]. Let G be a 3-connected non-Hamilton-connected UM-closed claw-free
graph. Then G has an induced subgraph G̃ (possibly G̃ = G) such that G̃ is 3-connected,
non-Hamilton-connected and UM-closed, and, moreover, H̃0 = co(L−1(G̃)) is 2-connected, and
either c(H̃0) ≥ 9 and |V (H̃0)| ≥ 10, or H̃0 ' W .

3.5 Closure operations and bull-free graphs

When applying closure techniques to {claw,bull}-free graphs, the main problem is that a clo-
sure of a {K1,3, Bi,j}-free graph is not necessarily {K1,3, Bi,j}-free (i.e., in the terminology of
[16], the class of {K1,3, Bi,j}-free graphs is not stable under the closure operation). Unfortu-
nately, this is the case with all the closure operations mentioned in the previous subsections.

It turns out that this difficulty can be overcome by working in a slightly larger class of
graphs which contains all the requested {K1,3, Bi,j}-free graphs but is stable under the closure.
We define the class Bi,j as follows.

For any positive integers i, j, Bi,j is the class of all claw-free graphs G such that every
induced subgraph F ⊂ G, F ' Bi,j, satisfies µ(F ) ∈ VSI(G).
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Clearly, every {K1,3, Bi,j}-free graph is in Bi,j.

Theorem 2. Let i, j be positive integers and let G ∈ Bi,j. Then, for any x ∈ V (G),
G

∗
x ∈ Bi,j.

Proof. Let, to the contrary, G ∈ Bi,j and x ∈ V (G) be such that G
∗
x contains an induced

subgraph F ' Bi,j with µ(F ) /∈ VSI(G
∗
x). We will keep the notation of the vertices of F as in

Fig. 1(b), and we will denote by T the triangle 〈{b, a10, a20}〉F . Since G ∈ Bi,j and b = µ(F ) is
nonsimplicial also in G (recall that VSI(G) ⊂ VSI(G

∗
x)), we have E(F ) \E(G) 6= ∅. The edges

in E(F ) \ E(G) will be referred to as new edges, and we will denote E(F ) \ E(G) = new(F ).

Suppose first that new(F ) ∩ E(T ) = ∅. Let, say, e = a2ka
2
k+1 be a new edge for some k,

0 ≤ k ≤ j − 1. Since e ∈ E(G
∗
x) \ E(G), we have a2k, a

2
k+1 ∈ NG(x). Since F is induced in

G
∗
x, the vertices a2k, a

2
k+1 are the only neighbors of x in V (F ) (both in G and in G

∗
x). But

then the graph F ′ = 〈{b, a10, . . . , a1i , a20, . . . , a2k, x, a2k+1, . . . , a
2
j−1}〉G is an induced Bi,j in G with

µ(F ′) /∈ VSI(G), contradicting the fact that G ∈ Bi,j.
Thus, we have new(F ) ⊂ E(T ). If new(F ) = E(T ), then 〈{x, b, a10, a20}〉G ' K1,3, a

contradiction. Hence 1 ≤ |new(F )| ≤ 2.

Suppose first that |new(F )| = 2. By symmetry, either new(F ) = {ba10, ba20}, or new(F ) =
{ba10, a10a20}. In both cases, necessarily NG(x) ∩ V (F ) = {b, a10, a20} (since F is induced in
G

∗
x). Then, in the first case F ′ = 〈{x, a10, . . . , a1i , a20, . . . , a2j}〉G, and in the second case F ′ =
〈{b, x, a10, . . . , a1i−1, a20, . . . , a2j}〉G is an induced Bi,j in G with µ(F ′) /∈ VSI(G), a contradiction.

Hence |new(F )| = 1 and then, by symmetry, either new(F ) = {ba10}, or new(F ) = {a10a20}.
However, if new(F ) = {ba10}, then immediately 〈{a20, a21, a10, b}〉G ' K1,3, a contradiction.

Thus, the only remaining case is new(F ) = {a10a20}. Then a10, a
2
0 ∈ NG(x), and x 6= b (since

otherwise x = b ∈ VSI(G
∗
x). We have a11x, a

1
1b /∈ E(G) since F is induced in G

∗
x, implying

bx ∈ E(G), for otherwise 〈{a10, a11, b, x}〉G ' K1,3. Since b /∈ VSI(G
∗
x), there is a vertex

u ∈ NG(b) such that xu /∈ E(G), and since 〈{b, u, a10, a20}〉G 6' K1,3, NG(u) ∩ {a10, a20} 6= ∅. By
symmetry, let ua10 ∈ E(G). Since 〈{a10, x, u, a11}〉G 6' K1,3, we have ua11 ∈ E(G).

We consider the graph F ′′ = 〈{x, b, u, a20, . . . , a2j}〉G if i = 1, F ′′ = 〈{x, b, u, a11, a20, . . . , a2j}〉G
if i = 2, or F ′′ = 〈{x, b, u, a11 . . . , a1i−1, a20, . . . , a2j}〉G if i ≥ 3, respectively. If F ′′ ' Bi,j, then
x = µ(F ′′), contradicting the fact that G ∈ Bi,j since x /∈ VSI(G). Hence F ′′ 6' Bi,j, implying
that either ua20 ∈ E(G), or, if i ≥ 3, possibly ua21 ∈ E(G) (all other potential edges either
imply a claw with center at u, or contradict the fact that F is induced in G

∗
x).

Let first ua20 ∈ E(G). Since 〈{a20, a21, x, u}〉G 6' K1,3, we have ua21 ∈ E(G), but then
〈{u, a21, b, a11}〉G ' K1,3, a contradiction.

Secondly, if i = 1, then F ′′ = 〈{x, b, u, a20, . . . , a2j}〉G ' Bi,j, and if i = 2, then F ′′ =
〈{x, b, u, a11, a20, . . . , a2j}〉G ' Bi,j with µ(F ′′) = x, a contradiction again.

Hence i ≥ 3 and ua21 ∈ E(G). But then we have F ′′′ = 〈{x, b, u, a12 . . . , a1i , a20, . . . , a2j}〉G '
Bi,j with µ(F ′′′) = x, a contradiction.

The following corollary is immediate.

Corollary 3. Let G be a {K1,3, Bi,j}-free graph for some i, j ≥ 1, and let GU be one of
UM-closures of G. Then GU ∈ Bi,j.
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4 A special version of the “Nine-point-theorem”

We will use a special version of the well-known “Nine-point-theorem” by Holton et al. [10]
and of its modification by Bau and Holton [2], developed in [13]. For this, we need some more
terminology from [1].

Let G be a multigraph, R ⊂ G a spanning sub(multi)graph of G, and let R be the set of
components of R. Then G/R is the multigraph with V (G/R) = R, in which, for each edge in
E(G) between two components of R, there is an edge in E(G/R) joining the corresponding
vertices of G/R. The (multi)graph G/R is said to be a contraction of G. (Roughly, in G/R,
components of R are contracted to single vertices while keeping the adjacencies between them).
Clearly, if R is connected, then G/R = K1, and if R is edgeless, then G/R = G; these two
contractions are called trivial.

The contraction operation maps V (G) onto V (G/R), where vertices of a component of R
are mapped on a vertex of G/R. If G/R ' F , then this defines a function α : G → F which
is called a contraction of G on F .

Throughout the rest of this section, Π denotes the Petersen graph.

The following special version of the “nine-point-theorem” was proved in [13].

Theorem I [13]. Let H be a 3-edge-connected multigraph, A ⊂ V (H), |A| = 8, and let
e ∈ E(H). Then either

(i) H contains a closed trail T such that A ⊂ V (T ) and e ∈ E(T ), or
(ii) there is a contraction α : H → Π such that α(e) = xy ∈ E(Π) and α(A) = V (Π)\{x, y}.

We will also need the following auxiliary result from [13].

Lemma J [13]. Let H be a graph such that co(H) = W . If there is a vertex x ∈ V (co(H))
such that NH(x) = Nco(H)(x), then L(H) is Hamilton-connected.

Theorem 4. Let X ∈ {B1,6, B2,5, B3,4}, and let G be a 3-connected {K1,3, X}-free graph
with a UM-closure GU such that co(H), where H = L−1(GU), is 2-connected. Let e1, e2 ∈
E(H) be such that there is no (e1, e2)-IDT in H. Then for every set A ⊂ V (co(H)), |A| = 8,
there is an (e1, e2)-trail T in H such that A ⊂ Int(T ).

