
7. Application layer
Application layer protocols, data serialization

Wireless sensor networks

Martin Úbl
ublm@kiv.zcu.cz

2023/24

ublm@kiv.zcu.cz


Application layer
Basics

q application layer – ISO/OSI layer 7
q we usually group three sub-layers:

q application sub-layer
q presentation sub-layer
q session sub-layer

q in this layer, we assume:
q underlying protocols (L1 through L4) are implemented and

performs their function
q we don’t care how the data gets delivered

Wireless sensor networks • 7. Application layer 2/45



Application layer
Basics

q session sub-layer
q rarely seen in WSN
q as it manages sessions, which are primarily a domain of

point-to-point oriented approaches
q we will not discuss session sub-layer

Wireless sensor networks • 7. Application layer 3/45



Application layer
Basics

q presentation sub-layer
q manages data (de)serialization, compression and

encryption
q we will discuss this
q data (de)serialization will be discussed in this presentation
q encryption and decryption will be discussed in future

presentations
q compression will not be discussed separately

q some serialization techniques considers compression by
default

Wireless sensor networks • 7. Application layer 4/45



Application layer
Basics

q application sub-layer
q maintains data acquisition and transformation into streams
q maintains support roles in WSN and node operation
q we will discuss different aspects and also specific protocols

Wireless sensor networks • 7. Application layer 5/45



Application layer
Basics

q application layer in its entirety must consider a software
architecture

q whole implementation tends to be monolithic
q tightly coupled components
q we will discuss a potential node software architecture

(practicals)

Wireless sensor networks • 7. Application layer 6/45



Application layer
Protocols

q application layer protocols, e.g.:
q data transfer

q MQTT, or MQTT-SN
q CoAP

q node and network management
q SMP
q TADAP
q SQDDP

Wireless sensor networks • 7. Application layer 7/45



Application layer
MQTT

q Message Queuing Telemetry Transport (MQTT)
q (MQ Telemetry Transport – a newer name)
q established protocol, even in the Internet
q publish-subscribe model
q topics for grouping data streams
q subscribers can subscribe to a topic
q publishers can publish to a topic

q published message is sent to all topic subscribers
q a broker manages the communication

q nodes subscribe and publish through it
q it is a central node

Wireless sensor networks • 7. Application layer 8/45



Application layer
MQTT

q message types
q CONNECT – a client connects to the server
q CONNACK – the server acknowledges the client connection
q PUBLISH – a client publishes to a topic; a server

redistributes the message to all subscribed clients
q PUBACK – the server acknowledges the published

message
q PUBREC, PUBREL, PUBCOMP – QoS level 2 assurement

of message reception
q SUBSCRIBE – a client subscribes to a topic
q SUBACK – the server acknowledges the subscription
q UNSUBSCRIBE – a client unsubscribes from a topic
q UNSUBACK – the server acknowledges the unsubscription
q PINGREQ, PINGRESP – keepalive mechanism
q DISCONNECT – a client disconnects from the server

Wireless sensor networks • 7. Application layer 9/45



Application layer
MQTT

q architecture overview

MQTT
broker

sensor

sensor

sensor

temperature

temperature

humidity

PUBLISH(home/tmp0, 20.5)

PUBLISH(home/tmp1, 21.1)

PUBLISH(home/hum0, 52)

act

A/C controlpreviously subscribed to:
home/tmp0, home/tmp1

PUBLISH(home/tmp0, 20.5)
PUBLISH(home/tmp1, 21.1)

web interface

act

previously subscribed to:
home/tmp0, home/tmp1,

home/hum0

PUBLISH(home/tmp0, 20.5)
PUBLISH(home/tmp1, 21.1)
PUBLISH(home/hum0, 52)

Wireless sensor networks • 7. Application layer 10/45



Application layer
MQTT

q Quality of Services (QoS)
q defines 3 levels:

q level 0 – "at-most-once"
q nothing guarantees delivery; if the message arrives, it

arrivest at most once
q level 1 – "at-least-once"

q guaranteed message delivery; may arrive multiple times
q level 2 – "exactly-once"

q guaranteed message delivery; arrives exactly once

Wireless sensor networks • 7. Application layer 11/45



Application layer
MQTT

q message payload
q MQTT is payload format agnostics
q for MQTT, it is just an array of bytes
q usually, we use strings and textual representation

q very often combined with JSON, BSON or similar

q payload size is technically limited to 256 MB

Wireless sensor networks • 7. Application layer 12/45



Application layer
MQTT

q topic
q stream of data relevant to a single area of interest
q structured, uses / as delimiter – separates topic levels
q e.g., home/bedroom/temperature, home/outside/motion,

