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Abstract

In the first one in this series of two papers, we have proved that every 3-connected
{K1,3, N1,3,3}-free graph is Hamilton-connected. In this paper, we continue in this direc-
tion by proving that every 3-connected {K1,3, X}-free graph, where X ∈ {N1,1,5, N2,2,3},
is Hamilton-connected (where Ni,j,k is the graph obtained by attaching endvertices of
three paths of lengths i, j, k to a triangle). This together with a previous result of other
authors completes the characterization of forbidden induced generalized nets implying
Hamilton-connectedness of a 3-connected claw-free graph. We also discuss remaining
open cases in a full characterization of connected graphs X such that every 3-connected
{K1,3, X}-free graph is Hamilton-connected.

Keywords: Hamilton-connected; closure; forbidden subgraph; claw-free; net-free

1 Introduction

In this paper, we generally follow the most common graph-theoretical notations and terminol-
ogy as given e.g. in [3], and for problem-specific notations and terminology we refer to the first
paper of this series, [12]. We recall here the special graphs in Fig. 1 that will be important for
our results.

The following two results were proved in [13] and in [12], respectively.

Theorem A. Let G be a 3-connected {K1,3, X}-free graph, where
(i) [13] X = N1,2,4, or
(ii) [12] X = N1,3,3.

Then G is Hamilton-connected.
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The Wagner graph W

Figure 1: The graphs Ni,j,k, Si,j,k and the Wagner graph W

Recall that these results are sharp, as can be seen by considering the family of graphs
G = {L(H)| H ∈ W}, where W is the family of graphs obtained by attaching at least one
pendant edge to each of the vertices of the Wagner graph W (see Fig. 1). Then any G ∈ G
is 3-connected, non-Hamilton-connected and Ni,j,k-free for i + j + k ≥ 8. Hence the possible
values that might imply a 3-connected {K1,3, Ni,j,k}-free graph to be Hamilton-connected are
those with i+ j + k ≤ 7. For i+ j + k = 7, there are four possibilities, namely, N1,1,5, N1,2,4,
N1,3,3 and N2,2,3. While the second and third possibilities show sharpness of Theorem A, the
first and last ones show that the next result, which is the main result of this paper, is also
sharp, and completes the characterization.

Theorem 1. Let X ∈ {N1,1,5, N2,2,3}, and let G be a 3-connected {K1,3, X}-free graph.
Then G is Hamilton-connected.

The proof of Theorem 1, which is a careful case analysis, is postponed to Section 3. In
Section 2, we collect necessary known results and facts that allow to significantly reduce the
number of cases to be considered. Finally, in Section 4, we discuss sharpness and remaining
open cases.

2 Preliminaries

In this section, we summarize some known facts that will be needed in our proof of Theorem 1.
All these fact and results are contained already in the first paper of this series, [12], and we
include them here for the sake of completeness.

2.1 Line graphs of multigraphs and their preimages

The line graph of a multigraph H is the graph G = L(H) with V (G) = E(H), in which two
vertices are adjacent if and only if the corresponding edges of H share at least one vertex. It is
well-known that in line graphs of multigraphs, for a given line graph G, a multigraph H such
that G = L(H) is not uniquely determined. As shown in [16], this drawback can be overcome
by an additional requirement that simplicial vertices correspond to pendant edges.

Theorem B [16]. Let G be a connected line graph of a multigraph. Then there is, up
to an isomorphism, a uniquely determined multigraph H such that G = L(H) and a vertex
e ∈ V (G) is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge
in H.
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The multigraph H with the properties given in Theorem B will be called the preimage
of a line graph G and denoted H = L−1(G). We will also use the notation a = L(e) and
e = L−1(a) for an edge e ∈ E(H) and the corresponding vertex a ∈ V (G).

An edge-cut R ⊂ E(H) of a multigraph H is essential if H −R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size
at least k. It is a well-known fact that a line graph G is k-connected if and only if L−1(G)
is essentially k-edge-connected. It is also a well-known fact that if X is a line graph, then a
line graph G is X-free if and only if L−1(G) does not contain as a subgraph (not necessarily
induced) a graph F such that L(F ) = X (but not necessarily F = L−1(X)). However, it
is straightforward to verify that for the graph Ni,j,k there is exactly one graph F such that
L(F ) = Ni,j,k, namely, the graph L−1(Ni,j,k) = Si+1,j+1,k+1 (see Fig. 1). Thus, we can conclude
that a line graph G is Ni,j,k-free if and only if L−1(G) does not contain as a (not necessarily
induced) subgraph the graph L−1(Ni,j,k) = Si+1,j+1,k+1. Recall that when listing vertices of
an Si,j,k in a graph, we will write the list such that i ≤ j ≤ k, and we will use the notation
Si,j,k(v; a1a2 . . . ai; b1b2 . . . bj; c1c2 . . . ck) (in the labeling of vertices as in Fig. 1).

Recall that a closed trail T is a dominating closed trail (abbreviated DCT) if T dominates
all edges of G, and an (e, f)-trail is an internally dominating (e, f)-trail (abbreviated (e, f)-
IDT) if Int(T ) dominates all edges of G. The following result shows the relation between a
hamiltonian cycle (hamiltonian (a1, a2)-path) in G = L(H) and a DCT (an (e1, e2)-IDT) in H.

Theorem C. Let H be a multigraph with |E(H)| ≥ 3 and let G = L(H).
(i) [8] The graph G is hamiltonian if and only if H has a DCT.
(ii) [11] For every ei ∈ E(H) and ai = L(ei), i = 1, 2, G has a hamiltonian (a1, a2)-path if

and only if H has an (e1, e2)-IDT.

2.2 SM-closure

For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G)∪ {y1y2| y1, y2 ∈

NG(x)}) (i.e., G
∗
x is obtained from G by adding all the missing edges with both vertices in

NG(x)). Obviously, if G is claw-free, then so is G
∗
x. Note that in the special case when G is

a line graph and H = L−1(G), we have G
∗
x = L(H|e), where e = L−1(x), and H|e is obtained

from H by contraction of e into a vertex and replacing the created loop(s) by pendant edge(s)
(for more details on the contraction operation see Subsection 2.5). Finally, a vertex x ∈ V (G)
is eligible if NG(x) induces in G a connected noncomplete graph.

In [10], the concept of an SM-closureGM of a claw-free graphG was defined by the following
construction.

(i) If G is Hamilton-connected, we set GM = cl(G).
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such eligible vertices for which the resulting graph is still not Hamilton-connected,
as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that

• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ VEL(Gk), (Gk)

∗
x is Hamilton-connected,

and we set GM = Gk.
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A resulting GM is called a strong M-closure (or briefly an SM-closure) of the graph G, and a
graph G equal to its SM-closure is said to be SM-closed. Note that for a given graph G, its
SM-closure is not uniquely determined.

As shown in [16] and [10], if G is SM-closed, then G = L(H), where H does not contain
any of the multigraphs shown in Fig. 2.
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Figure 2: The diamond T1, the multitriangle T2 and the triple edge T3

The following theorem summarizes basic properties of the SM-closure operation.

Theorem D [10]. Let G be a claw-free graph and let GM be one of its SM-closures. Then
GM has the following properties:

(i) V (G) = V (GM) and E(G) ⊂ E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,
(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either

(α) VEL(G
M) = ∅ and GM = cl(G), or

(β) VEL(G
M) ̸= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(G

M),
(vi) GM = L(H), where H contains either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge,

(vii) if GM contains no hamiltonian (a, b)-path for some a, b ∈ V (GM) and
(α) X is a triangle in H, then E(X) ∩ {L−1

GM (a), L−1
GM (b)} ≠ ∅,

(β) X is a multiedge in H, then E(X) = {L−1
GM (a), L−1

GM (b)}.

We will also need the following lemma on SM-closed graphs proved in [17].