Proof. First of all, it should be noted here that some parts of the proof of Theorem 4 are
(almost) the same as the corresponding parts of the proof of Theorem 9 in [13]. Since the
other parts are quite different, for the sake of completeness, we give a complete proof here,
including the identical parts.

Let G be a graph satisfying the assumptions of the theorem. By Corollary 3, GU ∈
B1,6 ∪ B2,5 ∪ B3,4, implying that in H = L−1(GU), every subgraph (not necessarily induced)
isomorphic to S1,2,7, S1,3,6 or S1,4,5 has its branch of length 1 at a pendant edge (recall that a
vertex in GU is simplicial if and only if the corresponding edge in H = L−1(GU) is pendant
by Theorem B).

Let H ′ be the multigraph obtained from H by the following construction:
(i) if e1, e2 share a vertex of degree 2, say, ei = viv, i = 1, 2 with v ∈ V2(H), we suppress

v and set h = v1v2,
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(ii) otherwise, we subdivide either ei if ei is nonpendant, or some edge in co(H) sharing a
vertex with ei if ei is pendant, with a vertex vi, i = 1, 2, and add a new edge h = v1v2.

If there is no contraction α′ : H ′ → Π such that α′(h) = x1x2 ∈ E(Π) and α′(A) = V (Π) \
{x1, x2}, then, by Theorem I, there is a closed trail T ′ in H ′ such that A ⊂ V (T ′) and
h ∈ E(T ′). Returning to H, i.e., in case (i) subdividing h, or in case (ii) removing h,
suppressing v1, v2, and extending the trail to ei if ei is pendant, we obtain an (e1, e2)-trail T
in H with A ⊂ Int(T ).

Thus, we suppose that there is a contraction α′ : H ′ → Π such that α′(h) = x1x2 ∈ E(Π)
and α′(A) = V (Π) \ {x1, x2}. In case (i), H can be contracted on a graph isomorphic to the
Petersen graph with at least one subdivided edge which contains each of the graphs S1,2,7,
S1,3,6 and S1,4,5: in the labeling of vertices as in Fig. 2(b), if, say, the edge p11p

2
1 is subdivided

with a vertex q, we have S1,2,7(p
1
1; q; p

1
2p

1
3; p

1
5p

1
4p

2
4p

2
1p

2
3p

2
5p

2
2), S1,3,6(p

1
1; q; p

1
5p

1
4p

1
3; p

1
2p

2
2p

2
4p

2
1p

2
3p

2
5), and

S1,4,5(p
1
1; q; p

1
5p

1
4p

2
4p

2
1; p

1
2p

1
3p

2
3p

2
5p

2
2) as subgraphs ofH with the branch of length 1 at a nonpendant

edge, a contradiction. Thus, for the rest of the proof, we suppose that H ′ is obtained by
construction (ii).

Set H0 = co(H), and recall that H0 is 3-edge-connected (since H is essentially 3-edge-
connected). Let R′ be the spanning sub(multi)graph of H ′ that defines α′, and suppose that,
say, the component R1 = (α′)−1(x1) of R′ is nontrivial. Since x1 ∈ V (Π), R1 is separated from
the rest of H ′ by a 3-edge-cut containing the edge h, implying that in H0, the sub(multi)graph
R1 − v1 is separated from the rest of H0 by a 2-edge-cut, contradicting the fact that H0

is 3-edge-connected. Hence (α′)−1(x1), and symmetrically also (α′)−1(x2), are trivial, i.e.,
V ((α′)−1(xi)) = {vi}, i = 1, 2. Removing from H ′ the edge h and suppressing v1 and v2,
we obtain from R′ the corresponding spanning sub(multi)graph R of H, and from R, in a
standard way, a spanning sub(multi)graph R0 of H0. Note that clearly every component of
R′ except {v1} and {v2} corresponds to a nonempty component of R0 since α′ maps H ′ on a
cubic graph and hence every component of R′ must contain a vertex of degree more than 2.
Then the components of R0 define a contraction α : H0 → W , where W is the Wagner graph
(see Fig. 2(c); recall that W can be obtained from Π by removing an edge and suppressing
the created vertices of degree 2).

Case 1: α−1(w) is trivial for any w ∈ V (W ).

Then we have H0 ' W . By Lemma J, every vertex of H0 is incident in H to a pendant
edge or to a subdivided edge.

Subcase 1.1: no edge of H0 is subdivided in H.

Then, by Lemma J, each vertex of H0 is incident in H with at least one pendant
edge, and then H contains each of the subgraphs S1,2,7(w1;w

′
1;w8w

′
8;w2w3w4w5w6w7w

′
7),

S1,3,6(w1;w
′
1;w8w7w

′
7;w2w3w4w5w6w

′
6) and S1,4,5(w1;w

′
1;w8w7w6w

′
6;w2w3w4w5w

′
5) (where

w′i is a vertex of degree 1 adjacent to wi, i = 1, . . . , 8).

Since G is X-free for X ∈ {B1,6, B2,5, B3,4}, for some vertex wi ∈ V (H0), the set of edges
incident to wi corresponds in L(H) = GU to a clique obtained from a certain subgraph of
G by a series of local completions. Let G1, . . . , Gk be the sequence of graphs that yields
GU , i.e., G1 = G, Gk = GU and Gi+1 = (Gi)

∗
xi

for some xi ∈ V (Gi), i = 1, . . . , k − 1.
Then xk−1 ∈ VSI(G

U), thus, by Theorem B, xk−1 corresponds to a pendant edge in
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H. Choose the notation such that L−1(xk−1) = w1w
′
1. For any edge wiwj ∈ E(W )

set L(wiwj) = vi,j, and set L(wiw
′
i) = vi, i = 2, . . . , 8. Since 〈{xk−1, v1,2, v1,5, v1,8}〉GU

is a clique, xk−1 is adjacent in Gk−1 to each of v1,2, v1,5 and v1,8. Now, if v1,2v1,8 ∈
E(Gk−1), we have F1 = 〈{xk−1, v1,8, v8, v1,2, v2,3, v3,4, v4,5, v5,6, v6,7, v7}〉Gk−1

' B1,6, F2 =
〈{xk−1, v1,8, v7,8, v7, v1,2, v2,3, v3,4, v4,5, v5,6, v6}〉Gk−1

' B2,5 and F3 = 〈{xk−1, v1,8, v7,8, v6,7,
v6, v1,2, v2,3, v3,4, v4,5, v5}〉Gk−1

' B3,4 with µ(F1) = µ(F2) = µ(F3) = xk−1, contradicting
the fact that Gk−1 ∈ B1,6 ∪ B2,5 ∪ B3,4 (since xk−1 is simplicial in Gk, but not in Gk−1).
Hence v1,2v1,8 /∈ E(Gk−1), i.e., v1,2v1,8 is a new edge in Gk = GU .

If both v1,2v1,5 /∈ E(Gk−1) and v1,5v1,8 /∈ E(Gk−1), we have 〈{xk−1, v1,2, v1,5, v1,8}〉Gk−1
'

K1,3, a contradiction. If both v1,2v1,5 ∈ E(Gk−1) and v1,5v1,8 ∈ E(Gk−1), then we
have 〈{v1,5, v1,2, v1,8, v4,5}〉Gk−1

' K1,3, a contradiction again. Thus, by symmetry, we
can assume that v1,2v1,5 ∈ E(Gk−1) and v1,5v1,8 /∈ E(Gk−1). Then F1 = 〈{xk−1, v1,2,
v2, v1,5, v5,6, v6,7, v7,8, v4,8, v3,4, v3}〉Gk−1

' B1,6, F2 = 〈{xk−1, v1,5, v5,6, v6, v1,2, v2,3, v3,4, v4,8,
v7,8, v7}〉Gk−1

' B2,5 and F3 = 〈{xk−1, v1,5, v4,5, v3,4, v3, v1,2, v2,6, v6,7, v7,8, v8}〉Gk−1
' B3,4

with µ(F1) = µ(F2) = µ(F3) = xk−1, a contradiction again.

Subcase 1.2: at least one edge of H0 is subdivided in H.

By symmetry, we can choose the notation such that w1w2 or w1w5 is subdivided in H
with a vertex w of degree 2 in H. Then we have the following possibilities.

