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Abstract

We introduce a closure technique for Hamilton-connectedness of { K 3,I'3}-free graphs,
where I's is the graph obtained by joining two vertex-disjoint triangles with a path of
length 3. The closure turns a claw-free graph into a line graph of a multigraph while
preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are
computer-assisted.

The main application of the closure is given in a subsequent paper showing that
every 3-connected { K 3,'3}-free graph is Hamilton-connected, thus resolving one of the
two last open cases in the characterization of pairs of connected forbidden subgraphs
implying Hamilton-connectedness.
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1 Terminology and notation

In this paper, we generally follow the most common graph-theoretical notation and terminol-
ogy, and for notations and concepts not defined here we refer to [4]. Specifically, by a graph we
always mean a simple finite undirected graph; whenever we admit multiple edges, we always
speak about a multigraph.

We write Gy C Gq if G is a sub(multi)graph of Gs, G, ' Gy if Gy is an induced
sub(multi)graph of G, G; ~ G5 if the (multi)graphs G, Gy are isomorphic, and (M)¢g to
denote the induced sub(multi)graph on a set M C V(G). We use dg(x) to denote the degree of
a vertex z in G (note that if G is a multigraph, then dg(x) equals the sum of multiplicities of
the edges containing x), Ng(x) denotes the neighborhood of a vertex x, and Nglz| the closed
neighborhood of ., i.e., Ng[x] = Ng(x)U{z}. For M C V(G), we denote Ny (z) = Ng(z)NM
and Ng[M| = Ugen Nelz]. For x,y € V(G), distg(z,y) denotes their distance, i.e., the length
of a shortest (x,y)-path in G. More generally, if F' C G is connected and z,y € V(F),
then distp(z,y) denotes the length of a shortest (z,y)-path in F. By a cliqgue in G we mean
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a complete subgraph of G (not necessarily maximal), and «(G) denotes the independence
number of G.

We say that a vertex € V(G) is simplicial if (Ng(x))¢g is a clique, and we use Vgr(G)
to denote the set of all simplicial vertices of G, and Vys(G) = V(G) \ Vsr(G) the set of
nonsimplicial vertices of G. For k > 1, we say that a vertex = € V(G) is locally k-connected
in G if (Ng(z))e is a k-connected graph.

A graph is Hamilton-connected if, for any u,v € V(G), G has a hamiltonian (u,v)-path,
i.e., an (u,v)-path P with V(P) = V(G).

Finally, if F is a family of graphs, we say that G is F-free if G does not contain an
induced subgraph isomorphic to a member of F, and the graphs in F are referred to in
this context as forbidden (induced) subgraphs. If F = {F}, we simply say that G is F-free.
Here, the claw is the graph K 3, FP; denotes the path on 7 vertices, and I'; denotes the graph
obtained by joining two triangles with a path of length ¢ (see Fig. 1(d)). Several further
graphs that will occur as forbidden subgraphs are shown in Fig. 1(a), (b), (¢). Whenever we
will list vertices of an induced claw K 3, we will always list its center as the first vertex of the
list, and when listing vertices of an induced subgraph I';, we always list first the vertices of
degree 2 of one of the triangles, then the vertices of the path, and we finish with the vertices
of degree 2 of the second triangle (i.e., in the labeling of vertices as in Fig. 1(d), we write
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2 Introduction

There are many results on forbidden induced subgraphs implying various Hamilton-type prop-
erties. While forbidden pairs of connected graphs for hamiltonicity in 2-connected graphs were
completely characterized already in the early 90’s [1, 8], the progress in forbidden pairs for
Hamilton-connectedness is relatively slow.

Let W denote the Wagner graph and W the graph obtained from W by attaching exactly
one pendant edge to each of its vertices (see Fig. 2).

w W+

Figure 2: The Wagner graph W and the graph W+



Theorem A below lists the best known results on pairs of forbidden subgraphs implying
Hamilton-connectedness of a 3-connected graph.

Theorem A [3, 6, 12, 13, 14, 18, 19].  Let G be a 3-connected {K, 3, X }-free graph,
where
(4)
(17) [3] X = Py, or
(i7i) [18] X = Z; and G 2 W™, or
(iv) [19] X =B, fori+j <7, or
(v) [12, 13, 14] X = N4 fori+j+k<7.
Then G is Hamilton-connected.

[6] X =T, or

Let W be the family of graphs obtained by attaching at least one pendant edge to each of
the vertices of the Wagner graph W, and let G = {L(H)| H € W} be the family of their line
graphs. Then any G' € G is 3-connected, non-Hamilton-connected, Pjo-free, Zs-free, B, ;-free
for i + j = 8 and N, j,-free for i + j + k = 8. Thus, this example shows that parts (i¢), (i),
(1v) and (v) of Theorem A are sharp.

According to the discussion in Section 6 of [19], there are two remaining connected graphs
X that might imply Hamilton-connectedness of a 3-connected { K 3, X }-free graph, namely,
the graph I's, and the graph I's for |V(G)| > 21 (or possibly with a single exception of
G ~ L(WT)). In this paper, we address the first of these graphs, the graph I's. We develop
the main tool, the closure operation, and in the subsequent paper [10], as an application of
the main result of this paper, we prove the following.

Theorem B [10].  Every 3-connected { K, 3,1's}-free graph is Hamilton-connected.

In Section 3, we collect necessary known results and facts on line graphs and on closure
operations, and then, in Section 4, we develop a closure technique that will be crucial for the
proof of Theorem B. The most technical parts of the proofs (namely, Case 1 and Subcase 2.2
in the proof of Proposition 7) are computer-assisted. More details on the computation can be
found in Section 5, and detailed results of the computation and source codes are available in
the repository at link [22].

3 Preliminaries

In this section, we summarize known facts that will be needed in the proof of our main result,
Theorem 2.

3.1 Line graphs of multigraphs and their preimages

The following characterization of line graphs of multigraphs was proved by Bermond and
Meyer [2] (see also Zverovich [21]).

Theorem C [2]. A graph G is a line graph of a multigraph if and only if G does not
contain a copy of any of the graphs in Figure 3 as an induced subgraph.
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Figure 3: Forbidden subgraphs for line graphs of multigraphs

While in line graphs of graphs, for a connected line graph G, the graph H such that
G = L(H) is uniquely determined with a single exception of G = Kj, in line graphs of
multigraphs this is not true: a simple example are the graphs H; = Z; and H; a double edge
with one pendant edge attached to each vertex — while Hy % H,, we have L(H;) ~ L(H,).
Using a modification of an approach from [21], the following was proved in [17].

Theorem D [17].  Let G be a connected line graph of a multigraph. Then there is, up to an
isomorphism, a uniquely determined multigraph H such that a vertex e € V(G) is simplicial
in G if and only if the corresponding edge e € E(H) is a pendant edge in H.

The multigraph H with the properties given in Theorem D will be called the preimage
of a line graph G and denoted H = L™'(G). We will also use the notation a = L(e) and
e = L™!(a) for an edge e € F(H) and the corresponding vertex a € V(G).

An edge-cut R C E(H) of a multigraph H is essential if H — R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size
at least k. It is obvious that a set M C V(G) of vertices of a line graph G is a vertex-cut of G
if and only if the corresponding set L™1(M) C E(L™'(G)) is an essential edge-cut of L7!(G).
Consequently, a noncomplete line graph G is k-connected if and only if L=(G) is essentially
k-edge-connected. It is also a well-known fact that if X is a line graph, then a line graph G is
X-free if and only if L7!(G) does not contain as a subgraph (not necessarily induced) a graph
F such that L(F) = X.

3.2 Closure operations

For z € V(G), the local completion of G at x is the graph G, = (V(G), E(G) U {y1y2| y1,y2 €
Ng(z)}) (ie., G, is obtained from G by adding all the missing edges with both vertices in
Ng(z)). In this context, the edges in E(G.) \ E(G) will be refereed to as new edges, and the
edges in E(G) are old. Obviously, if G is claw-free, then so is G,. Note that in the special case
when G is a line graph and H = L~Y(G), G, is the line graph of the multigraph H|. obtained
from H by contracting the edge e = L™!(z) into a vertex and replacing the created loop(s) by

pendant edge(s) (Thus, if G = L(H) and x = L(e), then G, = L(H|.)).



Also note that clearly # € Vg;(G,) for any x € V(G), and, more generally, Vs;(G) C
Vsi(G,) for any x € V(G).

We say that a vertex = € V(G) is eligible if (Ng(z))¢ is a connected noncomplete graph,
and we use Vg1 (G) to denote the set of all eligible vertices of G. Note that in the special case
when G is a line graph and H = L™(G), it is not difficult to observe that z € V(G) is eligible
if and only if the edge L™'(x) is in a triangle or in a multiple edge of H. Based on the fact
that if G is claw-free and x € Vg1 (G), then G, is hamiltonian if and only if G is hamiltonian,
the closure cl(G) of a claw-free graph G was defined in [15] as the graph obtained from G
by recursively performing the local completion operation at eligible vertices, as long as this
is possible (more precisely: cl(G) = Gy, where Gy, ..., Gy is a sequence of graphs such that
G =G, G = (Gl)m for some x; € Vg (G),i=1,...,k—1, and Vg (Gr) = 0). The closure
cl(G) of a claw-free graph G is uniquely determined, is a line graph of a triangle-free graph,
and is hamiltonian if and only if so is G. However, as observed in [5], the closure operation
does not preserve the (non-)Hamilton-connectedness of G.