Lemma E [17]. Let G be an SM -closed graph, let H = L−1(G) and let F be the
graph with V (F ) = {v1, v2, v3, v4, v5, z} and E(F ) = {v1v2, v2v3, v3v4, v4v5, v5v1, v3v5, zv1, zv2}
(see Fig. 3). Then H does not contain a subgraph H̄ isomorphic to the graph F such that
NH({v1, v2, v3, v5}) ⊂ V (H̄).
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Figure 3: The graph F
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2.3 The core of the preimage of an SM-closed graph

The definition of the core is slightly problematic for multigraphs, therefore we restrict our
observations to the case that we need, i.e., to preimages of 3-connected SM-closed graphs.
The difficulties then do not occur since such a multigraph cannot have pendant multiedges by
Theorem B, and cannot have pendant multitriangles (since there are no multitriangles at all).

Thus, let G be a 3-connected SM-closed graph and let H = L−1(G). The core of H is the
multigraph co(H) obtained from H by removing all pendant edges and suppressing all vertices
of degree 2.

Shao [20] proved the following properties of the core of a multigraph.

Theorem F [20]. Let H be an essentially 3-edge-connected multigraph. Then
(i) co(H) is uniquely determined,
(ii) co(H) is 3-edge-connected,
(iii) V (co(H)) dominates all edges of H,
(iv) if co(H) has a spanning closed trail, then H has a DCT.

2.4 UM-closure

As shown in [12], the concept of SM-closure can be further strengthened by omitting the
eligibility assumption in the local completion operation. Specifically, for a given claw-free
graph G, we construct a graph GU by the following construction.

(i) If G is Hamilton-connected, we set GU = K|V (G)|.
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such vertices for which the resulting graph is still not Hamilton-connected, as long
as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that

• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ V (Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ V (Gk), (Gk)

∗
x is Hamilton-connected,

and we set GU = Gk.
A graph GU obtained by the above construction is called an ultimate M-closure (or briefly a
UM-closure) of the graph G, and a graph G equal to its UM-closure is said to be UM-closed.

Obviously, by the definition, if G is UM-closed, then G is also SM-closed, implying that G
is a line graph and H = L−1(G) has special structure (contains no diamond etc. – see Fig. 2
and Theorem D (vi), (vii)). The next theorem shows that for UM-closed graphs, not only H,
but also co(H) has these strong structural properties.

Theorem G [12]. Let G be a claw-free graph and let GU be one of its UM-closures. Then
GU has the following properties:

(i) V (G) = V (GU) and E(G) ⊂ E(GU),
(ii) GU is obtained from G by a sequence of local completions at vertices,
(iii) G is Hamilton-connected if and only if GU is Hamilton-connected,
(iv) if G is Hamilton-connected, then GU = K|V (G)|,
(v) if G is not Hamilton-connected, then (GU)

∗
x is Hamilton-connected for any x ∈ V (GU),
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(vi) GU = L(H), where co(H) contains no diamond, no mutitriangle and no triple edge,
and either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge, and if co(H)

contains a double edge, then this double edge is also in H,
(vii) if GU contains no hamiltonian (a, b)-path for some a, b ∈ V (GU) and

(α) X is a triangle in co(H), then E(X) ∩ {L−1
GU (a), L

−1
GU (b)} ≠ ∅,

(β) X is a multiedge in co(H), then E(X) = {L−1
GU (a), L

−1
GU (b)}.

The following result was first established in [5], and later on reconsidered in [14] in a more
general setting.

Theorem H [14]. Let G be a {K1,3, Ni,j,k}-free graph, i, j, k ≥ 1, and let x ∈ V (G). Then
the graph G

∗
x is {K1,3, Ni,j,k}-free.

Specifically, Theorem H implies that a UM-closure of a {K1,3, Ni,j,k}-free graph is also
{K1,3, Ni,j,k}-free.

2.5 A-contractible multigraphs

For a multigraph H and F ⊂ H, H|F denotes the multigraph obtained from H by identifying
the vertices of F as a (new) vertex vF , and by replacing the created loops by pendant edges.
Specifically, if E(F ) = {e}, we simply write G|e. If H is a multigraph, X ⊂ V (H), and A is
a partition of X into subsets, then E(A) denotes the set of all edges a1a2 (not necessarily in
H) such that a1, a2 are in the same element of A. Further HA denotes the multigraph with
vertex set V (HA) = V (H) and edge set E(HA) = E(H) ∪ E(A) (where E(H) and E(A) are
considered to be disjoint, i.e., if e1 = a1a2 ∈ E(H) and e2 = a1a2 ∈ E(A), then e1, e2 are
parallel edges in HA).

Let F be a multigraph and let A ⊂ V (F ). We say that F is A-contractible, if for every
even subset X ⊂ A and for every partition A of X into two-element subsets, the graph FA

has a DCT containing all vertices of A and all edges of E(A). Note that this definition allows
X to be empty, in which case FA = F . Also, if F is A-contractible, then F is A′-contractible
for any A′ ⊂ A (since every subset X of A′ is a subset of A). As shown in [15], if F is an
AH(F )-contractible submultigraph of a multigraph H, then H has a DCT if and only if H|F
has a DCT (note that the concept was defined in [15] for graphs, but it is easy to observe that
it remains true also for multigraphs).

Several examples of A-contractible graphs are shown in Fig. 4 (where the vertices in the set
A are double-circled). Note that detailed proofs of A-contractibility are for F2 and F3 given
in [15].

In our proof, we will need the following lemma from [12].

Lemma I [12]. Let H be a multigraph, F an AH(F )-contractible submultigraph of H, and
let e1, e2 ∈ E(H) \ E(F ). Then H has an (e1, e2)-IDT if and only if H|F has an (e1, e2)-IDT.
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Figure 4: Examples of A-contractible graphs

2.6 A special version of the “Nine-point-theorem”

The well-known “Nine point theorem” by Holton et al. [9] states that a 3-connected cubic
graph contains a cycle passing through any 9 prescribed vertices. For our proof, we will need
its special version, based on a stronger version by Bau and Holton [1], and developed in [12].

Theorem J [12]. Let X ∈ {N1,1,5, N1,3,3, N2,2,3}, and let G be a 3-connected UM-closed
{K1,3, X}-free graph such that co(H), where H = L−1(G), is 2-connected. Let e1, e2 ∈ E(H)
be such that there is no (e1, e2)-IDT in H. Then for every set A ⊂ V (co(H)), |A| = 8, there
is an (e1, e2)-trail T in H such that A ⊂ Int(T ).

The following lemma will be crucial in our proof. Recall that W denotes the Wagner graph
(see Fig. 1).

Lemma K [12]. Let G be a 3-connected non-Hamilton-connected UM-closed claw-free
graph. Then G has an induced subgraph G̃ (possibly G̃ = G) such that G̃ is 3-connected,
non-Hamilton-connected and UM-closed, and, moreover, H̃0 = co(L−1(G̃)) is 2-connected, and
either c(H̃0) ≥ 9 and |V (H̃0)| ≥ 10, or H̃0 ≃ W .

3 Proof of Theorem 1

Let G be a 3-connected {K1,3, N1,1,5}-free or {K1,3, N2,2,3}-free graph and suppose, to the
contrary, that G is not Hamilton-connected. By Theorem G and Theorem H, we can suppose
that G is UM-closed. Let thus H = L−1(G), and set H0 = co(H). By Theorem F(ii), H0 is
3-edge-connected. By Lemma K, we can suppose that H0 is 2-connected and c(H0) ≥ 9 and
|V (H0)| ≥ 10, unless H0 ≃ W . Then, by Theorems J and C(ii), we have the following claim.

Claim 1. Let A ⊂ V (H0) be such that |A| = 8. Then A does not dominate all edges of H.

