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Abstract

We show that every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected, where Γ3

is the graph obtained by joining two vertex-disjoint triangles with a path of length 3.
This resolves one of the two last open cases in the characterization of pairs of connected
forbidden subgraphs implying Hamilton-connectedness. The proof is based on a new
closure technique, developed in a previous paper, and on a structural analysis of small
subgraphs, cycles and paths in line graphs of multigraphs. The most technical steps of
the analysis are computer-assisted.
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1 Terminology and notation

We generally follow the most common graph-theoretical notation and terminology, and for
notations and concepts not defined here we refer the reader to [4]. Specifically, by a graph
we always mean a simple finite undirected graph; whenever we admit multiple edges, we
always speak about a multigraph. If G is a multigraph and x1x2 ∈ E(G), we denote µG(x1x2)
(or simply µ(x1x2)) the multiplicity of the edge x1x2 in G (with µ(x1x2) = 0 if x1, x2 are
nonadjacent), and we use ES(G) (EM(G)) to denote the set of all simple nonpendant (multiple)
edges of G, respectively. If x1x2 ∈ EM(G) and we need to distinguish the individual edges
joining x1 and x2, we use the notation (x1x2)

1, (x1x2)
2 etc. We say that vertices x1, x2 ∈ V (G)

are twins in a multigraph G if µG(x1u) = µG(x2u) for each u ∈ V (G).
We say that S is an induced subgraph of a graph G if S can be obtained from G by removing

some vertices, we denote this by S
IND

⊂ G. We say that a (multi)graph S is a sub(multi)graph
of a multigraph G, denoted S ⊂ G, if V (S) ⊂ V (G) and for every x1, x2 ∈ V (S) we have
µS(x1x2) ≤ µG(x1x2), and we say that S is a flat subgraph of G if S is a sub(multi)graph
of G where for every x1, x2 ∈ V (S), if x1x2 ∈ E(G), then µS(x1x2) ∈ {1, µG(x1x2)}. We
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was supported by project GA20-09525S of the Czech Science Foundation.

1



write G1 ≃ G2 if the (multi)graphs G1, G2 are isomorphic, and ⟨M⟩G to denote the induced
sub(multi)graph on a set M ⊂ V (G).

We use dG(x) to denote the degree of a vertex x in G (note that if G is a multigraph,
then dG(x) equals the sum of multiplicities of the edges containing x). For x ∈ V (G), NG(x)
denotes the neighborhood of x in G, and for M ⊂ V (G) we set NM(x) = NG(x) ∩M .

If x ∈ V (G) is of degree 2 with NG(x) = {y1, y2}, then the operation of replacing the
path y1xy2 by the edge y1y2 is called suppressing the vertex x. The inverse operation is called
subdividing the edge y1y2 with the vertex x. For x, y ∈ V (G), distG(x, y) denotes the distance
of x and y in G, and if F ⊂ G is a connected subgraph and x, y ∈ V (F ), then distF (x, y)
denotes the distance of x, y in F , i.e., the length of a shortest (x, y)-path in F . If C is a cycle
in G, then an edge xy ∈ E(G) such that x, y ∈ V (C) and distC(x, y) ≥ 2 is called a chord of
C. If C has no chords, we say that C is chordless (note that some edges of a chordless cycle
can still be multiple in H).

A triangle having a multiple edge is called a multitriangle (see Fig. 6(a)), and by a diamond
we mean the graph K4 − e (see Fig. 6(b)). By a clique in G we mean a complete subgraph of
G, not necessarily maximal.

We say that a vertex x ∈ V (G) is simplicial if ⟨NG(x)⟩G is a clique, and we use VSI(G)
to denote the set of all simplicial vertices of G, and VNS(G) = V (G) \ VSI(G) the set of
nonsimplicial vertices of G. For k ≥ 1, we say that a vertex x ∈ V (G) is locally k-connected
in G if ⟨NG(x)⟩G is a k-connected graph.

A graph is Hamilton-connected if, for any u, v ∈ V (G), G has a hamiltonian (u, v)-path,
i.e., an (u, v)-path P with V (P ) = V (G).

Finally, if F is a family of graphs, we say that G is F-free if G does not contain an
induced subgraph isomorphic to a member of F , and the graphs in F are referred to in
this context as forbidden (induced) subgraphs. If F = {F}, we simply say that G is F -free.
Here, the claw is the graph K1,3, Pi denotes the path on i vertices, and Γi denotes the graph
obtained by joining two triangles with a path of length i (see Fig. 1(d)). Several further
graphs that will occur as forbidden subgraphs are shown in Fig. 1(a), (b), (c). Whenever we
will list vertices of an induced claw K1,3, we will always list its center as the first vertex of the
list, and when listing vertices of an induced subgraph Γi, we always list first the vertices of
degree 2 of one of the triangles, then the vertices of the path, and we finish with the vertices
of degree 2 of the second triangle (i.e., in the labeling of vertices as in Fig. 1(d), we write
⟨{t1, t2, p1, . . . , pi+1, t3, t4}⟩G ≃ Γi).
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Figure 1: The graphs Zi, Bi,j, Ni,j,k and Γi
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2 Introduction and main result

There are many results on forbidden induced subgraphs implying various Hamilton-type prop-
erties. While forbidden pairs of connected graphs for hamiltonicity in 2-connected graphs were
completely characterized already in the early 90’s [1, 8], the progress in forbidden pairs for
Hamilton-connectedness is relatively slow. For forbidden pairs of connected graphs, a list of
potential candidates is known: one of them has to be the clawK1,3, and the second one belongs
to a list that will be mentioned in Section 6.

Let W denote the Wagner graph and W+ the graph obtained from W by attaching exactly
one pendant edge to each of its vertices (see Fig. 2).
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Figure 2: The Wagner graph W and the graph W+

Theorem A below lists the best known results on pairs of forbidden subgraphs implying
Hamilton-connectedness of a 3-connected graph.

Theorem A [3, 6, 12, 13, 14, 19, 20]. Let G be a 3-connected {K1,3, X}-free graph,
where

(i) [6] X = Γ1, or
(ii) [3] X = P9, or
(iii) [19] X = Z7 and G ̸≃ L(W+), or
(iv) [20] X = Bi,j for i+ j ≤ 7, or
(v) [12, 13, 14] X = Ni,j,k for i+ j + k ≤ 7.

Then G is Hamilton-connected.

Let W be the family of graphs obtained by attaching at least one pendant edge to each of
the vertices of the Wagner graph W , and let G = {L(H)| H ∈ W} be the family of their line
graphs. Then any G ∈ G is 3-connected, non-Hamilton-connected, P10-free, Z8-free, Bi,j-free
for i+ j = 8 and Ni,j,k-free for i+ j + k = 8. Thus, this example shows that parts (ii), (iii),
(iv) and (v) of Theorem A are sharp.

The following theorem is our main result.

Theorem 1. Every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected.

Proof of Theorem 1 is postponed to Section 5.

In Section 3, we collect necessary known results and facts on line graphs and on closure
operations, and then, in Section 4, we present a closure technique, introduced in the previous
paper [10], that will be crucial for the proof of the main result. Section 5 contains the proof
of the main result, in which the most technical parts (namely, the proof of Lemma 4, and the
introductory part and Case 1 of the proof of Theorem 1) are computer-assisted. More details
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on the computation can be found in Section 6, and detailed results of the computation and
source codes are available at [24] and [25]. Finally, in Section 6, we briefly update the discussion
of remaining open cases in the characterization of forbidden pairs for Hamilton-connectedness
from [13] and [20].

3 Preliminaries

In Subsections 3.1 – 3.4, we summarize some known facts that will be needed in the proof of
Theorem 1.

3.1 Line graphs of multigraphs and their preimages

The following characterization of line graphs of multigraphs was proved by Bermond and
Meyer [2] (see also Zverovich [23]).

Theorem B [2]. A graph G is a line graph of a multigraph if and only if G does not
contain a copy of any of the graphs in Figure 3 as an induced subgraph.
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Figure 3: Forbidden subgraphs for line graphs of multigraphs

While in line graphs of graphs, for a connected line graph G, the graph H such that
G = L(H) is uniquely determined with a single exception of G = K3, in line graphs of
multigraphs this is not true: a simple example is the graphs H1 = Z1 and H2 a double edge
with one pendant edge attached to each vertex – while H1 ̸≃ H2, we have L(H1) ≃ L(H2).
Using a modification of an approach from [23], the following was proved in [17].

Theorem C [17]. Let G be a connected line graph of a multigraph. Then there is, up
to an isomorphism, a uniquely determined multigraph H such that G = L(H) and a vertex
e ∈ V (G) is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge
in H.

The multigraph H with the properties given in Theorem C will be called the preimage
of a line graph G and denoted H = L−1(G). We will also use the notation a = L(e) and
e = L−1(a) for an edge e ∈ E(H) and the corresponding vertex a ∈ V (G).
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An edge-cut R ⊂ E(H) of a multigraph H is essential if H −R has at least two nontrivial
components, and H is essentially k-edge-connected if every essential edge-cut of H is of size
at least k. It is a well-known fact that a line graph G is k-connected if and only if L−1(G)
is essentially k-edge-connected. It is also a well-known fact that if X is a line graph, then a
line graph G is X-free if and only if L−1(G) does not contain as a subgraph (not necessarily
induced) a graph F such that L(F ) = X.

Note that in the special case of the graph Γ3, there are three nonisomorphic multigraphs
F1, F2, F3 such that L(Fi) = Γ3, i = 1, 2, 3, see Fig. 4. It is straightforward to verify that if
G = Γ3, then L−1(G) = F1, however, if G contains F ≃ Γ3 as a proper induced subgraph, then
the corresponding subgraph L−1(F ) can be any of F1, F2, F3 (for example, if G is obtained
from Γ3 by adding to F = Γ3 new vertices u1, u2 and edges u1u2, u2t1, u2t2, then in L−1(G),
L−1(F ) is the multigraph F2).
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Figure 4: The graph Γ3 and its three preimages

Recall that a closed trail T is a dominating closed trail (abbreviated DCT) if T dominates all
edges of G, and an (e, f)-trail is an internally dominating (e, f)-trail (abbreviated (e, f)-IDT)
if Int(T ) dominates all edges of G. Harary and Nash-Williams [9] established a correspondence
between a DCT inH and a hamiltonian cycle in L(H). A similar result showing thatG = L(H)
is Hamilton-connected if and only if H has an (e1, e2)-IDT for any pair of edges e1, e2 ∈ E(H),
was given in [11] (in fact, part (ii) of the following theorem is slightly stronger than the
result from [11], and its easy proof is given in [12]). Note that these results were proved for
line graphs of graphs but it is easy to verify that they remain true also for line graphs of
multigraphs.