In attempts to identify reasons of this problem, the following result on stability of hamil-
tonian path under local completion was proved in [5].

Proposition E [5]. Let x be an eligible vertex of a claw-free graph G, G, the local
completion of G at z, and a, b two distinct vertices of G. Then for every longest (a,b)-path
P'(a,b) in G, there is a path P in G such that V (P) = V(P') and P admits at least one of a, b
as an endvertex. Moreover, there is an (a,b)-path P(a,b) in G such that V(P) = V(P’) except
perhaps in each of the following two situations (up to symmetry between a and b):
(1) There is an induced subgraph H C G isomorphic to the graph S in Figure 4 such that
both a and x are vertices of degree 4 in H. In this case G contains a path P, such that
b is an endvertex of P and V(P,) = V(P'). If, moreover, b € V(H), then G contains
also a path P, with endvertex a and with V(P,) =V (P’).
(11) x = a and ab € E(G). In this case there is always both a path P, in G with endvertex a
and with V(P,) = V(P') and a path P, in G with endvertex b and with V(B,) = V (P’).
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Figure 4: The graph S

The following consequence of Proposition E will be useful in our proof.

Corollary 1. Let G be a claw-free graph that is not Hamilton-connected, and let x1,x9 €
Ver(G) be such that x1z, ¢ E(G) and both G, and G, are Hamilton-connected. Then

at least one of the vertices x1,xy is a vertex of degree 4 in an induced subgraph H ca
isomorphic to the graph S in Figure 4.



Proof. If at least one of x1, x4 satisfies (i) of Proposition E, then we are done; thus, let both
x1 and x5 satisfy (i7) of Proposition E. Thus, by (i7), there are vertices b;,by € V(G) such
that z;b; € E(G) and G has no hamiltonian (x;, b;)-path, i = 1,2. Since z129 ¢ E(G), by # 9
and by # 1. Thus, again by (i7) of Proposition E, there is no hamiltonian (z9,bs)-path in

G;l, implying that G;l is not Hamilton-connected, a contradiction. [ |

To handle the problem of unstability of Hamilton-connectedness, the closure concept was
strengthened in [11] and [12] such that the closure operation (called SM-closure in [11], and
its further strengthening, UM-closure in [12]), preserves the (non)-Hamilton-connectedness.
However, these operations are not applicable to {Kj 3, 's}-free graphs since a closure of a
{K3,'3}-free graph is not necessarily I's-free.

Before showing a way to overcome this problem, we first recall two classical results by
Chvétal and Erdés [7] and by Fouquet [9] that will be needed in the proof of the main result.

Theorem F [7].  Let G be an s-connected graph containing no independent set of s vertices.
Then G is Hamilton-connected.

Theorem G [9]. Let G be a connected claw-free graph with independence number at least
three. Then every vertex v satisfies exactly one of the following:

(1) N(v) is covered by two cliques,

(17) (N(v))g contains an induced Cj.

4 ['s;-closure

As already mentioned, the SM-closure and UM-closure operations (see [11] and [12]) pre-
serve Hamilton-connectedness, but there is still a problem that the local completion G, of a
{K13,3}-free graph G is not necessarily I's-free. To handle this problem, we define the con-
cept of a I's-closure G'3 of a { K} 3, 's}-free graph G. For a set M = {x1,zq,..., 21} C V(G),
we set Gy = ((G,,)y, - - )z, - It is implicit in the proof of uniqueness of cl(G) in [15] (and easy
to see) that, for a given set M = {z1,1,..., 2} C V(G), G,, is uniquely determined (i.e.,
does not depend on the order of the vertices 1, xs, ...,y used during the construction).

If G is not Hamilton-connected, then a vertex x € Viyg(G), for which the graph G, is still
not Hamilton-connected, is said to be feasible in G. A set of vertices M C V(G) is said to
be feasible in G if the vertices in M can be ordered in a sequence x1,...,x; such that z; is
feasible in Gy = G, and x4, is feasible in G; = (G;_1),,, i =1,...,k—1. Thus, if M C V(G)
is feasible, then M C Vg;(G,), but G, is still not Hamilton-conected.

Note that it is possible that some two vertices x,y of a graph G are feasible in G, but z is
not feasible in G; (for example, if H is obtained from the Petersen graph by adding a pendant
edge to each vertex, subdividing a nonpendant edge x;z5 with a vertex w, replacing each of
the edges z;w with a double edge, and if G = L(H) and 2}, 27 € V(G) correspond to the two
edges joining x; and w in H, ¢ = 1,2, then G is not Hamilton-connected, each of the vertices
x,, xf is feasible in G, i = 1,2, but e.g. 2} and z are not feasible in G;,Q o~ Gxg) Thus,
the recursive form of the definition is essential for verifying feasibility of a set M C V(G)
(although the resulting graph G, does not depend on their order).
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Now, for a { K 3, [s}-free graph G, we define its I's-closure G'* by the following construc-
tion.
(i) If G is Hamilton-connected, we define G'* as the complete graph.

(#7) If G is not Hamilton-connected, we recursively perform the local completion operation
at such feasible sets of vertices for which the resulting graph is still I'3-free, as long as
this is possible. We obtain a sequence of graphs Gy, ..., Gy such that

® G1 = G,

Giy = (GZ)M for some set M; C V(G;),i=1,...,k—1,
G}, has no hamiltonian (a,b)-path for some a,b € V(Gy),
for any feasible set M C Vys(G}), (G),, contains an induced subgraph isomor-
phic to I's,

and we set G'3 = Gy,
A resulting graph G'* is called a I's-closure of the graph G, and a graph G equal to (some) its
I'3-closure is said to be I's-closed. Note that for a given graph G, its I'3-closure is not uniquely
determined.

The following two results from [16] and [17] will be useful to identify feasible vertices.

Theorem H [16]. Let G be a claw-free graph and let x € V(G) be locally 2-connected in
G. Then G is Hamilton-connected if and only if G, is Hamilton-connected.

Thus, in our terminology, Theorem H says that a locally 2-connected vertex is feasible.

Lemma I [17].  Let G be a claw-free graph, x € V(G), and let H (< (Nc(z))c be a
2-connected graph containing two disjoint pairs of independent vertices. Then x is locally
2-connected in G.

Note that if a vertex x € V(G) is feasible by virtue of Theorem H (i.e., x is locally 2-
connected in G), then, for any y € V(G) y # z, = is locally 2-connected also in G, but
(Ng: (7)) can be complete (if Neg(z) C Ne(y)). Thus, for any y € V(G), x is feasible or
simplicial in G;.

We thus define more generally: a set M C V(G) is weakly feasible in G if the vertices in M
can be ordered in a sequence xy, ...,z such that x; is feasible in Gy = G, and x;; is feasible
or simplicial in G; = (Gi,l);i, i=1,...,k—1. Thus, similarly, if G is not Hamilton-connected
and M C V(G) is weakly feasible in G, then G, is still not Hamilton-conected and all vertices
of M are simplicial in G;.

The following theorem is the main result of this paper.

Theorem 2. Let G be a 3-connected { K, 3,'3}-free graph and let G** be its ['s-closure.
Then there is a multigraph H such that G** = L(H).

Proof. Let G be a {K;3,'3}-free graph, and let G be (some) its I'3-closure. To show
that G is a line graph of a multigraph, by Theorem C, we show that G does not contain as
an induced subgraph any of the graphs Gy, ..., Gy of Figure 3. If G is Hamilton-connected,
then G is complete and the statement is trivial. So, assume that G (and hence also G) is not
Hamilton-connected.



Since Gy ~ K;3 and G was obtained from G by a series of local completions, obviously
G is Gy-free. We prove the following three facts (for the graphs Ws, Wy, P2 and Pi' see
Fig. 5):

o G is Ws-free,

o G is Wy-free,

o G is {P?, P }-free.
This will establish the result since G5 >~ Wi, each of the graphs G5, Gg, G7 contains an induced
W4,G2 Pﬁ,andG4~P2+

2+ U1

Ws
Wy

Figure 5: The 5-wheel W5, the 4-wheel W), and the graphs P? and Py"

This will be done in the following Propositions 3, 7 and 10.

Throughout the proof, when listing vertices of an induced W5 or Wy, we will always list
the center first, and we will list vertices of a PZ or a P3" in the order indicated by the indices
in Fig. 5.

Proposition 3.  Let G be a {K;3,'3}-free graph and let G be its 's-closure. Then G is
Wi-free.

Proof. If z is a center of an induced W5 in G, then z is locally 2-connected in G by
Lemma I, hence z is feasible in G by Theorem H. Thus, by the definition of the I's-closure,
G contains an induced I's. To reach a contradiction, we show that this is not possible.