Subdivided edge Subgraph Si,j,k

w1w2 S1,2,7(w1;w;w5w
′
5;w8w4w3w2w6w7w

′
7)

S1,3,6(w1;w8;w5w4w
′
4;ww2w3w7w6w

′
6)

S1,4,5(w1;w5;w8w7w6w
′
6;ww2w3w4w

′
4)

w1w5 S1,2,7(w1;w2;w8w
′
8;ww5w4w3w7w6w

′
6)

S1,3,6(w3;w7;w4w8w
′
8;w2w1ww5w6w

′
6)

S1,4,5(w1;w2;w8w7w6w
′
6;ww5w4w3w

′
3)

where w′i is a neighbor of wi in H − H0 which exists by Lemma J (note that w′i can be
a vertex of degree 2, subdividing some of the edges incident to wi, in which case the last
two vertices of a branch can occur in reverse order).

Since in each of the cases the branch of length 1 is a nonpendant edge, we have a contra-
diction with the fact that GU ∈ B1,6 ∪ B2,5 ∪ B3,4.

Case 2: α−1(w) is nontrivial for some w ∈ V (W ).

Let R0
1, . . . , R

0
8 be the components of the (multi)graph R0 that defines α, and choose the

notation such that R0
i = α−1(wi), i = 1, . . . , 8, and such that R0

1 = α−1(w1) is nontrivial.
Recall that ∪8i=1(V (R0

i )) = V (R0) = V (H0).

We observe that e1, e2 ∈ E(H0) \ E(R0) since, by the construction of H ′, α−1(xi) = vi are
trivial and after deleting the edge h and suppressing the vertices v1, v2, each of the edges
e1, e2 has its vertices in different components of R0. By Theorem G(vi),(vii), this implies
that each R0

i is a triangle-free (simple) graph. Moreover, each R0
i is 2-edge-connected since

R0
i = α−1(wi) is separated from the rest of H0 by a 3-edge-cut and a cut-edge in R0

i would
create a 2-edge-cut in H0.

We introduce the following notation. For any edge wiwj ∈ E(W ), we set fij = α−1(wiwj)
(i.e., fij joins R0

i and R0
j ), and we denote bij its vertex in R0

i and bji its vertex in R0
j . Thus,
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we e.g. have AH0(R
0
1) = {b12, b15, b18}, where 2 ≤ |{b12, b15, b18}| ≤ 3, and {f12, f15, f18} is the

3-edge-cut that separates R0
1 from the rest of H0.

Claim 1. Let R0
i be a component of R0, 1 ≤ i ≤ 8, and let AH0(R

0
i ) = {bij1 , b

i
j2
, bij3}.

Then there is a vertex di ∈ V (R0
i ) and three internally vertex-disjoint (possibly trivial)

(di, bijk)-paths P i
jk

, k = 1, 2, 3.

Proof. Let P be an arbitrary (possibly trivial) (bij1 , b
i
j2

)-path in R0
i , and let P i

j3
be a

shortest path between bij3 and a vertex of P , which will be referred to as di. Then the vertex
di and the paths P i

j1
= diPbij1 P

i
j2

= diPbij2 and P i
j3

have the required properties. �

Claim 2. The component R0
1 contains a cycle C of length at least 4, vertices c2, c5, c8 ∈

V (C) and paths Q1
2, Q

1
5, Q

1
8 (possibly trivial) such that

(i) 2 ≤ |{c2, c5, c8}| ≤ 3,
(ii) Q1

2 is a (c2, b
1
2)-path, Q1

5 is a (c5, b
1
5)-path and Q1

8 is a (c8, b
1
8)-path,

(iii) the paths Q1
2, Q

1
5, Q

1
8 are internally vertex-disjoint.

Proof. Let d1 and P 1
2 , P 1

5 , P 1
8 be the vertex and paths in R0

1 given by Claim 1. Since R0
1 is

nontrivial, at least one of P 1
2 , P

1
5 , P

1
8 is nontrivial. Suppose that, say, P 1

5 is nontrivial. We
consider a (b12, b

1
8)-path P and choose two edge-disjoint paths P ′5, P

′′
5 such that

• P ′5 is a (b15, c2)-path and P ′′5 is a (b15, c8)-path for some c2, c8 ∈ V (P ),
• if c2 6= c8, then c2 is on P between c8 and b12, and
• c2, c8, P ′5 and P ′′5 are chosen such that |E(P ′5)|+ |E(P ′′5 )| is smallest possible.

If c2 6= c8, we choose c5 as the last common vertex of P ′5 and P ′′5 , and we set C =
c2Pc8P

′′
5 c5P

′
5c2, Q

1
2 = c2Pb

1
2, Q

1
8 = c8Pb

1
8, and, say, Q1

5 = c5P
′
5b

1
5. If c2 = c8, we choose

c5 as the last common vertex of P ′5 and P ′′5 distinct from the vertex c2 = c8 (possibly
c5 = b15), and set C = c2P

′
5c5P

′′
5 c2, Q

1
2 = c2Pb

1
2, Q

1
8 = c8Pb

1
8, and, say, Q1

5 = c5P
′
5b

1
5 (recall

that each R0
i is a triangle-free (simple) graph, hence in each case, C is of length at least 4).

If P 1
2 or P 1

8 is nontrivial, we get C, Q1
2, Q

1
5 and Q1

8 in the same way with the only difference
that possibly c5 = c8 or c2 = c5. �

By Claim 2, we have, up to a symmetry, the following possibilities (note that W has two
types of symmetries – rotations and reflections, but is not edge-transitive): |{c2, c5, c8}| = 3;
|{c2, c5, c8}| = 2 and c2 = c8; |{c2, c5, c8}| = 2 and c2 = c5. For each of the requested graphs
S1,2,7, S1,3,6 and S1,4,5, we describe a sub(multi)graph of H0 in which it is contained, in
all three possible cases. Here, for integers i0, j0, k0, 1 ≤ i0 ≤ j0 ≤ k0, we use S≥i0,≥j0,≥k0
to denote a graph containing an Si0,j0,k0 as a subgraph. If a component R0

i contains the
vertex of degree 3 of the S≥i0,≥j0,≥k0 , then it is located in the vertex di and uses the paths
P i
jk

, k = 1, 2, 3, given by Claim 1, and for any other component R0
i , 2 ≤ i ≤ 8, and

bij, b
i
k ∈ AH0(R

0
i ), we use Qi

j,k to denote an arbitrarily chosen (bij, b
i
k)-path in R0

i (of course,
if R0

i is trivial, all these paths collapse to a single vertex).

If we relabel the vertices of the cycle C given by Claim 2 such that C = u1u2 . . . u|V (C)|
with u1 = c5 (and also u1 = c5 = c2 in the third case), then the requested subgraphs, con-
taining S1,2,7 and S1,4,5, can be (in all three cases) described as S≥1,≥2,≥7(d

3;P 3
2 b

2
3;P

3
4Q

4
3,8b

8
4;
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P 3
7Q

7
3,6Q

6
7,5Q

5
6,1Q

1
5u1u2u3u4) and S≥1,≥4,≥5(d

4;P 4
8 b

8
4;P

4
3Q

3
4,2Q

2
3,6Q

6
2,7b

7
6;P

4
5Q

5
4,1Q

1
5u1u2u3u4); fi-

nally, if we relabel the vertices of C such that C = u1u2 . . . u|V (C)| with u1 = c8 (and also
u1 = c2 = c8 in the second case), then the subgraph, containing S1,3,6, can be (in all three
cases) described as S≥1,≥3,≥6(d

6;P 6
2 b

2
6;P

6
5Q

5
6,4Q

4
5,3b

3
4;P

6
7Q

7
6,8Q

8
7,1Q

1
8u1u2u3u4). In all cases,

we have obtained a subgraph S1,2,7, S1,3,6 and S1,4,5 such that its branch of length 1 is
nonpendant, contradicting the fact that GU ∈ B1,6 ∪ B2,5 ∪ B3,4.

5 Proof of Theorem 1

Let G be a 3-connected {K1,3, X}-free graph, where X ∈ {B1,6, B2,5, B3,4}, and suppose, to
the contrary, that G is not Hamilton-connected. By Theorem G and by Corollary 3, we can
suppose that G is UM-closed and G ∈ B1,6 ∪ B2,5 ∪ B3,4. Let thus H = L−1(G), and set
H0 = co(H). By Theorem F(ii), H0 is 3-edge-connected. By Lemma H, we can assume that
H0 is 2-connected with c(H0) ≥ 9 and |V (H0)| ≥ 10, unless H0 ' W . However, if H0 ' W ,
then, by Theorem 4 and since |V (H0)| = 8, H has an (e1, e2)-IDT for any e1, e2 ∈ E(H0)
and hence also for any e1, e2 ∈ E(H), implying that G = L(H) is Hamilton-connected, a
contradiction. Thus, we have c(H0) ≥ 9 and |V (H0)| ≥ 10. We consider the possible cases
separately and, for each of the subgraphs Bi,j, we distinguish cases according to the length of
a longest cycle in H0, and we attempt to identify a subgraph of type Si,j,k.