Proof. Since G is not Hamilton-connected, by Theorem C(ii), there are edges e1, e2 ∈ E(H)
such that there is no (e1, e2)-IDT in H. Then, by Theorem J, there is an (e1, e2)-trail T in H
such that A ⊂ Int(T ). But if A dominates all the edges in H, then T would be an (e1, e2)-IDT
in H. □

Now, if H0 ≃ W , then |V (H0)| = 8 and V (H0) dominates all edges of H, contradicting
Claim 1. Thus, we have c(H0) ≥ 9 and |V (H0)| ≥ 10. We consider separate cases for possible
values of c(H0) and |V (H0)|.
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Throughout the proof, in each of the cases, C = x1x2 . . . xc(H0) always denotes a longest
cycle in H0, R = V (H) \ V (C), N = {y ∈ V (H0)| NR(y) = ∅}, R0 = R ∩ V (H0), and if
R0 ̸= ∅, we set R0 = {y1, . . . , y|R0|} and we choose the notation such that y1x1 ∈ E(H0). An
edge xixj with xi, xj ∈ V (C), 1 ≤ i, j ≤ |V (C)|, will be called a chord of C, and we say that
xixj is a k-chord if the shorter one of the two subpaths of C determined by xi and xj has k
interior vertices. Similarly, for a vertex y ∈ R0 with NC(y) ̸= ∅, the subpaths of C determined
by the neighbors of y will be called segments of C, and a segment with k interior vertices will
be referred to as a k-segment.

Claim 2. If E(⟨R⟩H) = ∅, then H0 has no double edge.

Proof. Suppose that H0 has a double edge {e, f}. Then, since V (C) dominates all edges of
H, it follows that H has an (e, f)-IDT. But then, by Theorem G(vii)(β), G has an (a, b)-path
for every pair a, b ∈ V (G), a contradiction. □

In the proof, we will often list vertices of a subgraph Si,j,k. There are two general comments
to all these situations.

• When some edge e = xixj of the Si,j,k is in E(H0), it can always happen that e is
subdivided in H, i.e., formally, e /∈ E(H). However, it is immediate to see that if this
happens, then the corresponding subgraph of H, which instead of e = xixj contains a
path xizxj with z ∈ V2(H), also contains Si,j,k as a subgraph.

• When a vertex xi ∈ V (C) has a (potential) neighbor z ∈ R and the vertex z occurs as
the last vertex of a branch of the Si,j,k, then such a vertex z can be an endvertex of a
pendant edge attached to xi, or can be z ∈ V2(H) and z subdivides some of the edges
incident to xi. It should be noted that in the second case, the vertices xi and z can
occur in reverse order in the list (i.e., xi being the last vertex of the branch).

Throughout the proof, we always implicitly understand that there are also these possibilities.

Case 1: G is {K1,3, N1,1,5}-free.
Then H does not contain as a subgraph the graph S2,2,6.

Subcase 1.1: c(H0) = 9 and |V (H0)| ≥ 10.

First observe that E(⟨R⟩H) = ∅, since if e.g. y1z ∈ E(H) for some z ∈ R, then H contains
the subgraph S2,2,6(x1; y1z;x2x3;x9x8x7x6x5x4), a contradiction. Consequently, no vertex
in R0 is connected to C by a double edge by Claim 2. Thus, y1 has at least three distinct
neighbors on C since dH0(y1) ≥ 3.

Suppose that y1x3 ∈ E(H0). Then x2 ∈ N , for otherwise, if x2z ∈ E(H) for some
z ∈ R, either there is S2,2,6(x1;x2z; y1x3;x9x8x7x6x5x4) in H if z ̸= y1, or the cycle C ′ =
x1y1x2 . . . x9x1 is longer than C if z = y1, a contradiction. Hence {x2, y1} ⊂ N and, by the
same argument for y2, . . . , y|R0| and since E(⟨R⟩H) = ∅, we have {x2, y1, . . . , y|R0|} ⊂ N .
This implies that the set A = {x1, x3, x4, x5, x6, x7, x8, x9} with |A| = 8 dominates all
edges in H, contradicting Claim 1. Thus, y1x3 /∈ E(H0).

Since dC(y1) ≥ 3 and |V (C)| = 9, the only possibility is, up to a symmetry, that
NC(y1) = {x1, x4, x7}. Then again x2 ∈ N , for otherwise, for a neighbor z of x2 in R, we
have S2,2,6(x1;x2z;x9x8; y1x7x6x5x4x3) in H if z ̸= y1, or a longer cycle if z = y1, a contra-
diction. By symmetry, we have V (C) \ {x1, x4, x7} ⊂ N , implying that, if |V (H0)| > 10,
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all yi, i = 2, . . . , |R0|, are adjacent to x1, x4 and x7, and to no other vertices of C. Then
the set A = V (C) \ {x9} with |A| = 8 dominates all edges in H, contradicting Claim 1.

Subcase 1.2: c(H0) = |V (H0)| = 10.

By Theorem G(vi), H0 has at most two triangles. Hence, since δ(H0) ≥ 3, it follows that
C has a k-chord for some k ≥ 2. We consider possible cases.

Subcase 1.2.1: x1x4 ∈ E(H0).

We show that {x2, x5, x7} ⊂ N . Thus, let z ∈ R and consider the following possibilities.

Edge S2,2,6 in H
x2z ∈ E(H) S2,2,6(x1;x2z;x4x3;x10x9x8x7x6x5)
x5z ∈ E(H) S2,2,6(x4;x3x2;x5z;x1x10x9x8x7x6)
x7z ∈ E(H) S2,2,6(x4;x3x2;x5x6;x1x10x9x8x7z)

Hence we have {x2, x5, x7} ⊂ N and, by symmetry, also {x3, x8, x10} ⊂ N . Now, the
set A = V (C) \ {x3, x5} with |A| = 8 dominates all edges of H, contradicting Claim 1,
unless x3x5 ∈ E(H0). Hence x3x5 ∈ E(H0). Symmetrically, x2x10 ∈ E(H0). Similarly,
considering the set A = V (C)\{x5, x7} with |A| = 8, we have x5x7 ∈ E(H0). But then
x3x5, x2x10 and x5x7 are three 1-chords in C, determining three triangles in H0, which
contradicts Theorem G(vi). Thus, C has no 2-chord.

Subcase 1.2.2: x1x5 ∈ E(H0).

Then x6 ∈ N , for otherwise we have a subgraph S2,2,6(x1;x2x3;x5x4;x10x9x8x7x6z) in
H for z ∈ R with x6z ∈ E(H). Hence x6 ∈ N and, symmetrically, x10 ∈ N . If x6x10 /∈
E(H), then A = V (C) \ {x6, x10} is a set of 8 vertices in H0 that dominates all edges
of H, contradicting Claim 1. Thus, x6x10 ∈ E(H0). By symmetry, {x1, x5, x6, x10} ⊂
N . Then, considering the set A = V (C) \ {x1, x6}, Claim 1 implies x1x6 ∈ E(H0).
Symmetrically, x5x10 ∈ E(H0). But then ⟨{x1, x5, x6, x10}⟩H ≃ K4, contradicting
Theorem G(vi). Thus, C has no 3-chord.

By Subcases 1.2.1 and 1.2.2 and since |V (C)| = 10, C can have only 4-chords, plus at
most two 1-chords. Thus, at most 4 vertices of C can be in a 1-chord, implying that
C has at least three 4-chords. Since |V (C)| = 10, there always is a pair of 4-chords
such that their endvertices are on C at distance 2. Thus, let, say, x1x6 ∈ E(H0) and
x3x8 ∈ E(H0). Then x2 ∈ N , since otherwise, for a z ∈ R with x2z ∈ E(H), we have
S2,2,6(x1;x2z;x10x9;x6x7x8x3x4x5) in H. Symmetrically also x7 ∈ N . Considering the set
A = V (C)\{x2, x7} with |A| = 8, by Claim 1 we have x2x7 ∈ E(H0). Now, x1 ∈ N , since
otherwise, for a z ∈ R with x1z ∈ E(H) we have S2,2,6(x6;x1z;x7x2;x5x4x3x8x9x10) in H.
Thus, we have {x1, x2, x7} ⊂ N . Considering the set A = V (C) \ {x1, x7} with |A| = 8,
we have x1x7 ∈ E(H0) by Claim 1. However, x1x7 is a 3-chord, and, by symmetry, we
are back in Subcase 1.2.2.