Theorem D [9, 11]. Let H be a multigraph with |E(H)| ≥ 3 and let G = L(H).
(i) [9] The graph G is hamiltonian if and only if H has a DCT.
(ii) [11] For every ei ∈ E(H) and ai = L(ei), i = 1, 2, G has a hamiltonian (a1, a2)-path if

and only if H has an (e1, e2)-IDT.

3.2 Strongly spanning trailable multigraphs

A multigraph H is strongly spanning trailable if for any e1 = u1v1, e2 = u2v2 ∈ E(H) (possibly
e1 = e2), the multigraph H(e1, e2), which is obtained from H by replacing the edge e1 by a
path u1ve1v1 and the edge e2 by a path u2ve2v2, has a spanning (ve1 , ve2)-trail.

By Theorem D(ii), it is straightforward to see that if H is strongly spanning trailable, then
G = L(H) is Hamilton-connected.
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We will need the following two results on “small” strongly spanning trailable multigraphs
from [14]. Here, W is the set of multigraphs that are obtained from the Wagner graph W by
subdividing one of its edges and adding at least one edge between the new vertex and exactly
one of its neighbors.

Theorem E [14].
(i) Every 2-connected 3-edge-connected multigraph H with circumference c(H) ≤ 8 other

than the Wagner graph W is strongly spanning trailable.
(ii) Every 3-edge-connected multigraph H with |V (H)| ≤ 9 such that H /∈ {W} ∪ W is

strongly spanning trailable.

3.3 The core of the preimage of a 3-connected line graph

To avoid difficulties that can occur with the core of a multigraph, we define the core only
for the case we need, i.e., for the preimage of a 3-connected line graph (then e.g. vertices
of degree 2 are independent by the connectivity assumption, and pendant multiedges cannot
occur by Theorem C).

Thus, let G be a 3-connected line graph and let H = L−1(G). The core of H is the
multigraph co(H) obtained from H by removing all pendant edges and suppressing all vertices
of degree 2.

Shao [22] proved the following properties of the core of a multigraph.

Theorem F [22]. Let H be an essentially 3-edge-connected multigraph. Then
(i) co(H) is uniquely determined,
(ii) co(H) is 3-edge-connected,
(iii) V (co(H)) dominates all edges of H,
(iv) if co(H) has a spanning closed trail, then H has a DCT,
(v) if co(H) is strongly spanning trailable, then L(H) is Hamilton-connected.

3.4 Closure operations

For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G)∪ {y1y2| y1, y2 ∈

NG(x)}) (i.e., G
∗
x is obtained from G by adding all the missing edges with both vertices in

NG(x)). In this context, the edges in E(G
∗
x) \ E(G) will be refereed to new edges, and the

edges in E(G) are old. Obviously, if G is claw-free, then so is G
∗
x. Note that in the special case

when G is a line graph and H = L−1(G), G
∗
x is the line graph of the multigraph H|e obtained

from H by contracting the edge e = L−1(x) into a vertex and replacing the created loop(s) by
pendant edge(s) (Thus, if G = L(H) and x = L(e), then G

∗
x = L(H|e)).

Also note that clearly x ∈ VSI(G
∗
x) for any x ∈ V (G), and, more generally, VSI(G) ⊂

VSI(G
∗
x) for any x ∈ V (G).

We say that a vertex x ∈ V (G) is eligible if ⟨NG(x)⟩G is a connected noncomplete graph,
and we use VEL(G) to denote the set of all eligible vertices of G. Note that in the special case
when G is a line graph and H = L−1(G), it is not difficult to observe that x ∈ V (G) is eligible
if and only if the edge L−1(x) is in a triangle or in a multiple edge of H. Based on the fact
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that if G is claw-free and x ∈ VEL(G), then G
∗
x is hamiltonian if and only if G is hamiltonian,

the closure cl(G) of a claw-free graph G was defined in [15] as the graph obtained from G
by recursively performing the local completion operation at eligible vertices, as long as this
is possible (more precisely: cl(G) = Gk, where G1, . . . , Gk is a sequence of graphs such that
G1 = G, Gi+1 = (Gi)

∗
xi
for some xi ∈ VEL(G), i = 1, . . . , k−1, and VEL(Gk) = ∅). The closure

cl(G) of a claw-free graph G is uniquely determined, is a line graph of a triangle-free graph,
and is hamiltonian if and only if so is G. However, as observed in [5], the closure operation
does not preserve the (non-)Hamilton-connectedness of G.

To handle this problem, the closure concept was strengthened in [12] by omitting the
eligibility assumption for the application of the local completion operation. Specifically, for a
given claw-free graph G, we construct a graph GU by the following construction.

(i) If G is Hamilton-connected, we set GU = K|V (G)|.
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such vertices for which the resulting graph is still not Hamilton-connected, as long
as this is possible. We obtain a sequence of graphs G1, . . . , Gk such that

• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ V (Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ V (Gk), (Gk)

∗
x is Hamilton-connected,

and we set GU = Gk.
A graph GU obtained by the above construction is called an ultimate M-closure (or briefly a
UM-closure) of the graph G, and a graph G equal to its UM-closure is said to be UM-closed.

The following theorem summarizes basic properties of the UM-closure operation.

Theorem G [12]. Let G be a claw-free graph and let GU be one of its UM-closures. Then
GU has the following properties:

(i) V (G) = V (GU) and E(G) ⊂ E(GU),
(ii) GU is obtained from G by a sequence of local completions at vertices,
(iii) G is Hamilton-connected if and only if GU is Hamilton-connected,
(iv) if G is Hamilton-connected, then GU = K|V (G)|,
(v) if G is not Hamilton-connected, then (GU)

∗
x is Hamilton-connected for any x ∈ V (GU),

(vi) GU = L(H), where co(H) contains no diamond, no multitriangle and no triple edge,
and either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge, and if co(H)

contains a double edge, then this double edge is also in H,
(vii) if GU contains no hamiltonian (a, b)-path for some a, b ∈ V (GU) and

(α) X is a triangle in co(H), then E(X) ∩ {L−1
GU (a), L

−1
GU (b)} ≠ ∅,

(β) X is a multiedge in co(H), then E(X) = {L−1
GU (a), L

−1
GU (b)}.

We will also need the following lemma from [18].

Lemma H [18]. Let G be an SM-closed graph and let H = L−1(G). Then H does not
contain a triangle with a vertex of degree 2 in H.
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Note that Lemma H was proved in [18] for SM-closed graphs (which we do not define here),
but since every UM-closed graph is also SM-closed (see e.g. [12]), it is true also for UM-closed
graphs.

4 Γ3-closure

The UM-closure operation preserves Hamilton-connectedness, but there is still a problem that
the local completion G

∗
x of a {K1,3,Γ3}-free graph G is not necessarily Γ3-free. To handle

this problem, we define the concept of a Γ3-closure GΓ3 of a {K1,3,Γ3}-free graph G. For a
set M = {x1, x2, . . . , xk} ⊂ V (G), we set G

∗
M = ((G

∗
x1
)
∗
x2
. . .)

∗
xk
. It is implicit in the proof of

uniqueness of cl(G) in [15] (and easy to see) that, for a given set M = {x1, x2, . . . , xk} ⊂ V (G),
G

∗
M is uniquely determined (i.e., does not depend on the order of the vertices x1, x2, . . . , xk

used during the construction).

If G is not Hamilton-connected, then a vertex x ∈ VNS(G), for which the graph G
∗
x is still

not Hamilton-connected, is said to be feasible in G. A set of vertices M ⊂ V (G) is said to
be feasible in G if the vertices in M can be ordered in a sequence x1, . . . , xk such that x1 is
feasible in G0 = G, and xi+1 is feasible in Gi = (Gi−1)

∗
xi
, i = 1, . . . , k− 1. Thus, if M ⊂ V (G)

is feasible, then M ⊂ VSI(G
∗
M), but G

∗
M is still not Hamilton-connected.

Note that it is possible that some two vertices x, y of a graph G are feasible in G, but x is
not feasible in G

∗
y (for example, if H is obtained from the Petersen graph by adding a pendant

edge to each vertex, subdividing a nonpendant edge x1x2 with a vertex w, replacing each of
the edges xiw with a double edge, and if G = L(H) and x′

i, x
′′
i ∈ V (G) correspond to the two

edges joining xi and w in H, i = 1, 2, then G is not Hamilton-connected, each of the vertices
x′
i, x

′′
i is feasible in G, i = 1, 2, but e.g. x′

1 and x′′
1 are not feasible in G

∗

x′
2
≃ G

∗

x′′
2
). Thus,

the recursive form of the definition is essential for verifying feasibility of a set M ⊂ V (G)
(although the resulting graph G

∗
M does not depend on their order).

Recall that in the special case when G = L(H), a local completion at a vertex x ∈ V (G)
corresponds to the contraction of the corresponding edge e = L−1(H). In this case, when
x = L(e) is feasible in G = L(H), we also say that the edge e ∈ E(H) is contractible in H, and,
similarly, if a set M ⊂ V (G) is feasible, then the corresponding set of edges L−1(M) ⊂ E(H)
is said to be contractible in H.

Now, for a {K1,3,Γ3}-free graph G, we define its Γ3-closure G
Γ3 by the following construc-

tion.
(i) If G is Hamilton-connected, we define GΓ3 as the complete graph.
(ii) If G is not Hamilton-connected, we recursively perform the local completion operation

at such feasible sets of vertices for which the resulting graph is still Γ3-free, as long as
this is possible. We obtain a sequence of graphs G1, . . . , Gk such that

• G1 = G,
• Gi+1 = (Gi)

∗
Mi

for some set Mi ⊂ V (Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any feasible set M ⊂ VNS(Gk), (Gk)

∗
M contains an induced subgraph isomor-

phic to Γ3,
and we set GΓ3 = Gk.
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A resulting graph GΓ3 is called a Γ3-closure of the graph G, and a graph G equal to (some) its
Γ3-closure is said to be Γ3-closed. Note that for a given graph G, its Γ3-closure is not uniquely
determined.

The following two theorems give basic properties of the Γ3-closure operation, proved in
[10] (for the graphs W5, W4, P

2
6 and P 2+

6 , see Fig. 5).
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Figure 5: The 5-wheel W5, the 4-wheel W4, and the graphs P 2
6 and P 2+

6

Theorem I [10]. Let G be a {K1,3,Γ3}-free graph and let GΓ3 be its Γ3-closure. Then GΓ3

is {K1,3,W5,W4, P
2
6 , P

2+
6 }-free.