...
q supports wildcards

q + for a single level wildcard
q e.g., /home/+/temperature – all temperatures at home

q # for a multi-level tail wildcard
q e.g., home/bedroom/# – everything from bedroom

Wireless sensor networks • 7. Application layer 13/45



Application layer
MQTT

q implementations
q brokers (server-based)

q Mosquitto
q RabbitMQ
q HiveMQ
q ...

q clients (desktop apps)
q Mosquitto (Client)
q Paho (C/C++, Python, ...)
q Async.MQTT5
q MQTTnet (.NET-based)
q MQTT.js (Javascript)
q ...

Wireless sensor networks • 7. Application layer 14/45



Application layer
MQTT

q MQTT is not very suitable for WSN’s
q too big overhead – can be as large as 12 bytes for a single

message
q we would like to have a more compact protocol
q there is a sub-standard of MQTT for wireless sensor

networks – MQTT-SN

Wireless sensor networks • 7. Application layer 15/45



Application layer
MQTT-SN

q MQTT for Sensor Networks (MQTT-SN)
q variant of MQTT for WSN
q reduces payload sizes to a bare minimum
q mostly compatible with MQTT

q MQTT-SN commands can be mapped to MQTT commands
q topic id – 2 byte identificator of a topic

q no need to transfer whole topic name each time

q short topic name
q pre-defined topics
q no need for permanent connection

Wireless sensor networks • 7. Application layer 16/45



Application layer
MQTT-SN

q MQTT gateway
q a designated node, that supports both MQTT-SN and

MQTT
q translates MQTT-SN commands to MQTT commands and

vice-versa
q typically a role of a sink node or an edge node

q MQTT-SN supports gateway discovery protocol
q MQTT forwarder

q merely forwards the MQTT-SN data

q supports node sleep

Wireless sensor networks • 7. Application layer 17/45



Application layer
MQTT-SN

q MQTT gateway operation modes
q transparent gateway

q one MQTT-SN link is mapped to a single MQTT connection
q requires less constrained edge nodes

q aggregating gatewayy
q single MQTT connection for all MQTT-SN links

Wireless sensor networks • 7. Application layer 18/45



Application layer
MQTT-SN

q topic name and identifiers
q long topic name – standard MQTT topic name
q short topic name – 2-byte identifier of the topic
q pre-defined topic ID – a 2-byte ID of previously registered

topic

q topic registration
q client sends a registration query with long topic name
q broker/gateway responds with topic ID
q from now on, client refer to this topic by its short ID

Wireless sensor networks • 7. Application layer 19/45



Application layer
MQTT-SN

q example of MQTT-SN configuration
q yellow – MQTT-SN part
q blue – MQTT part

sensor

sensor

sensor

GW

FW

GW

MQTT
broker

MQTT-SN
gateway

MQTT-SN
gateway

MQTT-SN
forwarder

Wireless sensor networks • 7. Application layer 20/45



Application layer
CoAP

q Constrained Application Protocol (CoAP)
q mainly for IoT applications, but can be used in WSN
q "lightweight" implementation of HTTP
q supports encryption via DTLS (L4 security)
q request-response, client-server model

Wireless sensor networks • 7. Application layer 21/45



Application layer
CoAP

q best way to describe the base functionality of CoAP is to
describe it as RESTful API-like communication protocol

q it can be directly proxied to a HTTP server
q compact message structure
q has a binar header (4 bytes)
q optionally contains a payload
q supports GET, POST, PUT, DELETE
q supports URI
q supports subset of MIME types and HTTP response codes

Wireless sensor networks • 7. Application layer 22/45



Application layer
CoAP

q supports caching
q supports multicast
q optimizes delivery
q however... is not a "drop-in" replacement for HTTP

q oversimplifies the communication
q that is good for IoT and WSN, but not for a "large scale

networks"