Subcase 1.3: c(H0) = 10 and |V (H0)| ≥ 11.

Then E(⟨R⟩H) = ∅, for if there is a z ∈ R with e.g. zy1 ∈ E(H), then H contains
S2,2,6(x1; y1z;x2x3;x10x9x8x7x6x5). Hence R ⊂ N , and no vertex in R0 is attached to C
by a double edge by Claim 2. Since δ(H0) ≥ 3, every vertex in R0 has at least three
distinct neighbors on C. We consider the possible cases.
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Subcase 1.3.1: y1x4 ∈ E(H0).

Then we have S2,2,6(x1; y1x4;x2x3;x10x9x8x7x6x5) in H0, a contradiction.

Subcase 1.3.2: y1x5 ∈ E(H0).

Then x6 ∈ N since otherwise H contains S2,2,6(x1; y1x5;x2x3;x10x9x8x7x6z) for some
z ∈ R with zx6 ∈ E(H). Symmetrically also x10 ∈ N . If x6x10 ∈ E(H0), then the set
A = V (C)\{x6, x10} with |A| = 8 dominates all edges of H (recall that R ⊂ N). Hence
x6x10 ∈ E(H0) by Claim 1. But then H contains S2,2,6(x6;x7x8;x10x9;x5y1x1x2x3x4),
a contradiction.

By Subcases 1.3.1 and 1.3.2, by symmetry and since C is longest, the neighbors of y1 on
C can be at distance (along C) either 2, or at least 5. However, it is straightforward to
verify that this is not possible since |V (C)| = 10.

Subcase 1.4: c(H0) = |V (H0)| = 11.

Since δ(H0) ≥ 3 and R0 = ∅, every vertex of C is in a chord. We consider the possible
cases.

Subcase 1.4.1: x1x4 ∈ E(H0).

Then we have S2,2,6(x1;x2x3;x4x5;x11x10x9x8x7x6) in H0, a contradiction. Thus, by
symmetry, there is no 2-chord.

Subcase 1.4.2: x1x5 ∈ E(H0).

Then we have S2,2,6(x1;x2x3;x5x4;x11x10x9x8x7x6) in H0, a contradiction. Thus, by
symmetry, there is no 3-chord.

We observe the following fact.

Claim 3. If e = xixi+5 is a 4-chord of C, then {xi−1, xi+6} ⊂ N (indices modulo 11).

Proof. Choose the notation such that i = 1. If x7 is adjacent to a z ∈ R, then we have
S2,2,6(x1;x2x3;x6x5;x11x10x9x8x7z) in H, hence x7 ∈ N . Symmetrically, x11 ∈ N . □

We show that C has no 1-chord. Thus, let, to the contrary, x1x3 ∈ E(H0). By The-
orem G(vi), H0 contains no diamond, and hence x4, x11 /∈ NH0(x2). Since δ(H0) ≥ 3
and C has neither 2-chords nor 3-chords, we may assume, by symmetry, that x2x7 ∈
E(H0). By Claim 3, we have {x1, x8} ⊂ N . Moreover, x2 ∈ N , for otherwise we have
S2,2,6(x1;x2z;x3x4;x11x10x9x8x7x6) in H for some neighbor z of x2 in R, and also x10 ∈ N
since for a z ∈ R with zx10 ∈ E(H) we have S2,2,6(x7;x8x9;x6x5;x2x3x1x11x10z) in H.
Thus, we have {x1, x2, x8, x10} ⊂ N .

Considering the set A = V (C) \ {x2, x8, x10} with |A| = 8 and since x2x10 /∈ E(H0) by
Subcase 2.4.1, either x2x8 ∈ E(H0) or x8x10 ∈ E(H0) by Claim 1. Similarly, considering
the set A = V (C) \ {x1, x8, x10} with |A| = 8 and since x1x8 /∈ E(H0) by Subcase 2.4.2,
either x1x10 ∈ E(H0) or x8x10 ∈ E(H0). Thus, there is at least one of the edges x2x8,
x8x10, and also at least one of the edges x1x10, x8x10. Since each of these edges creates a
triangle, and there already is one triangle in H0 (created by the 1-chord x1x3), the only
possibility is that x8x10 ∈ E(H0). Now, since dH0(x11) ≥ 3, by the previous subcases and
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since H0 does not contain a diamond, we have x11x5 ∈ E(H0) or x11x6 ∈ E(H0) (recall
that we also have {x1, x2, x8, x10} ⊂ N).

Let first x11x5 ∈ E(H0). Then x6 ∈ N by Claim 3, and considering the set A = V (C) \
{x2, x6, x10} with |A| = 8, Claim 1 implies that H0 contains at least one of the edges
x2x6, x6x10, x2x10. However, each of these edges contradicts Subcase 1.4.1 or 1.4.2. Thus,
we have x11x6 ∈ E(H0). Then similarly x5 ∈ N by Claim 3, and we have an analogous
contradiction by Claim 1 considering the set A = V (C) \ {x1, x5, x8}. Thus, C has no
1-chord.

By the previous considerations, C has no k-chord for k = 1, 2, 3. Since δ(H0) ≥ 3,
every vertex of C is in a 4-chord. By symmetry, let x1x6 ∈ E(H0). Then x9 is in a
4-chord and, again by symmetry, we can suppose that x3x9 ∈ E(H0). Then H0 contains
S2,2,6(x9;x8x7;x10x11;x3x2x1x6x5x4), a contradiction.

Subcase 1.5: c(H0) ≥ 11 and |V (H0)| > c(H0).

First observe that, as in Subcase 1.3, E(⟨R⟩H) = ∅ (otherwise there is an S2,2,6 in H),
implying R ⊂ N , and that no vertex in R0 is attached to C by a double edge by Claim 2.
Since δ(H0) ≥ 3, every vertex in R0 has at least three distinct neighbors on C, and we
consider possible cases. Set |V (C)| = t.

Subcase 1.5.1: y1x4 ∈ E(H0).

Then we have S2,2,6(x1;x2x3; y1x4;xtxt−1xt−2xt−3xt−4xt−5). Thus, there is no 2-segment
on C.

Subcase 1.5.2: y1x5 ∈ E(H0).

Then we similarly have S2,2,6(x1;x2x3; y1x5;xtxt−1xt−2xt−3xt−4xt−5). Thus, there is no
3-segment on C.

By Subcases 1.5.1 and 1.5.2, y1 determines on C only 1-segments and k-segments for
k ≥ 4, and there are at least three segments determined by y1. We distinguish possible
cases, where, in each of the cases, we always consider k1-segments and k2-segments such
that k1 ≤ k2 and k1 + k2 is smallest possible.

Subcase 1.5.3: k1 = k2 = 1.

By symmetry, we can choose the notation such that {x1, x3, x5} ⊂ NC(y1), and then
we have S2,2,6(y1;x1x2;x3x4;x5x6x7x8x9x10) in H.

Subcase 1.5.4: k1 = 1, k2 ≥ 4.

Then, by symmetry, {x1, x3, xk2+4} ⊂ NC(y1) and, by the choice of k1 and k2, t ≥
2k2 + 4 ≥ 12. Then we have S2,2,6(x3;x2x1;x4x5; y1xk2+4xk2+5xk2+6xk2+7xk2+8) in H.

Subcase 1.5.5: 4 ≤ k1 ≤ k2.

Then {x1, xk1+2, xk1+k2+3} ⊂ NC(y1) and t ≥ k1 + 2k2 + 3 ≥ 15. Then we have
S2,2,6(x1;x2x3;xtxt−1; y1xk1+2xk1+3xk1+4xk1+5xk1+6).