Throughout the proof, in each of the cases, C always denotes a cycle such that
(i) C is a longest cycle in H0,

(ii) subject to (i), C dominates in H maximum number of edges.
We further denote C = x1x2 . . . xc(H0), R = V (H) \ V (C), N = {y ∈ V (H0)| NR(y) = ∅},
R0 = R ∩ V (H0), and if R0 6= ∅, we set R0 = {y1, . . . , y|R0|} and we choose the notation such
that y1x1 ∈ E(H0). An edge xixj ∈ E(H0) \ E(C) with xi, xj ∈ V (C), 1 ≤ i, j ≤ |V (C)|, will
be called a chord of C, and we say that xixj is a k-chord if the shorter one of the two subpaths
of C determined by xi and xj has k interior vertices.

There are several general comments to some situations in the proof.
• We will often list vertices of a subgraph Si,j,k, and then the following is possible.

- When some edge e = uv of the Si,j,k is in E(H0), it can always happen that e is
subdivided in H, i.e., formally, e /∈ E(H). However, it is immediate to see that
if this happens, then the corresponding submultigraph of H, which instead of
e = uv contains a path uzv with z ∈ V2(H), also contains Si,j,k as a subgraph.

- When a vertex v ∈ V (C) has a (potential) neighbor z ∈ R and the vertex z
occurs as the last vertex of a branch of the Si,j,k, then such a vertex z can be an
endvertex of a pendant edge attached to v, or can be z ∈ V2(H) and z subdivides
some of the edges incident to v. It should be noted that in the second case, the
vertices v and z can occur in reverse order in the list (i.e., v being the last vertex
of the branch).

• In many subcases, the cycle C will be dominating, and we will consider its potential
chords, using the fact that δ(H0) ≥ 3. In such situations, it is always implicitly under-
stood that none of the edges of C can be a double edge, since if e.g. x1x2 is a double
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edge with V (e1) = V (e2) = {x1, x2}, then T = e1x2x3 . . . xc(H0)x1e2 is an (e1, e2)-IDT
in H, contradicting Theorem G(vii)(β).

These facts will be always implicitly understood throughout the proof.

Case 1: G ∈ B1,6.
Then H does not contain as a subgraph the graph S1,2,7 such that its branch of length 1 is
in a nonpendant edge.

Subcase 1.1: c(H0) = 9 and |V (H0)| ≥ 10.

First observe that E(〈R〉H) = ∅, since if e.g. y1z ∈ E(H) for some z ∈ R, then H contains
the subgraph S1,2,7(x1;x2; y1z;x9x8x7x6x5x4x3) with branch of length 1 at nonpendant
edge x1x2, a contradiction. Hence NR(y1) = ∅.
Next observe that x2 ∈ N since otherwise, for some z ∈ NR(x2), H contains the subgraph
S1,2,7(x1; y1;x2z;x9x8x7x6x5x4x3) (note that x2y1 /∈ E(H) since C is longest). Simi-
larly, we have NR(x4) ⊂ {y1}, since otherwise, for a vertex z ∈ NR(x4) \ {y1}, we have
S1,2,7(x1; y1;x2x3;x9x8x7x6x5x4z) in H (note that y1 ∈ V (H0), implying that the edge
x1y1 is nonpendant in H). Symmetrically, x9 ∈ N and NR(x7) ⊂ {y1}.
Now, if x2x4 /∈ E(H), then the set A = {x1, x3, x5, x6, x7, x8, x9, y1} with |A| = 8 dom-
inates all edges in H, and, by Theorem 4, G = L(H) is Hamilton-connected, a con-
tradiction. Hence x2x4 ∈ E(H0). Analogously, by Theorem 4, considering the set
A = (V (C) ∪ {y1}) \ {x7, x9} with |A| = 8, we have x7x9 ∈ E(H0), and considering
the set A = (V (C) ∪ {y1}) \ {x2, x9} with |A| = 8, we have x2x9 ∈ E(H0). But then the
edges x2x4, x7x9 and x2x9 are three 1-chords in C, creating three triangles in H0, which
contradicts Theorem G(vi).

Subcase 1.2: c(H0) = |V (H0)| = 10.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 1.2.1: C has a 1-chord.

Choose the notation such that x1x3 ∈ E(H0). Then x2 ∈ N for otherwise, for a z ∈
NR(x2), H contains S1,2,7(x1;x3;x2z;x10x9x8x7x6x5x4). Similarly x4 ∈ N , for otherwise
H contains S1,2,7(x3;x2;x4z;x1x10x9x8x7x6x5). Considering the set A = V (C)\{x2, x4}
with |A| = 8, we have x2x4 ∈ E(H0) by Theorem 4. But then the two 1-chords x1x3
and x2x4 create a diamond (see Fig. 3) in H0, contradicting Theorem G(vi).

Subcase 1.2.2: C has a 2-chord.

Choose the notation such that x1x4 ∈ E(H0). If there is a vertex z ∈ NR(x5)∪NR(x6),
we have S1,2,7(x1;x4;x2x3;x10x9x8x7x6x5z) or S1,2,7(x4;x5;x3x2;x1x10x9x8x7x6z) in H.
Hence {x5, x6} ⊂ N , and, symmetrically, {x9, x10} ⊂ N . Then, using Theorem 4 and
the assumption that G is not Hamilton-connected, the set A1 = V (C) \ {x5, x10} with
|A1| = 8 yields x5x10 ∈ E(H0), A2 = V (C)\{x6, x9} with |A2| = 8 yields x6x9 ∈ E(H0),
and A3 = V (C) \ {x5, x9} with |A3| = 8 yields x5x9 ∈ E(H0). But then the chords
x5x10, x6x9 and x5x9 create a diamond in H0, contradicting Theorem G(vi).

Subcase 1.2.3: C has a 3-chord.
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Let x1x5 ∈ E(H0). Since δ(H0) ≥ 3, x3 is in a chord, and by the previous subcases, since
|V (C)| = 10 and by symmetry, we have x3x7 ∈ E(H0) (a 3-chord), or x3x8 ∈ E(H0) (a
4-chord).

Let first x3x7 ∈ E(H0). Then x2 ∈ N , for otherwise, for a z ∈ NR(x2), we have
S1,2,7(x3;x4;x2z;x7x6x5x1x10x9x8) in H. Similarly, x4 ∈ N , for otherwise, for a z ∈
NR(x4), we have S1,2,7(x3;x2;x4z;x7x6x5x1x10x9x8) in H. Then, using the set A =
V (C) \ {x2, x4} with |A| = 8, we have x2x4 ∈ E(H0) by Theorem 4, and we are back
in Subcase 1.2.1.

Thus, x3x8 ∈ E(H0). Then, for a z ∈ NR(x2), S1,2,7(x3;x4;x2z;x8x7x6x5x1x10x9) is a
subgraph of H, hence x2 ∈ N . Symmetrically, x4 ∈ N . Then Theorem 4 for the set
A = V (C) \ {x2, x4} with |A| = 8 implies x2x4 ∈ E(H0), and we are again back in
Subcase 1.2.1.

Subcase 1.2.4: C has a 4-chord.

By the previous subcases, all chords in C are 4-chords. If, say, z ∈ NR(x1), then
H contains S1,2,7(x5;x6;x4x3;x10x9x8x7x2x1z). Hence x1 ∈ N , and, symmetrically,
x3 ∈ N . Then, for the set A = V (C) \ {x1, x3} with |A| = 8, Theorem 4 implies
1-chord x1x3 ∈ E(H0), a contradiction.

Subcase 1.3: c(H0) ≥ 10 and |V (H0)| > c(H0).

Set c(H0) = t. Then H contains S1,2,7(x1; y1;x2x3;xtxt−1xt−2xt−3xt−4xt−5xt−6) (note that
t− 6 > 3 since t ≥ 10, and that the edge x1y1 is nonpendant since y1 ∈ V (H0)).

Subcase 1.4: c(H0) = |V (H0)| = 11.

Since δ(H0) ≥ 3, every vertex of C is in a chord. If x1x3 ∈ E(H0), H contains the
subgraph S1,2,7(x1;x2;x3x4;x11x10x9x8x7x6x5). Similarly, if x1x4 ∈ E(H0), H contains
S1,2,7(x1;x2;x4x3;x11x10x9x8x7x6x5). Hence C has only k-chords for 3 ≤ k ≤ 4.