We first prove several lemmas.

Lemma 4. Let G be a claw-free graph and F Igj G, F ~ W5, with center x and cycle C.
Then

(1) every vertex y € Ng(x) \ V(F) has at least three consecutive neighbors on C,

(ii) for every y1,y2 € Na(), dist(ng (@) (Y1, y2) < 2,
(i7i) for every y € Ng(x) \ V(F) that is not in an induced Cs in (Ng(x))q, every induced
Cs in (Ng(z))e contains at least 4 neighbors of y.

Proof. Let F' = ({w,w;, ws, w3, wy, ws})g ~ Ws.

(i) If Ng(y) NV (C) = 0, then z is a center of a claw; thus, say, wyy € E(G). Since
({wy,y,wa, ws})e # Ky 3, by symmetry, woy € E(G). If y is adjacent to neither ws nor ws,
then ({z,ws,ws,y})e ~ Ki3; thus, by symmetry, say, yws € E(G).

(i7) By (7), any y1,y2 € Ng(z) are adjacent or have a common neighbor in Ng(z).

(17i) Let C" = wijwhwiwjwiw| be an induced Cj in Ng(z). By (i), y has at least 3 con-
secutive neighbors on C". If |[Ng(y) NV(C")| > 4, we are done, thus, let, say, Ng(y) NV (C") =
{w}, wh,wh}. But then ({w,y, wi, w}, wi})e ~ Cs, contradicting the assumption. u



Lemma 5. Leti> 1, let G be a {K,3,1";}-free graph, and let x € Vg (G). Let F - G, be
such that F' ~T'; and a triangle of F' contains a new edge y,y,. Then distn, ) (Y1, y2) = 3.

Proof. LetF C G, F ~T;, and let y,7, be a new edge in some of its triangles. We use the
labeling of the vertices of F’ as in Fig. 1(d). Since (Ng(7))g+ is a clique, all new edges in F' are
in one of its triangles, say, t1tapity. If t1ts is the only new edge, then ({p1,p2, t1, ta}) ¢ =~ Ky 3,
and if all three edges are new, then ({z,t1,t2, p1})¢ =~ K1 3. Thus, by symmetry, we can choose
the notation such that the edge ¢;p; (and possibly also one of the edges topy, t1ts) is new, i.e.,
y1 =ty and yp = py.

Note that 2 < dist<NG(x)>G(t1,p1) < 3 since tip; is a new edge and x is not the cen-
ter of an induced claw. Suppose, to the contrary, that disty,)(t1,p1) = 2. If ts, pity €
E(G), then ({x,t2,p1,p2, ... Dit1,t3,ta})c =~ T, a contradiction. Thus, by the assump-
tion that dist(n, (). (t1,21) = 2, there is a vertex z € Ng(x) such that zt1,2p1 € E(G)
(note that possibly z = t3). Since ({z,z,p1,p2,...,Pit1,t3,ta})g # T, 2w € E(G) for
some w € {pa,...,Pir1,t3,ts}. However, if w € {ps,...,pir1,t3,t4}, then ({z, t1,p1,w})g =~
Ki3. Hence zw ¢ E(G) for w € {ps,...,pit1,ts3,ta}, implying zp, € E(G), and then
({t1,z,2,p2, ..., Piz1,t3,ta})c ~ 'y, a contradiction. [ |

Lemma 6. Leti>2and1<j <i. Let G be a{K3,I';}-free graph and x € Vyg(G) such
that G, contains an induced subgraph F ~ T'; with a new edge p;p;11 in the path of F. For
k=1,2, let z; € V(G) be such that {pj,pj+1,x} C Ng(zr). Then 2125 € E(G).

Proof. Let, to the contrary, z1z ¢ FE(G). By symmetry, we can choose the nota-
tion such that 1 < j < i —1 (ie., pjy1 is not the last vertex of the path of F). Since
({pj+1, 21, 22, pjr2})e # Kis, we have, up to a symmetry, z9p;12 € E(G). Since each of the
edges zow, w € {t1,t2,P1, ..., Dj—1,Dj+3; - - -, Pit1, t3, t4} yields an induced K7 3 in G with center
at 29, we have ({t1,%2,p1,...,P), 22, Dj42, - - - Dit1, 3, ta})e =~ I';, a contradiction. [ |

Suppose now, to the contrary, that G contains an induced subgraph W ~ Ws, set W =

({x, w1, wq, w3, wy, ws})a, and let F It G be such that F ~ I's. Set F' = ({t1,t2, p1, P2, D3,
Pa,t3,t4}) . Since G is I's-free, at least one edge of F is new.

If there is a new edge 3,99 in a triangle of F', then we have dists(y1, y2) = 2 by Lemma 4(i7),
and dista(y1,y2) = 3 by Lemma 5, a contradiction. Thus, a new edge is on the path of F,
and, moreover, F has exactly one new edge since it is induced and x is simplicial in G,.

Choose W ~ W5 so that |V(W) NV (F)| is maximized. Clearly, |V(W)NV(F)| <2, and
we can choose the notation such that the new edge is p1ps or pops.

Case 1: [V(W)NV(F)| =2.

Subcase 1.1: The edge p1py is new.
We can choose the notation such that p; = w, and p, = ws. First observe that since

({wa, w3, x, w5, p3,pa, 3, taf) e # s, wyz € E(G) for some 2 € {ps,ps,t3,ts}. Since

<{w2,t1,w1,'w3}>é ;ﬁ Kl,g, tiw, € E(G) or tyws € E(G) But if tiws € E(G), then

({ws, t1,x,2})5 ~ Ki3, a contradiction. Hence tyw; € E(G). Since ({t1,ws, wy,ws, ps,

Pa,t3, ta})a # T's, we have w2’ € E(G) for some 2’ € {ps, ps, t3, t4}, but for each of these
possibilities, ({wy,t1,2,2'})5 >~ K 3, a contradiction.
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Subcase 1.2: The edge pops is new.
Choose the notation such that py = wy and p3 = ws. Considering ({ws, w1, w3, p1})a #

K, 5, we have pyw; € E(G) or pyws € E(G). Let first pyw; € E(G). Since ({t1,t2, p1, w1,
w3, pa, t3, ta})a £ T3, wiz € E(G) for some z € {t1,t2} U {p4, t3,t4}; however, if z €
{t1,t2}, then ({w1,z,wo,ws})g =~ Ki3, and if z € {p4,t3,ta}, then ({wy,z,2,p1})q =~
K,3. Hence pyjws € E(G). Symmetrically, pjws € E(G). Since ({t1,ts,p1,ws, ws,
Pata, ta})a # T3, ws or wy has a neighbor among the vertices ty,ts,t3,t4. However,
if wyz € E(G) for z € {t1,t2}, then ({ws, 2, wy,ws})e ~ K3, and if wzz € E(G) for
z € {ts,ts}, then ({ws,p1,2,2})5 ~ Kis; the situation for w, is symmetric. Thus,

({t1,t2, p1, w3, wy, pa, t3,t4})a >~ '3, a contradiction.

Case 2: [V(W)NV(F)| =1.

Let the new edge be p;p;i1, ¢ € {1,2}, and, by symmetry, choose the notation such that
pir1 = wip (note that our proof of this case does not use the rest of F' and hence it is
symmetric also for i = 1). Since ({x,p;, wa, w5} # Ki3, by symmetry, we have p;ws; €
E(G), and, by Lemma 6, pjwy ¢ E(G). Since ({z,p;, w1, w3})e # Kis, pws € E(G).
Then the subgraph W' = ({x,w,wy, w3, p;, ws})a =~ Wy is an induced W5 in G with
V(W) NV (F)| = 2, contradicting the choice of .

Case 3: V(W)NV(F) = 0.

Let again p;piy1, @ € {1,2}, be the new edge in F. By Lemma 4(éii), each of p;, p;+1 has
at least 4 neighbors on the 5-cycle C' = W — z. By the pigeonhole principle, p; and p;i1
have at least 3 common neighbors on C'. Since C' is induced, at least two of these common
neighbors are nonadjacent, contradicting Lemma 6. ]

Note that now we know that G is { K 3, W5 }-free. Since G is 3-connected and not Hamilton-

connected, we have a(G) > 3 by Theorem F, hence for every v € V(G), Nz (v) can be covered
by two cliques. This fact will be useful in the next proof.

Proposition 7.  Let G be a 3-connected {K, 3,T3}-free graph and let G be its I's-closure.
Then G is Wy-free.

Proof.  Similarly as before, if 2 € V(G) is a center of an induced Wy in G, then z is locally
2-connected in G by Lemma I, hence x is feasible in G by Theorem H, and G contains an
induced I'3. We again show that this is not possible.

Lemma 8. Let G be a claw-free graph, let W be an induced subgraph of G such that
W = ({@, wi, w2, w3, ws})g ~ Wy, let 21,20 € Ng(x) be such that dist(ng () (21,22) = 3, and
let R be the graph shown in Fig. 6. Then G contains R as an induced subgraph.