Subcase 1.6: c(H0) = |V (H0)| ≥ 12.

Since δ(H0) ≥ 3 and R0 = ∅, every vertex of C is in a chord, and we consider the possible
cases. Set |V (C)| = t.
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Subcase 1.6.1: x1x4 ∈ E(H0).

Then we have S2,2,6(x1;x2x3;x4x5;xtxt−1xt−2xt−3xt−4xt−5) in H0, a contradiction. By
symmetry, there is no 2-chord.

Subcase 1.6.2: x1xi ∈ E(H0), i ∈ {5, 6}.
Then we have S2,2,6(x1;x2x3;xixi−1;xtxt−1xt−2xt−3xt−4xt−5) in H0, a contradiction.
Thus, by symmetry, there is no 3-chord and no 4-chord.

Subcase 1.6.3: x1x7 ∈ E(H0).

If t ≥ 13, we similarly have S2,2,6(x1;x2x3;x7x6;xtxt−1xt−2xt−3xt−4xt−5). Thus, suppose
that t = 12. By the previous subcases, there are only 1-chords and 5-chords. Since H0

has at most two triangles, there are at most two 1-chords, and since t = 12 and every
vertex of C is in a chord, there are three vertices that are consecutive on C and each
of them is in a 5-chord. Choose the notation such that x1x7 ∈ E(H0), x2x8 ∈ E(H0)
and x3x9 ∈ E(H0). Then we have S2,2,6(x1;x2x8;x12x11;x7x6x5x4x3x9) in H0.

Subcase 1.6.4: x1xi ∈ E(H0), i ≥ 8.

Then, by the definition of a chord (the shorter one of the two paths), t ≥ 2i− 2 ≥ 14,
and we have S2,2,6(x1;xixi+1;xtxt−1;x2x3x4x5x6x7) in H0.

Case 2: G is {K1,3, N2,2,3}-free.
Then H does not contain as a subgraph the graph S3,3,4. In this case, we make an additional
choice of the cycle C; namely, we choose C such that

(i) C is a longest cycle in H0, and
(ii) subject to (i), C dominates the maximum number of edges of H.

Subcase 2.1: c(H0) = 9 and |V (H0)| ≥ 10.

Subcase 2.1.1: E(⟨R⟩H) ̸= ∅.
Let e ∈ E(⟨R⟩H). By Theorem F(iii), we can choose the notation such that e = y1z1,
where y1 ∈ R0 and z1 ∈ R, and, if possible, we choose e and y1 such that |NC(y1)| ≥ 3.

Subcase 2.1.1.1: |NC(y1)| ≥ 3.

We first show that x5, x6 /∈ NH0(y1). Let, say, e.g. y1x5 ∈ E(H0). Clearly
x2, x4, x6, x9 /∈ NC(y1) since C is longest. By the assumption of the subcase and
by symmetry, y1x3 ∈ E(H0) or y1x7 ∈ E(H0). If y1x3 ∈ E(H0), then NR(x4) = ∅,
since otherwise, for a z ∈ NR(x4) we have S3,3,4(x1; y1x5x6;x9x8x7;x2x3x4z) in H,
but then the cycle C ′ = x1x2x3y1x5 . . . x9x1 dominates in H more edges than C,
contradicting choice (ii) of C. Similarly, if y1x7 ∈ E(H0), then NR(x6) = ∅ (other-
wise we have S3,3,4(x1;x2x3x4;x9x8x7; y1x5x6z) in H for a z ∈ NR(x6)), and then the
cycle C ′ = x1x2x3x4x5y1x7x8x9x1 dominates in H more edges than C, contradicting
choice (ii) of C. Thus, by symmetry, x5, x6 /∈ NH0(y1).

Since |NC(y1)| ≥ 3, y1 determines on C three segments, say, ki-segments, i = 1, 2, 3,
and since |V (C) \ NC(y1)| ≤ 6, the possible distributions of interior vertices of the
segments are (k1, k2, k3) = (1, 1, 4), (k1, k2, k3) = (1, 2, 3) or (k1, k2, k3) = (2, 2, 2)
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(where we admit that the 4-segment in the case (1, 1, 4) or the 3-segment in the case
(1, 2, 3) can be further subdivided by another neighbor of y1 if |NC(y1)| > 3).

However, in the first case we have y1x5 ∈ E(H0) and in the second case we have y1x6 ∈
E(H0) (or a symmetric situation), a contradiction. Thus, we have (k1, k2, k3) =
(2, 2, 2), implying NC(y1) = {x1, x4, x7}.
We observe that NR(xi) = ∅ for i = 2, 3, 5, 6, 8, 9 since if, say, y2z ∈ E(H) for some
z ∈ R, we have S3,3,4(x4;x3x2z;x5x6x7; y1x1x9x8) in H; other cases are symmetric.
Since H0 is 3-edge-connected, each of the vertices x2, x3, x5, x6, x8, x9 is either in a
double edge or in a chord. By Theorem G(vi) and by symmetry, we can choose the
notation such the segment x1x2x3x4 contains neither a double edge nor a 1-chord.
Considering possible chords containing x2, we have the following possibilities.

Chord Contradiction
x2x5 C ′ = x1y1x4x3x2x5x6x7x8x9x1 is longer than C
x2x6 S3,3,4(x2;x3x4x5;x1y1z1;x6x7x8x9) in H
x2x7 S3,3,4(x2;x7y1z1;x1x9x8;x3x4x5x6) in H
x2x8 C ′ = x1y1x7x6x5x4x3x2x8x9x1 is longer than C
x2x9 S3,3,4(x2;x1y1z1;x3x4x5;x9x8x7x6) in H

In each of the cases, we have reached a contradiction.

Subcase 2.1.1.2: |NC(y1)| = 2.

By the connectivity, one of the two connections of y1 to C is a double edge and
hence, by Theorem G(vi)(β), there is no other double edge in H0. Hence y1 is the
only vertex in H0 that has a neighbor in R. This also implies that H0 is triangle-
free. Obviously, x2, x9 /∈ NC(y1) since C is longest. Thus, by symmetry, we have
y1x3 ∈ E(H0), y1x4 ∈ E(H0) or y1x5 ∈ E(H0). In each of these cases, each of the
vertices in V (C) \ NC(y1) (specifically, x2 in the first two cases and x3 in the third
case) must be connected to some other vertex of C by a chord or by a path P of
length two with an interior vertex in R0 since H0 is 3-edge-connected.

Below we list (up to a symmetry) all possible cases. Here, if we give an S3,3,4 for
some chord, say, x2xj, it is always implicitly understood that x2xj can also be a path
of length two, in which case the listed graph contains an S3,3,4 as a proper subgraph.
Also note that although there is no 1-chord since H0 is triangle-free, x2 can be still
connected to x4 or to x9 by a path of length two with interior vertex, say, y2 ∈ R0.
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Case Chord or path Contradiction: S3,3,4 in H
y1x3 ∈ E(H0) P = x2y2x4 S3,3,4(x2; y2x4x5;x3y1z1;x1x9x8x7)

x2x5 ∈ E(H0) S3,3,4(x5;x2x1x9;x6x7x8;x4x3y1z1)
x2x6 ∈ E(H0) S3,3,4(x2;x3x4x5;x1y1z1;x6x7x8x9)

y1x4 ∈ E(H0) P = x2y2x4 S3,3,4(x4; y2x2x3; y1x1x9;x5x6x7x8)
x2x5 ∈ E(H0) S3,3,4(x2;x5x6x7;x1x9x8;x3x4y1z1)
x2x6 ∈ E(H0) S3,3,4(x2;x3x4x5;x1y1z1;x6x7x8x9)
x2x7 ∈ E(H0) S3,3,4(x2;x7x8x9;x1y1z1;x3x4x5x6)
x2x8 ∈ E(H0) S3,3,4(x8;x2x3x4;x7x6x5;x9x1y1z1)
P = x2y2x9 S3,3,4(x2;x3x4x5;x1y1z1; y2x9x8x7)

y1x5 ∈ E(H0) P = x3y2x5 S3,3,4(x5; y2x3x4; y1x1x2;x6x7x8x9)
x3x6 ∈ E(H0) S3,3,4(x3;x6x7x8;x2x1x9;x4x5y1z1)
x3x7 ∈ E(H0) S3,3,4(x3;x4x5x6;x7x8x9;x2x1y1z1)

In each of the possible cases, we have reached a contradiction.