To show that GΓ3 is a line graph of a multigraph, by Theorem B, it is sufficient to show
that GΓ3 does not contain as an induced subgraph any of the graphs G1, . . . , G7 of Figure 3.
Since G1 ≃ K1,3, G3 ≃ W5, each of the graphs G5, G6, G7 contains an induced W4, G2 ≃ P 2

6 ,
and G4 ≃ P 2+

6 , Theorem I immediately implies the following crucial fact.

Theorem J [10]. Let G be a {K1,3,Γ3}-free graph and let GΓ3 be its Γ3-closure. Then
there is a multigraph H such that GΓ3 = L(H).

Further structural properties of a Γ3-closure of a graph and of its preimage will be shown
in Section 5 (Lemma 2 and Lemma 3).

The following results will be useful to identify feasible vertices.

Theorem K [16]. Let G be a claw-free graph and let x ∈ V (G) be locally 2-connected in
G. Then G is Hamilton-connected if and only if G

∗
x is Hamilton-connected.

Thus, in our terminology, Theorem K says that a locally 2-connected vertex is feasible.

Lemma L [17]. Let G be a claw-free graph, x ∈ V (G), and let H
IND

⊂ ⟨NG(x)⟩G be a
2-connected graph containing two disjoint pairs of independent vertices. Then x is locally
2-connected in G.

Note that if a vertex x ∈ V (G) is feasible by virtue of Theorem K (i.e., x is locally 2-
connected in G), then, for any y ∈ V (G) y ̸= x, x is locally 2-connected also in G

∗
y, but

⟨NG∗
y
(x)⟩G∗

y
can be complete (if NG(x) ⊂ NG(y)). Thus, for any y ∈ V (G), x is feasible or

simplicial in G
∗
y.

We thus define more generally: a set M ⊂ V (G) is weakly feasible in G if the vertices in
M can be ordered in a sequence x1, . . . , xk such that x1 is feasible in G0 = G, and xi+1 is
feasible or simplicial in Gi = (Gi−1)

∗
xi
, i = 1, . . . , k − 1. Thus, similarly, if G is not Hamilton-

connected and M ⊂ V (G) is weakly feasible in G, then G
∗
M is still not Hamilton-connected

and all vertices of M are simplicial in G
∗
M .
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5 Proof of Theorem 1

In the proof, we will need the following three lemmas. Let D be the diamond (see Fig. 6(b)),
and D1 and D2 the diamond in which one or two of the edges aci, i = 1, 2, are subdivided,
respectively (see Fig. 6(c), (d)). We will use the labeling of the vertices of D, D1 and D2 as
in Fig. 6.

Lemma 2. Let G be a 3-connected {K1,3,Γ3}-free graph that is not Hamilton-connected,
let Ḡ be its Γ3-closure, and let H = L−1(Ḡ). Then

(i) H does not contain as a subgraph the diamond D,
(ii) for any triangle T ⊂ H, every vertex x ∈ V (T ) has a neighbor in V (H) \ V (T ),
(iii) H contains as a subgraph neither the graph D1 such that NH(d1) = {a, c1}, nor the

graph D2 such that NH(di) = {a, ci}, i = 1, 2.
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Figure 6: The multitriangle, the diamond D, and the graphs D1 and D2.

Proof. (i) If H contains a subgraph F ≃ D, then, since L(D) = W4, Ḡ is not W4-free,
contradicting Proposition I.

(ii) Let T = u1u2u3 be a triangle in H, denote e1 = u1u2, e2 = u2u3, e3 = u3u1, vi = L(ei),
i = 1, 2, 3, and suppose, to the contrary, that NH(u1) = {u2, u3}. By Theorem G(vi) and
Lemma H, Ḡ is not UM-closed, hence some of the vertices v1, v2, v3 is feasible in Ḡ, implying
that some of the edges e1, e2, e3 is contractible in H. By the definition of the Γ3-closure, some
Ḡ

∗
vi
, i ∈ {1, 2, 3}, contains an induced Γ3, i.e., the corresponding subgraph H|ei contains an

L−1(Γ3). We will use the labeling of the vertices of Γ3 and L−1(Γ3) as in Fig. 4.
By symmetry, it is sufficient to consider the cases when v1 or v2 is feasible.

Case 1: v1 is feasible in Ḡ.
Then the edge e1 = u1u2 is contractible in H, and H|e1 contains a subgraph F such that
L(F ) = Γ3, i.e., F is one of the three graphs in Fig. 4.

Let u12 ∈ V (H|e1) be the vertex obtained by identifying u1 and u2. Clearly, u12 ∈ V (F )
(otherwise also F ⊂ H), and at least one of the edges u12u3 is in E(F ) (since NH(u1) =
{u2, u3}). If u12u3 = qiqi+1 for some i ∈ {1, 2, 3, 4}, then also F ⊂ H, a contradiction.
Hence, up to a symmetry, u12u3 = s12q1. Then, replacing in F the edges (u12u3)

1, (u12u3)
2

by u1u3, u2u3 (if q1 = u3), or by u1u2, u1u3 (if q1 = u12), we have an L−1(Γ3) in H, a
contradiction.
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Case 2: v2 is feasible in Ḡ.
Then the edge e2 = u2u3 is contractible in H and H|e2 contains a subgraph F ≃ L−1(Γ3).
Since NH|e1 (u1) = {u23}, by symmetry, u23 ∈ {q1, q2, q3}.
If u23 = q1, then it is straightforward to obtain an L−1(Γ3) in H.

Let u23 = q2. Then, replacing in F the edges q1q2 and q1s1, q1s2 (or (q1s12)
1, (q1s12)

2) by
the edges u2u3, u2u1, u2q1 (if u3 = q2), or u3u2, u3u1, u3q1 (if u2 = q2), we have an L−1(Γ3)
in H.

Finally, let u23 = q3. By symmetry, choose the notation such that, in H, q2u2 ∈ E(H)
and q4u3 ∈ E(H). Since NH(u1) = {u2, u3} and {q2u2, u3q4} cannot be an essential edge-
cut in H, u2 or u3 has a neighbor w ∈ V (H) \ (V (F ) ∪ {u1, u2, u3}). By symmetry, let
u3w ∈ E(H). Then the edges (s12q1)

1, (s12q1)
2 (or s1q1, s2q1) and q1q2, q2u2, u2u1, u1u3,

u3q4, u3w determine an L−1(Γ3) in H, a contradiction.

(iii) Suppose that H contains a subgraph F ∈ {D1, D2} such that NH(d1) = {a, c1}, and
if F = D2, then also NH(d2) = {a, c2}.

We first show that, in each of the cases, the subgraph F is contractible to a double edge
with some pendant edges (i.e., the subgraph F ⊂ H contains some contractible subgraphs such
that their contraction turns F into a double edge plus some pendant edges). This will imply
that L(H) is not UM-closed, implying that L(H̃) (where H̃ is the multigraph obtained from
H by the contractions) is still not Hamilton-connected. Consequently, L(H̃) must contain an
induced Γ3, and we show that this is not possible.

Case 1: the edges ad1, c1d1, and ad2, c2d2 if F = D2, are simple.
Then co(H) contains a diamond, thus, by Theorem G(vi), L(H) is not UM-closed, implying
that some edge f ∈ E(F ) is contractible.

Subcase 1.1: F = D1.
First, if f ∈ {ad1, c1d1, c1b}, then F1 = F |f is a diamond, hence L(ab) has a 2-connected
neighborhood in H1 = H|f , implying that ab is contractible in H1. Then, in H2 = H1|ab,
F contracts to two double edges. By Theorem G(vi)(β), one of the double edges is
contractible, and its contraction yields a double edge (plus some pendant edges).

Secondly, if f = ab, then F |f is a triangle with a vertex of degree 2 plus a double edge. By
Theorem G, some of the edges of the triangle is contractible and the contraction yields a
double edge (plus some pendant edges).

Finally, if f ∈ {ac2, bc2}, then F1 = F |f is the graph with edges ad1, c1d1, c1b and a double
edge ab, and since d1 is of degree 2, F1 corresponds to a multitriangle in co(H|f ). Thus, by
Theorem G(vi), some edge f1 ∈ E(F1) is contractible inH1 = H|f . If f1 ∈ {ad1, c1d1, c1b},
then F2 = F1|f1 is a multitriangle, ab is contractible in H2 = H1|f1 (since it has 2-
connected neighborhood), and F2|ab yields a double edge. If f1 = ab, then F2 = F1|ab is a
triangle with a vertex of degree 2, and a contraction of any of its edges (by Theorem K)
yields again a double edge (plus pendant edges).

Subcase 1.2: F = D2.
If f ∈ E(F ) \ {ab}, then F1 = F |f ≃ D1 and we are in some of the previous cases. Thus,
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let f = ab. Then F1 = F |f consists of two triangles, each with a vertex of degree 2, which
by Theorem G and Lemma H yields again a double edge.

Case 2: some of the edges ad1, c1d1, and ad2, c2d2 if F = D2, is multiple in H.
In this case, we have the following fact.

Claim. Each of the edges ad1, c1d1, and ad2, c2d2 if F = D2, that is multiple in H, is
contractible.

Proof. Suppose that some f ∈ {ad1, c1d1} is multiple but not contractible.

First observe that the edge ab is not contractible, since otherwise, in F |ab, the edges ad1, c1d1
and c1b create a multitriangle in which f is in a multiple edge, hence L(f) has 2-connected
neighborhood and f is contractible, a contradiction. Thus, ab is not contractible, specifically,
ab is simple.

If both ad1 and c1d1 are multiple, then one of them is contractible (by Theorem G(vi)), and
its contraction yields again a multitriangle with f in multiple edge, implying contractibility
of f , a contradiction. Thus, exactly one of the edges ad1, c1d1 is multiple.

Now, if F = D1, then abc2 is a triangle, and since f is a noncontractible multiedge, some
of the edges ac2, bc2 is contractible, implying contractibility of ab, a contradiction. Thus,
F = D2.

If none of the edges ad2, c2d2 is multiple, then abc2 is a triangle in co(H). Since f is
a noncontractible multiedge, some of the edges ad2, c2d2 is contractible, implying again
contractibility of ab, a contradiction. Thus, some edge f1 ∈ {ad2, c2d2} is multiple. But
then again, by Theorem G(vi), f1 is contractible, implying, as before, contractibility of ab,
a contradiction. □

We summarize that some edges of F are multiple, and each multiple edge of F is contractible.
But now, contracting some of the multiple edges of F , in each of the cases, we are in some of
the previous cases. Thus, we conclude that F can be contracted to a double edge plus some
pendant edges, and for the resulting multigraph H̃, L(H̃) is still not Hamilton-connected.

