
mHealth and wearable devices
THEORY AND PRACTICE

Martin Úbl

2022



Table of contents
1. Introduction, context, diabetes treatment

2. DIY vs. certified approach

3. mHealth and device requirements

4. Wearable devices and data collection

5. SmartCGMS



Introduction and context
Diabetes

◦ Type 1, 2 and others

We focus on Type 1 Diabetes
◦ Autoimmune

◦ Manifests in early childhood

◦ Insulin treatment

◦ Currently requires a substantial amount of wearable electronics

https://diabetes.zcu.cz/

https://diabetes.zcu.cz/


Diabetes treatment
Insulin (Type 1, newly even for type 2)

◦ Insulin pen

◦ Insulin pump
◦ Subcutaneous

◦ Intradermal

Antidiabetic drugs (Type 2)



Insulin dosing
Bolus

◦ Manual

Basal
◦ Manual

◦ Automatic
◦ How?



Measurement
Glucose concentration

◦ In blood
◦ Glucometer

◦ Sporadic

◦ Subcutaneously
◦ CGM sensor

◦ „continuous“



Typical „setup“
Sensor

Insulin pump

Infusion set

Controller (device)
◦ Optional

◦ Resides between the pump and the sensor

◦ Mobile phone, smart watch

Source: https://diabeteson.com/technical-devices-that-improve-risk-factors-care-and-quality-of-life/

Discussion: Lots of wearable devices, how
does it influence the patient mental state
(e.g., in children patients)?



Closed control loop artificial pancreas



Controller development

Certified
◦ „the correct and safe one“

DIY
◦ „the immediatelly deployed one“



DIY
Last 15-20 years

Patients themselves develop a treatment loop
◦ „Gluing together“ a number of components

◦ Algorithm prototyping

Is not a subject of certification

Risks vs. advantages?



DIY in diabetes treatment
OpenAPS

◦ open-source, JavaScript, Python

◦ oref0 algorithm

AndroidAPS
◦ open-source, Java

◦ Runs the oref0 algorithm (JavaScript)

Loop
◦ iOS variant, Objective-C (later Swift)



OpenAPS
mHealth?

Wearable electronics?

Safety?
◦ Old, deprecated devices

◦ JavaScript

◦ What if it fails?



OpenAPS - failure
How do we detect and/or solve a failure?

OpenAPS code does not look like a safe code…

Console logging

No attempt of recovery after failure
…80 lines of code…



OpenAPS – will not fail?
„OpenAPS cannot fail“

◦ Really?

◦ Statement supported by „tens of thousands of run-time“

We can partially avoid failure by verification
◦ OpenAPS has not been verified

◦ To be verifiable, the code needs to be prepared for it
◦ „spaghetti“ code of appx. 1600 lines of JavaScript certainly does not look

like it is prepared



AndroidAPS
Similar situation

◦ Java aplication for Android

◦ Runs JavaScript for insulin dose calculation

Author trusts his own software to a degree, when he set it
up in a closed loop mode for his own daughter (10 years
old)

The code is in a similar state, as the OpenAPS one

Author himself proclaims, that he is „not a good
programmer“



All systems
Wearable electronics

◦ Requires a communication protocol (network)

DIY systems use old, deprecated hardware
◦ A number of exploits in the protocol

◦ Buggy

◦ No warranty

◦ Who is responsible for injuries?
◦ Patient sets it up on his/her own

◦ A physician (diabetologist) tolerates the use, sometimes even encourages it



DIY systems fail
In fact, pretty often

◦ A selection of recent issues in the OpenAPS repository

Contradictory control rules

Too much insulin due to sensor 
failure

Insufficient testing (CI/CD)

Bugs in code due to 
its unmaintainability

Silent failure of OpenAPS
Weird runtime requirements



According to what is DIY „safe“?
https://doi.org/10.1177/1932296818795705

https://doi.org/10.1111/dme.13816

https://openaps.org/2016/06/11/real-world-use-of-open-
source-artificial-pancreas-systems-poster-presented-at-

american-diabetes-association-scientific-sessions/

https://doi.org/10.2337/db18-993-P

https://doi.org/10.1177/1932296815583334

https://dx.doi.org/10.1177%2F1932296816665635



Physicians love DIY
Most physicians only see the results

◦ Results are mostly good

Psychological aspect?