Wireless sensor networks • 7. Application layer 23/45



Application layer
SMP

q Sensor Management Protocol (SMP)
q protocol for managing sensor nodes
q sensor nodes usually don’t have an unique address

q or they do, but we don’t want to use it, or we are unable to
use it

q protocol for managing nodes based on their attributes
q can reconfigure the network
q e.g., change the location of the node
q e.g., manage retasking
q power cycles

Wireless sensor networks • 7. Application layer 24/45



Application layer
SMP

q SMP addresses nodes using their attributes or location
q not addressing a specific node

q rather addressing a group of nodes that satisfy given criteria

q SMP not widely adapted
q however, attribute- and location-based addressing is

adapted in almost all WSN management protocols
q SMP may perform e.g., key distribution, L2/L3/L4

reconfiguration, etc.

Wireless sensor networks • 7. Application layer 25/45



Application layer
SQDDP

q Sensor Query and Data Dissemination Protocol
(SQDDP)

q data query protocol
q an example of a query:

q "Number of nodes, that detects light threshold over 30 %"
q "Average temperature in the whole area"
q "Maximum temperature of all sensors inside the house"

q attribute- and location-based addressing
q supports aggregation

q e.g., maximum, average, ...

Wireless sensor networks • 7. Application layer 26/45



Application layer
SQDDP

q query language: Sensor Query and Tasking Language
(SQTL)

q running as a "service" on every node – can be seen as an
implementation of SQDDP

q allows for defining events of three types:
q receive – event is fired every time the node receives a

message
q every – event is fired periodicallyy
q expire – event is fired once after a timer expires

q in fact, every implementation is individual, there is no strict
rule set

Wireless sensor networks • 7. Application layer 27/45



Application layer
SQDDP

q usual operation types:
q sensor hardware access – e.g., "get temperature", "turn

on", "turn off"
q location-aware access – e.g., "get neighbors", "get position"
q generic – e.g., "tell", "execute"

q basically, the framework is generic enough to distribute
code

q active networks

Wireless sensor networks • 7. Application layer 28/45



Presentation layer
Data (de)serialization

q we have to discuss data (de)serialization
q once we have the data, how to transform them for

transmission?
q what to consider:

q payload size – the smaller the better
q simplicity – simpler usually means less power spent on

(de)serialization
q data portability – data formats should be easily portable
q code portability – the same code should run on both sides,

even on servers, if required

Wireless sensor networks • 7. Application layer 29/45



Presentation layer
Data portability

q remark: data portability
q endianity – little vs. big endian

q modern devices usually use little-endian
q network endianity is usually big-endian
q generic library must detect and convert, if required

q data type lengths
q e.g., long data type – 8 bytes on LLP64, 4 bytes on most

embedded devices
q support for data types

q e.g., float is often supported, but double might not be
q e.g., embedded devices often does not offer 8-byte data

types at all

Wireless sensor networks • 7. Application layer 30/45



Presentation layer
Data portability

q float – floating point numbers
q it is generally better to avoid them
q use fixed-point numbers for transfers
q "emulate" fixed-point numbers by defining units

q e.g., temperature of 21.8 °C→ multiply by 10, so we might
use integer data type and transfer the number 218

Wireless sensor networks • 7. Application layer 31/45



Presentation layer
Data portability

q float

q most of sensors have very limited precision with known
domain

q there is no need for floating point
q e.g., a temperature sensor with range from -10 to 40 °C

and precision up to 0.5 °C
q range: -10 to 40
q precision: 0.5 (also interpreted the sampling period)
q there is exactly 40−(−10)

