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Introduction and context
Diabetes

◦ Type 1, 2 and others

We focus on Type 1 Diabetes
◦ Autoimmune

◦ Manifests in early childhood

◦ Insulin treatment

◦ Currently requires a substantial amount of wearable electronics

https://diabetes.zcu.cz/

https://diabetes.zcu.cz/


Diabetes treatment
Insulin (Type 1, newly even for type 2)

◦ Insulin pen

◦ Insulin pump
◦ Subcutaneous

◦ Intradermal

Antidiabetic drugs (Type 2)



Insulin dosing
Bolus

◦ Manual

Basal
◦ Manual

◦ Automatic
◦ How?



Measurement
Glucose concentration

◦ In blood
◦ Glucometer

◦ Sporadic

◦ Subcutaneously
◦ CGM sensor

◦ „continuous“



Typical „setup“
Sensor

Insulin pump

Infusion set

Controller (device)
◦ Optional

◦ Resides between the pump and the sensor

◦ Mobile phone, smart watch

Source: https://diabeteson.com/technical-devices-that-improve-risk-factors-care-and-quality-of-life/

Discussion: Lots of wearable devices, how
does it influence the patient mental state
(e.g., in children patients)?



Closed control loop artificial pancreas



Controller development

Certified
◦ „the correct and safe one“

DIY
◦ „the immediatelly deployed one“



DIY
Last 15-20 years

Patients themselves develop a treatment loop
◦ „Gluing together“ a number of components

◦ Algorithm prototyping

Is not a subject of certification

Risks vs. advantages?



DIY in diabetes treatment
OpenAPS

◦ open-source, JavaScript, Python

◦ oref0 algorithm

AndroidAPS
◦ open-source, Java

◦ Runs the oref0 algorithm (JavaScript)

Loop
◦ iOS variant, Objective-C (later Swift)



OpenAPS
mHealth?

Wearable electronics?

Safety?
◦ Old, deprecated devices

◦ JavaScript

◦ What if it fails?



OpenAPS - failure
How do we detect and/or solve a failure?

OpenAPS code does not look like a safe code…

Console logging

No attempt of recovery after failure
…80 lines of code…



OpenAPS – will not fail?
„OpenAPS cannot fail“

◦ Really?

◦ Statement supported by „tens of thousands of run-time“

We can partially avoid failure by verification
◦ OpenAPS has not been verified

◦ To be verifiable, the code needs to be prepared for it
◦ „spaghetti“ code of appx. 1600 lines of JavaScript certainly does not look

like it is prepared



AndroidAPS
Similar situation

◦ Java aplication for Android

◦ Runs JavaScript for insulin dose calculation

Author trusts his own software to a degree, when he set it
up in a closed loop mode for his own daughter (10 years
old)

The code is in a similar state, as the OpenAPS one

Author himself proclaims, that he is „not a good
programmer“



All systems
Wearable electronics

◦ Requires a communication protocol (network)

DIY systems use old, deprecated hardware
◦ A number of exploits in the protocol

◦ Buggy

◦ No warranty

◦ Who is responsible for injuries?
◦ Patient sets it up on his/her own

◦ A physician (diabetologist) tolerates the use, sometimes even encourages it



DIY systems fail
In fact, pretty often

◦ A selection of recent issues in the OpenAPS repository

Contradictory control rules

Too much insulin due to sensor 
failure

Insufficient testing (CI/CD)

Bugs in code due to 
its unmaintainability

Silent failure of OpenAPS
Weird runtime requirements



According to what is DIY „safe“?
https://doi.org/10.1177/1932296818795705

https://doi.org/10.1111/dme.13816

https://openaps.org/2016/06/11/real-world-use-of-open-
source-artificial-pancreas-systems-poster-presented-at-

american-diabetes-association-scientific-sessions/

https://doi.org/10.2337/db18-993-P

https://doi.org/10.1177/1932296815583334

https://dx.doi.org/10.1177%2F1932296816665635



Physicians love DIY
Most physicians only see the results

◦ Results are mostly good

Psychological aspect?

„ends justify the means?“, knowingly ignoring technical imperfections



Requirements for mHealth devices
Algorithms are formally correct

◦ Verification

◦ Thorough testing within precisely bulit scenarios
◦ in-silico (pre-clinical)

◦ in-vivo (clinical)

Fault-tolerance and recovery
◦ Fault-tolerant properties

◦ Verification

Security

Lifecycle
◦ warranty, updates, regular technical maintenance, …



Certification
FDA (USA), EMA (Europe)

Very difficult process
◦ Long

◦ Years of work (paperwork and additional work towards formal requirements)