Suppose that C has a 3-chord and let x1x5 ∈ E(H0). Then x3 has a chord, i.e., by
symmetry, x3x7 ∈ E(H0) or x3x8 ∈ E(H0), but in the first case H contains the subgraph
S1,2,7(x1;x2;x5x6;x11x10x9x8x7x3x4), and in the second case H contains the subgraph
S1,2,7(x5;x4;x6x7;x1x2x3x8x9x10x11).

Hence the only chords in C are 4-chords. Let x1x6 ∈ E(H0). Then x9 has a chord
and, by symmetry, the only possibility is x3x9 ∈ E(H0). Then H contains the subgraph
S1,2,7(x1;x2;x11x10;x6x7x8x9x3x4x5).

Subcase 1.5: c(H0) = |V (H0)| = 12.

If x1x3 ∈ E(H0), H contains S1,2,7(x1;x2;x3x4;x12x11x10x9x8x7x6), and if x1xk ∈ E(H0)
for 4 ≤ k ≤ 5, H contains S1,2,7(x1;xk;x2x3;x12x11x10x9x8x7x6). Hence C has only
4-chords and 5-chords.

Let x1x6 ∈ E(H0) be a 4-chord of C. Then x3 is in a 4-chord or in a 5-chord. There are
the following possibilities.

Chord at x3 Subgraph S1,2,7

x3x8 S1,2,7(x3;x2;x4x5;x8x7x6x1x12x11x10)
x3x9 S1,2,7(x3;x2;x4x5;x9x10x11x12x1x6x7)
x3x10 S1,2,7(x3;x2;x4x5;x10x11x12x1x6x7x8)
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Thus, C has only 5-chords. Then H contains S1,2,7(x1;x12;x2x3;x7x8x9x10x4x5x6).

Subcase 1.6: c(H0) = |V (H0)| = 13.

If x1xk ∈ E(H0) for 3 ≤ k ≤ 5, then H contains S1,2,7(x1;x2;xkxk+1;x13x12x11x10x9x8x7),
and if x1x6 ∈ E(H0), then H contains S1,2,7(x1;x2;x6x5;x13x12x11x10x9x8x7). Thus, the
only chords in C are 5-chords. Then x1x7 ∈ E(H0) and, up to a symmetry, x4x10 ∈ E(H0),
and then H contains S1,2,7(x1;x2;x13x12;x7x8x9x10x4x5x6).

Subcase 1.7: c(H0) = |V (H0)| = 14.

If x1xk ∈ E(H0) for 3 ≤ k ≤ 6, then H contains S1,2,7(x1;x2;xkxk+1;x14x13x12x11x10x9x8),
and if x1x7 ∈ E(H0), then H contains S1,2,7(x1;x2;x7x6;x14x13x12x11x10x9x8). Thus, the
only chords in C are 6-chords, and then H contains S1,2,7(x1;x2;x14x13;x8x9x10x3x4x5x6).

Subcase 1.8: c(H0) = |V (H0)| ≥ 15.

Set c(H0) = t. If x1x3 ∈ E(H0), we have S1,2,7(x1;x2;x3x4;xtxt−1xt−2xt−3xt−4xt−5xt−6)
in H. Finally, if x1xk ∈ E(H0) for 4 ≤ k ≤ b t

2
c + 1, then H contains the subgraph

S1,2,7(x1;x2;xkxk−1;xtxt−1xt−2xt−3xt−4xt−5xt−6).

Case 2: G ∈ B2,5.
Then H does not contain as a subgraph the graph S1,3,6 such that its branch of length 1 is
in a nonpendant edge.

Subcase 2.1: c(H0) = 9 and |V (H0)| ≥ 10.

First observe that 〈R〉H does not contain a path P3 such that one of its endvertices has
a neighbor on C, since if e.g. P3 = y1y2y3 ⊂ 〈R〉H is such a path with x1y1 ∈ E(H), we
have S1,3,6(x1;x9; y1y2y3;x2x3x4x5x6x7) in H.

Since H is essentially 3-edge-connected, every edge in 〈R〉H is connected to C by at least
three edges (two of them possibly being a double edge).

Subcase 2.1.1: there is an edge e = y1y2 ∈ E(〈R〉H) such that |NC({y1, y2})| ≥ 3.

By symmetry, we assume that y1 ∈ R0, and either |NC(y1)| ≥ 3 (with e possibly being
pendant), or |NC(y1)| = 2 and |NC(y2)| ≥ 1. We consider the case |NC(y1)| ≥ 3, and
since all our contradictions will consist in finding an S1,3,6 with the branch of length
1 at a nonpendant edge, or in finding a cycle contradicting the choice of C, our proof
remains true also in the case when |NC(y1)| = 2 and |NC(y2)| ≥ 1, with only possibly
reverse order of last two vertices of a branch ending at y2 or of some branch being
subdivided with y2 in case of finding an S1,3,6.

Thus, let |NC(y1)| ≥ 3. Since C is longest, no two neighbors of y1 are consecutive
on C. Up to a symmetry, we have three possible situations: NC(y1) ⊃ {x1, x3, x5},
NC(y1) ⊃ {x1, x3, x6}, and NC(y1) = {x1, x4, x7}. We consider these cases separately.

Subcase 2.1.1.1: NC(y1) ⊃ {x1, x3, x5}.
If x2 ∈ N , then the cycle C ′ = x1y1x3x4x5x6x7x8x9x1 dominates more edges than
C, contradicting the choice of C. Hence x2 has a neighbor x′2 ∈ R. Symmetri-
cally, x4 has a neighbor x′4 ∈ R, and, moreover, x′2 6= x′4, for otherwise we have
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S1,3,6(x2;x3;x1y1y2;x
′
2x4x5x6x7x8) in H. Also, x′2, x

′
4 /∈ {y1, y2}, for otherwise there

is a cycle longer than C.

If x8y1 ∈ E(H0), then H contains S1,3,6(y1;x3;x1x2x
′
2;x8x7x6x5x4x

′
4), hence x8y1 /∈

E(H0). Similarly, x8y2 /∈ E(H). Now, if there is a vertex z ∈ NR(x8), H contains
S1,3,6(x1;x2;x9x8z; y1x3x4x5x6x7); hence x8 ∈ N . Since δ(H0) ≥ 3, x8 is in a chord
of C. We consider all possible chords containing x8, and for each of them we obtain
an S1,3,6 in H.

Chord at x8 Subgraph S1,3,6

x8x1 S1,3,6(x8;x9;x1x2x
′
2;x7x6x5x4x3y1)

x8x2 S1,3,6(y1;x1;x3x4x
′
4;x5x6x7x8x2x

′
2)

x8x3 S1,3,6(x8;x9;x3x4x
′
4;x7x6x5y1x1x2)

x8x4 S1,3,6(y1;x1;x3x2x
′
2;x5x6x7x8x4x

′
4)

x8x5 S1,3,6(x8;x7;x5x4x
′
4;x9x1x2x3y1y2)

x8x6 S1,3,6(x8;x7;x9x1y1;x6x5x4x3x2x
′
2)

The only remaining possibilities are that there is a double edge containing x8. How-
ever, if x8x9 is a double edge, then, by symmetry, the same applies to x7 and we have
two double edges in H0, and if x7x8 is a double edge, then we must have some of the
above chords since otherwise {x6x7, x8x9} is an edge-cut in H0, a contradiction.

Subcase 2.1.1.2: NC(y1) ⊃ {x1, x3, x6}.
By the choice of C, there is a vertex x′2 ∈ NR(x2) \ {y1}, for otherwise the cy-
cle C ′ = x1y1x3x4x5x6x7x8x9x1 dominates more edges than C. But then we have
S1,3,6(x6; y1;x5x4x3;x7x8x9x1x2x

′
2) in H, a contradiction.

Subcase 2.1.1.3: NC(y1) = {x1, x4, x7}.
If there is a z ∈ NR(x2), H contains S1,3,6(x4; y1;x3x2z;x5x6x7x8x9x1), hence x2 ∈
N (note that NR(x2) ∩ {y1, y2} = ∅ since C is a longest cycle). By symmetry,
{x2, x3, x5, x6, x8, x9} ⊂ N . Since δ(H0) ≥ 3, x2 is in a chord of C, and, since the
same applies to any of the vertices x3, x5, x6, x8 and x9, by symmetry, we can
assume that the chord containing x2 is neither a 1-chord nor a double edge. Thus,
by symmetry, x2 is adjacent to x5, x6 or x7.

