7. Application layer

Application layer protocols, data serialization

Wireless sensor networks

Martin Ubl

ublm@kiv.zcu.cz

2023/24

DEPARTMENT OF COMPUTER
DI 2l NG AND ENGINEERING

ublm@kiv.zcu.cz

Application layer

Basics

1 application layer — ISO/OSI layer 7
) we usually group three sub-layers:

- application sub-layer
- presentation sub-layer
_l session sub-layer

- in this layer, we assume:

) underlying protocols (L1 through L4) are implemented and
performs their function
) we don’t care how the data gets delivered

Wireless sensor networks « 7. Application layer 2/45

Application layer

Basics

U session sub-layer
- rarely seen in WSN

-l as it manages sessions, which are primarily a domain of
point-to-point oriented approaches

0 we will not discuss session sub-layer

Wireless sensor networks « 7. Application layer 3/45

Application layer

Basics

) presentation sub-layer

- manages data (de)serialization, compression and
encryption

4 we will discuss this

1 data (de)serialization will be discussed in this presentation

-1 encryption and decryption will be discussed in future
presentations

2 compression will not be discussed separately

) some serialization techniques considers compression by
default

Wireless sensor networks « 7. Application layer 4/45

Application layer

Basics

4 application sub-layer

) maintains data acquisition and transformation into streams
1 maintains support roles in WSN and node operation

0 we will discuss different aspects and also specific protocols

Wireless sensor networks « 7. Application layer 5/45

Application layer

Basics

—1 application layer in its entirety must consider a software
architecture

) whole implementation tends to be monolithic
4 tightly coupled components

-1 we will discuss a potential node software architecture
(practicals)

Wireless sensor networks « 7. Application layer 6/45

Application layer

Protocols

1 application layer protocols, e.g.:
) data transfer
0 MQTT, or MQTT-SN
0O CoAP
2 node and network management
0 SMP
0 TADAP
0 SQDDP

Wireless sensor networks « 7. Application layer 7/45

Application layer
MQTT

- Message Queuing Telemetry Transport (MQTT)
2 (MQ Telemetry Transport — a newer name)

U established protocol, even in the Internet

4 publish-subscribe model

1 topics for grouping data streams

1 subscribers can subscribe to a topic
O publishers can publish to a topic

2 published message is sent to all topic subscribers
U a broker manages the communication

) nodes subscribe and publish through it
- itis a central node

Wireless sensor networks « 7. Application layer 8/45

Application layer
MQTT

U message types

U

Q
Q

U

(]

oouoooo

CONNECT — a client connects to the server

CONNACK - the server acknowledges the client connection
PUBLISH — a client publishes to a topic; a server
redistributes the message to all subscribed clients
PUBACK - the server acknowledges the published
message

PUBREC, PUBREL, PUBCOMP — QoS level 2 assurement
of message reception

SUBSCRIBE - a client subscribes to a topic

SUBACK - the server acknowledges the subscription
UNSUBSCRIBE - a client unsubscribes from a topic
UNSUBACK - the server acknowledges the unsubscription
PINGREQ, PINGRESP — keepalive mechanism
DISCONNECT - a client disconnects from the server

Wireless sensor networks «

7. Application layer 9/45

Application layer
MQTT

) architecture overview

temperature
previously subscribed to: A/C control

home/tmp0, home/tmpl

PUBLISH(Chome/tmp0, 20.5)

temperature
PUBLISH% ome/tmp0, 20.53
PUBLISH(Chome/tmpl, 21.1) PUBLISH(Chome/tmpl, 21.1
sensor >
PUBLISH Ehome tmp0, 20.53
PUBLISH(home! tmpl 21.1
. PUBLTSH (home/hum0, 52)
humidity

web interface

52)

PUBLISH(Chome/hum0,

previously subscribed to:
home/tmp0, home/tmpl,
home/hum0

10/45

Wireless sensor networks « 7. Application layer

Application layer
MQTT

) Quality of Services (QoS)
0 defines 3 levels:
2 level 0 — "at-most-once"

0 nothing guarantees delivery; if the message arrives, it
arrivest at most once

2 level 1 —"at-least-once"

1 guaranteed message delivery; may arrive multiple times
2 level 2 —"exactly-once"