Proof. Let C = W — x be the 4-cycle C' = wywowzw, of the 4-wheel W. First observe
that dist(n, () (2, C) < 1 since otherwise e.g. ({z, z;, w1, ws})g ~ K3, ¢ = 1,2. On the
other hand, if some z; is on C, say, z; = wy, then w2y, wyze ¢ FE(G) by the assumption
that dist(ng ()¢ (21, 22) = 3, and then ({z,ws, wy, 20})q ~ Ki 3. Hence dist (g @) (2, C) = 1,
i=1,2.

Up to a symmetry, let zyw; € E(G). Since ({x, w2, wy, 20})c % Ki3, up to a symme-
try, waze € E(G). Since ({z, 21, we,ws})e # Ki3 and zjwy ¢ E(G) by the assumption
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21 x Z2

Wa ws

Figure 6: The graph R used in Lemma 8.

dist (g (2)) (21, 22) = 3, we have zjw, € E(G). Symmetrically, wsz, € E(G). Thus, we have
the graph R. Finally, the subgraph is induced since any additional edge would contradict
either the assumption dist(n ) (21,22) = 3, or the fact that ({z,w, ws, ws, ws})e ~Wy. R

Let now, to the contrary, W = ({z, w, wy, ws, ws})c =~ Wy be an induced subgraph of G,

and let F 'C G be such that F' ~ I's. Set again F' = ({t1,ts, D1, P2, P3, Pa, t3,ta})c. Since G
is ['s-free, at least one edge of I is new. Since z € Vg;(G,), either all new edges are in one of
the triangles of F', or the only new edge of F'is some edge on the path.

Case 1: New edges are in a triangle of F.

We can choose the notation such that the new edges are in the triangle pit1top;. As before,
if t1t5 is the only new edge in F, then ({pi1,t1,t2,p2})g ~ Ki3; hence we can choose
the notation such that ¢1p; (and possibly also one of tits, top;) is new. By Lemma 5,
dist (N4 (@) s (t1, p1) = 3. By Lemma 8, p1,¢; and W are in the induced subgraph R of Fig. 6.
Thus, in all the cases (independently of whether the edges tito, top; are present in G or
not), G contains the subgraph Fy shown in Fig. 7.

w w t
FO 1 4 3

ty P1 D2 P3 P4

Wa w3 ty

Figure 7: The subgraph Fj

Since e.g. ({x,ws,p1, P2, P3, Pa, t3,ta})m, # '3, Fy is not an induced subgraph of G. Check-
ing by computer all possible sets of additional edges such that the resulting graph is still
{K13, '3, W;}-free, we obtain 10 exceptional graphs Fi, ..., Fig (see [22]). For each of them,
V(F, ) ( 0), 2 =1,...,10, and their edge sets are:

E(Fy) U {wltg, w2t4, waty, wyts},

) U {wits, waps, wops, waps, waps, wats},

) U {wits, waps, waps, waps, waps, wats},

) UA{wipa, wips, waps, waps, waps, waps, Wap2, waps},

) U {wipa, wips, wats, wats, wsts, wats, Wapa, WaPs },
)
)
)
)

$$5$

U {w1ps, wips, wats, wats, wsls, wsts, waps, Waps},
U {w1ps, wits, wits, wats, waty, waps, wats, wats},
U {w1pa, w1ps, wopa, wats, Wats, waps, wsts, Wats, Waps, WapPs},
Fo) U {wips, wips, Wapa, wots, wats, waps, wats, wsts, Waps, Wapa},
(Fb) U {wipa, wits, wity, wots, wats, wsts, wats, WaPs, Wats, wats}.

Fo

=

bbby E e
B®$$$$E$®B
Il
mEEEEEEEEA
S

(=)
~—
I
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The graphs Fi, ..., Fjp are also shown in Fig. 8 (where the double-circled vertices indicate
the weakly feasible sets given by Claim 3).

Figure 8: The 10 exceptional graphs

Each of the graphs Fi, ..., Fip is {K3 3, 's}-free, we have F; 'C & for some i € {1,...,10},
however, in (F;), we have ({x,t|, p1, D2, D3, Pa, t3, ta})(r): = I's. By the definition of the T's-
closure, in each of these possibilities not only (F}),, but even G, for any (weakly) feasible
set M C V(G), contains an induced I's. To reach a contradiction, in each of the subgraphs
Fy,. .., Fo, we identify a weakly feasible set M C V(G) with |[M| > 1 and x € M, for which
this is not possible.

First observe that, in all the graphs Fi, ..., Fig,  is locally is 2-connected in G, hence z is

feasible in G by Theorem H. Set G| = (G),.

Claim 1. Let v € {wy,ws,ws,wy}, and let S be the graph in Fig. 4. Then either v is

locally 2-connected in G1, or v is not a vertex of degree 4 in an induced subgraph F Ig) G,
such that F' ~ S.

Proof. Let, say, v = w;. Then w; and wy4 have, in all the graphs Fi, ..., Fjg, a common
neighbor u € {ps, p4,ts,t4}. Since G is 3-connected and not Hamilton- connected by Theo-
rem F, a(G) > 3. By Proposition 3, G is Wjs-free, thus, by Theorem G, Ng(v), hence also
Neg[v], can be covered by two cliques, say, K; and K,. Choose the notation such that K
contains the triangle wywyty, and Ky contains the triangle wyw4u. Then, in Gy, K; extends
to a clique K containing the vertices wy, wq, w3, wy, t1, x, p1. Thus, {wy,ws} C K] N Ks.

If | K] N Ks| > 3, then wy is locally 2-connected in G; and we are done by Theorem H; thus,

let K1 N Ky = {wy,ws}. Then, if w; is a vertex of degree 4 in F ' G, with F ~ S, there
are vertices z; € K; \ {wy,ws}, ¢ = 1,2, such that z125 € E(Gy), but then w; is locally
2-connected in Gj.

12



The proof for v € {wsq, w3, wy} is symmetric (since the argument in our proof never used
the vertex ps). d

Claim 2. At least one of the vertices wy, wsy, w3, wy is feasible in GY.

Proof. If] say, wy is not feasible in GGy, then, by Claim 1 and by Proposition E(ii), (Gl);l
has a hamiltonian (w;,w)-path for some w € Ng,(w;). Hence there is no hamiltonian
(wq,w)-path in G, and, by Proposition E(i7), there is still no hamiltonian (w;,w)-path in
(Gy),, for any w' € {wy, w3, wy} \ {w}. Thus, w’ is feasible in Gj. O

Claim 3.  Let F; C G for some i, 1 < i <10, and set M; = {x,wy, ws, w3, wy} if i €
{1,3,4,6,7,8,9,10}, or My = {z, wy, w3}, or M5 = {z,wy,ws}. Then the set M; is weakly
feasible in G.

Proof. = Throughout this proof, we will use Vioc(G) to denote the set of all locally 2-
connected vertices in a graph G.

First of all, observe that x € Vizc(G) in all cases i = 1,...,10 by Lemma I (the independent
sets are {wi, w3} and {wy,wy}), hence x is feasible in G' by Theorem H, and feasible or
simplicial in any graph obtained from G by a series of local completions.

Let I} INCD G, and let, by Claim 2, vj € {wy, wa, w3, wy} N Vigc(Gh).

Case Cl 3-1: F} Ig G.

By symmetry, we can assume that v; = wy. Then, by Lemma I, ws € VLQC(G;4)
(the independent sets are {wa, ws} and {wy,t4}), and also wy € Viac(G,,) (the inde-
pendent sets are {ws, w4} and {¢1,t5}). By symmetry, wy € Viac(G,,). Hence also

wy € Viac((Gy,)s) = Viac((G,)y,), i-e., ws is feasible or simplicial in (G,),,,. Similarly

w4
with w; and ws,.

Thus, if F} ‘& G, then the set M, = {x, w1, ws, w3, w,} is weakly feasible in G.

We summarize the above discussion in the following table (where “L2C” stands for “locally
2-connected”).

vy | L2C vertex Argument

wy | wg € VLQC(G;4) Lemma I, indep. sets {wa, wy}, {z,t4}
w1 € Viac(G,,) | Lemma I, indep. sets {wa, wa}, {t1,t5}
wsy € Vioc(G,,) | Symmetric to wy € Viac(G,,)

Case Cl 3-2: Fy IéD G. )
Immediately w3 € Vi2c(G) (independent sets {wq,wy} and {x,ps}), and then wy €
Viac(G,,) (independent sets {wy, ws} and {1, ps}).

Thus, if F, ‘& G, then the set My = {x, wy, w3} is weakly feasible in G.

IND —
Case Cl 3-3: F5 C G.
By symmetry, we can assume that v3 € {ws, ws}. We summarize the possibilities in the
following table.
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vy | L2C vertex Argument

wy | wy € Viac(G,,) | Lemma I, indep. sets {wa, wa}, {z, ps}
w;y € Vigc(G,,) | Lemma I, indep. sets {wa, w4}, {t1,%3}
wy € VLQC(G;l) Symmetric to ws € VLQC(G:U4)

w; | wy € Viac(G,,) | Lemma I, indep. sets {wi,ws}, {z, 3}
wy € Vipc(G,,) | Lemma I, indep. sets {wy, w3}, {t1,ps}
wy € VLQC(G;Q) Symmetric to wy € VLQC(G;3)

IN

Thus, if F - G, then the set Mz = {x, w, wy, w3, wy} is weakly feasible in G.