By the definition of the Γ3-closure, H̃ contains a subgraph F̃ ≃ L−1(Γ3). Moreover, observe
that, in each of the cases, the contraction of F to a double edge contracts some of the two
“subdivided triangles” of F to a vertex (plus some pendant edges). More specifically, either
the subgraph F 1 with edges ad1, d1c1, c1b and ab, or the subgraph F 2 with edges ad2, d2c2 (or
ac2 if F = D1), c2b and ab, is contracted to a vertex plus pendant edges, and this turns F into
a double edge (plus some pendant edges). Thus, at most one of the edges of F is an edge of
F̃ . Denote the vertices of F̃ as in Fig. 4.

We will consider the vertex of H̃ resulting from the contraction of F 1 or F 2 as a “new”
vertex, and will distinguish cases according to which of the vertices of F̃ is new, and, subject
to this, which of the edges qiqi+1, i = 1, 2, 3, 4, is an edge of F . To reach a contradiction, in
each of the cases, we will list edges of an L−1(Γ3) in H. We will also list which part of F (i.e.,
F 1 or F 2) corresponds to the new vertex, and its vertices that are used in the L−1(Γ3) in H.
The cases and subcases are distinguished up to a symmetry, and, in symmetric situations, we
will always list the possibility that F 1 is contracted (note that if F = D1, it is possible that
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the L−1(Γ3) in H uses the edge ad1 or c1d1 when F 1 is contracted, while it uses the edge ab
if F 2 is contracted, and we consider these situations also symmetric). In all cases, when the
edges q1s1 and q1s2, or q5s3 and q5s4 are used, it is always implicitly understood that there is
also a possibility of a double edge q1s12 or q5s34.

Case 1: q1 is new.
Then possibly E(F ) ∩ E(F̃ ) = ∅ or q1q2 ∈ E(F ), and (up to a symmetry) q1 ∈ {c1, b} if
q1q2 /∈ E(F ), and q1 = b if q1q2 ∈ E(F ). We thus have the following possibilities.

E(F ) ∩ E(F̃ ) q1 edges of an L−1(Γ3) in H
∅ F 1; c1 c1d1, c1b, c1q2, q2q3, q3q4, q4q5, q5s3, q5s4
∅ F 1; b bc1, ba, bq2, q2q3, q3q4, q4q5, q5s3, q5s4

q1q2 = bc2 F 1; b bc1, ba, bc2, c2q3, q3q4, q4q5, q5s3, q5s4

Case 2: q2 is new.
In this case, possibly E(F ) ∩ E(F̃ ) = ∅, q1q2 ∈ E(F ), or q2q3 ∈ E(F ), and we have the
following possibilities.

E(F ) ∩ E(F̃ ) q2 edges of an L−1(Γ3) in H
∅ F 1; a, b bc1, bq1, ba, aq3, q3q4, q4q5, q5s3, q5s4

q1q2 = bc2 F 1; b, c1 bc2, ba, bc1, c1q3, q3q4, q4q5, q5s3, q5s4
q1q2 = bc2 F 1; b ad1, ad2(ac2), ab, bq3, q3q4, q4q5, q5s3, q5s4
q2q3 = bc2 F 1; b, c1 c1d1, c1q1, c1b, bc2, c2q4, q4q5, q5s3, q5s4
q2q3 = bc1 F 2; a, b aq1, ab, ad1, d1c1, c1q4, q4q5, q5s3, q5s4

Case 3: q3 is new.
In this case, possibly E(F )∩E(F̃ ) = ∅, q2q3 ∈ E(F ), or q3q4 ∈ E(F ); however, the last two
possibilities are symmetric and we therefore consider only the first of them.

Subcase 3.1: q2q3 ∈ E(F ).
Then we have the following possibilities.

E(F ) ∩ E(F̃ ) q2 edges of an L−1(Γ3) in H
q2q3 = ac2 F 1; a, c1 c2q1, c2d2(c2b), c2a, ac1, c1q4, q4q5, q5s3, q5s4
q2q3 = c1b F 2; a, b c1q1, c1b, c1d1, d1a, aq4, q4q5, q5s3, q5s4

Subcase 3.2: E(F ) ∩ E(F̃ ) = ∅.
Since one of F 1, F 2 is contracted and d1, d2 have no neighbors outside F , the vertices q2
and q4 are adjacent in H either to a and b, or to one of a, b and one of c1, c2. So, up to a
symmetry, either q2a, q4b ∈ E(H), or NH(q2) ∩ {c1, c2} ≠ ∅ and NH(q4) ∩ {a, b} ≠ ∅.

Subcase 3.2.1: q2a, q4b ∈ E(H).
If F = D1, then the edges q1s1, q1s2, q1q2, q2a, ac2, c2b, bq4, bc1 determine an L−1(Γ3)
in H, a contradiction. Hence F = D2.

If bc1 is a double edge in H, then the edges q1s1, q1s2, q1q2, q2a, ad1, d1c1, (c1b)
1, (c1b)

2,
and if ad1 is double in H, then the edges (ad1)

1, (ad1)
2, d1c1, c1b, bq4, q4q5, q5s3, q5s4

determine an L−1(Γ3) in H. Thus, µH(ad1) = µH(bc1) = 1. Since {ad1, bc1} cannot be
an essential edge-cut, c1 has another neighbor z ∈ V (H). We show that z cannot be
any of the vertices s1, s2 (or s12), q1, q2, a.
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z edges of an L−1(Γ3) in H
s1 q1s2, q1q2, q1s1, s1c1, c1b, ba, ad1, ad2
s12 (s12q1)

1, (s12q1)
2, s12c1, c1b, bq4, q4q5, q5s3, q5s4

q1 q1s1, q1s2, q1c1, c1b, bq4, q4q5, q5s3, q5s4
q2 q2q1, q2a, q2c1, c1b, bq4, q4q5, q5s3, q5s4
a aq2, ad1, ac1, c1b, bq4, q4q5, q5s3, q5s4

But then the edges q1s1, q1s2, q1q2, q2a, ad1, d1c1, c1z, c1b determine an L−1(Γ3) in H, a
contradiction.

Subcase 3.2.2: NH(q2) ∩ {c1, c2} ≠ ∅ and NH(q4) ∩ {a, b} ≠ ∅.
Let q̄2 ∈ {c1, c2} and q̄4 ∈ {a, b} denote the neighbor of q2 or q4 in F , respectively.

Suppose first that q̄2 = c1. Then either q̄4 = a, or q̄4 = b.

q̄4 edges of an L−1(Γ3) in H
a q1s1, q1s2, q1q2, q2c1, c1d1, d1a, ab, aq4
b q1s1, q1s2, q1q2, q2c1, c1d1, d1a, ab, ad2(ac2)

We get a symmetric contradiction if q̄2 = c2 and F = D2. Thus, we have q̄2 = c2 and
F = D1 (and either q̄4 = a, or q̄4 = b).

We now show that none of the edges ad1, bc1 can be a double edge. Suppose the
opposite. Then we have the following possibilities.

double edge edges of an L−1(Γ3) in H
ad1 q1s1, q1s2, q1q2, q2c2, c2b, ba, (ad1)

1, (ad1)
2

bc1 q1s1, q1s2, q1q2, q2c2, c2a, ab, (bc1)
1, (bc1)

2

Thus, µH(ad1) = µH(bc1) = 1. Since {ad1, bc1} cannot be an essential edge-cut, c1
must have another neighbor z ∈ V (H). Clearly z ̸= c2 (since then we would have a
diamond in H). We show that z cannot be any of the vertices s1, s2 (or s12), q1, q2.

z edges of an L−1(Γ3) in H
s1 q1s2, q1q2, q1s1, s1c1, c1b, ba, ad1, ac2
s12 (s12q1)

1, (s12q1)
2, s12c1, c1d1, d1a, ac2, c2q2, c2b

q1 q1s1, q1s2, q1c1, c1d1, d1a, ac2, c2q2, c2b
q2 q1s1, q1s2, q1q2, q2c1, c1d1, d1a, ac2, ab

But then the edges q1s1, q1s2, q1q2, q2c2, c2b, bc1, c1d1, c1z determine an L−1(Γ3) in H, a
contradiction.

The next lemma will describe some structural properties of a minimal counterexample to
Theorem 1. Here, we say that a graph is minimal with respect to a property P , if G has P ,
but for every vertex x ∈ V (G), G− x does not have P .

For an integer r ≥ 2, KM
2,r will denote the family of multigraphs that can be obtained from

the complete bipartite graph K2,r = ({v1, v2}, {w1, w2, . . . , wr}) by replacing at least one of
the edges wiv1, wiv2 with a double edge (for an example, see Fig. 7(b)). Similarly, KM

rP4
will

denote the family of multigraphs obtained by identifying endvertices of r vertex-disjoint paths
P i
4 = v1wiziv2, i = 1, 2, . . . , r, and, for each i = 1, 2, . . . , r, by replacing at least one of the

edges of the P i
4 with a double edge (for an example, see Fig. 7(c)).
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Figure 7: The graph K2,r, a multigraph from KM
2,r and a multigraph from KM

rP4
.

Lemma 3. Let G be a minimal 3-connected {K1,3,Γ3}-free non-Hamilton-connected graph,
let Ḡ be its Γ3-closure, and let H = L−1(Ḡ). Then

(i) every vertex x ∈ V (H) is incident with at most two pendant edges,
(ii) every edge e ∈ E(H) that is in a cycle of length at least three has multiplicity µ(e) ≤ 2,
(iii) H does not contain as a subgraph the graph K2,4 such that its vertices of degree 2 are

of degree 2 in H,
(iv) H does not contain as a subgraph a multigraph from KM

2,4 such that every vertex of⋃4
i=1NH(wi) \ {v1, v2} has degree 1 in H,

(v) H does not contain as a subgraph a multigraph from KM
4P4

such that NH(wi) = {v1, zi}
and NH(zi) = {v2, wi}, i = 1, 2, 3, 4.

Proof. (i) By the assumption of the lemma, H is essentially 3-edge-connected, not con-
taining an L−1(Γ3), and H does not have an (e, f)-IDT for some e, f ∈ E(H). Suppose that
H contains s ≥ 3 pendant edges at a vertex x ∈ V (H), choose s− 2 of them such that none of
them is e or f , and let H ′ be obtained from H by removing the chosen s− 2 pendant edges.
Then clearly H ′ is still essentially 3-edge-connected, not containing an L−1(Γ3), and H ′ does
not have an (e, f)-IDT. Since |V (L(H ′))| = |V (G)|−(s−2) < |V (G)|, we have a contradiction
with the minimality of G.