1 guaranteed message delivery; arrives exactly once

Wireless sensor networks « 7. Application layer 11/45

Application layer
MQTT

-1 message payload
- MQTT is payload format agnostics

4 for MQTT, it is just an array of bytes
O usually, we use strings and textual representation
) very often combined with JSON, BSON or similar

U payload size is technically limited to 256 MB

Wireless sensor networks « 7. Application layer 12/45

Application layer
MQTT

- topic
0 stream of data relevant to a single area of interest
O structured, uses / as delimiter — separates topic levels

U e.g., home/bedroom/temperature, home/outside/motion,

0 supports wildcards
1 + for a single level wildcard
1 e.g., /home/+/temperature — all temperatures at home
- # for a multi-level tail wildcard
0 e.g., home/bedroom/# — everything from bedroom

Wireless sensor networks « 7. Application layer 13/45

Application layer
MQTT

-1 implementations

-l brokers (server-based)
2 Mosquitto
2 RabbitMQ

2 HiveMQ

a ..
- clients (desktop apps)
Mosquitto (Client)
Paho (C/C++, Python, ...)
Async.MQTT5
MQTTnet (.NET-based)
MQTT.js (Javascript)

(I Iy Iy I Y

Wireless sensor networks « 7. Application layer 14/45

Application layer
MQTT

-1 MQTT is not very suitable for WSN'’s

- too big overhead — can be as large as 12 bytes for a single
message

-1 we would like to have a more compact protocol

O there is a sub-standard of MQTT for wireless sensor
networks — MQTT-SN

Wireless sensor networks « 7. Application layer 15/45

Application layer
MQTT-SN

MQTT for Sensor Networks (MQTT-SN)
variant of MQTT for WSN

reduces payload sizes to a bare minimum
mostly compatible with MQTT

2 MQTT-SN commands can be mapped to MQTT commands
- topic id — 2 byte identificator of a topic

2 no need to transfer whole topic name each time

U short topic name
O pre-defined topics
-1 no need for permanent connection

o000

Wireless sensor networks « 7. Application layer 16/45

Application layer
MQTT-SN

4 MQTT gateway
) a designated node, that supports both MQTT-SN and
MQTT
2 translates MQTT-SN commands to MQTT commands and
vice-versa
- typically a role of a sink node or an edge node
- MQTT-SN supports gateway discovery protocol
- MQTT forwarder
2 merely forwards the MQTT-SN data

1 supports node sleep

Wireless sensor networks « 7. Application layer 17/45

Application layer
MQTT-SN

O MQTT gateway operation modes
1 transparent gateway
0 one MQTT-SN link is mapped to a single MQTT connection
1 requires less constrained edge nodes
1 aggregating gatewayy
0 single MQTT connection for all MQTT-SN links

Wireless sensor networks « 7. Application layer 18/45

Application layer
MQTT-SN

_l topic name and identifiers

- long topic name — standard MQTT topic name

1 short topic name — 2-byte identifier of the topic

) pre-defined topic ID — a 2-byte ID of previously registered
topic

- topic registration
- client sends a registration query with long topic name
) broker/gateway responds with topic ID
2 from now on, client refer to this topic by its short ID

Wireless sensor networks « 7. Application layer 19/45

Application layer
MQTT-SN

- example of MQTT-SN configuration

0 yellow — MQTT-SN part
0 blue — MQTT part

MQTT-SN
gateway

MQTT-SN
gateway

MQTT-SN
forwarder

Wireless sensor networks « 7. Application layer

20/45

Application layer
CoAP

Constrained Application Protocol (CoAP)

mainly for loT applications, but can be used in WSN
"lightweight" implementation of HTTP

supports encryption via DTLS (L4 security)
request-response, client-server model

00000

Wireless sensor networks « 7. Application layer 21/45

Application layer
CoAP

U

best way to describe the base functionality of CoAP is to
describe it as RESTful API-like communication protocol

it can be directly proxied to a HTTP server

compact message structure

has a binar header (4 bytes)

optionally contains a payload

supports GET, POST, PUT, DELETE

supports URI

supports subset of MIME types and HTTP response codes

[y oy oy Iy Iy I

Wireless sensor networks « 7. Application layer 22/45

Application layer
CoAP

U supports caching
O supports multicast
-l optimizes delivery

1 however... is not a "drop-in" replacement for HTTP

2 oversimplifies the communication
2 that is good for loT and WSN, but not for a "large scale
networks"