Case Cl 3-4: Fy I%D G. )
In this case, already w; € Vioc(G), i =1,2,3,4:

L2C vertex Argument

wy € Vige(G) | Lemma 1, indep. sets {ws, wy}, {z,ps}
wy € Vipc(G) | Lemma I, indep. sets {w,ws}, {z,ps}
w3 € Vipc(G) | Lemma I, indep. sets {ws, ws}, {z,ps}
wy € VLQC(G) Lemma I, indep. sets {wy,ws}, {z,ps}

Thus, if F, rel G, then the set My = {x, w, wy, w3, wy} is weakly feasible in G.

Case Cl 3-5. Fj < a. B
In this case, wy € Vigc(G) (Lemma I with sets {wy,ws}, {x,ps}), and then w, €
Viac(G,) (Lemma I with sets {ws, wy}, {t1,ps3}).

Thus, if Fj rel G, then the set Ms = {z,w;,w,} is weakly feasible in G.

Case Cl 3-6: Fg ca.
By symmetry, we can assume that vg € {ws, ws}. We then have the following possibilities.

vg | L2C vertex Argument

w3 | wy € VLQC(G:Ua) Lemma I, indep. sets {wy,ws}, {t1,t3}
wy € Vioc(G,,) | Lemma I, indep. sets {wy, ws}, {z, ps}
wy € Viac(G,,) | Symmetric to wy € Vigc(G,,,)

wy | wy € VLQC(G;4) Lemma I, indep. sets {ws, wys}, {t1,ps}
w3 € Vioc(G,,) | Lemma I, indep. sets {wa, wq}, {z,t3}
wy € VLQC(GZUl) Symmetric to ws € VLQC(G* )

Thus, if F & G, then the set Mg = {x, w, wy, w3, wy} is weakly feasible in G.

Case Cl 3-7: F; C G. )
By symmetry, it is sufficient to verify ws and wy, however, ws, wy € Vioc(G) by Lemma I:
wsz with sets {wq, wy}, {x,t4}, wy with sets {wy,ws}, {z,ps}.

Thus, if F; tet G, then the set M; = {x, w1, ws, w3, wy} is weakly feasible in G.

Case Cl 3-8: Fy I%_D G.
Then wy € Vioc(G) (Lemma I with sets {ws, wys}, {,p3}), and for the remaining vertices
we have the following possibilities.

14



L2C vertex Argument

wy € VLQC(G;4) Lemma I, indep. sets {wa, wys}, {t1,ps3}
wy € Vioc(G,,) | Lemma I, indep. sets {wa, wa}, {,t3}
wy € Viac(G,,) | Symmetric to ws € Viac(G,,)

w

Thus, if Fg ' G, then the set Mg = {x, w, wy, w3, wy} is weakly feasible in G.

Case Cl 3-9: Fy ca. B

In this case, {wy,ws, w3, ws} C Viac(G): w; and wy by Lemma I with sets {wq, wy},
{t1,ps}) for wy, and {wy, w3}, {z,ps}) for wy; ws and w, follow by symmetry.

Thus, if Fy ‘& G, then the set Mg = {x, w1, ws, w3, w,} is weakly feasible in G.

Case Cl1 3-10: Fig IéD G. )
In this case similarly {wy, ws, w3, ws} C Vioc(G): w; and wy by Lemma I with sets
{we,wy}, {x,ps}) for wy, and {wy, ws}, {x,t3}) for wy; wy and wy follow by symmetry.

Thus, if Fi fl G, then the set My = {x, wy, wy, w3, wy} is weakly feasible in G. O

Now, since each of the sets M; is weakly feasible in G, by the definition of the I's-closure,
each G;wi contains an induced subgraph F' ~ T3, i =1,...,10. Since each Ng[M;] induces
in GM a clique, the clique (Ng[M;)) G, contains either a triangle of F’, or one of the edges

of the path of F’. The rest of F” outside (N& [M’L:DGM consists of a triangle and a path of

appropriate length in the first case, or of two trianglesz with a path of appropriate length in
the second case. Let us call these parts of F” outside (Ng[M;])g: 7tails”. Then each tail

consists of a triangle with a path, and the length of the path is 3 in the first case, or the
lengths of the paths sum up to 2 in the second case. Moreover, since each vertex of M; is
simplicial in C_T';wi, it cannot be an end of a tail directly, but a tail can be attached to some
its neighbor, which corresponds to the situation with a tail one longer.

Considering all possible combinations of such tails, we obtain the possibilities that are listed
in the following table.

i

TR

15



Here, the double-circled endvertices of tails can be identified with a vertex in M;, and the
non-double-circled endvertices of tails can be identified with a vertex in Ng[M;] \ M;.

We have generated by computer all possible ways of extending the graph F;, i = 1,...,10,
by joining some of the combinations of the tails in the table to vertices in Ng[M;]. To the
resulting graphs, we have added all possible sets of edges between the new vertices and Fj;.
Finally, we have tested whether the resulting graphs are {I's, W;, K 3}-free. In each of the
possible cases, we have obtained a contradiction (see [22]).

Case 2: The new edge is on the path of F'.
If [V(W)NV(F)| =2, then, choosing the notation such that wy,ws € V(F), Lemma 6
implies wow, € E(G), a contradiction. Hence |V (W) NV (F)| < 1.

Subcase 2.1: |V(W)NV(F)| = 1.
The proof will depend on the position of the new edge on the path of F.

Subcase 2.1.1: The edge pips is new.
We distinguish two subcases.

Subcase 2.1.1.1: p; € V(W).

Choose the notation such that p; = wy. Since ({x, w1, ps, w3})a # Ki3, we have
pws € E(G), and from ({x,wy, wy,p2})a # Kiz, up to a symmetry, pow; €
E(G). By Lemma 6, waps ¢ E(G). Since ({wi,wa, 7,p2,p3,p1,t3,ta})q % T3, we
have wez € E(G) for some z € {ps,ps,t3,ts}. Then wot; ¢ E(G) for otherwise
({wa, ti,x, 2} )a ~ Ki3, 1 = 1,2, and from ({wy,t;, we, ws})q # K13 we have t;wy €
E(GQ), i = 3,4. Since ({t1,ts, w4, P2, P3,pa,t3,ta})c £ I's, we have wy2’ € E(G)
for some 2’ € {ps,pa,ts,ts}, but in each of these cases, ({wy, t1,2,2'})g ~ K3, a

contradiction.

Subcase 2.1.1.2: p, € V(W).

Set po = w;. Then similarly ({x,p;, w1, w3} # K,z implies pyws € E(G),
{x,p1, wa, ws})e # K3, implies, up to a symmetry, pywy € E(G), and Lemma 6
implies wop; ¢ E(G). From ({wy,ws,wy, p3})a % K13 we now have wyps € E(Q)
or wyps € E(G). However, if wyps € F(G), then immediately ({t,ts,p1,ws, ps,
Pa,t3,ta})a =~ '3 since each of the edges wyz, z € {t1,ta, pa, t3,t4}, yields an induced
K, 3 with center at wy. Thus, wyps ¢ E(G) and weps € E(G).

Now wot; ¢ E(G), for otherwise ({wo,t;, 7, p3})e ~ Kis, i = 1,2. Considering

<{p17w47x7w27p37p47t3at4}>é' ¢ F37 we have wyz € E<G) for some z € {p47t37t4}7 or

wyz' € E(Q) for some 2’ € {py, ts,ts}. However, in the first case ({wy, z, w1, p1})a ~
K, 3, and in the second case ({wq,x,ps, 2'})g ~ Ki 3 for 2’ € {t3,t4}. Thus, 2’ = py,

i.e., wopy € E(G). But then ({t1,ta,p1,z,ws, py,ts, ts})a =~ I's, a contradiction.

Subcase 2.1.2: The edge pyps is new.
By symmetry, we can set w; = py. As before, from ({x, w1, p3, w3})a # K13 we have

wiwy € E(G), from ({z, wy, ws, p3})a # K13, up to a symmetry, pswy € E(G), and,
by Lemma 6, wops ¢ E(G).
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Claim 4. Ify € V(@) is such that {x,wy,p3} C Na(y), then Na(y) N {t1, ta, p1, pa,
t37t4} = @

Proof. Ifyz € E(G) for some z € {t,ts, 13,4}, then ({y, 2, w1, p3})q =~ K1 3. If both

yp1 € E(G) and ypy € E(G), then ({y,p1,p4,7})e =~ K13, and if y is adjacent to one
Of D1, P4, SQY, YP4 S E(G)7 then <{t1at2ap17w17yap4at37t4}>é = 1—‘3' U

Now, since wyp; ¢ E(G) by Claim 4, from ({wy, p1, ws, ws})e # K13 we have pjw; €
E(G). Since ({p1,wsq, w,wy, p3, pa,ts,ts})a # s, by Claim 4, wez € E(G) for some
z € {pa,t3,ts}, but in each of these cases, ({wq, p1,2,2})5 >~ K 3, a contradiction.

