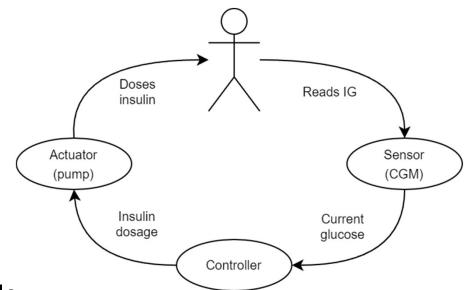


Educational simulator for patients suffering from Type I Diabetes

Immunology and immunotherapy in current clinical practice 2023

Martin Úbl University of West Bohemia, Pilsen

1/21


Background – Diabetes Mellitus

- Diabetes mellitus (DM) is a heterogeneous group of diseases
- Elevated blood glucose levels
 - Body is unable to utilize glucose (relative or absolute insulin insufficiency)
- Types
 - Type I autoimmune, little to no production of insulin
 - Type II increased insulin resistance
 - Miscellaneous (gestational, secondary, ...)
- Our main concern:
 - Type I DM treatment
 - Patient education

Background – Type I DM Treatment

Patient uses wearable devices

- Sensor (CGM) to read glucose levels
- Insulin pump to control glucose levels by dosing insulin externally
- Controller to calculate insulin doses
 - Bolus insulin
 - Basal insulin rate
- Control types (loops)
 - Open-loop
 - Closed-loop
 - Hybrid closed-loop

- No closed-loop control currently available
- Patient must be part of the loop
 - Patient needs to be educated thoroughly to understand the disease

Education

- Patient must be part of the loop
 - Patient needs to be educated thoroughly to understand the disease
- When and what should I eat?
- When is it safe to exercise?
- When is it safe to (not) dose insulin?
- Should I dose bolus insulin or change basal insulin rate?
- How do I read and interpret values from my sensor?
- How do I operate an insulin pump?
- Ultimately: What affects my glucose levels and how?

Education – how to do it?

During an appointment with diabetologist

- Personalized approach
- Not enough time for an individual patient

- On diabetic camps
 - Slightly less personalized approach
 - Limited time for an individual patient

Software-aided education

- Potentially highly personalized approach
- Unlimited time for an individual patient
- Requires at least some technological knowledge

https://diabetes.zcu.cz.

Software-aided education

Software educates the patient about the disease

- Presents basic info
- Demonstrates related phenomena

- Software is interactive
 - Gives tasks to the patient
 - Generates problems for patient to solve

- Software educates in many different forms
- Software has the potential to be personalized

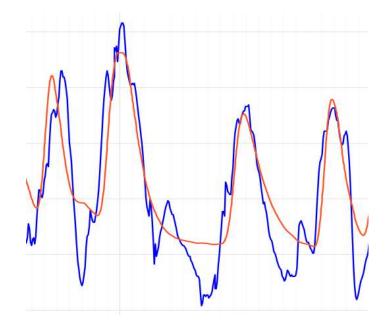
Blood Glucose Chart			
Mg/DL	Fasting	After Eating	2-3 Hours After Eating
Normal	80-100	170-200	120-140
Impaired Glucose	101-125	190-230	140-160
Diabetic	126+	220-300	200+

Software-aided education – forms

- Adults understand higher abstraction
 - Graphs, plots
 - More technical, less playful presentation

- Children understand simple, visual guides
 - Gamification, serious gaming
 - Simple rules
 - "Fallback" to parental guide in ambiguous or unclear situations

Software-aided education – personalization


Using artificial intelligence (AI), the software can adapt

- Developers guide the AI
 - Create metabolic models
 - Establish rules
 - Establish boundaries
- The AI adapts to data
 - Finds parameters
 - Applies rules
 - Respects boundaries

Software-aided education – personalization

- How to personalize?
 - Personalizable metabolic model
- Metabolic model
 - Usually a compartmental model
 - Needs a substantial amount of data for personalization
 - Takes all inputs, generates glucose levels *as if* it was a real patient
 - Learning phase
 - AI minimizes a selected metric between measured levels and generated levels
 - Stand-alone phase:
 - No need for patient data, model responds to inputs

Software-aided education – metabolic model

- How is it useful?
- When the model fits the patient data well, we don't need the data anymore
- We can experiment with patient's "virtual image"
 - We do no harm to an actual patient (*in-vivo*)
 - We experiment on a virtual patient (*in-silico*)
- We can demonstrate, how the patient's metabolism would react
 - On a regular day
 - When exposed to dangerous situations
 - Insulin and carbohydrate overdose, extreme exercise, stress, …
 - When having an acute condition that needs to be solved quickly