Subcase 2.1.2: E(⟨R⟩H) = ∅.
By Claim 2, H0 has no double edge, implying that every vertex in R0 has three distinct
neighbors on C. If, say, y1x5 ∈ E(H0), then x4 has no neighbor in R (otherwise, for
a z ∈ NR(x4), we have S3,3,4(x1; y1x5x6;x9x8x7;x2x3x4z) in H), and then, considering
the set A = V (C) \ {x4} with |A| = 8, we have a contradiction by Claim 1. Hence,
by symmetry, y1 adjacent to neither x5 nor x6. This implies that, similarly as in
Subcase 2.1.1.1, for y1, (k1, k2, k3) = (2, 2, 2) is the only possible distribution of segments
on C. Thus, we have NC(y1) = {x1, x4, x7}. If there is a z ∈ NR(x3), we have
S3,3,4(x1;x2x3z; y1x4x5;x9x8x7x6) in H, hence NR(x3) = ∅. But then again, considering
the set A = V (C) \ {x3} with |A| = 8, we have a contradiction by Claim 1.

Subcase 2.2: c(H0) = |V (H0)| = 10.

Subcase 2.2.1: C has a 3-chord.

Let x1x5 ∈ E(H0) be a 3-chord of C, and let z ∈ R be adjacent (in H) to a vertex on
C. We consider the following cases.

Case Contrdiction: S3,3,4 in H
zx2 ∈ E(H) S3,3,4(x5;x6x7x8;x1x10x9;x4x3x2z)
zx6 ∈ E(H) S3,3,4(x1;x2x3x4;x5x6z;x10x9x8x7)
zx7 ∈ E(H) S3,3,4(x5;x4x3x2;x6x7z;x1x10x9x8)

Thus, we have NR({x2, x6, x7}) = ∅, and, by symmetry, also NR({x4, x9, x10}) = ∅.
Now, considering the set A1 = V (C) \ {x2, x4} with |A1| = 8, we have x2x4 ∈ E(H0)
by Claim 1. Similarly, considering the set A2 = V (C) \ {x7, x9} with |A2| = 8 and the
set A3 = V (C) \ {x2, x10} with |A3| = 8, we have x7x9 ∈ E(H0) and x2x10 ∈ E(H0)
by Claim 1. But then T1 = x2x3x4x2, T2 = x7x8x9x7 and T3 = x2x1x10x2 are three
triangles in H0, contradicting Theorem G(v). Thus, C has no 3-chord.

Subcase 2.2.2: C has a 4-chord.

Let x1x6 ∈ E(H0) be a 4-chord of C. Then NR(x3) = ∅ (otherwise, for a z ∈ NR(x3),
we have S3,3,4(x1;x2x3z;x6x5x4;x10x9x8x7) in H), and, symmetrically, NR(x9) = ∅.
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Moreover, x3x9 /∈ E(H0) by Subcase 2.2.1. But then, considering the set A = V (C) \
{x3, x9} with |A| = 8, we have a contradiction by Claim 1. Thus, C has no 4-chord.

By Subcases 2.2.1 and 2.2.2., every vertex of C is in a 1-chord or in a 2-chord. Since
there are at most two 1-chords by Theorem G(v), we can choose the notation such that
x1 is in a 2-chord, i.e., x1x4 ∈ E(H0).

Claim 4. If xixi+3 is a 2-chord of C, then NR({xi+1, xi+2}) = ∅ (indices modulo 10).

Proof. By symmetry, set i = 1. If z ∈ NR(x3), then S3,3,4(x1;x2x3z;x4x5x6;x10x9x8x7)
is a subgraph of H, a contradiction. Hence NR(x3) = ∅. Symmetrically, NR(x2) = ∅. □

Thus, by Claim 4, we have NR({x2, x3}) = ∅. Suppose that x2 is in a 2-chord. Then
either x2x5 ∈ E(H0), or x2x9 ∈ E(H0).

Let first x2x5 ∈ E(H0). Then we have NR(x4) = ∅ by Claim 4, and, considering the
set A = V (C) \ {x2, x4} with |A| = 8, we have x2x4 ∈ E(H0) by Claim 1. But then
⟨{x1, x2, x4, x5}⟩H0 is a diamond in H0, a contradiction. Hence x2x5 /∈ E(H0).

Secondly, let x2x9 ∈ E(H0). Then, again by Claim 4, we have NR({x1, x10}) = ∅.
Considering the set A = V (C) \ {x2, x10} with |A| = 8, we have x2x10 ∈ E(H0) by
Claim 1, but then ⟨{x1, x2, x9, x10}⟩H0 is a diamond or a K4 in H0, a contradiction again.
Hence x2 is in a 1-chord. Symmetrically, x3 is also in a 1-chord, and since H0 is diamond-
free, we have x2x10 ∈ E(H0) and x3x5 ∈ E(H0). Then NR(x4) = ∅, since otherwise
we have S3,3,4(x2;x1x4z;x3x5x6;x10x9x8x7) in H for a z ∈ NR(x4). Recall that also
NR(x2) = ∅ by Claim 4. But then, considering the set A = V (C) \ {x2, x4} with |A| = 8,
we have x2x4 ∈ E(H0), implying that ⟨{x1, x2, x3, x4}⟩H0 is a diamond or a K4 in H0, a
contradiction.

Subcase 2.3: c(H0) ≥ 10 and |V (H0)| > c(H0).

Set |V (C)| = t. If y1 determines on C a 3-segment, i.e., y1x5 ∈ E(H0), we have
S3,3,4(x1;x2x3x4; y1x5x6;xtxt−1xt−2xt−3) in H0, if y1 determines on C a 4-segment, i.e.,
y1x6 ∈ E(H0), we have S3,3,4(x1; y1x6x7;xtxt−1xt−2;x2x3x4x5) in H0, and if y1 determines
on C a k-segment with k ≥ 5, i.e., y1xk+2 ∈ E(H0), then, by the definition of a segment
(the shorter one of the two subpaths of C), necessarily t ≥ 2k + 2, and then we have
S3,3,4(x1; y1xk+2xk+3;xtxt−1xt−2;x2x3x4x5) in H0. Thus, by symmetry, every vertex in R0

determines on C only 1-segments and 2-segments.

Now, if a vertex in R0, say, y1, has three distinct neighbors on C, then necessarily y1 is
adjacent to some of x5, x6 or x7, and we are in some of the previous cases. Thus, y1 has
two neighbors on C, and one of the two connections of y1 to C is a double edge. This
implies that R0 = {y1}, |V (H0)| = t + 1, and H0 is triangle-free. Choose the notation
such that NC(y1) = {x1, x3} or NC(y1) = {x1, x4}. Since δ(H0) ≥ 3, the vertex x2 has,
besides x1 and x3, another neighbor in H0. Clearly NR0(x2) = ∅ since R0 = {y1} and C
is longest, and also x2x4, x2xt /∈ E(H0) since H0 is triangle-free.

Let first y1x3 ∈ E(H0). Up to a symmetry, we have the following possibilities (note that
if x2xk ∈ E(H0) for k ≥ 7, then t ≥ 2k − 4 by symmetry).

