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ABSTRACT

This paper deals with the possibility of charging and transporting macroscopic particles in AC electric field.

The model of electric precipitator with dielectric collector electrode powered by AC high voltage was

constructed and tested in a great number experiments. The precipitation efficiency of this model for three types

of dust with specific resistivity in range of 100–106
 Ω.m was tested. The possibility of the usage of the electrode

systems with barrier in practice is shown in this paper.

1. INTRODUCTION
In present days there is a number of precipitator types, though the most used are high voltage electric

precipitators powered by DC high voltage, since they are able to ensure high clearance of gas stream. A high

voltage precipitator powered by DC voltage works best, if the specific resistance of solid contaminant has the

size in a certain range. When the electrophysical properties of separated media do not fit the requirements of

precipitation processes with DC supply, it is necessary to find other technological procedures. One of them

seems to be the precipitation with AC voltage.

2. THE REASON OF AC VOLTAGE APPLICATION
The electric precipitator with direct voltage works best if the specific resistance of contaminant is in the

range from 102 to 1010 Ω.m [2]. If the specific resistance of a contaminant is higher, with a great possibility a

back-corona arises in precipitator, and consequently the effectivity of separation decreases and discharges rise in

interelectrode area [4]. On the other hand if the specific resistance is lower, the particles are very quickly

discharged when they reach the collecting electrode and they are plucked back again by gas stream. In such cases

an application of AC voltage supply for electrostatic precipitator is more suitable. That was the main reason for

starting thinking about their utilization.

The electrostatic precipitator powered by AC voltage needs for its regular operation a barrier in

interelectrode area which among others prevents the creation of back-corona and when it separates a dust with

low specific resistance, it ensures the immediate dischargeing of the particle at the moment of reaching and

subsiding at the collecting electrode, so it is not plucked back by streaming gas. Consequently the AC voltage is

suitable for contaminant separation with high as well as low specific resistance.

3. THEORETICAL ANALISYS OF MACROSCOPIC SIZED PARTICLE DYNAMICS
The motive to solve the kinetic equations (path, velocity eventually acceleration) originates from spherical

shape particles application technology, eventually the particles of rotary elipsoid or short pipeline shape [6], [8].

The starting point for kinetic equation solution are real conditions that occur with particle deposition

technology providing the particles capture a charge by [6]:

- corona charging,

- contact charging.

The simplified set-up of the equipment is shown on Fig. 1.
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Fig. 1.  The set-up of experimental equipment for particle deposition

Providing a transport area in which the electric field is semihomogeneous, we can express the equation of

force effects on a particle:

SGE FFFF −+= (1)

whereF –  is the overall force that affects a particle

FE –  is the force of electric field

FG –  is the gravity force

FS –  is the Stokes force

Comparing these forces, electric field force plays a dominant role [6]. From the force effects balance, after

substitutions for respective forces and after integration and some mathematical adjustments we get the final

equation for the path of a macroscopic particle in DC electric field:
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By differentiating of equation 2 we get the expression for the velocity of a macroscopic particle in DC

electric field:
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Time dependeces of  path and velocity of a particle are shown in Fig. 2 and Fig. 3.
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Fig. 2. Time dependence of the path of a particle in the
case of DC voltage

Fig. 3.  Time dependence of thevelocity of a particle in
the case of DC voltage



The starting point of kinetic equation solution for particles in AC electric field is the same balance of force

effects and we consider an AC electric field with sinusoidal vaweform of 50 Hz frequency. We use the same

procedure as with a DC electric field and we get an equation for the path of a particle in AC electric field:

( ) ( )
( ) ( )( )]

[

cossinsincos

1
cos11)(

22

22
0

2

ψωψωωψωψω
ω

ψ
ω

++++−⋅

⋅
+

−+−+−+=

−−

−−

tAtAeAe

AA

K
e

A

v
Ate

A

g
tx

AtAt

AtAt

(4)

and for the velocity:
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Their time dependeces are shown on Fig. 4 and Fig. 5.

4. PARTICLE SEPARATION IN AC ELECTRIC FIELD
The macroscopic particles diffused in the area of coronating electrode, which is connected to AC high

voltage, are not charged, as we assumed [2]. For that reason it is necessary to create electrophysical conditions

for unipolar electric charge creation in the area of feeder mouthing. One of the possibilities is the application of

physical effect on metal – dielectrics – gaseous medium interface [6]. Two electrode systems were designed

based on this principle:

- system with a dielectrical coronating needle and metallic collector electrode

- system with a metallic coronating needle and dielectrical collector electrode.