0.5 = 100 possible values
q N = max−min

precision

q therefore, we may safely use a single byte unsigned integer
type

Wireless sensor networks • 7. Application layer 32/45



Presentation layer
Data portability

q float

q transform to integer: yt =
y−min

precision

q e.g., value of 10.5 is converted as 10.5−(−10)
0.5 = 41

q transform from integer: y = yt · precision + min
q e.g., 41 back to original as 41 · 0.5 + (−10) = 10.5

q similar transformations are very common for WSN and
embedded world

Wireless sensor networks • 7. Application layer 33/45



Presentation layer
Code portability

q remark: code portabilityy
q to avoid errors, code should be written once and used

everywhere
q this is the reason why most of libraries for data

(de)serialization is written in ANSI C
q all desktop and server machines support ANSI C
q all embedded devices support ANSI C
q interoperability with ANSI C is very simple

q on server-side, we may use Java and link ANSI C library via
JNI

Wireless sensor networks • 7. Application layer 34/45



Presentation layer
Libraries

q Protocolar Buffers (protobuf)
q Google library for data (de)serialization
q has an embedded implementation: nanopb
q very convenient for WSN and IoT applications
q supports:

q structures, flat and composite
q lists, arrays, maps
q enums, constants
q implicit compression

Wireless sensor networks • 7. Application layer 35/45



Presentation layer
Protobuf

q not a library by its own
q more of a definition language with transpiler
q we define structures in .proto file, compile it to to obtain a

code in our language
q we then use the generated code as a base

Figure: Protobuf scheme – taken from protobuf.dev

Wireless sensor networks • 7. Application layer 36/45



Presentation layer
Protobuf

q protobuf definition
q currently version 3 of the definition language
q defines data structures
q data types

q float, double
q ensures correct mapping to platform-dependent data types

q int32, int64, uint32, uint64, sint32, sint64
q uses variable-length encoding
q variant with s prefix better encodes negative values

q fixed32, fixed64, sfixed32, sfixed64
q uses fixed-length encoding

q bool

q string

q bytes

Wireless sensor networks • 7. Application layer 37/45



Presentation layer
Protobuf

q additional markings:
q optional – the field is not mandatory
q repeated – there ma be more than one instance, just like

an array/vector of values
q map – an associative container of key-value pairs

Wireless sensor networks • 7. Application layer 38/45



Presentation layer
Protobuf

q Example person.proto file

syntax = "proto3";

package PERSON;

message PersonInfo {

string name = 1;

int32 id = 2;

optional string email = 3;

};

Wireless sensor networks • 7. Application layer 39/45



Presentation layer
Protobuf

q Translate to C++

protoc -I=./ --cpp_out =./ person.proto

q this generates two files:
q person.pb.cc – implementation of (de)serialization of

person structure
q person.pb.h – interface file with generated structure

definition

Wireless sensor networks • 7. Application layer 40/45



Presentation layer
Protobuf

q We can now use generated structures in out C++ code

PERSON :: Person ceoPerson;

ceoPerson.set_name("Big Boss");

ceoPerson.set_id (1);

ceoPerson.set_email("boss@company.com");

size_t size = ceoPerson.ByteSizeLong ();

std::vector <uint8_t > buffer(size);

address_book.SerializeToArray(buffer.data(),

size);

q the buffer vector now holds the serialized person

Wireless sensor networks • 7. Application layer 41/45



Presentation layer
Protobuf

q more on practicals
q protocolar buffers are established way to build presentation

layer
q for embedded side: nanopb or similar

q minimal memory footprint
q fast operation
q may be limited
q works like the original protobuf – generates C code from the

same .proto definitions
q generated code must be compatible

Wireless sensor networks • 7. Application layer 42/45



Presentation layer
Serialization

q other formats and techniques
q Flatbuffers – modern way, compatible with large scale of

languages
q PSON – effective binary encoding format
q MessagePack – very compact format, but also very limited

(data types)
q etc.

Wireless sensor networks • 7. Application layer 43/45



Presentation layer
Serialization

q there are obvious reasons, why not use the "big world"
encodings

q JSON, XML, YAML, ...

q JSON fits well dynamically typed languages, but are 4-10
times more verbose

q XML is extremely verbose, it benefits from clearly defined
structure

q YAML relies on indentation for multi-level definitions – this
means additional overhead characters

q we surely want to use binary encoding, as it is much more
compact and saves much traffic

q smaller messages→ lower probability of error during
transmission→ less energy used

Wireless sensor networks • 7. Application layer 44/45



Presentation layer
Encryption

q presentation sub-layer maintains encryption and
decryption

q more on security – next lectures
q large scale of security issues in terms of WSN
q we will also discuss some targetted attacks

Wireless sensor networks • 7. Application layer 45/45


