

Grid-off LV distribution network with biogas station

analysis of voltage and frequency variation

Miloslava Tesařová Karel Noháč

University of West Bohemia

Department of Electrical Engineering and Environmental Engineering

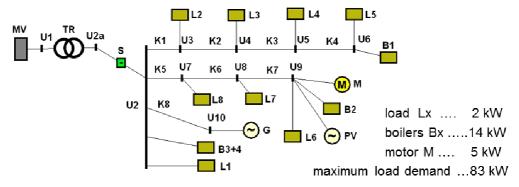
Introduction

Grid-off power system

- a part of the distribution system operated autonomously as a separate unit to meet the territory's need of supply with a proper voltage quality.
- can be operated in remote or sparsely populated areas that are far from the grid.
- usage of electricity generated from local sources can be cheaper than building a new distribution feeder or reconstruction of existing one.
- dynamic unbalance between power demand and supply causes stronger variations in frequency and voltage compared with grid-connected mode.

Case study

- submitted by a undisclosed distributor.
- to investigate voltage and frequency changes caused by load fluctuation in an autonomous LV network located in rural area.
- grid-off system is supplied by a local source in continuous operation (e.g. biogas station) and the photovoltaic power plant.
- voltage and frequency variations are caused by switching of common household equipment (electric cookers, consumer electronics, heaters, lights...), electric boilers and circular sawing machine

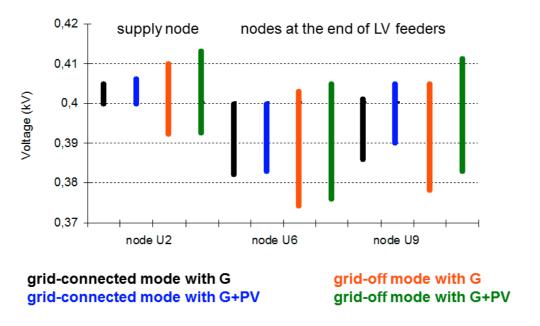

Case study

- Voltage and frequency variations caused by common household equipment switching are evaluated in compliance with the standard EN 50160.
- Under normal operating conditions the mean value of the fundamental frequency measured over 10 seconds shall be within a range of 50 Hz \pm 2% during 95% of time, and within the range 50 Hz \pm 15% during 100% of time for systems in island mode
- During stabilised operation of the network, 95% of rms voltage values measured over 10 min shall be within the range 400 V \pm 10% during each period of one week, and within the range 400 V \pm 10/-15% during 100% of time.

4

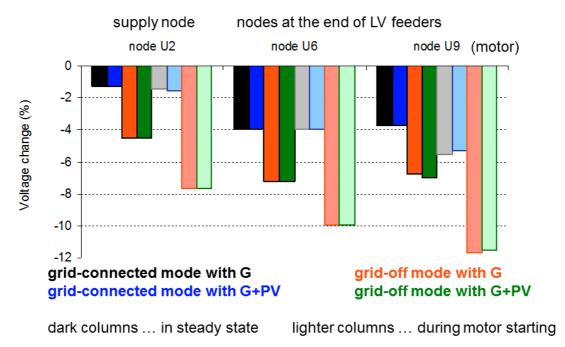
Description of the 0,4 kV network

- network is supplied by stand-alone 95 kW synchronous generator or with assistance of 10 kW PV plant.
- network consists of overhead lines

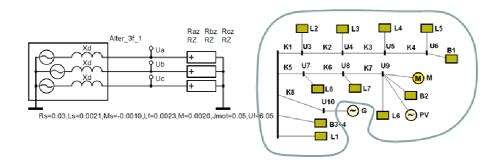

in grid-connected mode, source impedance in U6 and U9 is just equal to the EMC reference impedance

5

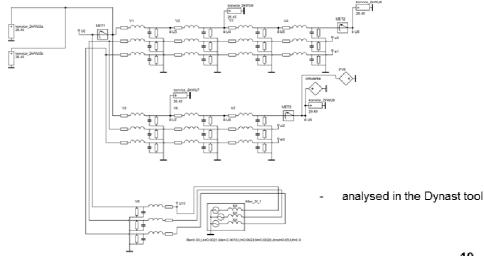
Load states under consideration


- to obtain the worst voltage conditions all single-phase equipment are connected to the same phase
 - → higher voltage unbalance and changes in given phase (single-phase equipment causes voltage drop on both phase and neutral conductor)
 - → higher demands on the generator control system (driving-machine power regulator, respectively on generator excitation control)
- load states
 - State 1: equipment 12 kW
 - State 2: equipment 12 kW + motor 5 kW
 - State 3: equipment 22 kW + motor 5 kW + boilers 56 kW

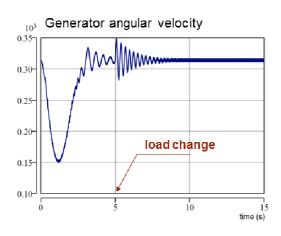
Voltage range for minimal and maximal demand

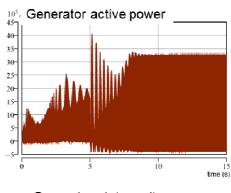

7

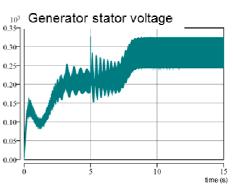
Voltage changes caused by load change (1→3)


Dynamic angular stability during sudden load changes

- analysed in the Dynast tool
- is considered the extreme load unbalance, single-phase equipment is connected to the same phase
 - → torque oscillations, alternator active power fluctuations

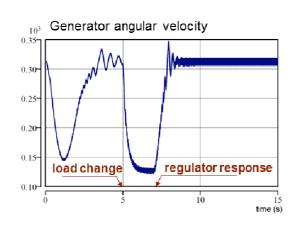

Dynamic angular stability during sudden load changes

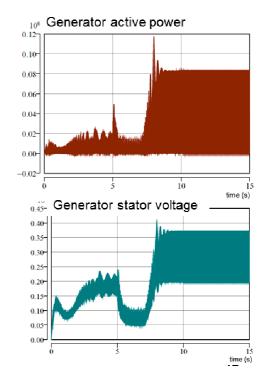

- is considered the extreme load unbalance, single-phase equipment is connected to the same phase
 - → torque oscillations, alternator active power fluctuations



Dynamic angular stability during sudden load change (1→2)

minimal load + motor starting





Dynamic angular stability during sudden load change (1→3)

minimal load → maximal load

Conclusions

- Voltage variations meet the standard EN 50160, although voltage variation range is wider and voltage changes caused by load switching are almost twice as high as those in grid-connected mode.
- Simulations of dynamic performance of grid-off system show that it is possible to expect stable synchronous operation without frequency drop, but some oscillations of all system parameters will occur.
- The case study was intently carried out for extreme load unbalance in the network. In actual operation even better conditions are expected.

13

Thank you for your attention.

Miloslava Tesařová Karel Noháč

University of West Bohemia

Department of Electrical Engineering and Environmental Engineering