Educational tools

- We developed two educational tools
 - For adults
 - For children
- Adult version
 - More technically-oriented
 - Displays glucose plots and accompanying visualizations
 - Two "modes"
 - Highly personalized

Welcome to DiaTrainer, an application for use in diabetes education

Choose the application mode

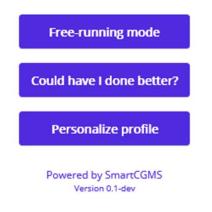


Figure: Title screen of the adult version

Educational tools - adult tool - main view


Educational tools – adult tool – meals and insulin

Figure: Insulin menu in form of insulin pump display

Educational tools – adult tool – education

- Adult version features a mode called "Could have I done better?"
 - 1. The patient uploads data
 - 2. Al personalizes the model
 - 3. Al finds risky situations, that the patient didn't handle well
 - 4. Software randomly chooses one of those situations
 - 5. Software "rewinds" 30 minutes prior that situation
 - The metabolic model "takes over" the simulation
 - 6. Simulation ends 30 minutes after the original situation end
 - 7. Software evaluates, how the user managed to improve

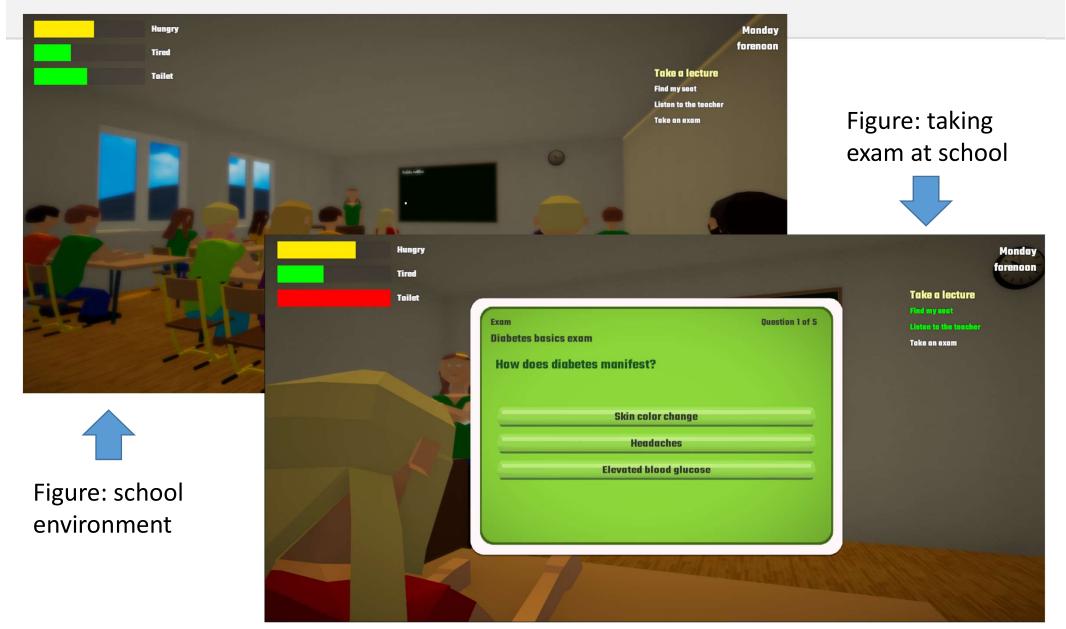
https://diabetes.zcu.cz.