(ii) Similarly, suppose that µH(e) = s ≥ 3 for some edge e = ab ∈ E(H), let e, f ∈ E(H) be
such that H has no (e, f)-IDT, choose the notation such that none of the edges (ab)3, . . . , (ab)s

is any of e, f , and let H ′ be obtained by from H by removing the edges (ab)3, . . . , (ab)s. Then
clearly H ′ contains no L−1(Γ3), no (e, f)-IDT, and since e = ab is in a cycle of length at
least 3, H ′ is also essentially 3-edge-connected. Thus, the graph G′ = L(H ′) contradicts the
minimality of G.

(iii) Suppose that H contains a subgraph F ≃ K2,4 = ({v1, v2}, {w1, w2, w3, w4}) such that
dH(wi) = 2, i = 1, 2, 3, 4. Then in co(H) we have µ(v1v2) = 4, hence H is not UM-closed by
Theorem G(vi). Thus, some of the edges wivj is contractible. Choose the notation such that
v1w1 is contractible and set H1 = H|v1w1 and G1 = L(H1). Then, in G1, ⟨NG1(L(v1v2))⟩G1

is 2-connected by Lemma L, hence v1v2 is contractible by Theorem K. Set H2 = H1|v1v2 and
G2 = L(H2). Then, in H2, the whole F contracts to a single vertex plus 8 pendant edges, and
G2 is still 3-connected and not Hamilton-connected.

Let now H ′ be obtained from H by replacing the subgraph F with the graph F ′ = K2,3 =
({v1, v2}, {w1, w2, w3}). Then, analogously, v1v2 is a triple edge in co(H ′), v1w1 (say) is con-
tractible in H ′, and ⟨NG′

1
(L(v1v2))⟩G′

1
is 2-connected in G′

1 = L(H ′
1), where H ′

1 = H ′|v1w1 . In
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H ′
2 = H ′

1|v1v2 then F ′ contracts to a single vertex plus 6 pendant edges. Moreover, G′ = L(H ′)
is 3-connected, and G′ is Hamilton-connected if and only if G′

2 = L(H ′
2) is Hamilton-connected.

Since H2 and H ′
2 differ only in number of pendant edges at the vertex resulting from

contracting F or F ′, respectively, G′
2 is also not Hamilton-connected, implying G′ is not

Hamilton-connected. Since G′ is an induced subgraph of G, G′ is Γ3-free. Thus, G
′ contradicts

the minimality of G.

(iv) Suppose that H contains a submultigraph F ∈ KM
2,4 satisfying the assumptions of the

lemma. Note that, by part (ii), every edge of F has multiplicity 1 or 2, and, by the definition of
KM

2,4, at least one of the edges wiv1, wiv2 has multiplicity 2, i = 1, 2, 3, 4. For each i = 1, 2, 3, 4,
let fi be one of the edges wiv1, wiv2 with µ(fi) = 2.

By Theorem G(vi)(β), some three of the edges f1, f2, f3, f4 are contractible, and we choose
the notation such that the contractible edges are f2, f3 and f4.

Let H ′ be the multigraph obtained from H by removing the vertex w4 and possibly the (by
(i) at most two) its neighbors of degree 1. Observe that H ′ is also essentially 3-edge-connected.

Set H1 = H|{f2,f3,f4} and H ′
1 = H ′|{f2,f3}. Then in H the submultigraph F contracts to a

graph with vertices v1, v2, w1, one multiple edge v1v2, and two edges w1v1 and w1v2, at least
one of them being multiple. In H ′, F ′ contracts to the same structure with the only difference
that µH′(v1v2) < µH(v1v2). More specifically, since the multiple edge v1v2 results from 3 edges
in H but 2 edges in H ′, we have µH(v1v2) ≥ µH′(v1v2) + 1.

Again by Theorem G(vi)(β), one of the multiple edges in contractible, resulting in an edge
with multiplicity at least 3 (both in H and in H ′), and another application of Theorem G(vi)
contracts the whole F in H (or F ′ in H ′) to a single vertex with some pendant edges. Thus,
the multigraphs H|F and H ′|F ′ are isomorphic up to a different number of pendant edges at
the vertex resulting from contracting F (or F ′). Consequently, L(H|F ) is Hamilton-connected
if and only if L(H ′|F ′) is Hamilton-connected, implying that G′ is not Hamilton-connected.

Since H ′ is essentially 3-edge-connected, G′ is 3-connected, and G′ is Γ3-free since G′ IND

⊂ G.
Thus, the graph G′ contradicts the minimality of G.

(v) Suppose that H contains a subgraph F ∈ KM
4P4

. First observe that if, say, w1z1 is
a double edge, then the edges (w1z1)

1, (w1z1)
2, w1v1, v1w2, w2z2, z2v2, v2z3, v2z4 determine an

L−1(Γ3) in H, a contradiction. Thus, by symmetry, all edges wizi, i = 1, 2, 3, 4, are simple
edges.

By Theorem G(vi)(β), all multiple edges in F , except for possibly one, are contractible.
Choose the notation such that the (possibly) noncontractible double edge is the edge v1w1,
and let F̃ be the subgraph of F consisting of P 2

4 , P
3
4 and P 4

4 . Let Fc be the set of contractible
edges of F , and set H1 = H|Fc . Then, in H1, each of the paths P i

4, i = 2, 3, 4, contracts either
to an edge v1v2 plus 4 pendant edges (if |E(P i

4)∩Fc| = 2), or to a (v1, v2)-path of length 2 with
interior vertex of degree 2, plus 2 pendant edges (if |E(P i

4) ∩ Fc| = 1). Thus, the subgraph
F̃1 = F̃ |Fc ⊂ H1 corresponds in co(H1) to a triple edge v1v2. By Theorem G(vi), H1 is not
UM-closed, hence some of the edges of F̃1, say, e, is contractible.

If e = v1v2, then in H2 = H1|e the whole F̃ contracts to a single vertex plus some pendant
edges. Otherwise, e is an edge of a (v1, v2)-path of length 2, and then in H2 = H1|e the
(v1, v2)-path is replaced with an edge v1v2 (plus a pendant edge); and repeating the argument,
we are in the first case. Thus, in each of the cases, the contractions result in the graph H2,
in which F̃ is contracted to a single vertex (plus pendant edges). The graph G2 = L(H2) is
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3-connected since clearly H2 is essentially 3-edge-connected, and, by Theorem G(iii), G2 is
not Hamilton-connected.

Let now H ′ be obtained from H by replacing the subgraph F with F ′ ∈ KM
3P4

, and choose
again the notation such that the (possibly) noncontractible multiedge is the double edge v1w1.
Let F̃ ′ be the subgraph of F ′ consisting of P 2

4 and P 3
4 . Then clearlyH ′ is also essentially 3-edge-

connected, hence G′ = L(H ′) is 3-connected. Moreover, H ′|F ′ is the same multigraph as H2,
with only different number of pendant edges at the vertex resulting from contracting F̃ (or F̃ ′,
respectively). Consequently, L(H ′|F ′) is not Hamilton-connected, hence G′ = L(H ′) is also not
Hamilton-connected (since L(H|F ′) was obtained from G′ by a series of local completions).
Since G′ is an induced subgraph of G, the graph G′ is Γ3-free, hence G′ contradicts the
minimality of G.

The following lemma will be crucial in the proof of Theorem 1 for graphs containing a small
cycle. In the lemma, CM

9 denotes the multigraph obtained from the cycle C9 = x0x1 . . . x8 by
adding one parallel edge to each of the edges x0x1, x3x4 and x6x7, and F denotes the finite
family consisting of all multigraphs listed in the file F.txt available at [24]. We will folow the
labeling of vertices of some special graphs as introduced in Figures 6 and 7.

Lemma 4. Let G be a Γ3-free line graph of a multigraph and let H = L−1(G). Then
H ∈ F if and only if H satisfies all conditions (1), . . . , (8) and every subgraph F of H satisfies
each of conditions (9), . . . , (14):
(1) each vertex of H has at most two neighbors of degree 1,
(2) each multiedge of H has multiplicity at most 2,
(3) H contains Ck as a subgraph for some k ∈ {7, . . . , 10},
(4) H does not contain D as a subgraph,
(5) H does not contain CM

9 as a flat subgraph,
(6) at least 10 vertices of H have degree at least 3,
(7) H is essentially 3-edge-connected,
(8) H is essentially 2-connected,
(9) if F ≃ K3, then every vertex of F has at least three neighbors in H,
(10) if F ≃ D1, then every vertex of F has at least three neighbors in H,
(11) if F ≃ K2,4, then

∑4
i=1 |NH(wi)| > 8,

(12) if F ≃ D2, then |NH(c1)|+ |NH(c2)| > 4 and |NH(d1)|+ |NH(d2)| > 4,
(13) if F ∈ KM

4,P4
, then

∑
u∈V (F )\{v1,v2} |NH(u)| > 16,

(14) if F ∈ KM
2,4, then some vertex of ∪4

i=1NH(wi) \ {v1, v2} has degree at least 2 in H.

Proof. We prove the lemma with the help of a computer. To this end, we design an
algorithm that essentially checks all possible candidates for the multigraph H and generates
a plain text full proof of the lemma. The source code and the full proof can be found at [24].
Here, we explain the logic behind the algorithm and show that, indeed, it proves the lemma.

The general approach of the algorithm is to start with a small graph and test all relevant
extensions, step by step, until it is clear that no multigraph obtained by further extensions
can possibly satisfy the lemma. Given a multigraph M and sets U ⊂ V (M) and R ⊂ ES(M),
we consider two types of extensions denoted by A(M,U) and M(M,R) as follows:
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� A(M,U) is the family of all possible multigraphs M+ obtained from M by adding a
vertex v such that v is incident with no multiedge in M+ and |NM+(v) ∩ U | ≥ 1, and if

dM+(v) = 1 then v has at most one twin in M+,
� M(M,R) is the family of all possible multigraphs M+ obtained from M by multiplying
an edge of R.

We write A(M) as a short for A(M,V (M)), and similarly M(M) for M(M,ES(M)).
For every k ∈ {7, . . . , 10}, the computer considers all graphs on k vertices containing Ck

(but containing no Cℓ subgraph where 7 ≤ ℓ ≤ k − 1). For each of these graphs, it tests all
relevant extensions by calling investigate(), see Algorithm 1.