In the first case a metallic needle with small radius of curving, equipped with an additional insulating needle

(PE, glass) with various values of relative permitivity is used as coronating electrode. With a more detailed

analysis it can be proved, that between metallic needle ended with dielectic material and collector a combination

of capacitances is created  (Fig. 6), from which a dominant role plays a capacitance made by a dielectric cone on

metallic electrode [6]. Unipolar charge is generated on the surface of dielectric cone, whose polarity and size

depends on dielectric properties of used material (polarization, conductivity etc.), assuming that the surface

resistance Rdx→∞. By application of materials listed above a charge on the surface of cone shape is generated

with a high concentration at the tip. A corona is generated on the composed coronating electrode and in its

surroundings an unipolar space charge is formed (Fig. 7), which causes the same charge of macroscopic particles

0

0,02

0,04

0,06

0,08

0,1

0 0,02 0,04 0,06 0,08 0,1

t [s]

x
 [
m
]

0

0,5

1

1,5

2

0 0,02 0,04 0,06 0,08 0,1

t [s]

v
 [
m
/s
]

Fig. 4. Time dependence of the path of a particle in the
case of AC voltage

Fig. 5. Time dependence of thevelocity of a particle in
the case of AC voltage



in the surroundings of the needle. The particles charged by this manner are transported by force effects of

electric field to collector electrode.
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Fig. 6.  Replacement model of dielectric needle Fig. 7.  Photographic shot of corona in the
surroundings of dielectric needle

In the second case a cascade coaxial precipitator was constructed for the experiments. Tha cascade

consisted of four sections (Fig. 8). A PVC pipeline forms their skeleton, serving at the same time as collector

electrode. A thin aluminium foil is sticked to the outer side of the pipeline serving as grounded electrode.

U~ U~ U~ U~

1. section 2. section 3. section 4. section

Fig. 8. Geometric ordering of sections in cascade pipeline percipitator with AC voltage

A thin copper line wire is fastened inside the pipeline, so that it forms the ionization electrode. Each section

of the cascade contains a different number of coronating electrode and they are placed in different span from the

collector electrode. The role of ionizating electrode is the creation of highly inhomogeneous electric field. It is

possible to create such a field with the help of electrodes with a very small radius of curving. When the

coronating electrode is polarized positively, new electrons resp. new fotons are released at the moment of giving

off the kinetic energy, following the cannonading of the needle by electrons, which causes future ionization. The

situation is analogous under negative polarization with the difference, that avalanches emitted from negative

needle are transported into increasingly homogeneous field, and consequently their mobility and ability to

ionizate decreases.

In AC separation processes with metallic needle an insulation barrier is used as collector electrode. To

achieve the best possible separableness it is necessary to choose insulation materials with the highest possible

specific resistance and permitivity. However the choice of material depends on other nonelectric parameters e.g.

the temperature of gas streams, sufficient mechanic robustness (due to strikes) etc. The insulation barrier must

not change its mechanic nor dielectric parameters due to temperature changes.

A number of experiments were carried over on these models:

• Initial measurements: based on electric field modelling in interelectrode area, so the right distance

between coronating electrode and collector electrode could be chosen. Furthermore an acceptable voltage



connected to coronating electrode was chosen, so as no flash-over appears between high voltage electrode

and ground.

• Measurements without dust: mainly V-A dependence measurements of the electrode system.

• Measurements with dust: during these measurements the precipitator was powered by AC voltage, a

measured amount of dust was equally dispersed through feeder into the precipitator and the separableness

was stated based on the amount of dust that falled trough. At the same time the current flowing throug the

precipitator was measured.

To find out the separableness of the models of AC precipitators, three types of dust were used with specific

resistance 3 Ω.m, 4 kΩ.m and 4,8 MΩ.m. With the model of 30 cm in length 60 % to 97 % average value of

separableness was achieved with all types of dust (Table. 1).

Separableness [%]
1. section 2. section 3. section 4. section

Dust with ρe= 3 Ω.m 83,16 70,72 73,94 62,02
Dust with ρe= 4 kΩ.m 96,82 81,72 83,7 72,12
Dust with  ρe= 4,8 MΩ.m 93,45 93,56 97,82 95,14

Table. 1  Average values of separableness in particular sections of the cascade pipeline precipitator powered

by AC voltage

It can be observed that the separation process with AC voltage is comparable to separation with DC voltage

and  under certain conditions better separation can be achieved with AC voltage.

5. CONCLUSIONS
The possibility of AC voltage application for macroscopic sized particle separation was described in

nonconventionally ordered electrode system: coronating electrode – dielectric barrier as collector – grounded

electrode, eventually dielectric needle on metallic electrode – grounded metallic collector electrode. These

systems exploit physical phenomena from the theory of high voltage field with a barrier. The advantage of these

systems against to DC voltage powered systems is especially in economics of separation process regulation. This

can be an important step to a wider utilization of this technology in practice.
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