◦ Expensive
◦ Even tens of millions $

◦ Laborious

Certified devices can guarantee certain degree of safety and correctness



Classification of medical equipment (FDA)
1. Class I

◦ Minimal to no risk, do not directly affect patient‘s health

◦ E.g., fitness bands, thermometers, … even bandages and similar

2. Class II
◦ Moderate risks, may affect patient‘s health

◦ E.g., blood pressure meter, insulin pump (open-loop), glucometer, … even scalpels and needles

3. Class III
◦ High risk, affects patient‘s health, may cause serious injury or even death

◦ E.g., automatic insulin pump (closed-loop), CGM sensor, pacemaker, … even cochlear implant and 
joint replacement



Equipment approval
1. Class I

◦ Register your product by the FDA

◦ Some exceptions may include additional paperwork

2. Class II
◦ Performance and effectivity is evaluated; even on market, they require collecting feedbacks and 

monitoring (for adverse effects and similar)

◦ Devices must have a unique serial number, patients must be registered

3. Class III
◦ Must undergo exhaustive testing and verification process

◦ Clinical studies with large number of participants

◦ Intentionally is a long process
◦ If there is a bug in device code or hardware, the longer time, the greater probability of failure



Verification of algorithms and devices
Systematic testing of all possible states and validating responses

Simple example:
◦ Two-parametric controller

◦ Cartesian product of stepped parameter values in some (safe) boundaries

◦ Metric evaluation on a number of scenarios

◦ Attempt to identify „faulty“ combinations



Simple example

LGS – treatments standard, certified

BetaPID – adaptive PID controller

OpenAPS/oref1 – DIY

• 3 controllers, all having 2 parameters
• Only 2 of them have visible safe regions

• Legend:
• Red – probably lethal
• Yellow – edge case, potentially dangerous
• Green – the best the controller can do



Wearable devices
Mobile phone, smart watch, fitness bands, but also CGM sensorts and more

A lot of sensors
◦ Lots of data

◦ Lots of possibilities
Accelerometer
Magnetometer
Ambient light sensor
GPS
Heartbeat sensor
Electrodermal activity sensor
Blood pressure sensor
Oxymeter
…



Wearable devices - data
Personalized medicine?

◦ Treatment model personalization

Telemedicine?
◦ Physicians always have recent data

◦ A parent always sees recent data of his/her child

Development of new physiological/treatment models?
◦ Datasets for initial cross-validation



Smart clothes
Not exactly a recent trend

Development of electronics-enhanced clothes
◦ Health monitoring

◦ Work assistance, safety

◦ Cool effects



Wearable devices - data
Problems?



SmartCGMS
Framework designed and implemented on our department

Signal analysis framework and architecture

Built in such a way, that it may reach production qualities
◦ Fault-tolerance

◦ Verifiability

◦ Simplicity

◦ Stability

◦ Multi-platform

◦ Effectivity, low-power

Supports simulations and real-time use



SmartCGMS
Implementation split into modules of various types

◦ Filter
◦ Model
◦ Signal
◦ Solver
◦ Metric
◦ …

Every module can be verified separately
◦ Simplifies the verification process

New module = verification of a single module
◦ It is not necessary to verify the whole system

From simulation to real-world in just a few steps
◦ Matter of a single module swap



SmartCGMS
Linear connection of filters

Message passing („from left to right“)

Vizualizace

Model Model

Model

Filtr #1 Filtr #2 Filtr #3 Filtr #4

Filtr #5 Filtr #6 Filtr #7 Filtr #8

Inz. Pumpa II.

Inz. Pumpa I.Senzor
Výpočet aktivních

cukrů a jejich

vstřebávání

Regulátor

Čte IG ze senzoru

Čte, kolik pumpa

skutečně dávkovala

inztulinu

Ovládá inzulinovou

pumpu, nastavuje

IBR

Výpočet aktivního

inzulinu a jeho

vstřebávání

Uživ. vstup,

zadávání jídel

a bolusového

inzulinu

Výpočet dávky

bolusového inzulinu

Výpočet IBR na

základě známých

signálů

Vizualizuje průběh

měření a léčby

Terminální

filtr

struct TDevice_Event { 

NDevice_Event_Code event_code;

GUID device_id;

GUID signal_id;

double device_time;

int64_t logical_time;

uint64_t segment_id; 

union {

double level;

IModel_Parameter_Vector* parameters;

wstr_container* information;

}; 

}; 



SmartCGMS
Fulfills a role of the back-end – framework, set of components and SDK

Front-ends
◦ gpredict3 – science and development

◦ SmartCGMS Mobile – patient monitoring

◦ Icarus has Diabetes - game

◦ Pump-Trainer – education of newly diagnosed patients



SmartCGMS – gpredict3



SmartCGMS – Mobile



SmartCGMS – Icarus has Diabetes



SmartCGMS – Pump-Trainer



Thank you for your attention
Questions, discussion…