Algorithm 1 Recurrent investigation of M , the algorithm branches on B ⊂ A(M) ∪M(M)

1: procedure investigate(M)
2: if L(M) is Γ3-free and M contains no subgraph D and no flat subgraph CM

9 then
3: if conditions (6), . . . , (14) are all satisfied then
4: add M to F.txt

5: set B = A(M) ∪M(M)
6: else
7: choose a violated condition p from (6), . . . , (14) at random
8: set B = get all solution attempts(M, p) ▷ see Algorithm 2

9: for each M+ ∈ B do
10: investigate(M+) ▷ recurrence on extended multigraphs

We should note that considering all extensions of A(M) ∪M(M) in each iteration is not
desirable since it leads to infinite families of multigraphs satisfying the condition on line 2 of
Algorithm 1 (and hence the process never finishes). The key idea of the proof is to choose
a particular violation of a condition from (6), . . . , (14) and to test just all extensions po-
tentially helping to solve this violation (see lines 7 and 8 of Algorithm 1). It turns out that
every branch of this investigation is finite since at some point each M+ ∈ B fails to sat-
isfy the condition on line 2 of Algorithm 1. The relevant extensions are obtained by calling
get all solution attempts(), see Algorithm 2.

We now show that the algorithm, indeed, proves the lemma. It suffices to show that a
multigraph H is added to F.txt by the algorithm if and only if H completely satisfies the
hypothesis of the lemma.

We first consider a multigraph H added to F.txt and we show that it satisfies the hypoth-
esis of the lemma. We recall that H is obtained from a simple graph on k vertices containing
Ck where k ∈ {7, . . . , 10} by iteratively applying extensions A() and M(), and we note that
H has the following properties:

� H contains neither loops nor pendant multiedges,
� H satisfies conditions (1), (2) and (3).

In particular, we note that pendant simple edges of H precisely correspond to simplicial
vertices of L(H), and thus H is a preimage of a line graph of multigraph. Since H is added
to F.txt at line 4 of Algorithm 1, H satisfies the conditions on lines 2 and 3 of Algorithm 1.
We conclude that H is a preimage of a Γ3-free line graph of multigraph and H satisfies all
conditions (1), . . . , (14).
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Algorithm 2 Choose a particular problem of type p at random and return all relevant solution
attempts

1: procedure get all solution attempts(M, p)
2: if p is (6) then
3: set R as the set of all edges from ES(M) incident with a vertex of degree 2 in M
4: return A(M) ∪M(M,R)

5: if p is (7) then
6: choose an essential 2-edge-cut {e, f}
7: if {e, f} ⊂ ES(M) then
8: choose a non-trivial component C of M − {e, f}
9: return A(M,V (C)) ∪M(M, {e, f})
10: else ▷ M has an essential cutvertex
11: reset p = (8)

12: if p is (8) then
13: choose an essential cutvertex u and a non-trivial component C of M − u
14: return A(M,V (C))

15: if p is (9) then
16: choose a vertex u of a K3 subgraph such that |NM(u)| = 2
17: return A(M, {u})
18: if p is (10) then
19: choose a vertex u of a D1 subgraph such that |NM(u)| = 2
20: return A(M, {u})
21: if p is (11) then
22: choose a K2,4 subgraph such that

∑4
i=1 |NM(wi)| = 8

23: return A(M, {w1, . . . , w4})
24: if p is (12) then
25: choose a D2 subgraph such that |NM(c1)|+ |NM(c2)| = 4 ▷ or d1, d2 by symmetry
26: return A(M, {c1, c2})
27: if p is (13) then
28: choose a subgraph F ∈ KM

4,P4
such that

∑
u∈V (F )\{v1,v2} |NM(u)| = 16

29: return A(M,V (F ) \ {v1, v2})
30: if p is (14) then
31: set U =

⋃4
i=1 NM(wi) \ {v1, v2}

32: choose a subgraph F ∈ KM
2,4 such that each vertex of U has degree 1 in M

33: return A(M,U ∪ {w1, . . . , w4})

19



Next, we let H be a multigraph which satisfies the hypothesis of the lemma, and we show
that H is added to F.txt. Since H is the preimage of a line graph of multigraph, H has
neither loops nor pendant multiedges. We show the following four claims.

Claim 1. Every flat subgraph of H satisfies the condition on line 2 of Algorithm 1.

Claim 2. Let M be a flat subgraph of H and let U ⊂ V (M) such that for every u ∈ U , all
vertices of NM(u) of degree 1 in M also belong to U . If there is a vertex x of V (H)\V (M) such
that |NH(x) ∩ U | ≥ 1, then H contains a multigraph M+ from A(M,U) as a flat subgraph.

Claim 3. Let M be a flat subgraph of H. If M is distinct from H, then H contains a
multigraph M+ from A(M) ∪M(M) as a flat subgraph (possibly M+ ≃ H).

Claim 4. Let M be a flat subgraph of H. If M violates a condition p from (6), . . . , (14),
then H contains some multigraph M+ given by get all solution attempts(M, p) as a
flat subgraph.

Proof of Claim 1. For the sake of a contradiction, we suppose that H has a flat subgraph M
which fails to satisfy the condition on line 2 of Algorithm 1. Hence, M contains a subgraph
X such that L(X) ≃ Γ3 or contains D as a subgraph or M contains CM

9 as a flat subgraph.
Since M is a flat subgraph of H, every (flat) subgraph of M is also a (flat) subgraph of H.
Hence, H also fails to satisfy the condition on line 2 of Algorithm 1. In other words, L(H) is
not Γ3-free or H violates condition (4) or (5), a contradiction. □

Proof of Claim 2. We let M ′ be the multigraph obtained from M by adding a new vertex
adjacent by simple edges to precisely the vertices of NH(x) ∩ V (M). Clearly, M ′ is a flat
subgraph of H. If M ′ belongs to A(M,U), then we are done. Hence, we can assume that
M ′ does not belong to A(M,U), and it follows that the new vertex is of degree 1 in M ′ and
has more than one twin in M ′. We let A be a set consisting of the new vertex and its two
twins in M ′. Since H satisfies condition (1), there exists a vertex, say y, of V (H) \ V (M ′)
such that |NH(y) ∩ A| ≥ 1. We choose a vertex u ∈ A such that |NH(y) ∩ A \ {u}| ≥ 1, and
we consider the multigraph M ′ − u (we note that it is isomorphic to M). We let M+ be the
multigraph obtained from M ′−u by adding a new vertex adjacent by simple edges to precisely
the vertices of NH(y)∩V (M ′−u). Clearly, M+ is a flat subgraph of H. Finally, we note that
the hypothesis of Claim 2 implies that |A ∩ U | ≥ 2. Since the vertices of A are twins in M ′

and the new vertex of M+ is adjacent to a vertex of A, we conclude that M+ ∈ A(M,U). □

Proof of Claim 3. We discuss two cases based on V (M). For the first case, we suppose that
V (M) = V (H). We recall that H has no loops, no pendant multiedges and no multiedges of
multiplicity greater than 2. Since M is a flat subgraph of H and M is distinct from H, there is
a simple non-pendant edge e of M which corresponds to a multiedge in H. We let M+ be the
multigraph obtained from M by multiplying e, and we conclude that M+ is a flat subgraph
of H and M+ belongs to M(M).
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For the second case, we suppose that V (M) is a proper subset of V (H). Since H is
connected, there is a vertex x of V (H) \ V (M) such that |NH(x) ∩ V (M)| ≥ 1. We observe
that we can apply Claim 2 with U = V (M) and obtain a desired multigraph M+. □

Proof of Claim 4. We discuss nine cases based on p.
First, we consider the case where p is (6) which stands for the fact that the multigraph M

has few vertices of degree at least 3. We use that H is connected, has no pendant multiedge
and satisfies condition (6) and that M is a flat subgraph of H, and we observe that at least
one of the following is true:

� some vertex of V (H) \ V (M) is adjacent to a vertex of V (M) in H, or
� some edge of R corresponds to a multiedge in H.

For the first item, we use Claim 2 with U = V (M) and observe that H contains a multigraph
fromA(M) as a flat subgraph. For the second item, we note thatH contains a multigraph from
M(M,R) as a flat subgraph. The obtained multigraph from A(M)∪M(M,R) is included at
line 4 of Algorithm 2.

For the case (7), we consider the condition on line 7 of Algorithm 2 and discuss the two
options. We first suppose that the condition is satisfied, that is, {e, f} ⊂ ES(M). Since H
satisfies condition (7) and M is a flat subgraph of H, at least one of the following is true:

� some vertex of V (H) \ V (M) is adjacent to a vertex of C, or
� some edge of {e, f} corresponds to a multiedge in H.

For the first item, we consider an arbitrary vertex u of C and note that all vertices of NM(u)
of degree 1 in M also belong to C. Hence, we can apply Claim 2 with U = V (C). For the
second item, we note that H contains a multigraph from M(M, {e, f}) as a flat subgraph. It
follows that H contains a multigraph from A(M,V (C)) ∪ M(M, {e, f}) as a flat subgraph,
and this multigraph is included at line 9 of Algorithm 2.

Next, we suppose that one of the edges, say e, is a pendant edge in M . We observe that at
least one of the vertices incident with f is an essential cutvertex in M . Hence, the algorithm
can reset p = (8) and continue with lines 12, 13 and 14.

For the case (8), we use that H satisfies condition (8) and M is a flat subgraph of H, and
we note that some vertex of V (H) \ V (M) is adjacent to a vertex of C. We apply Claim 2
with U = V (C), and we conclude that H contains a multigraph from A(M,V (C)) as a flat
subgraph, and it is included at line 14 of Algorithm 2.

For the case (9), we use that H satisfies condition (9), and hence some vertex of V (H) \
V (M) is adjacent to u. Since |NM(u)| = 2, the vertex u has no neighbor of degree 1 in M .
Thus, we can apply Claim 2 with U = {u} and conclude that H contains a multigraph from
A(M, {u}) as a flat subgraph. This multigraph is included at line 17 of Algorithm 2.

We note that the cases (10), . . . , (13) are similar to (9). In each case, M contains a set,
say U , of vertices (possibly of size 1) such that no vertex of U has neighbor of degree 1 in M
and at least one vertex of U has an additional neighbor in H. Hence, Claim 2 yields that H
contains a multigraph from A(M,U) as a flat subgraph, and it is included at the respective
line of Algorithm 2.

Lastly, for the case (14) we note that H has a vertex of degree at least 2 adjacent to at
least one of the vertices w1, . . . , w4. In particular, this vertex has at least two neighbors in H
since H has no pendant multiedge. Hence, there exists a vertex x of V (H) \ V (M) such that
at least one of the following is true:

� x is adjacent to at least one of w1, . . . , w4, or
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� x is adjacent to a vertex u such that dM(u) = |NM(u)∩{w1, . . . , w4}| = 1 (in particular,
adding x increases the degree of u to 2).