„ends justify the means?“, knowingly ignoring technical imperfections



Requirements for mHealth devices
Algorithms are formally correct

◦ Verification

◦ Thorough testing within precisely bulit scenarios
◦ in-silico (pre-clinical)

◦ in-vivo (clinical)

Fault-tolerance and recovery
◦ Fault-tolerant properties

◦ Verification

Security

Lifecycle
◦ warranty, updates, regular technical maintenance, …



Certification
FDA (USA), EMA (Europe)

Very difficult process
◦ Long

◦ Years of work (paperwork and additional work towards formal requirements)

◦ Expensive
◦ Even tens of millions $

◦ Laborious

Certified devices can guarantee certain degree of safety and correctness



Classification of medical equipment (FDA)
1. Class I

◦ Minimal to no risk, do not directly affect patient‘s health

◦ E.g., fitness bands, thermometers, … even bandages and similar

2. Class II
◦ Moderate risks, may affect patient‘s health

◦ E.g., blood pressure meter, insulin pump (open-loop), glucometer, … even scalpels and needles

3. Class III
◦ High risk, affects patient‘s health, may cause serious injury or even death

◦ E.g., automatic insulin pump (closed-loop), CGM sensor, pacemaker, … even cochlear implant and 
joint replacement



Equipment approval
1. Class I

◦ Register your product by the FDA

◦ Some exceptions may include additional paperwork

2. Class II
◦ Performance and effectivity is evaluated; even on market, they require collecting feedbacks and 

monitoring (for adverse effects and similar)

◦ Devices must have a unique serial number, patients must be registered

3. Class III
◦ Must undergo exhaustive testing and verification process

◦ Clinical studies with large number of participants

◦ Intentionally is a long process
◦ If there is a bug in device code or hardware, the longer time, the greater probability of failure



Verification of algorithms and devices
Systematic testing of all possible states and validating responses

Simple example:
◦ Two-parametric controller

◦ Cartesian product of stepped parameter values in some (safe) boundaries

◦ Metric evaluation on a number of scenarios

◦ Attempt to identify „faulty“ combinations



Simple example

LGS – treatments standard, certified

BetaPID – adaptive PID controller

OpenAPS/oref1 – DIY

• 3 controllers, all having 2 parameters
• Only 2 of them have visible safe regions

• Legend:
• Red – probably lethal
• Yellow – edge case, potentially dangerous
• Green – the best the controller can do



Wearable devices
Mobile phone, smart watch, fitness bands, but also CGM sensorts and more

A lot of sensors
◦ Lots of data

◦ Lots of possibilities
Accelerometer
Magnetometer
Ambient light sensor
GPS
Heartbeat sensor
Electrodermal activity sensor
Blood pressure sensor
Oxymeter
…



Wearable devices - data
Personalized medicine?

◦ Treatment model personalization

Telemedicine?
◦ Physicians always have recent data

◦ A parent always sees recent data of his/her child

Development of new physiological/treatment models?
◦ Datasets for initial cross-validation



Smart clothes
Not exactly a recent trend

Development of electronics-enhanced clothes
◦ Health monitoring

◦ Work assistance, safety

◦ Cool effects



Wearable devices - data
Problems?



SmartCGMS
Framework designed and implemented on our department

Signal analysis framework and architecture

Built in such a way, that it may reach production qualities
◦ Fault-tolerance

◦ Verifiability

◦ Simplicity

◦ Stability

◦ Multi-platform

◦ Effectivity, low-power

Supports simulations and real-time use



SmartCGMS
Implementation split into modules of various types

◦ Filter
◦ Model
◦ Signal
◦ Solver
◦ Metric
◦ …

Every module can be verified separately
◦ Simplifies the verification process

New module = verification of a single module
◦ It is not necessary to verify the whole system

From simulation to real-world in just a few steps
◦ Matter of a single module swap



SmartCGMS
Linear connection of filters

Message passing („from left to right“)

Vizualizace

Model Model

Model

Filtr #1 Filtr #2 Filtr #3 Filtr #4

Filtr #5 Filtr #6 Filtr #7 Filtr #8

Inz. Pumpa II.

Inz. Pumpa I.Senzor
Výpočet aktivních

cukrů a jejich

vstřebávání

Regulátor

Čte IG ze senzoru

Čte, kolik pumpa

skutečně dávkovala

inztulinu

Ovládá inzulinovou

pumpu, nastavuje

IBR

Výpočet aktivního

inzulinu a jeho

vstřebávání

Uživ. vstup,

zadávání jídel

a bolusového

inzulinu

Výpočet dávky

bolusového inzulinu

Výpočet IBR na

základě známých

signálů

Vizualizuje průběh

měření a léčby

Terminální

filtr

struct TDevice_Event { 

NDevice_Event_Code event_code;

GUID device_id;

GUID signal_id;

double device_time;

int64_t logical_time;

uint64_t segment_id; 

union {

double level;

IModel_Parameter_Vector* parameters;

wstr_container* information;

}; 

}; 



SmartCGMS
Fulfills a role of the back-end – framework, set of components and SDK

Front-ends
◦ gpredict3 – science and development

◦ SmartCGMS Mobile – patient monitoring

◦ Icarus has Diabetes - game

◦ Pump-Trainer – education of newly diagnosed patients



SmartCGMS – gpredict3



SmartCGMS – Mobile



SmartCGMS – Icarus has Diabetes



SmartCGMS – Pump-Trainer



Thank you for your attention
Questions, discussion…