Subcase 2.2: V(W)NV(F) = 0.

In this case, the vertex x must be adjacent in G to the two vertices of the new edge (and
to no other vertex of F since F is induced in G,). Up to a symmetry, there are two
possible subcases, namely, that the edge pops is new, see Fig 9(a), and that the edge pips
is new, see Fig 9(b).

t1 t3 t1 t3
P1 P2 P3 P4 P1 P2 P3 D4
F ..... F .....
ts w $U4 ty ts U4 ty
W

T x
(%) 3 Wa 3

(a) (b)

Figure 9: The two possibilities in Subcase 2.2 (dotted lines indicate new edges).

Since the vertex x, the vertices of the new edge, and any of the vertices w;, 1 = 1,2, 3,4,
cannot induce a claw in G, there must be some more additional edges in G between
{wy, ws, w3, ws} and F. Checking by computer all possible sets of additional edges uv
such that u € {wy, wy, w3, ws} and v € V(F), we conclude that, in the first case (when
paps is new), the resulting graph always contains at least one of the graphs K3, I's or
W5 as an induced subgraph, a contradiction (see [22]); while in the second case (when
p1pe is new), the computing gives one possible graph shown in Fig. 10.

w1 g '-:_‘\
N X

AR

Ly

t 3

Figure 10: The only possibility in the second case of Subcase 2.2

By the connectivity assumption, we have dg(p3) > 3, hence the vertex ps has another
neighbor v € V(G) \ (V(F)UV(W)). Since ({ps, pa2, p1,v})e # Ki 3, there must be some
more edges. Checking by computer all possibilities (see [22]), we again conclude that the
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resulting graph always contains at least one of the graphs K3, I's or W5 as an induced
subgraph, a contradiction. [ |

We now know that G is { K, 3, Wy, Ws}-free and we will repeatedly use this property. For
the sake of brevity, we introduce the following notion. Given a graph G and its vertex x, we
say that Ng(x) contains an endgame if Ng(x) contains vertices xy, ...,z satisfying at least
one of the following conditions (see also Fig. 11):

(1) k=3 and {z122, 2223, 2321} N E(G) = 0,

(it) k =4, {x129, Tox3, 374, T421} C E(GQ) and {x123, 2224} N E(G) = 0,
(it3) k =5 and {x129, xox3, X324, a5, T521} N E(G) = 0,

(iv) k =5, {x1m9, Tox3, X324, T4x5} N E(G) = 0 and {z124, 2025} C E(G),

(v) k=05, {moxs, v324, v1205} N E(G) = 0 and {xox5, 2513, 2321, 1124} C E(G).

X
T Ty T3 i
° *x w* *** ***
Bals *x e T * L4
o *, e % .
& * & E, ** **
- e « *x X -
ZL'.*********,%'. ZE* *r‘ $1.*****.x5
S () 1) (iii)

Figure 11: The endgames used in Proposition 9. The star-lines indicate pairs of nonadjacent
vertices (i.e., edges in the complement of G).

Proposition 9. Let G be a graph and let x be its vertex such that Ng(z) contains an
endgame. Then G contains an induced K; 3, Wy or W5 with center at x.

Proof. (Z) <{JZ, T, T2, 1'3}>G >~ Klyg.

(@) ({z, 21, 22,73, 24})c = Wi

(1ii) If, say, x1x3 ¢ E(G), then the vertices xy,xq,z3 satisfy (i). Thus, by symmetry,
{x123, T325, T5T9, T2y, X471} C E(G), and then ({z,xq, 23, T5, T2, 24})g =~ Wi.

() If 25 ¢ E(G), then xq, . .., x5 satisfy (#i7), hence z125 € E(G). Now, if 2924 ¢ E(G),
then xq, x3, x4 satisfy (i), and if z9z4 € E(G), then xq, x4, x9, x5 satisfy (ii).

(v) If xoxs ¢ E(G), then xq, 3, x5, T, x4 satisfy (i), and if xexs € E(G), then xq, x3, 24, x5
satisfy (7). u

Propoﬁsition 10.  Let G be a 3-connected { K, 3,1's}-free graph and let G be its I's-closure.
Then G is {PZ, P"}-free.

Proof. Let, to the contrary, @ = ({vo,...,vs})a 'C G be such that Q~PlorQ~P;"
(with the labeling of vertices as in Fig. 5). We will prove the statement for both P2 and Pg"
at the same time since our proof does not depend on whether the edge vyus is in ) or not.
We show that either none of the vertices vy, v, is a vertex of degree 4 in an induced subgraph
F ~ S, or for at least one v; € {v1,v4}, ({Na(v;))a is 2-connected. By Corollary 1 and by
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Theorem H, this will imply that at least one v; € {v1,v4} is feasible, and hence Gv contains
an induced I'3. Showing that this is not possible, we obtain the requested contradiction.

For the vertices of the induced subgraph F' ~ S, we will use the labeling as in Fig. 4,
and we will use C' to denote its central triangle C' = z12923. By symmetry, we suppose that
v € V(C), and we distinguish several cases according to the mutual position of C' and Q.

Case 1: {v,v3} C V(C).
Up to a symmetry, set v; = 2; and vz = z5. Then there is a vertex w; € V(F) \ V(Q) such

that wyvy, wivs € E(G): if 23 ¢ V(F'), we simply set w; = z3; otherwise necessarily z3 = v,
and we set w; = z5.

Subcase 1.1: wyvs € E(G).

If wivy ¢ E(G), then wvyviv50, is endgame (iv) in Ng(vs) (note that vyvr, vivs, vsvs &
E(G) since Q (= G; similarly in the following), hence wivy € E(G). If wivy ¢ E(G),
then w;v vpv; is endgame (ii) in Ng(vs), hence wiv, € E(G). This implies that vy ¢
V(F) (since F' ~ S is induced). Thus, there is a vertex wy € V(F) \ V(Q) such that
wivy, wyvs € B(GQ). If wovs € E(G), then wovswivy is endgame (i4) in Ng(vs), hence
wavs ¢ E(G). Since ({vs, va, wo, v5}) e % K13, vaws € E(G). Now we have vow; ¢ E(G)
and vowy ¢ E(G), for otherwise (Ng(v1))¢a is 2-connected by Lemma I and v; is feasible.
But then ({vy,w,vp, wa})a ~ K3, a contradiction.

Subcase 1.2: wivs ¢ E(G).

Since ({v3, wy, vs, v2})g # K13, we have wyvy € E(G). This implies that vy & V(F), hence
there is again a vertex wy € V(F)\V(Q) such that wovy, wovs € E(G). Note that wyw, ¢
E(G) since F is induced. Then wqvs € E(G) since otherwise ({v3, wy, ws, vs})a =~ K 3.
If vowy, € E(G), then (Ng(v1))g is 2-connected by Lemma I, hence vows ¢ E(G), and
from ({vy,vo, w1, ws})e 2 K3 we have vow; € E(G). Now, vaw, ¢ E(G) for otherwise
(Ng(v1))e is 2-connected by Lemma 1. If wyvy & E(G), then wqv vivsw, is endgame (iii)

in Ng(vs), hence wovy € E(G). However, then wovsv9v; is endgame (ii) in Ng(vs), a
contradiction.

Case 2: {v,v2} C V(C).

Subcase 2.1: vy € V(C).

By the structure of F', there is a vertex wy € V(F) \ V(Q) such that wyvg, wivy € E(F).
Since wyv; ¢ E(G) (F is induced), vivy ¢ E(G) (Q is induced), and ({vq, w1, v1,v4}) e 2
K, 3, we have wyvy € E(G). Then wyv,v400v3 is endgame (iv) in Ng(vy).

Subcase 2.2: vy ¢ V(C).

Note that also v ¢ V(C') since otherwise we are back in Case 1. Then there is a vertex
wy € V(C)\ V(Q) such that wivy, wivy € E(C).

Suppose that wyvs ¢ E(G). Then necessarily wyvy € E(G), for otherwise the subgraph
Q' = ({wy,v1,v9,v3, 04,05 })¢ is isomorphic to P? or to Pi" and, for @, we are back in
Case 1; however, then wyvjv3v4 is endgame (i7) in Ng(v2), a contradiction.

Thus, wyvs € E(G), implying that vs ¢ V(F). Hence there is a vertex wy € V(F) \

V(Q) such that wewy, wevy € E(F). If wyug € E(G), then (Ng(v1))a is 2-connected by
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Lemma I, hence wyvy ¢ E(G). Since ({v1,vp, w2, v3})a # Ki3, we have wovs € E(G).
Then wyvousvyv4 is endgame (iv) in N (vs), a contradiction.

Case 3: {vg,v1} C V(C), va € V(C).
Then there is a vertex wy, € V(C) \ V(Q) such that wyv, wyvy € E(C).

Subcase 3.1: wv; ¢ E(G).