Chord at x2 Contradiction
x2x5 C ′ = x1y1x4x3x2x5x6x7x8x9x1 longer than C
x2x6 S1,3,6(x2;x3;x6x5x4;x1x9x8x7y1y2) in H
x2x7 S1,3,6(x2;x3;x1x9x8;x7x6x5x4y1y2) in H

Subcase 2.1.2: for every edge e = y1y2 ∈ E(〈R〉H), |NC({y1, y2})| = 2.

Let NC({y1, y2}) = {x1, x2} with 3 ≤ s ≤ 8 and x1y1 ∈ E(H0). Since H0 is 3-edge-
connected and y1 ∈ V (H0), the edge e is connected to C by at least three edges.

If there is no double edge, we can choose the notation such that x1y1, xsy1, x1y2 ∈ E(H).
But then, if x2y2 /∈ E(H), 〈{x1y1y2}〉H is a triangle in H with dH(y2) = 2, contradicting
Lemma E, and if x2y2 ∈ E(H), then x1, xs, y1 and y2 determine a diamond in H,
contradicting Theorem G(vi). Hence, x1y1 is a double edge, implying that every edge
in 〈R〉H is incident to y1.
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Now, if there is a z ∈ NR(x3) \ {y1}, we have S1,3,6(x1; y1;x2x3z;x9x8x7x6x5x4) in H,
and if there is a z ∈ NR(x5) \ {y1}, we have S1,3,6(x1; y1;x2x3x4;x9x8x7x6x5z) in H;
hence NR({x3, x5}) ⊂ {y1}. Moreover, x3x5 /∈ E(H0) by Theorem G(vi). Then the set
A = (V (C) ∪ {y1} \ {x3, x5} with |A| = 8 dominates all edges of H, hence G = L(H)
is Hamilton-connected by Theorem 4, a contradiction.

Subcase 2.1.3: E(〈R〉H) = ∅.
Choose again the notation such that x1y1 ∈ E(H0) with y1 ∈ R0. Note that the
edge x1y1 is nonpendant since y1 ∈ R0. If there is a z ∈ NR(x3) \ {y1}, we have
S1,3,6(x1; y1;x2x3z;x9x8x7x6x5x4) in H; hence NR(x3) ⊂ {y1}. Similarly, NR(x5) ⊂
{y1}, since otherwise, for a z ∈ NR(x5)\{y1}, we have S1,3,6(x1; y1;x2x3x4;x9x8x7x6x5z)
in H. Symmetrically, NR(x6) ⊂ {y1}. Consequently, if x3x5 /∈ E(H0), then the set
A = (V (C) ∪ {y1}) \ {x3, x5} with |A| = 8 dominates all edges of H, implying that G
is Hamilton-connected by Theorem 4, a contradiction. Hence x3x5 ∈ E(H0). Analo-
gously, by Theorem 4, considering the set A = (V (C) ∪ {y1}) \ {x3, x6} with |A| = 8,
we have x3x6 ∈ E(H0). But then the two chords x3x5 and x3x6 create a diamond in
H0, contradicting Theorem G(vi).

Subcase 2.2: c(H0) = |V (H0)| = 10.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 2.2.1: C has a 1-chord.

Choose the notation such that x1x3 ∈ E(H0).

If there is a z ∈ NR(x4), we have S1,3,6(x1;x2;x3x4z;x10x9x8x7x6x5) inH, hence x4 ∈ N .
Also x6 ∈ N , for otherwise, for z ∈ NR(x6), we have S1,3,6(x1;x2;x3x4x5;x10x9x8x7x6z)
in H. Symmetrically, {x8, x10} ⊂ N . Theorem 4 for A = V (C) \ {x4, x6} with |A| = 8
implies x4x6 ∈ E(H0), Theorem 4 for A = V (C)\{x8, x10} implies x8x10 ∈ E(H0), and
we have three triangles in H0, contradicting Theorem G(vi).

Subcase 2.2.2: C has a 3-chord.

Let x1x5 ∈ E(H0). If z ∈ NR(x6), we have S1,3,6(x1;x5;x2x3x4;x10x9x8x7x6z) in H;
hence x6 ∈ N . Symmetrically, x10 ∈ N . Theorem 4 for the set A = V (C) \ {x6, x10}
with |A| = 8 implies x6x10 ∈ E(H0), and Theorem 4 for the set A = V (C) \ {x1, x6}
implies x1x6 ∈ E(H0). The chords x1x5, x6x10 and x1x6 then determine a diamond in
H0, contradicting Theorem G(vi).

Subcase 2.2.3: C has a 2-chord.

Let x1x4 ∈ E(H0). Then x2, x3 ∈ N , since if there is a z ∈ NR(x3), we have
S1,3,6(x1;x4;x2x3z;x10x9x8x7x6x5) in H, and x2 ∈ N follows by symmetry. Since
δ(H0) ≥ 3 and by the previous subcases, x2 is in a 2-chord or in a 4-chord of C.

If x2x5 ∈ E(H0), then, by symmetry, x4 ∈ N , Theorem 4 for the set A = V (C)\{x2, x4}
implies x2x4 ∈ E(H0), and we are back in subcase 2.1.1 (since x2x4 is a 1-chord
of C). If x2x9 ∈ E(H0), then, by symmetry, x1, x10 ∈ N , and Theorem 4 for the
set A = V (C) \ {x1, x3} implies 1-chord x1x3 ∈ E(H0), a contradiction again.

Hence x2 is in a 4-chord, i.e., x2x7 ∈ E(H0). Then, for a z ∈ NR(x6), we have
S1,3,6(x4;x3;x5x6z;x1x2x7x8x9x10) in H; hence x6 ∈ N . Theorem 4 for the set A =
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V (C) \ {x2, x6} then implies x2x6 ∈ E(H0), and we are back in Subcase 2.2.2.

Subcase 2.2.4: C has only 4-chords.

If there is a z ∈ NR(x1), we have S1,3,6(x5;x10;x6x1z;x4x3x2x7x8x9) inH; hence x1 ∈ N .
Symmetrically, x3 ∈ N . Theorem 4 for the set A = V (C) \ {x1, x3} then implies the
1-chord x1x3 ∈ E(H0), and we are back in Subcase 2.2.1.

Subcase 2.3: c(H0) ≥ 10 and |V (H0)| > c(H0).

Set c(H0) = t. Then we have S1,3,6(x1; y1;x2x3x4;xtxt−1xt−2xt−3xt−4xt−5) in H (note that
t− 5 > 4 since t ≥ 10, and the edge x1y1 is nonpendant since y1 ∈ V (H0)).

Subcase 2.4: c(H0) = |V (H0)| = 11.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 2.4.1: C has a 1-chord.

Let x1x3 ∈ E(H0). Then H contains S1,3,6(x1;x2;x3x4x5;x11x10x9x8x7x6).

Subcase 2.4.2: C has a 3-chord.

Let x1x5 ∈ E(H0). Then H contains S1,3,6(x1;x5;x2x3x4;x11x10x9x8x7x6).

Subcase 2.4.3: C has a 2-chord.

Let x1x4 ∈ E(H0). If there is a z ∈ NR(x3), we have S1,3,6(x1;x4;x2x3z;x11x10x9x8x7x6)
in H; hence x3 ∈ N . Similarly, if there is a z ∈ NR(x5), then H contains the subgraph
S1,3,6(x1;x2;x4x5z;x11x10x9x8x7x6); hence also x5 ∈ N . Theorem 4 for the set A =
V (C) \ {x3, x8} then implies x3x5 ∈ E(H0), and we are back in Subcase 2.4.1.

Subcase 2.4.3: C has only 4-chords.

Since every vertex of C is in a 4-chord and |V (C)| is odd, some two 4-chords have a
vertex in common. Choose the notation such that x1x6, x1x7 ∈ E(H0). Since x2 is in
a 4-chord and the edge x2x7 would create a diamond, necessarily x2x8 ∈ E(H0). But
then H contains S1,3,6(x8;x2;x9x10x11;x7x1x6x5x4x3).

Subcase 2.5: c(H0) = |V (H0)| = 12.