Wireless sensor networks « 7. Application layer 23/45

Application layer
SMP

1 Sensor Management Protocol (SMP)

1 protocol for managing sensor nodes
sensor nodes usually don’t have an unique address

1 or they do, but we don’t want to use it, or we are unable to
use it

protocol for managing nodes based on their attributes
can reconfigure the network

e.g., change the location of the node

e.g., manage retasking

power cycles

U

I Ny Ny W

Wireless sensor networks « 7. Application layer 24/45

Application layer
SMP

1 SMP addresses nodes using their attributes or location
) not addressing a specific node

- rather addressing a group of nodes that satisfy given criteria
- SMP not widely adapted

1 however, attribute- and location-based addressing is
adapted in almost all WSN management protocols

-1 SMP may perform e.g., key distribution, L2/L3/L4
reconfiguration, etc.

Wireless sensor networks « 7. Application layer 25/45

Application layer
SQDDP

1 Sensor Query and Data Dissemination Protocol
(SQDDP)
U data query protocol
1 an example of a query:
2 "Number of nodes, that detects light threshold over 30 %"
0 "Average temperature in the whole area”
1 "Maximum temperature of all sensors inside the house"
- attribute- and location-based addressing
1 supports aggregation
2 e.g., maximum, average, ...

Wireless sensor networks « 7. Application layer 26/45

Application layer
SQDDP

-1 query language: Sensor Query and Tasking Language
(SQTL)

-l running as a "service" on every node — can be seen as an
implementation of SQDDP

0 allows for defining events of three types:

) receive — event is fired every time the node receives a
message

1 every—event is fired periodicallyy

1 expire — event is fired once after a timer expires

- in fact, every implementation is individual, there is no strict
rule set

Wireless sensor networks « 7. Application layer 27/45

Application layer
SQDDP

U usual operation types:
) sensor hardware access — e.g., "get temperature”, "turn
on", "turn off"
2 location-aware access — €.9., "get neighbors", "get position"
) generic - e.g., "tell", "execute"
4 basically, the framework is generic enough to distribute
code
- active networks

Wireless sensor networks « 7. Application layer 28/45

Presentation layer

Data (de)serialization

1 we have to discuss data (de)serialization

-1 once we have the data, how to transform them for
transmission?
-1 what to consider:
) payload size — the smaller the better
2 simplicity — simpler usually means less power spent on
(de)serialization
) data portability — data formats should be easily portable
) code portability — the same code should run on both sides,
even on servers, if required

Wireless sensor networks « 7. Application layer 29/45

Presentation layer
Data portability

4 remark: data portability
- endianity — little vs. big endian
2 modern devices usually use little-endian
2 network endianity is usually big-endian
1 generic library must detect and convert, if required
1 data type lengths
- e.g., long data type — 8 bytes on LLP64, 4 bytes on most
embedded devices
U support for data types

2 e.g., float is often supported, but double might not be
2 e.g., embedded devices often does not offer 8-byte data
types at all

Wireless sensor networks « 7. Application layer 30/45

Presentation layer
Data portability

1 float — floating point numbers
- it is generally better to avoid them
- use fixed-point numbers for transfers

) "emulate" fixed-point numbers by defining units

- e.g., temperature of 21.8 °C — multiply by 10, so we might
use integer data type and transfer the number 218

Wireless sensor networks « 7. Application layer 31/45

Presentation layer
Data portability

) float

-1 most of sensors have very limited precision with known
domain

- there is no need for floating point
- e.g., a temperature sensor with range from -10 to 40 °C
and precision up to 0.5 °C
J range: -10 to 40
2 precision: 0.5 (also interpreted the sampling period)
- there is exactly w = 100 possible values
0N = mec

- therefore, we may safely use a single byte unsigned integer
type

Wireless sensor networks « 7. Application layer 32/45

Presentation layer
Data portability

U float

) transform to integer: y; = i

~ precision
0 e.g., value of 10.5 is converted as 12519 — 44
- transform from integer: y = y; - precision + min

- e.g., 41 back to original as 41 - 0.5+ (—10) = 10.5

- similar transformations are very common for WSN and
embedded world

Wireless sensor networks « 7. Application layer 33/45

Presentation layer
Code portability

4 remark: code portabilityy

- to avoid errors, code should be written once and used
everywhere
- this is the reason why most of libraries for data
(de)serialization is written in ANSI C
- all desktop and server machines support ANSI C
- all embedded devices support ANSI C
2 interoperability with ANSI C is very simple
0 on server-side, we may use Java and link ANSI C library via
JNI