15



Case Contradiction: S3,3,4 in H0

x2x5 ∈ E(H0) S3,3,4(x1; y1x3x4;x2x5x6;xtxt−1xt−2xt−3)
x2x6 ∈ E(H0) S3,3,4(x1; y1x3x4;x2x6x5;xtxt−1xt−2xt−3)
x2xk ∈ E(H0), k ≥ 7 S3,3,4(x1; y1x3x4;xtxt−1xt−2;x2xkxk−1xk−2)

Thus, y1x4 ∈ E(H0). Then we have the following possibilities.

Case Contradiction: S3,3,4 in H0

x2x5 ∈ E(H0) S3,3,4(x1; y1x4x3;x2x5x6;xtxt−1xt−2xt−3)
x2x6 ∈ E(H0) S3,3,4(x1; y1x4x3;x2x6x5;xtxt−1xt−2xt−3)
x2xk ∈ E(H0), 7 ≤ k ≤ t− 3 S3,3,4(x1; y1x4x3;xtxt−1xt−2;x2xkxk−1xk−2)
x2xt−2 ∈ E(H0) S3,3,4(x2;x3x4y1;x1xtxt−1;xt−2xt−3xt−4xt−5)
x2xt−1 ∈ E(H0) S3,3,4(x4; y1x1xt;x3x2xt−1;x5x6x7x8)

Subcase 2.4: c(H0) = |V (H0)| ≥ 11.

Set |V (C)| = t. We recall that H0 has no double edge by Claim 2. Since δ(H0) ≥ 3, every
vertex of C is in at least one chord.

If C has a 3-chord, say, x1x5 ∈ E(H0), we have S3,3,4(x1;x2x3x4;x5x6x7;xtxt−1xt−2xt−3)
in H0, and, similarly, if C has a k-chord for k ≥ 4, then t ≥ max{2k + 2, 11} by the
definition of a chord, and we have S3,3,4(x1;xk+2xk+3xk+4;xtxt−1xt−2;x2x3x4x5) in H0.
Thus, the only possible chords in C are 1-chords and 2-chords.

We show that there is no 1-chord. Let, to the contrary, x1x3 ∈ E(H0) be a 1-chord of C.
Since x2 must be in a chord and a 1-chord at x2 would create a diamond, by symmetry,
we have x2x5 ∈ E(H0). We consider possible chords at x4. Since both x1x4 and x2x4

create a diamond, necessarily x4x6 ∈ E(H0) or x4x7 ∈ E(H0). However, if x4x7 ∈ E(H0),
we have S3,3,4(x1;x2x5x6;x3x4x7;xtxt−1xt−2xt−3) in H0, hence x4x6 ∈ E(H0). Now, if x5

has another neighbor on C, then the only possibility is x5x8 ∈ E(H0) (all other chords
at x5 create a diamond), but then we have S3,3,4(x1;x3x4x6;xtxt−1xt−2;x2x5x8x7) in H0.
Thus, x5x8 /∈ E(H0), and, symmetrically, x2x10 /∈ E(H0).

We summarize that the subgraph F = ⟨{x1, x2, x3, x4, x5, x6}⟩H0 is isomorphic to the
graph F in Fig. 3, and the vertices x2, x3, x4, x5 have no other neighbors on C outside F .
Moreover, if, say, x5 has a neighbor z ∈ R, we have S3,3,4(x1;x2x5z;x3x4x6;xtxt−1xt−2xt−3)
in H; thus, by symmetry, none of the vertices x2, x3, x4, x5 has a neighbor in R. We
conclude that F is a subgraph of H, and NH({x2, x3, x4, x5}) ⊂ V (F ), which contradicts
Lemma E. Thus, C has no 1-chord, implying that the only possible chords are 2-chords.

Claim 5. If xixi+3 ∈ E(H0) is a 2-chord of C for some i, 1 ≤ i ≤ t, then dH0(xi+1) =
dH0(xi+2) = 3 (indices modulo t).

Proof. Clearly 3 ≤ dH0(x) ≤ 4 for x ∈ V (C). Let, say, x3x6 ∈ E(H0) be a 2-
chord of C, and suppose that dH0(x4) = 4. Then x1x4, x4x7 ∈ E(H0), and we have
S3,3,4(x1;x4x7x8;xtxt−1xt−2;x2x3x6x5) in H0. Hence dH0(x4) = 3, and, symmetrically,
dH0(x5) = 3. □
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Claim 6. Let xixi+3, xi+1xi+4, xi+2xi+5 be 2-chords of C for some i, 1 ≤ i ≤ t (indices
modulo t), and let X = ⟨{xi, xi+1, xi+2, xi+3, xi+4, xi+5}⟩H0 . Then

(i) X is isomorphic to the graph F4 in Fig. 4,
(ii) NH({xi+1, xi+2, xi+3, xi+4}) ⊂ V (X),
(iii) AH0(X) = {xi, xi+5}.

Proof. (i) Part (i) is obvious since any further edge in X would be a k-chord of C for
k ̸= 2.

(ii) Let, say, xi+2y ∈ E(H) for some y /∈ V (X). If y ∈ V (C), then dH0(xi+2) = 4, contra-
dicting Claim 5, and if y ∈ R, we have S3,3,4(xi;xi+1xi+2y;xi+3xi+4xi+5;xi−1xi−2xi−3xi−4)
in H. Thus, NH(xi+2) ⊂ V (X), and, by symmetry, NH({xi+1, xi+2, xi+3, xi+4}) ⊂ V (X).

(iii) By (ii), xi and xi+5 are the only vertices of X having a neighbor outside X. □

We show that H0 has no vertices of degree 4. Let, to the contrary, say, dH0(x6) = 4.
Then x6 is in two 2-chords, i.e., x3x6, x6x9 ∈ E(H0). By Claim 5, dH0(x4) = dH0(x5) =
3, implying |NH0(x4) ∩ {x1, x7}| = |NH0(x5) ∩ {x2, x8}| = 1. If x4x7 ∈ E(H0), then
H0 contains S3,3,4(x6;x3x2x1;x9x10x11;x5x4x7x8); hence x1x4 ∈ E(H0). By symmetry,
x5x8 /∈ E(H0), implying x2x5 ∈ E(H0). Symmetrically, x7x10, x8x11 ∈ E(H0). Set
X1 = ⟨{x1, x2, x3, x4, x5, x6}⟩H0 and X2 = ⟨{x6, x7, x8, x9, x10, x11}⟩H0 . By Claim 6, we
have X1 ≃ X2 ≃ F4 (where F4 is the graph in Fig. 4), AH0(X1) = {x1, x6}, AH0(X2) =
{x6, x11}, and Xi is AH0(Xi)-contractible, i = 1, 2.

Let first t = 11. The set {x3, x5, x9} is independent in H0 and, by Claim 6(ii), we have
NR({x3, x5, x9}) = ∅. Considering the set A = V (C) \ {x3, x5, x9} with |A| = 8, we have
a contradiction by Claim 1. Thus, t ≥ 12.

Then necessarily dH0(x1) = 4 or dH0(x11) = 4, for otherwise {x1xt, x11x12} is an edge-cut of
H0, a contradiction. By symmetry, let dH0(x11) = 4. Then x11 is, besides the chord x8x11,
in another 2-chord of C, implying t ≥ 14 and x11x14 ∈ E(H0). However, since x12 and
x13 must have a chord, by Claim 5, we have t ≥ 16 and x12x15, x13x16 ∈ E(H0). Set X3 =
⟨{x11, x12, x13, x14, x15, x16}⟩H0 . By Claim 6, we have X3 ≃ F4, NH({x12, x13, x14, x15}) ⊂
V (X3), AH0(X3) = {x11, x16}, and X3 is AH0(X3)-contractible. But then X1, X2 and X3

are three contractible subgraphs of H, contradicting Lemma I. Thus, there is no vertex
of degree 4, i.e., H0 is cubic, implying that t is even and t ≥ 12.