If wivs € E(G), then wivgvevs is endgame (ii) in Ng(vp), hence wivz ¢ E(G). Then
vy cannot have two neighbors in V' (C), implying vz ¢ V(F'). Hence there is a vertex
wy € V(F)\ V(Q) such that wyvy, wow; € E(F). Now, wovs ¢ E(G) for otherwise
(Ng(v1))@ is 2-connected by Lemma I, and then ({vq, wa, vg, v3})a =~ K 3, a contradiction.

Subcase 3.2: wyvy € E(G).

Then |Ng(v2)NV(C)| = 3, implying ve ¢ V' (F'). Hence there is a vertex wy € V(F)\V(Q)
with wyvg, wovy € E(F). If wovg € E(G), then (Ng(v;))e is 2-connected by Lemma I,
hence wyvs & E(G), and from ({v1, wy, wa, v3})a # K1 3 we have wyvz € E(G). Now, vs €
V(F) would imply vswy, vsvg € E(G), and then vgvavsvs is endgame (i4) in N (wy); hence
vs ¢ V(F). Then there is a vertex wy € V(F) \ V(Q) with wsw;, wsvy € E(F) (clearly
Vg, v3,04 & V(F)). Now wovy ¢ E(G) for otherwise (Ng(v1)) ¢ is 2-connected by Lemma I,

from ({vo, w3, ve, wa})a # K13 we have wsvy € E(G), and from ({ve, w3, v1,v4})a % K13
we have wsvy € E(Q).

If wyvs ¢ E(G), then vyvivzvaws is endgame (v) in Ng(vp), hence wyvs € E(G). This
implies that v3 ¢ V(F), hence there is a vertex wy € V(F)\ V(Q) such that wyvy, wyw, €
E(F). Since ({v1,v0, ws,v3})g % K1, wyvs € E(G). Since ({v1, ws, v2, wa})e # Kis,

wyvy € E(G), and since ({va, vy, ws,v4})q # K13, wavy € E(G). Now, if wyvs € E(G)
or wavs € E(G), then (Ng(vs))g is 2-connected by Lemma I (the independent sets are
{vg,v5} and {ws,v4}), hence wyvs ¢ FE(G) and wivs ¢ E(G). However, then we have

({vs, wy, w3, v5}) G ~ K 3, a contradiction.

Case 4: {vy,v3} NV (C) = 0.

Then C' = vywiwe for some wi,we € V(F)\ V(Q). If [V(F) N {vy,ve,v3}| > 2, then
vo € V(F) and vz € V(F) (since vertices of degree 2 in I are independent), and (Ng(v1))a
is 2-connected by Lemma I. Thus, at most one of the vertices vy, ve,v3 is in V(F'). This
implies that there is a vertex ws € V/(F) \ (V(Q) U {wy,ws}) such that wsvy, wswe € E(F).
Since ({v1,ws, w1, v0})e 2 Ki3, up to a symmetry, wsvy € E(G). Then wivs ¢ E(G),
for otherwise (Ng(v1))g is 2-connected by Lemma 1. Since ({v1,ws, w1, vs})a % K13, we

have wsvs € E(G), and since ({vq,vp,w1,v3})a % K13, we have vowy € E(G). But then
(Na(v1))@ is 2-connected by Lemma 1.

Thus, we know that at least one of the vertices vy, vy is feasible. We choose the notation
such that v is feasible. By the definition of the I's-closure, G;l contains an induced I's. To

reach a contradiction, we show that this is not possible.

Set © = U1, let I’ = <{t17t27p17p27p37p47t37t4}>(;; = F37 and let Y1y2 € E(F be a new
edge. Since t1ty cannot be the only new edge (then would be ({p1,t1,t2,p2})a ~ Ki3), by
symmetry, we can assume that yi;ys € {tap1, p1p2, P2p3}-
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Case 1: dista(y1,y2) = 2.
Then, by Lemma 5, y1y2 € {p1p2, p2ps}. Let y1z1y2 be a shortest (y1,ya)-path in (Ng(z))e-

Claim 1. Ng(21) N V(F) = {91, 32}

Proof.  Let first y;y2 = pip2, and let 2120 € E(G) for some 2o € V(F)\ {p1,p2}. If

29 € {p3,t3, t4}, then <{Zl,p1,p2, 22}>é ~ Kl’g, and if both 21P3 € E(G) and Z2ti - E(G) for

some i € {1,2}, then ({z1,;,z,p3})a ~ K1 3. Hence, by symmetry, either z,p3 € E(G), or,

say, zite € F(G), but in the first case ({t1,t2, p1, 21, P3, 4,13, t4})c =~ I's, and in the second
case ({t2,p1, 21, P2, D3, Pas ta, ta})a = Ts.

Let next y1y2 = pops, and let 2,20 € E(G) for some 2o € V(F) \ {p2,p3}. If 25 €
{t1,ta, 13,14}, then ({z1,29,p2,p3}) =~ K13, and if both z;p; € E(G) and z1py, € E(G),
then ({z1,p1,7,ps})e =~ Ky3. Thus, by symmetry, we can assume that z;p; € E(G) and
21ps € E(G), but then ({t1,ts, p1, 21, P3, Pas t3, 14} )@ =~ ', a contradiction. O

Claim 2. Nglz] = Ngz1].
Proof. By Claim 1, Ng(x) N V(F) = Ng(z1) NV (F).

Case Cl-2-1: y1y2 = p1p2.

We first show that Nglx] € Nglz1]. Let thus, to the contrary, zo € Ngl[z] \ Nglz].
Since ({x,p1,p2, 22})c # K13, p1z2 € E(G) or paza € E(G). On the other hand, if both
p1z2 € E(G) and pyzy € E(G), then we have a contradiction with Claim 1. Hence 2y is
adjacent to exactly one of p;,ps. Let first p1zo € E(G) and py2zy ¢ E(G). By Claim 1,
<{p17t1, 21, 22}>Q ;ﬁ Kl’g 1mphes t129 € E(G) From <{p1, Z9,X, P2, P3, P4, L3, t4}>@ ¢ F3 we
have 2923 € E(G) for some z3 € {p3, ps, t3, 14}, but then ({zo,%1,x, 23})5 ~ K13, a contra-
diction. Thus, we have pozo € E(G) and py2y ¢ E(G). By Claim 1, ({ps, 21, 22,03} ) 2
K, 3 implies p32; € E(G). From ({py, 21,2, 22, p3, pa, t3,ta})c % s we have zp23 € E(G)
for some z3 € {p4,t3,t4}. However, if z3 € {t3,t4}, then ({22, 23,p3,2})a ~ Kis,
hence zyp, € E(G), but then ({t1,ts, p1, T, 20,4, t3,t4})a ~ I's, a contradiction. Thus,
Nglz] € Nglal.

Next we show that also Ng[z1] C Nglz]. Let, to the contrary, zo € Ng[z1]\ Na[z]. Let first

pzo € E(G). From ({p1,t1,2,22}) # Ky then {125 € E(G). Since ({p1, 22, 21, P2, 3,
Pats, ta})a # T3, we have 2923 € E(G) for some z3 € {ps, ps, pa, t3,t4}; however, z3 €
{3, past3, ta} implies ({22, 23,11, 21})a =~ Ki3, and 23 = py implies ({pa, p3, 20, 2})q =~
Ki3. Thus, p12; ¢ E(G), and from ({21, p1,p2, 22}) e # K13 we have 2pp; € E(G). Since

<{p27x7227p3}>é ;ﬁ K1,37 also 22p3 S E(G> NOWJ since <{p17x7 21, 227p37p47t37t4}>é ¢ F37
by Claim 1, we have 2323 € E(G) for some z3 € {py, t3,14}. However, z3 € {t3,1,} implies

({z2, 21,3, 23})c ~ K13, and for z3 = py we have ({t1,%2,p1, 21, 22, s, U3, ta})e = '3, a
contradiction.

Case Cl-2-2: Y1Ya = P2ps.

We again first show that Ng[r] C Ngl21]. Let, to the contrary, zo € Ng[z]\ Ng[z1]. Since
({7, p1,p2, 22})a # Ki3, up to a symmetry, paz; € E(G), and since ({pa, p1, 21, 22})c %
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K 3, by Claim 1, py2o € E(G). Since ({p1, 22, D2, 21, P3, P, L3, ta})a % T's and by Claim 1,
2923 € E(G) for some z3 € {ps, pa, t3, t4}. However, for z5 € {py, t3,t4}, ({22, p1, 7, 23}) g =~
K 3, hence z3 = p3, but then ({t1,%2,p1, 22,3, pa, t3,ta})G =~ I's, a contradiction. Thus,
Nglz] C Nglz).