In other words, x is adjacent to a vertex of U =
⋃4

i=1NM [wi] \ {v1, v2} since each vertex of
NM(wi)\{v1, v2} has degree 1 in M . Hence, Claim 2 yields that H contains a multigraph from
A(M,U) as a flat subgraph, and this multigraph is included at line 33 of Algorithm 2. □

With Claims 1, 3 and 4 on hand, we now show the desired implication. For the sake
of a contradiction, we suppose that there exists a multigraph H which satisfies the hypoth-
esis of the lemma but is not added to F.txt. We consider all flat subgraphs M of H for
which the algorithm calls investigate(M), and we choose such a multigraph M maximizing∑

u∈V (M) dM(u). We should also say that such M clearly exists since H satisfies condition

(3) and the algorithm calls investigate() for the graphs on k vertices containing Ck where
k ∈ {7, . . . , 10}. Furthermore, since M is obtained by recurrently extending one of these
graphs by A() and M(), we note that M has no pendant multiedges.

Since M is a flat subgraph of H, M satisfies the condition on line 2 of Algorithm 1 by
Claim 1. We now discuss M subject to the condition on line 3 of Algorithm 1 and we obtain
a multigraph M+ as follows. If M satisfies this condition, then M is added to F.txt at line
4 of Algorithm 1. Hence, M is distinct from H (since H is not added to F.txt), and thus we
can apply Claim 3 to M ; and we let M+ be the obtained multigraph. Otherwise, M violates a
condition from (6), . . . , (14), and we can apply Claim 4 to M ; and we let M+ be the obtained
multigraph.

We consider the obtained multigraph M+, and we note that M+ belongs to B due to line 5
or 8 of Algorithm 1. Finally, line 10 of Algorithm 1 calls investigate(M+), which contradicts
the choice of M . Thus, every multigraph satisfying the hypothesis of the lemma is added to
F.txt which concludes the proof of the equivalence.

In order to improve runtime, our implementation of the algorithm is slightly more involved.
In the remainder of the proof, we outline details of the implementation (an interested reader
is also invited to have a look at the code and the commentary therein).

In the implementation, we keep track of solved cases (that is, we save multigraphs whose
all extension branches are finished). Later, when the computer investigates a different case,
it tests whether this is already solved and then perhaps not investigate it again (it tests
whether some of the saved multigraphs appears as a flat subgraph of the multigraph currently
investigated). The list of solved multigraphs can be easily kept short and apt in the recurrence
scheme.

In each branch, we keep track of the extensions. In particular, an extension is not investi-
gated again if it is known to lead to violating the condition on line 2 of Algorithm 1 or to a
case already solved.

Lastly, a violated condition p and a particular violation are chosen at random, but the
choice favors small |B| (it is not uniformly random, and we consider only violations whose sets
B are inclusion minimal). In fact, if there is a particular violation such that |B| = 0, then this
choice is always preferred (this means that the violation cannot be fixed even with further
extensions and the branch finishes).

Proof of Theorem 1. Let, to the contrary, G be a minimal 3-connected {K1,3,Γ3}-free
graph that is not Hamilton-connected, let Ḡ be one of its Γ3-closures, and let H = L−1(Ḡ).
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Obviously, H is essentially 3-edge-connected since G is 3-connected. If H has a cutvertex, we
can apply our considerations to each of its (nontrivial) blocks, hence we can assume that H
is essentially 2-connected. Finally, it is straightforward to verify that if H ≃ W (see Fig. 2),
then G is Hamilton-connected, hence H ̸≃ W . By Theorem E(i), H contains a cycle of length
at least 9.

Moreover, we have the following fact.

Claim 1. If co(H) ∈ {W ∪W}, then H contains as a subgraph an L−1(Γ3), or G = L(H) is
Hamilton-connected.

Proof. Set H̃ = co(H). First observe that if H̃ ∈ {W ∪ W}, then, by Lemma 3(ii), the
multiple edge of H̃ is of multiplicity 2, hence H̃ ∈ {W1,W2}, where W1 and W2 are the
multigraphs shown in Fig. 8 (in which v denotes the only vertex of degree 4).
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Figure 8: The multigraphs W1 and W2, and the graph W3.

Let thus H̃ ∈ {W,W1,W2}, and let V1 be the set of all vertices of H̃ that are not incident
to a double edge.

It is easy to see that if a vertex x ∈ V1 is incident in H to neither a pendant edge nor an
edge containing a vertex of degree 2, then x is not necessarily visited by an IDT in H (all
edges incident to x can be dominated without visiting x), and then it is straightforward to
verify that H has an (e, f)-IDT for any e, f ∈ E(H), a contradiction. (Note that this fact can
be also alternatively seen by applying Lemma 5 from [12] to H̃ and setting A = V1 \ {x} if
H̃ ≃ W , or A = V1 ∪ {v} \ {x} if H̃ ∈ {W1,W2}).

Thus, in H, every vertex in V1 is incident to a pendant edge or to an edge containing a
vertex of degree 2. To prove the claim, it suffices to show that every such multigraph either
contains an L−1(Γ3), or its line graph is Hamilton-connected. This will be done in the next
claim, since it is straightforward to verify that L(W3) (where W3 is the graph shown in Fig. 8)
is Hamilton-connected. □

Claim 2. Let M ∈ {W,W1,W2}, let E ⊂ E(M), and let V be the set of all vertices from
V (M) that are incident to neither an edge from E nor to a multiedge in M . Let N be the
multigraph obtained from M by subdividing each edge of E with one vertex of degree 2 and
by adding one pendant edge to each vertex of V . If N does not contain a subgraph isomorphic
to L−1(Γ3), then N ≃ W3.

Proof. We prove the lemma with the help of a computer. For each choice of M and E,
we test the obtained multigraph N . If N does not contain L−1(Γ3) as a subgraph, then the
program outputs N . The only such N is the graph W3. The source code of the proof can be
found at [25]. □
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Thus, by Theorem E(ii) and Theorem F(v), we have |V (co(H))| ≥ 10, i.e., H has at least
10 vertices of degree at least 3.

Let now C be a cycle in H such that C is a shortest cycle of length at least 7.

Case 1: 7 ≤ |V (C)| ≤ 8, or 9 ≤ |V (C)| ≤ 10 and C is not chordless.
By the assumptions and by Lemmas 2 and 3, H satisfies the assumptions of Lemma 4.
Thus, by Lemma 4, H ∈ F . To reach a contradiction, it remains to show that for each
H ∈ F , L(H) is Hamilton-connected. This was done with the help of a computer. For
each H ∈ F , and for each pair of vertices of L(H), we find a hamiltonian path by using
the function ‘hamiltonian path’ in SageMath. As a certificate of Hamilton-connectedness,
we also provide a list of these hamiltonian paths along with a simple program that verifies
this certificate. The verification is faster (less than a minute) than finding the hamiltonian
paths (a few hours). The source codes are available at [24].

Case 2: 9 ≤ |V (C)| ≤ 10 and C is chordless, or |V (C)| ≥ 11.
Note that, by the choice of C and by Case 1, H contains no cycle C ′ of length 7 ≤ |V (C ′)| <
|V (C)|. Denote |V (C)| = r, V (C) = {x0, x1, . . . , xr−1}, and R = V (H) \ V (C).

Claim 3. The cycle C is chordless and for any vertices xi, xj ∈ V (C) with distC(xi, xj) ≥ 3,
NH(xi) ∩NH(xj) = ∅.

Proof. For 9 ≤ r ≤ 10, C is chordless by the assumption of the case. If r ≥ 11 and xixj

is a chord in C (i.e., distC(xi, xj) ≥ 2 and xixj ∈ E(H)), then the edge xixj creates with
one of the two parts of C joining xi and xj a cycle C ′ of length 7 ≤ |V (C ′)| ≤ r − 1, a
contradiction. Thus, C is chordless.

If r ≥ 9, distC(xi, xj) ≥ 3 and xi, xj have a common neighbor y ∈ R, then similarly the
path xiyxj creates with one of the two parts of C joining xi and xj a cycle C ′ of length
7 ≤ |V (C ′)| ≤ |V (C)| − 1, a contradiction. □

The next several claims will be proved in a slightly more general setting for a cycle in H
satisfying the conditions given in Claim 3 (and will be therefore true also for the cycle C).
Let thus C ′ = y0y1 . . . yt−1, t = |V (C ′)| ≥ 9, be a cycle in H such that C ′ is chordless and
NH(yi)∩NH(yj) = ∅ for any yi, yj ∈ V (C ′) with distC′(yi, yj) ≥ 3. Let R′ = V (H) \ V (C ′).
If NR′(yi) ̸= ∅, we will sometimes use ȳi for (some) neighbor of yi in R′.

Claim 4. R′ ̸= ∅.

Proof. Let, to the contrary, V (C ′) = V (H). If there are two nonconsecutive edges e1, e2 ∈
E(C ′) ∩ ES(H), then {e1, e2} is an essential edge-cut of H (recall that C ′ is chordless),
contradicting the connectivity assumption. Thus, since t = |V (C ′)| ≥ 9, we can choose
the notation such that, say, {y0y1, y5y6} ⊂ EM(H). Then the edges (y0y1)

1, (y0y1)
2, y1y2,

y2y3, y3y4, y4y5, (y5y6)
1, (y5y6)

2 determine an L−1(Γ3) in H, a contradiction. Thus, R′ =
V (H) \ V (C ′) ̸= ∅. □

Claim 5. E(C ′) ∩ EM(H) ̸= ∅.
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Proof. Let, to the contrary, E(C ′) ⊂ ES(H). Since R′ ̸= ∅, we can choose the notation
such that NR′(y0) ̸= ∅. Then NR′(y4) = ∅ for otherwise the edges yt−1y0, ȳ0y0, y0y1, y1y2,
y2y3, y3y4, y4ȳ4, y4y5 determine an L−1(Γ3) in H. By the connectivity assumption, there
cannot be two consecutive vertices of degree 2 on C ′, hence NR′(y3) ̸= ∅ and NR′(y5) ̸= ∅.
Now, if NR′(y1) ̸= ∅, then the edges y0y1, ȳ1y1, y1y2, y2y3, y3y4, y4y5, y5ȳ5, y5y6 determine an
L−1(Γ3) in H, hence NR′(y1) = ∅, implying (by the connectivity assumption) that NR′(y2) ̸=
∅. Then NR′(y6) = ∅ for otherwise the edges y1y2, ȳ2y2, y2y3, y3y4, y4y5, y5y6, y6ȳ6, y6y7 de-
termine an L−1(Γ3) in H. By the connectivity assumption, NR′(y7) ̸= ∅, but then the edges
y2y3, ȳ3y3, y3y4, y4y5, y5y6, y6y7, y7ȳ7, y7y8 determine an L−1(Γ3) in H, a contradiction. □

Thus, C ′ contains at least one multiple edge.