Wireless sensor networks « 7. Application layer 34/45

Presentation layer

Libraries

) Protocolar Buffers (protobuf)

1 Google library for data (de)serialization

4 has an embedded implementation: nanopb
-1 very convenient for WSN and loT applications

U supports:

) structures, flat and composite
2 lists, arrays, maps

- enums, constants

2 implicit compression

Wireless sensor networks « 7. Application layer 35/45

Protobuf

U not a library by its own
1 more of a definition language with transpiler

) we define structures in .proto file, compile it to to obtain a
code in our language

U we then use the generated code as a base

Presentation layer

Create proto file to Generate code Compile PB code Use PB classesto
define data using the protoc with your project serialize, share, &
structure compiler code deserialize data
Input Output Input Qutput nput
proto file Java, .py. cc, or Compiled classes
other source files

Figure: Protobuf scheme — taken from protobuf.dev

Wireless sensor networks « 7. Application layer

36/45

Presentation layer
Protobuf

-1 protobuf definition
- currently version 3 of the definition language

1 defines data structures
O data types
) float, double
0 ensures correct mapping to platform-dependent data types
) int32, int64, uint32, uint64, sint32, sint64

0 uses variable-length encoding
U variant with s prefix better encodes negative values

) fixed32, fixed64, sfixed32, sfixed64
0 uses fixed-length encoding

. bool

J string

- bytes

Wireless sensor networks « 7. Application layer 37/45

Presentation layer
Protobuf

1 additional markings:
) optional — the field is not mandatory
) repeated — there ma be more than one instance, just like

an array/vector of values
) map — an associative container of key-value pairs

38/45

Wireless sensor networks « 7. Application layer

Presentation layer
Protobuf

- Example person.proto file

syntax = "proto3";
package PERSON;

message PersonInfo {
string name = 1;
int32 id = 2;
optional string email

}s

Wireless sensor networks « 7. Application layer

39/45

Presentation layer
Protobuf

- Translate to C++
protoc -I=./ --cpp_out=./ person.proto

- this generates two files:
) person.pb.cc —implementation of (de)serialization of
person structure

) person.pb.h — interface file with generated structure
definition

Wireless sensor networks « 7. Application layer 40/45

Presentation layer
Protobuf

-1 We can now use generated structures in out C++ code

PERSON::Person ceoPerson;

ceoPerson.set_name("Big,Boss");
ceoPerson.set_id (1) ;
ceoPerson.set_email ("boss@company.com");

size_t size = ceoPerson.ByteSizeLong();

std::vector<uint8_t> buffer(size);

address_book.SerializeToArray(buffer.data(),
size);

U the buffer vector now holds the serialized person

Wireless sensor networks « 7. Application layer 41/45

Presentation layer
Protobuf

1 more on practicals

-1 protocolar buffers are established way to build presentation
layer
-1 for embedded side: nanopb or similar
) minimal memory footprint
2 fast operation
2 may be limited
2 works like the original protobuf — generates C code from the
same .proto definitions
1 generated code must be compatible

Wireless sensor networks « 7. Application layer 42/45

Presentation layer

Serialization

4 other formats and techniques
) Flatbuffers — modern way, compatible with large scale of
languages
) PSON - effective binary encoding format
) MessagePack — very compact format, but also very limited
(data types)
l etc.

Wireless sensor networks « 7. Application layer 43/45

Presentation layer

Serialization

1 there are obvious reasons, why not use the "big world"
encodings

2 JSON, XML, YAML, ...

-1 JSON fits well dynamically typed languages, but are 4-10
times more verbose

- XML is extremely verbose, it benefits from clearly defined
structure

) YAML relies on indentation for multi-level definitions — this
means additional overhead characters

) we surely want to use binary encoding, as it is much more
compact and saves much traffic

-1 smaller messages — lower probability of error during
transmission — less energy used

Wireless sensor networks « 7. Application layer 44/45

Presentation layer
Encryption

U presentation sub-layer maintains encryption and
decryption

) more on security — next lectures
- large scale of security issues in terms of WSN
1 we will also discuss some targetted attacks

Wireless sensor networks « 7. Application layer 45/45