Let now x1x4 be a 2-chord of C. Since dH0(x2) = dH0(x3) = 3, up to a symmetry,
either x2x5, x3x6 ∈ E(H0), or x2xt−1, x3x6 ∈ E(H0) (or x2x5, x3xt ∈ E(H0), which is
symmetric with the first possibility). If x2x5, x3x6 ∈ E(H0), then, by Claim 6, again X1 =
⟨{x1, x2, x3, x4, x5, x6}⟩H0 ≃ F4, NH({x2, x3, x4, x5}) ⊂ V (X1) and AH0(X1) = {x1, x6},
but then {x1xt, x6x7} is an edge-cut of H0, a contradiction. Thus, x2xt−1, x3x6 ∈ E(H0).
Now, x2x5 /∈ E(H0) by Claim 5, and since dH0(x5) = 3, x5x8 ∈ E(H0). But then we have
S3,3,4(x1;x4x5x8;xtxt−1xt−2;x2x3x6x7) in H0, a contradiction.
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4 Concluding remarks

1. Theorems A and 1 can be slightly extended as follows. For s ≥ 0, a graph G is s-Hamilton-
connected if the graph G − M is Hamilton-connected for any set M ⊂ V (G) with |M | ≤ s.
Obviously, an s-Hamilton-connected graph must be (s+ 3)-connected. Since an induced sub-
graph of a {K1,3, Ni,j,k}-free graph is also {K1,3, Ni,j,k}-free, we immediately have the following
fact, showing that the obvious necessary condition is also sufficient in {K1,3, Ni,j,k}-free graphs.

Corollary 2. Let s, i, j, k be integers such that s ≥ 0, i, j, k ≥ 1 and i + j + k ≤ 7,
and let G be a {K1,3, Ni,j,k}-free graph. Then G is s-Hamilton-connected if and only if G is
(s+ 3)-connected.

2. We will now discuss sharpness of the known results and the remaining open cases in the
characterization of all pairs of connected graphs X, Y that might imply a 3-connected {X, Y }-
free graph to be Hamilton-connected. To avoid trivial cases, we restrict the observations to
X, Y ̸≃ P3. Starting from the negative side, we recall the following result that appeared in [4].

Theorem L [4]. If X, Y is a pair of connected graphs such that X, Y ̸≃ P3 and every
3-connected {X, Y }-free graph is Hamilton connected, then, up to a symmetry, X = K1,3 and
Y satisfies each of the following conditions:

(a) ∆(Y ) ≤ 3,
(b) any longest induced path in Y has at most 9 vertices,
(c) Y contains no cycles of length at least 4,
(d) the distance between two distinct triangles in Y is either 1 or at least 3,
(e) There are at most two triangles in Y ,
(f) Y is claw-free.

Moreover, item (d) was reduced in [7] to read
(d′) the distance between two distinct triangles in Y is either 1 or 3.

The reduction in [7] consists in two steps: excluding even lengths, and showing that length 5
is not possible (knowing that length more than 5 is not possible by (b)). The graph used in the
first step can be easily turned into an infinite family by attaching in the preimage arbitrarily
many pendant edges to vertices of degree 3; however, the graph used in the second step has
20 vertices and any additional pendant edge or subdivision in the preimage makes it contain
an induced Γ5. Thus, distance 5 might be still possible for n = |V (G)| ≥ 21. We therefore
replace (d′) with the following more precise statement:
(d′′) the distance between two distinct triangles in Y is 1 or 3, or possibly also 5 for n =

|V (G)| ≥ 21.

This implies that, as noted in [2], the only possibilities for the graph Y are (see Fig. 5 for the
graphs Zi, Bi,j, Ni,j,k and Γi):

(i) the path Pi with 4 ≤ i ≤ 9,
(ii) the graph Zi,
(iii) the generalized bull Bi,j,
(iv) the generalized net Ni,j,k,
(v) the generalized hourglass Γ1 or Γ3, or also Γ5 for n = |V (G)| ≥ 21,
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(vi) the generalized hourglass Γ1 or Γ3, or also Γ5 for n = |V (G)| ≥ 21, with paths possibly
attached to either of the two triangles.

In [2], this list was further reduced by excluding the possibility (vi).

Note that the reduction in [2], and also all observations in the proof of Theorem L in [4],
are based on infinite families of graphs. Thus, except for the Γ5, there is no hope to get a
corresponding result for “sufficiently large” graphs.
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Figure 5: The graphs Γi, Zi, Bi,j and Ni,j,k

To obtain upper bounds on the possible values of the parameters i, j, k, consider the family
of graphs G = {L(H)| H ∈ W}, introduced in Section 1. The graphs in G are 3-connected,
non-Hamilton-connected, P10-free, Zi-free for i ≥ 7 and with a single exception of the smallest
graph in G (having 20 vertices) even Zi-free for i ≥ 8, Bi,j-free for i + j ≥ 8, and Ni,j,k-free
for i+ j + k ≥ 8. Hence the possible graphs Y that might imply a 3-connected {K1,3, Y }-free
graph to be Hamilton-connected are Γ1, Γ3, Γ5 for n ≥ 21, Pi for i ≤ 9, Zi for i ≤ 6 and Z7

for n ≥ 21, Bi,j for i+ j ≤ 7, and Ni,j,k for i+ j + k ≤ 7. Among these, Γ1 was proved in [4],
P9 was proved in [2], and the proof for Ni,j,k with i + j + k = 7 was completed in this series
of two papers. The best known explicit result for Zi is Z3 [6]; however, the proof for N1,1,5

in this paper gives implicitly Z5, leaving open Zi for 6 ≤ i ≤ 7. Similarly, the best known
explicit result for Bi,j is B1,2 (also in [6]); however, the results for Ni,j,k with i+ j+ k = 7 give
implicitly all possible Bi,j with i + j ≤ 6, leaving open Bi,j for i + j = 7. Finally, Γ3, and Γ5

for n ≥ 21 remain open.

We summarize this discussion of possible graphs Y implying a 3-connected {K1,3, Y }-free
graph to be Hamilton-connected in the following table.

The graph Y Possible Known Open
Γi Γ1, Γ3, Γ5 for n ≥ 21 Γ1 Γ3; Γ5 for n ≥ 21
Pi 4 ≤ i ≤ 9 P9 —
Zi i ≤ 7 Z5 Z6, Z7 for n ≥ 21
Bi,j i+ j ≤ 7 i+ j ≤ 6 i+ j = 7
Ni,j,k i+ j + k ≤ 7 i+ j + k ≤ 7 —

3. Notice. During the refereeing process of this paper, sharp results for Zi and Bi,j were
proved in [18] and [19]. Namely, the following was shown (hereW+ denotes the graph obtained
from the Wagner graph W by attaching exactly one pendant edge to each of its vertices).

� [18] If G is a 3-connected {K1,3, Z7}-free graph that is not isomorphic to the graph
L(W+), then G is Hamilton-connected. Specifically, every 3-connected {K1,3, Z6}-free
graph is Hamilton-connected.

� [19] If G is a 3-connected {K1,3, Bi,j}-free graph with i + j ≤ 7, then G is Hamilton-
connected.
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Thus, the only remaining open cases are the graphs Γ3 (for all graphs), and Γ5 for |V (G)| ≥ 21.
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[10] R. Kužel, Z. Ryjáček, J. Teska, P. Vrána: Closure, clique covering and degree conditions
for Hamilton-connectedness in claw-free graphs. Discrete Math. 312 (2012), 2177-2189.

[11] D. Li, H.-J. Lai, M. Zhan: Eulerian subgraphs and Hamilton-connected line graphs.
Discrete Appl. Math. 145 (2005), 422-428.

[12] X. Liu, Z.Ryjáček, P. Vrána, L. Xiong, X. Yang: Hamilton-connected {claw,net}-free
graphs I. J. Graph Theory (2022), 1–26. https://doi.org/10.1002/jgt.22863.

[13] X. Liu, L. Xiong, H.-J. Lai: Strongly spanning trailable graphs with small circumference
and Hamilton-connected claw-free graphs. Graphs Combin. 37 (2021), 65–85.
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