If x1 is in a k-chord for 1 ≤ k ≤ 2, H contains S1,3,6(x1;x2;xkxk+1xk+2;x12x11x10x9x8x7);
if x1 is in a k-chord for 3 ≤ k ≤ 4, H contains S1,3,6(x1;x2;xkxk−1xk−2;x12x11x10x9x8x7).
Thus, by symmetry, every vertex of C is in a 5-chord. Then H contains the subgraph
S1,3,6(x1;x12;x7x6x5;x2x3x4x10x9x8).

Subcase 2.6: c(H0) = |V (H0)| ≥ 13.

Set c(H0) = t. If x1xk ∈ E(H0) for some k, 3 ≤ k ≤ 4, then H contains the subgraph
S1,3,6(x1;x2;xkxk+1xk+2;xtxt−1xt−2xt−3xt−4xt−5), and if x1xk ∈ E(H0) for some k with
5 ≤ k ≤ b t

2
c+ 1, then H contains S1,3,6(x1;x2;xkxk−1xk−2;xtxt−1xt−2xt−3xt−4xt−5).

Case 3: G ∈ B3,4.
Then H does not contain as a subgraph the graph S1,4,5 such that its branch of length 1 is
in a nonpendant edge.
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Subcase 3.1: c(H0) = 9 and |V (H0)| ≥ 10.

Claim 1. The multigraph H does not contain a path P such that Int(P ) ⊂ R and
either

(i) |V (P )| ≥ 5 and one of its endvertices is in V (C), or
(ii) |V (P )| ≥ 4 and both its endvertices are in V (C).

Proof. (i). If P = x1y1 . . . yk, k ≥ 4, is a path satisfying (i), then H contains
S1,4,5(x1;x9; y1y2y3y4;x2x3x4x5x6), a contradiction.

(ii). Let, to the contrary, P = x1y1 . . . ykxs, be a path satisfying (ii) for some k ≥ 2 and
2 ≤ s ≤ 8. If s = 2, then the cycle, obtained from C by replacing the edge x1x2 with
the path P , is longer than C, a contradiction. By symmetry, s ∈ {3, 4, 5}. In each of
these cases we have a subgraph of H containing an S1,4,5 with the branch of length 1 at
a nonpendant edge.

Case Subgraph containing an S1,4,5

s = 3 S1,≥4,5(x1;x2; y1 . . . ykx3x4;x9x8x7x6x5)
s = 4 S1,≥4,5(x1;x2; y1 . . . ykx4x3;x9x8x7x6x5)
s = 5 S1,4,≥5(x1;x2;x9x8x7x6; y1 . . . ykx5x4x3)

�

Subcase 3.1.1: E(〈R〉H) 6= ∅.

Claim 2. Every edge in E(〈R〉H) is a pendant edge of H, and one of its vertices is
connected to C by at least three edges.

Proof. Let first, to the contrary, e = y1y2 ∈ E(〈R〉H) be nonpendant, and choose
the notation such that y1 ∈ V (H0). Since dH(y1) ≥ 3, dH(y2) ≥ 2 and H is essentially
3-edge-connected, e is connected to C by three edge-disjoint paths P1, P2, P3, two of
them, say, P1 and P2, starting at y1, and P3 starting at y2. Let xij be the endvertex
of Pj on C, j = 1, 2, 3. If P1, P2 and P3 can be chosen such that |{i1, i2, i3}| ≥ 2, then
there is a path satisfying the conditions of Claim 1(ii). Hence i1 = i2 = i3, and this
vertex is a cutvertex of H, contradicting the fact that H0 is 2-connected. Thus, e is a
pendant edge of H.

By the connectivity assumption, there are three edge-disjoint paths P1, P2, P3, connect-
ing y1 to C. Since H0 is 2-connected, the paths P1, P2, P3 can be chosen such that least
two of their endvertices are distinct. But then necessarily Int(Pi) = ∅, i = 1, 2, 3, since
otherwise we have a path satisfying the conditions of Claim 1(ii). �

Subcase 3.1.1.1: there is an edge e = y1y2 ∈ E(〈R〉H) such that |NC(y1)| ≥ 3.

Since C is longest, no two neighbors of y1 are consecutive on C; thus, up to a
symmetry, NC(y1) ⊃ {x1, x3, x5}, NC(y1) ⊃ {x1, x3, x6}, or NC(y1) = {x1, x4, x7}.
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Subcase 3.1.1.1.1: NC(y1) ⊃ {x1, x3, x5}.
If x2 ∈ N , then the cycle C ′ = x1y1x3x4x5x6x7x8x9x1 dominates more edges than
C, contradicting the choice of C. Hence there is an x′2 ∈ NR(x2). We have x′2 6= y1
since C is longest. But then H contains S1,4,5(x5; y1;x4x3x2x

′
2;x6x7x8x9x1).

Subcase 3.1.1.1.2: NC(y1) ⊃ {x1, x3, x6}.
Then similarly there is a vertex x′2 ∈ NR(x2) \ {y1}, and H contains the subgraph
S1,4,5(x6; y1;x7x8x9x1;x5x4x3x2x

′
2).

Subcase 3.1.1.1.3: NC(y1) = {x1, x4, x7}.
If there is an x′2 ∈ NR(x2) \ {y1}, we have S1,4,5(x7; y1;x6x5x4x3;x8x9x1x2x

′
2) in

H. Moreover, NR(x2) ∩ {y1, y2} = ∅ since C is longest. Hence x2 ∈ N . Since
δ(H0) ≥ 3, there is a chord of C containing x2. Below we consider, up to a
symmetry, all possible 2-chords and 3-chords containing x2.

Chord at x2 Contradiction
x2x5 C ′ = x1y1x4x3x2x5x6x7x8x9x1 longer than C
x2x6 S1,4,5(x2;x3;x1x9x8x7;x6x5x4y1y2) in H
x2x7 S1,4,5(x7;x2;x6x5x4x3;x8x9x1y1y2) in H

Thus, x2 is in a 1-chord or in a double edge. However, by symmetry, the same
applies to the vertices x3, x5, x6, x8 and x9, and we have at least three triangles
or double edges in H, contradicting Theorem G(vi).

Subcase 3.1.1.2: for every edge e = y1y2 ∈ E(〈R〉H), we have |NC(y1)| = 2.

Then x1y1 is a double edge, implying that every edge in 〈R〉H contains y1. If
there is an x′4 ∈ NR(x4) \ {y1}, then H contains S1,4,5(x1; y1;x2x3x4x

′
4;x9x8x7x6x5),

hence NR(x4) ⊂ {y1}. Similarly, if there is an x′5 ∈ NR(x5) \ {y1}, then H con-
tains S1,4,5(x1; y1;x9x8x7x6;x2x3x4x5x

′
5), hence NR(x5) ⊂ {y1}. By symmetry, also

NR({x6, x7}) ⊂ {y1}. Considering the set A1 = (V (C)∪{y1})\{x4, x6} with |A1| = 8
and the fact that G is not Hamilton-connected, Theorem 4 implies x4x6 ∈ E(H0).
But then the chord x4x6 creates a triangle in H0, contradicting Theorem G(vi) since
x1y1 is a double edge.

Subcase 3.1.2: E(〈R〉H) = ∅.
Let y1 ∈ R0 with x1y1 ∈ E(H0) (this is always possible by Claim 1 and since H0 is
3-edge-connected). Similarly as in Subcase 3.1.1.2, NR(x4) ⊂ {y1} (otherwise, for an
x′4 ∈ NR(x4)\{y1}, H contains S1,4,5(x1; y1;x2x3x4x

′
4;x9x8x7x6x5)), and NR(x5) ⊂ {y1}

(otherwise, for an x′5 ∈ NR(x4) \ {y1}, H contains S1,4,5(x1; y1;x9x8x7x6;x2x3x4x5x
′
5)).

By symmetry, also NR({x6, x7}) ⊂ {y1}. Considering the sets A1 = (V (C) ∪ {y1}) \
{x4, x6} and A2 = (V (C) ∪ {y1}) \ {x4, x7} with |A1| = |A2| = 8, Theorem 4 implies
x4x6 ∈ E(H0) and x4x7 ∈ E(H0), and then the two chords x4x6 and x4x7 create a
diamond in H0, contradicting Theorem G(vi).

Subcase 3.2: c(H0) = |V (H0)| = 10.

Since δ(H0) ≥ 3, every vertex of C is in a chord.
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Subcase 3.2.1: C has a 1-chord.