Finally, we show that also Ng[z1] C Ng[z]. Let thus again, to the contrary, z, €

Nelz1] \ Nelr]. Since ({21, p2,p3, 22})c # K3, up to a symmetry, zp; € E(G), and

since ({p2, p1, 22,2 }) G # K, 3, also zop; € E(G). Since ({p1, 22, D2, , p3, pa, ts, ta})a # I's,

we have 2923 € E(G) for some z3 € {ps,p4,t3,t4}; however, if z3 € {p4,t3,t4}, then
({z2,p1,21,23})e ~ Ki3 by Claim 1, and if z3 = ps, then ({p3, 22,7, ps})a ~ Ki3, a
contradiction. |

By the assumption, set Q = ({vg,v1,va,v3,v4,05})a, where Q ~ P2 or Q ~ P and
r = v;. Since G is 3-connected and not Hamilton-connected, by Theorem F, a(G) > 3.
Thus, by Theorem G and by Proposition 3, Na(z), hence also Ng[z], can be covered by
two cliques, say, K; and K,. Since 31,2 € Ng(z) and y1y, ¢ E(G) (where y; = p; and
Y2 = pa, O Y1 = py and yo = p3, depending on the case), we can choose the notation such
that y; € Ky \ Ky and y2 € Ky \ K;. Clearly v; = x € K; N Ks, and, by Claim 2, also
z1 € K1 N Ky. On the other hand, since vy € Ng(ve) \ Na(v1), by Claim 2, ve ¢ K7 N K.
Hence either v, € K; \ Ky and, since vy, v3 € Ng(v1) but vovs ¢ E(G), one of vg,v3 is in
K5\ Ki, or, symmetrically, v, € K5\ K and one of vy, v3 is in K; \ K. Thus, we conclude
that there are vertices w; € K; \ Ky and we € K, \ K; such that w;,ws € V(Q) and
wiwy € E(Q). By Claim 2, wyy, ¢ E(G) and wyy; ¢ E(G).

Subcase 1.1: y;y2 = p1po.

Since ({p1, w1, T, P, P3, Pa, 3, ta})a % s, wize € E(G) for some 2y € {ps, ps, t3,t4}. Since
({wi,p1,wa, 20}) g # K13, also wezy € E(G). If z3 = ps, then wipspyr is endgame (i4)
in Ng(ws), hence zo € {p4,ts,t4}. Recall that wy,wy € V(Q) and either wy = vy and
wy € {vg,v3}, or wy € {vg,v3} and wy = vy. Then, if w; = vy and wy = vy, 2201V4V0V3
is endgame (iv) in Ng(vg), and if w; = vy and we = v3, then povovsvyvy is endgame (iv)
in Ng(vs). The remaining two cases we = vy are symmetric (since our argument did not
use the vertices ty, to, ps, pa, ts, ts).

Subcase 1.2: y,y, = paps.
Since wy,wy € V(Q), by symmetry, we can assume that w; = vy and we € {vg,vs3}.
However, if wy = vz, then psvavsvyv4 is endgame (iv) in Ng(vs). Hence wy = vy.

Next observe that a vertex t € {t1,ts, t3,t4} is adjacent to either both the vertices vy, va, or

to none of them: if, say, t;v, € E(G), then ({vo, 1, pa, vo})a % K13 implies tyvy € E(G),

and, conversely, if tjvy € E(G), then ({vg,t1,p3,v2})a % Kis implies tyvs € E(G).
However, if tvg, tvy € E(G) for some t € {t,ty, 3,14}, then tvjv4vovs is endgame (iv) in
Ne¢(vg). Thus, there are no edges between {vg, vo} and {t1,ts,t3,t4}.

Now, if vop; € E(G), then ({py,t1,p2,v0})¢ =~ K13, hence vop; ¢ E(G), and, symmetri-
cally, vopy ¢ E(G). Thus, the only possible edges between {vg, v2} and V(F) \ {ps,p3}
are the edges vop; and vopy. If both are present, then ({t1, ta, p1, Vo, Vo, Pa, t3,ta})a =~ T,
and if, say, vop; € E(G) but vopy & E(G), then ({p1, p2, v, Vo, p3, Pa, t3, ta}) e ~ I's. Thus,
there are no edges between {vg, v2} and V(F) \ {p2, ps}.
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If v3 = py, then, by the above observations, vy # p1, and from ({vs, p1, va, v1})g # Ki3 we
have pyvy € E(G). Since ({p1, v4,v3,v1, p3, Da, 3, ta})a 7 T's, we have vgz € E(G) for some
z € {ps,pa,t3,ta}, but in each of these cases, ({va,p1,v2,2})q =~ K3, a contradiction.

ThHS, V3 7£ P2.
Since ({vq, v4, P2, v0})a # K13, we have pyvy € E(G), and from ({py,p1,va,v1})a # K13

also pyvy € E(G). Since ({p1, v4, P2, V1, P3, Da, t3,ta})a 7 I's, we have vyz € E(G) for some
z € {p3,pa,t3, 14}, but in each of these cases, ({v4, p1,v2, 2})g =~ K 3, a contradiction.

Case 2: dista(y1,y2) = 3.

Let K;, K5 be the two cliques that cover Ng[x], chosen such that y; € Ky and y, € K. By
the assumption of the case, K1 N Ky = {x}. Since x = vy, by the structure of @), there are
vertices wy € Ki \ Ky and we € Ky \ K7 such that wy, wy € V(Q), wiws € E(Q), and either
w, = vy and wy € {vg,v3}, or w; € {vg,v3} and wy = vy. Note that also y;w; € E(G),
i=1,2, and y1wy, yow; ¢ E(G).

Now, if, say, w; = vy and wy = v3, then ysvovsviv4 is endgame (iv) in Ng(vs). Since the
case w; = vz and wy = vy is symmetric, we conclude that either w; = vy and wy = vy, or
w1 = v and wy = vs.

Subcase 2.1: y;y, = top;.
We show that wy, wy have a common neighbor z € {ps3,py, t3,t4}.

Since ({v1, w2, p1, D2, P3, Pa, ts, ta})a # I's, wez € E(G) for some z € {pa, ps, pa, t3,t4}. If

z € {ps, pa, ts, ta}, then ({wq, wi,p1,2})a # K13 implies that also w2z € E(G); thus, let

z = po. Then from ({wy, vy, wa, P2, P3, Pa, t3, ta})a # I's we have w2’ € E(G) for some 2’ €

{p3,pa,t3,ta}, but then ({ws,ts, we, 2'}) g # K1 3 implies that also w2’ € E(G). Thus, in

all cases, there is z € {ps, ps, t3, t4} such that w2z, wez € E(G). Since {wy, wy} = {vg, va},
necessarily z ¢ {vs,v4}, and then zv v4v9v3 is endgame (iv) in Ng(ve).

Subcase 2.2: y;y; = p1po.
We similarly show that w; and wy have a common neighbor z € {p4,t3,t4}. Since

({p1, w1, v1,p2, D3, P, 3, ta}) G # I's, we have wyz € E(G) for some z € {ps, ps, t3,t4}.

If 2 € {pa,ts,ta}, then ({wy,p1,ws, 2})as % Kis implies that also wyz € E(G); thus,

let z = p3. Then ({ps, p2, ps,w1})a # K13 implies that also wipy € F(G), and we are

in the previous case. Thus, we have wyz,wyz € E(G) for some z € {py,t3,t4}. Again,
z & {3, vy} since {wy, wo} = {vy, v2}, and then zvjv vgvs is endgame (iv) in Ng(vs).

Subcase 2.3: y1y2 = paps. B
We proceed in a similar way as in Subcase 1.2. If; say, wit; € E(G) for some i €

{1,2,3,4}, then ({wy, wq, pa, t;})a # K15 implies that also wqt; € E(G) and t;v1v4v0v5 is

endgame (iv) in Ng(v2); and if, say, wops € E(G), then since ({p4,ts,ps,w1})a 2 Kis,
wity € E(C_J), and we are in the previous case. Hence wip; and wyps are the only
possible edges between {wy,wy} and V(F) \ {ps, ps}; however, if both are present, then
({t1,ta, p1, w1, wo, Py, t3,ta})e =~ T3, and if, say, wipy € E(G) but weps ¢ E(G), then
({p1,p2, w1, wa, p3, pa, t3,t4})c =~ T's. Thus, there are no edges between {w;,ws} and

V(F)\ {p2,p3}. By symmetry, set w; = vy and wqy = vy.

If v3 = po, then vy # p1, ({p2,p1,v4,11})g # Kis implies pjvy € E(G), and since

({p1,v4,p2,v1,p3, D4, t3,ta}) # I's, we have vyz € E(G) with 2z € {ps,ps,t3,t4}, im-
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plying ({vs, p1,v2,2})q = Ki3. Hence vz # ps. Then ({va,vs, pa,v0})e # K13 implies
pavs € E(G), ({p2,p1,vs,v1})q # Ki3 implies pyvy € E(G), and from ({p1, va, p2, v1, p3,
Da,ts, ta})a # I's we have vyz € E(G) with z € {ps, p4, t3, t4}, implying ({v4, p1,v9, 2})a =~
K, 3, a contradiction. |

5 Concluding remarks

1. A I's-closure of a graph G, as defined in Section 4, is not unique in general. However, in
view of Theorem B, it is unique in 3-connected {K; 3, I's}-free graphs since each such graph
is Hamilton-connected, hence has complete closure.

2. The source codes of our proof-assisting programs are available at [22]. The codes are written
in SageMath 9.6 and use some of its functions. We thank the SageMath community [20] for
developing a valuable open-source mathematical software.
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