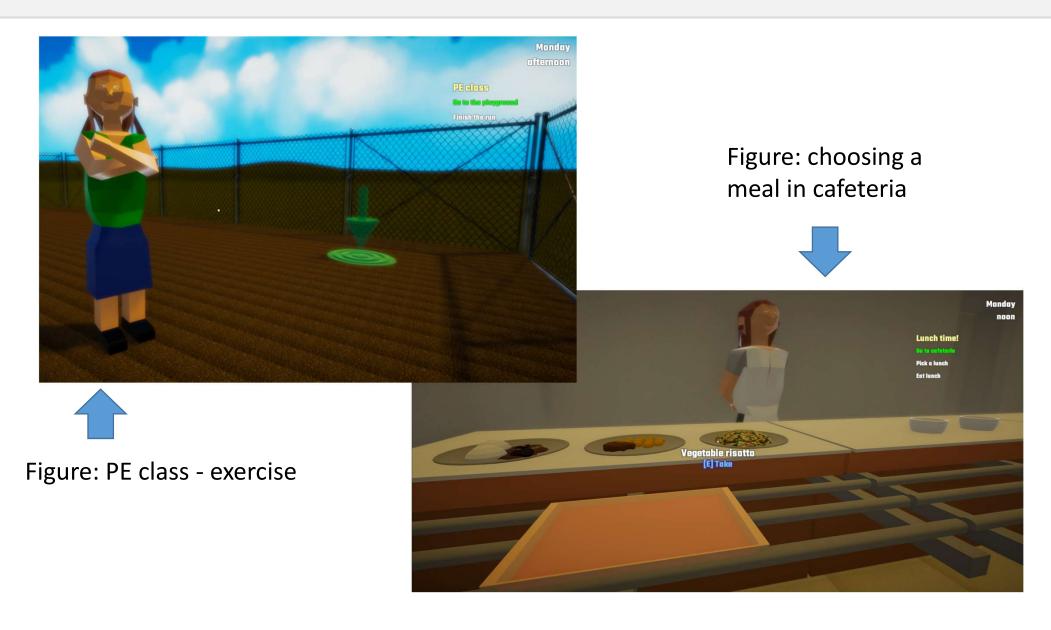
- Children version of the tool
 - Serious game
- The player controls a character, that is to be diagnosed with Type I DM
- Must handle regular daily tasks
- The first day
 - Regular day, diabetologist
- The next day
 - Regular day, new game elements
- Following days
 - Generated regular days
 - Adapts to player's mistakes

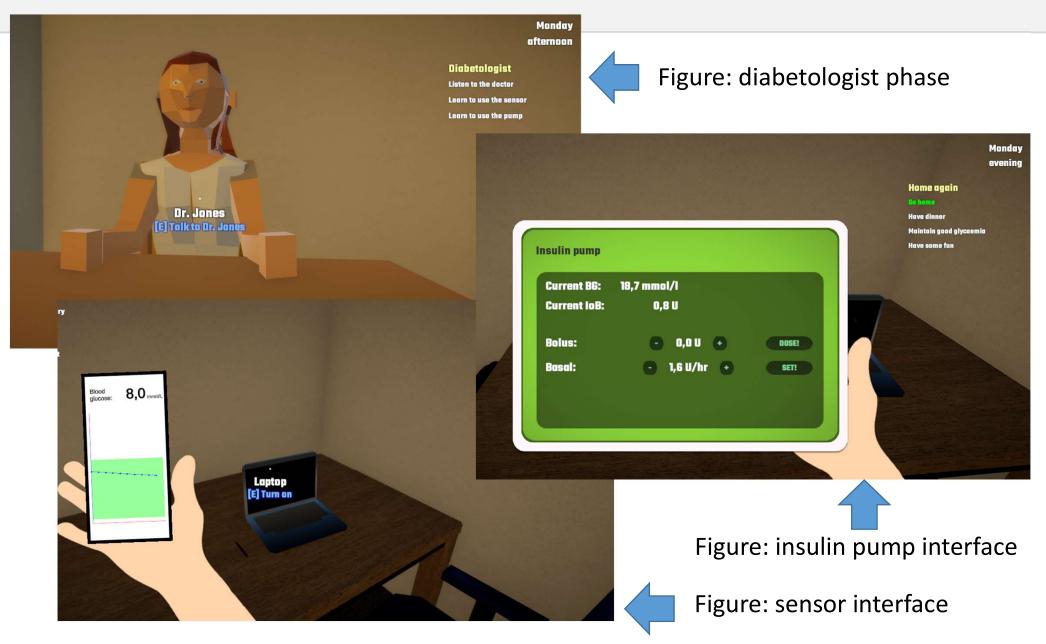
Regular day tasks

- Morning routine
- Attend a class
- Choose a meal
- Do some sports
- Maintain other needs

Diabetes-related tasks


- Stabilize glucose readings
- Prepare for exercise
- Prepare for class
- Change or fill the insulin reservoir
- Charge pump battery
- Charge sensor




Figure: Game environment

https://diabetes.zcu.cz.

- The children version also uses a metabolic model
- Limited personalization in terms of glucose control
- We use AI to personalize the learning
 - Adapt to player's mistakes
 - Generate problematic scenarios again, but differently
 - Explain how to do it better, if the player still fails
- The game is still in development

https://diabetes.zcu.cz.

We created two educational tools, that uses metabolic models and AI to enhance learning

Both tools will soon be available at <u>diabetes.zcu.cz</u>

Thank you for your attention

Martin Ubl / ublm@kiv.zcu.cz / diabetes.zcu.cz.