Claim 6. C ′ contains an edge yiyi+1 such that yiyi+1 ∈ EM(H) and at least one of yi, yi+1

has a neighbor in R′.

Proof. Suppose, to the contrary, that NR′(yi) = NR′(yi+1) = ∅ for any multiple edge yiyi+1

of C ′, and choose the notation such that y0y1 ∈ EM(H). Since {yt−1y0, y1y2} cannot be a
cutset, by symmetry, we can assume that y1y2 ∈ EM(H). Now {yt−1y0, y2y3} cannot be a
cutset, implying, by symmetry, y2y3 ∈ EM(H). Repeating the argument, we have y5y6 ∈
EM(H), but then the edges (y0y1)

1, (y0y1)
2, y1y2, y2y3, y3y4, y4y5, (y5y6)

1, (y5y6)
2 determine

an L−1(Γ3) in H, a contradiction. □

Claim 7. Let C ′ = y0y1 . . . yt−1 be a cycle in H such that t = |V (C ′)| ≥ 9, C ′ is chordless,
and NH(yi) ∩ NH(yj) = ∅ for any two vertices yi, yj ∈ V (C ′) with distC′(yi, yj) ≥ 3. Then
t ≡ 0 (mod 3), and the notation can be chosen such that

(i) if i ≡ 0 (mod 3), then NR′(yi) ̸= ∅ and yiyi+1 ∈ EM(H), and
(ii) if i ≡ 1 (mod 3) or i ≡ 2 (mod 3), then NR′(yi) = ∅ and yiyi+1 ∈ ES(H).

Recall that, specifically, the cycle C satisfies the assumptions of Claim 7 by Claim 3.

Proof. By Claim 6, choose the notation such that y0y1 ∈ EM(H) and NR′(y0) ̸= ∅. Then
immediately NR′(y4) = NR′(y5) = ∅ and {y4y5, y5y6} ⊂ ES(H) (since otherwise, in all cases,
we have an L−1(Γ3) in H). By the connectivity assumption, necessarily y3y4 ∈ EM(H) and
NR′(y6) ̸= ∅ or y6y7 ∈ EM(H). Then necessarily NR′(y2) = ∅ and y1y2 ∈ ES(H) (otherwise
we have an L−1(Γ3) in H). Since {y1y2, y4y5} is not a cutset, NR′(y3) ̸= ∅.
Summarizing, we conclude that NR′(y3) ̸= ∅, y3y4 ∈ EM(H), NR′(y4) = NR′(y5) = ∅, and
{y4y5, y5y6} ⊂ ES(H), i.e., we have the requested statement for i = 3, 4, 5. Repeating the
argument, starting with NR′(x3) ̸= ∅ and y3y4 ∈ EM(H), we get the statement for i = 6, 7, 8.
The claim then follows by induction. □

Now we can apply Claim 7 to the cycle C (recall that, by Claim 3, C satisfies the assumptions
of Claim 7). Thus, we have |V (C)| = r ≡ 0 (mod 3), which specifically implies that r = 9
or r ≥ 12.

For ℓ = 0, 1, 2, we denote Xℓ = {xi ∈ V (C)| i ≡ ℓ (mod 3)} and Eℓ = {xixi+1 ∈ E(C)| i ≡
ℓ (mod 3)}. Thus, specifically, by Claim 7, E0 ⊂ EM(H) and E1 ∪ E2 ⊂ ES(H). By the
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connectivity assumption, the edges in E1 ∪E2 cannot form a cutset of H, hence there is an
(xα, xβ)-path with endvertices xα, xβ ∈ X0 and with interior vertices in R.

For the purpose of this proof, by an arc we will mean a path that is chordless and any
two vertices at distance at least 3 have no common neighbor. Clearly, if for some vertices
xα, xβ ∈ X0 there is an (xα, xβ)-path with interior vertices in R, there is also an (xα, xβ)-arc
with interior vertices in R.

Let T be an (xα, xβ)-arc with interior vertices in R for some xα, xβ ∈ X0. Since for any two
vertices xα, xβ ∈ X0, distC(xα, xβ) ≥ 3 and C is shortest, T is of length at least 3. The
vertices xα, xβ divide C into two paths (called segments), and each of them, together with
T , creates in H a cycle of length at least 6. Let CT be the shorter one of these cycles (or
any of them if both segments of C are of the same length).

Suppose first that the (xα, xβ)-arc T can be chosen such that |V (CT )| ≥ 7, and, subject to
this condition, choose T such that CT is shortest possible. By the choice of C and by the
previous arguments, 9 ≤ |V (C)| ≤ |V (CT )|. Choose the notation such that, in the natural
orientation of C given by increasing indices, the segment of C that is in CT is oriented from
xα to xβ, and set T = z0z1 . . . zt, where z0 = xα and zt = xβ.

We verify that the cycle CT satisfies the assumptions of Claim 7. This is clear for yi, yj ∈
V (C) (by Claim 3), and for yi, yj ∈ V (T ) (by the choice of T ); so, let yi ∈ V (CT ) \ V (T )
and yj ∈ V (CT ) \ V (C). Since yi ∈ X0 by Claim 7, distC(yi, xα) ≥ 3 and distC(yi, xβ) ≥ 3,
hence distC(xα, xβ) ≥ 6 (by the choice of CT as the shorter one determined by xα, xβ and
T ), implying |V (CT )| ≥ 12. Thus, any chord yiyj ∈ E(H) or a vertex in NR(yi) ∩ NR(yj)
yields a cycle C ′ of length 7 ≤ |V (C ′)| < |V (CT )|, contradicting the choice of CT . Thus, CT

satisfies the assumptions of Claim 7. This implies that t ≡ 0 (mod 3) and z2z3 ∈ EM(H).
Since also xα−3xα−2 ∈ EM(H), the edges (xα−3xα−2)

1, (xα−3xα−2)
2, xα−2xα−1, xα−1xα, xαz1,

z1z2, (z2z3)
1, (z2z3)

2 determine an L−1(Γ3) in H, a contradiction.

Thus, for every (xα, xβ)-arc T in H with interior vertices in R, we have |V (CT )| = 6, i.e.,
t = 3 and distC(xα, xβ) = 3. Then, replacing in C the (xα, xβ)-segment (of length 3) by the
(xα, xβ)-arc T , we get a cycle C ′ of the same length as C, and, by Claim 7, we have z0z1 ∈
EM(H), {z1z2, z2z3} ⊂ ES(H), and NR′(z1) = NR′(z2) = ∅ (where R′ = V (H) \ V (C ′)).
Note that, by the connectivity assumption, there is at most one (xα, xβ)-segment of C of
length 3 without any (xα, xβ)-arc with interior vertices in R. Then it is straightforward
to verify that H has an (e, f)-IDT for any e, f ∈ E(H), hence GΓ3 = L(H) is Hamilton-
connected by Theorem D (for an example, see Fig. 9(a)). Alternatively viewed, L(H) is the
graph that can be obtained from a cycle by replacing each vertex with a clique and each
edge, except at most one, with at least 2 vertices of degree 3 attached to both cliques (see
Fig. 9(b)), and it is straightforward to verify that GΓ3 is Hamilton-connected.

6 Concluding remarks

1. Theorem 1 admits a slight extension as follows. For s ≥ 0, a graph G is s-Hamilton-
connected if the graph G − M is Hamilton-connected for any set M ⊂ V (G) with |M | ≤ s.
Obviously, an s-Hamilton-connected graph must be (s + 3)-connected. Since an induced
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Figure 9: An (e, f)-IDT in H and the graph GΓ3 = L(H).

subgraph of a {K1,3,Γ3}-free graph is also {K1,3,Γ3}-free, we immediately have the following
fact, showing that, in {K1,3,Γ3}-free graphs, the obvious necessary condition is also sufficient.

Corollary 5. Let s ≥ 0 be an integer, and let G be a {K1,3,Γ3}-free graph. Then G is
s-Hamilton-connected if and only if G is (s+ 3)-connected.

2. A Γ3-closure of a graph G, as defined in Section 4, is not unique in general. However,
in view of Theorem 1, it is unique on 3-connected {K1,3,Γ3}-free graphs since each such graph
is Hamilton-connected, hence has complete closure.

3. We can now update the discussion of potential pairsX, Y of connected graphs that might
imply Hamilton-connectedness of a 3-connected {X, Y }-free graph, as summarized in [20].

As shown in [6], up to a symmetry, necessarily X = K1,3, and, summarizing the discussions
from [3], [6], [7] and [13], there are the following possibilities for Y (see Fig. 1):

(i) Y = Pi with 4 ≤ i ≤ 9,
(ii) Y = Zi with i ≤ 6, or Y = Z7 for n = |V (G)| ≥ 21,
(iii) Y = Bi,j with i+ j ≤ 7,
(iv) Y = Ni,j,k with i+ j + k ≤ 7,
(v) Y ∈ {Γ1,Γ3}, or Y = Γ5 for n = |V (G)| ≥ 21.

Best known results in the direction of each of these subgraphs are summarized in Theo-
rem A, and we summarize the current status of the problem in the following table.

Y Possible Best known Reference Open
Pi 4 ≤ i ≤ 9 P9 [3] —
Zi i ≤ 6; Z7 for n ≥ 21 Z6; Z7 for G ̸≃ L(W+) [19] —
Bi,j i+ j ≤ 7 i+ j ≤ 7 [20] —
Ni,j,k i+ j + k ≤ 7 i+ j + k ≤ 7 [12, 13, 14] —
Γi Γ1, Γ3, Γ5 for n ≥ 21 Γ1,Γ3 [6], this paper Γ5 for n ≥ 21

Thus, the only remaining case is the case Y = Γ5 for n ≥ 21 (or possibly Γ5 for G ̸≃ L(W+)).
We believe that this case is also true, and we think that it could be doable with the techniques
of this paper; however, the proof would be too technical to be reasonably handled even with
the help of a computer.
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4. The source codes of our proof-assisting programs are available at [24] and [25]. The
codes are written in Python 3.8 and use functions imported from SageMath 9.6. We thank
the SageMath community [21] for developing a valuable open-source mathematical software.
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[5] S. Brandt, O. Favaron, Z. Ryjáček: Closure and stable hamiltonian properties in claw-free
graphs. J. Graph Theory 32 (2000), 30-41.

[6] H. Broersma, R.J. Faudree, A. Huck, H. Trommel, H.J. Veldman: Forbidden subgraphs
that imply Hamiltonian-connectedness. J. Graph Theory 40 (2002), 104-119.
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