Choose the notation such that x1x3 ∈ E(H0). If there is a z ∈ NR(x5), then H
contains S1,4,5(x1;x2;x3x4x5z;x10x9x8x7x6); hence x5 ∈ N . Symmetrically, x9 ∈ N . If
there is a z ∈ NR(x7), then H contains S1,4,5(x1;x2;x3x4x5x6;x10x9x8x7z); hence also
x7 ∈ N . Theorem 4 for A1 = V (C) \ {x5, x7} then implies x5x7 ∈ E(H0), Theorem 4
for A2 = V (C) \ {x7, x9} implies x7x9 ∈ E(H0), and the three 1-chords x1x3, x5x7 and
x7x9 determine three triangles in H0, contradicting Theorem G(vi).

Subcase 3.2.2: C has a 3-chord.

Let x1x5 ∈ E(H0). If there is a z ∈ NR(x4), we have S1,4,5(x1;x5;x2x3x4z;x10x9x8x7x6)
in H; hence x4 ∈ N . Symmetrically, x2 ∈ N . From Theorem 4 for the set A =
V (C) \ {x2, x4} we then have x2x4 ∈ E(H0); however, x2x4 is a 1-chord of C, and we
are back in Subcase 3.2.1.

Subcase 3.2.3: C has a 4-chord.

Let x1x6 ∈ E(H0). Then x7 ∈ N , since otherwise, for a z ∈ NR(x7), H contains
S1,4,5(x1;x6;x2x3x4x5;x10x9x8x7z). Symmetrically, x5 ∈ N . Theorem 4 for the set
A = V (C)\{x5, x7} then yields x5x7 ∈ E(H0), and we are again back in Subcase 3.2.1.

Subcase 3.2.4: every chord in C is a 2-chord.

Let x1x4 ∈ E(H0). Since x2 is in a 2-chord, we have x2x9 ∈ E(H0) or x2x5 ∈ E(H0).

Let first x2x9 ∈ E(H0). Then x10 ∈ N , since otherwise, for a z ∈ NR(x10), H contains
S1,4,5(x4;x3;x5x6x7x8;x1x2x9x10z). Symmetrically, x5 ∈ N . Theorem 4 for the set A =
V (C) \ {x5, x10} then implies x5x10 ∈ E(H0), and we are back in Subcase 3.2.3. Thus,
x2x5 ∈ E(H0). Since x3 is in a 2-chord, we have, up to a symmetry, x3x6 ∈ E(H0).
But then we are in a situation symmetric to the first case.

Subcase 3.3: c(H0) ≥ 10 and |V (H0)| > c(H0).

Set c(H0) = t. Then H contains the subgraph S1,4,5(x1; y1;x2x3x4x5;xtxt−1xt−2xt−3xt−4),
a contradiction.

Subcase 3.4: c(H0) = |V (H0)| = 11.

Since δ(H0) ≥ 3, every vertex of C is in a chord.

Subcase 3.4.1: C has a 1-chord.

Let x1x3 ∈ E(H0). Then H contains S1,4,5(x1;x2;x3x4x5x6;x11x10x9x8x7).

Subcase 3.4.2: C has a 4-chord.

Let x1x6 ∈ E(H0). Then H contains S1,4,5(x1;x6;x2x3x4x5;x11x10x9x8x7).

Subcase 3.4.3: C has a 3-chord.

Let x1x5 ∈ E(H0). By the previous subcases, x3 is in a 2-chord or in a 3-chord. Thus,
up to a symmetry, x3x6 ∈ E(H0) or x3x7 ∈ E(H0). However, if x3x6 ∈ E(H0),
H contains S1,4,5(x1;x2;x11x10x9x8;x5x4x3x6x7), and if x3x7 ∈ E(H0), H contains
S1,4,5(x1;x2;x11x10x9x8;x5x4x3x7x6).

Subcase 3.4.4: every chord in C is a 2-chord.
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Let x1x4 ∈ E(H0). Then x2 is in a 2-chord, i.e., x2x10 ∈ E(H0) or x2x5 ∈ E(H0). If
x2x10 ∈ E(H0), H contains S1,4,5(x4;x3;x1x2x10x11;x5x6x7x8x9). Hence x2x5 ∈ E(H0),
and then, for any 2-chord containing x3 we are in a situation symmetric to the first
case.

Subcase 3.5: c(H0) = |V (H0)| = 12.

We show that C does not have a k-chord for k ∈ {1, 2, 4, 5}.

Chord in C Subgraph S1,4,5

1-chord x1x3 S1,4,5(x1;x2;x3x4x5x6;x12x11x10x9x8)
2-chord x1x4 S1,4,5(x1;x2;x4x5x6x7;x12x11x10x9x8)
4-chord x1x6 S1,4,5(x1;x6;x2x3x4x5;x12x11x10x9x8)
5-chord x1x7 S1,4,5(x1;x7;x2x3x4x5;x12x11x10x9x8)

Hence any chord in C is a 3-chord. Let x1x5 ∈ E(H0) be a 3-chord. Up to a symmetry,
x3x7 ∈ E(H0), and then H contains S1,4,5(x1;x2;x5x4x3x7;x12x11x10x9x8).

Subcase 3.6: c(H0) = |V (H0)| ≥ 13.

Set c(H0) = t. If x1xk ∈ E(H0) for some k, 3 ≤ k ≤ 5, then H contains the subgraph
S1,4,5(x1;x2;xkxk+1xk+2xk+3;xtxt−1xt−2xt−3xt−4), and if x1xk ∈ E(H0) for some k with
5 ≤ k ≤ b t

2
c+ 1, then H contains S1,4,5(x1;x2;xkxk−1xk−2xk−3;xtxt−1xt−2xt−3xt−4).

6 Concluding remarks

1. Theorem 1 admits a slight extension as follows. For s ≥ 0, a graph G is s-Hamilton-
connected if the graph G −M is Hamilton-connected for any set M ⊂ V (G) with |M | ≤ s.
Obviously, an s-Hamilton-connected graph must be (s + 3)-connected. Since an induced
subgraph of a {K1,3, Bi,j}-free graph is also {K1,3, Bi,j}-free, we immediately have the following
fact, showing that, in {K1,3, Bi,j}-free graphs with i+ j ≤ 7, the obvious necessary condition
is also sufficient.

Corollary 5. Let s, i, j be integers such that s ≥ 0, i, j ≥ 1 and i+ j ≤ 7, and let G be a
{K1,3, Bi,j}-free graph. Then G is s-Hamilton-connected if and only if G is (s+ 3)-connected.

2. We can now update the discussion of potential pairsX, Y of connected graphs that might
imply Hamilton-connectedness of a 3-connected {X, Y }-free graph, as summarized in [14].

As shown in [6], up to a symmetry, necessarily X = K1,3, and, summarizing the discussions
from [3], [6], [7] and [14], there are the following possibilities for Y (see Fig. 1 for the graphs
Zi, Bi,j and Ni,j,k, and Fig. 2(a) for the graph Γi):

(i) Y ∈ {Γ1,Γ3}, or Y = Γ5 for n = |V (G)| ≥ 21,
(ii) Y = Pi with 4 ≤ i ≤ 9,

(iii) Y = Zi with i ≤ 6, or Y = Z7 for n = |V (G)| ≥ 21,
(iv) Y = Bi,j with i+ j ≤ 7,
(v) Y = Ni,j,k with i+ j + k ≤ 7.
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Best known results in the direction of each of these subgraphs are summarized in Theo-
rem A, and we summarize the current status of the problem in the following table.

Y Possible Best known Reference Open
Γi Γ1, Γ3, Γ5 for n ≥ 21 Γ1 [6] Γ3; Γ5 for n ≥ 21
Pi 4 ≤ i ≤ 9 P9 [3] —
Zi i ≤ 6; Z7 for n ≥ 21 Z6; Z7 for G 6' L(W 1) [20] —
Bi,j i+ j ≤ 7 i+ j ≤ 7 This paper —
Ni,j,k i+ j + k ≤ 7 i+ j + k ≤ 7 [13, 14, 15] —

Thus, the only remaining cases are the Γ3 and the Γ5 for n ≥ 21. The problem here is that
although we are able to construct a closure operation that turns a {K1,3,Γi}-free graph into
the line graph of a multigraph and preserves both Hamilton-connectedness and the property
of being Γi-free, the structure still remains too complicated to be reasonably handled.
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[13] X. Liu, Z.Ryjáček, P. Vrána, L. Xiong, X. Yang: Hamilton-connected {claw,net}-free
graphs, I. Preprint, 2020, submitted.
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[19] Z. Ryjáček, P. Vrána: A closure for 1-Hamilton-connectedness in claw-free graphs.
J. Graph Theory 75 (2014), 358–376.
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