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Abstract: In thie paper we prove the existence results
for the equation Au + Su = f, where A is & polynomial operator
on a reflexive Banach space, S is a strongly continuous nonli-
nearity.
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1. Introduction., J, Frehse investigated a class of non-
linear functionel equations and nonlinear operators of polyno-~
mial type (see e.g. [1]). The ranges of these operators are
closed linear subspaces with a finite codimension and the equ-
ation
(1.1) Au = £
has at least one solution if f satisfies the Fredholm conditi-
on. Purther, J., Frehse deals with the golvability of the equa-
tion
(1.2) Au + Su = f,
where S i3 the Landesman-Lazer type nonlinearity (see e.z.[2]).

This paper continues, in some sense, the works [1],[2] and
deals with the solvability of the equation (1.2) in section 2,
where S is "subpolynomial-type" nonlinearity. In section 3 the

abstract theorems are applied to the examples of polynomial
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operators, for exemple, to the problem
(A=A [(Au - Au)? + (Au - Au)’] +
)\ +|u\d~signu=finﬂ.,

u=0on 05 -

n

There are elsc presented results concerning the solvability
of (1,2) in section 4, where the operator S has a vanishing
strong subasymptote, For example, there is considered the pro-
blem
CA=20)L(Au - Auw)? + (Au - Au)ls+ -——-l-l-—? = fin .,
{\ 1l +u
L 0 on o).

The proof which is published in [5], is analogous to that con.

u

i

tained in the papers [3],[4] where equations with linear non-

invertibie operators in the main part are considered.

2, Abgtrect thesorems. We shall investigate continuous

msps A:B~—FE* where B is a real reflexive Banach space with &
norm k-l , B iz its dual space. VWie consider following condi

tions

.

jal
o

—~

.1} There exists aZ 0 such that it holds

1f lim sup t7F{CA(u+tv),v i<+ @
£ 5+ 00

A{v+tviv)y = <Au,Vv? whenever t& R, u,ve B,

o+
3

1)

1]

AN

(43 if iim sup TTRUCA(twW),vol < + o0
then <A tw = {A(C),v> whenever t&eR, v,wEE,
1) = (A(u+tv),u+tv) and

‘jﬁ(t);oy

(2.2) If uy,vel, <

(
e P §
(1) 1im in? %

= 5

(ii) lim sup tT7@(t)<+ @,
t >+

then lim t™ % g (%) = O.
tr a0

Any continuous operator A satisfying conditions (2.1) and

(2.2) will be said a-polynomial,
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An operator A satisfying
(2.3) 1lim in? Hu-v || "1<Au-Av,u-v>_?_- 0 for each veEB
et > 00
will be called the asymptotically monotone operator.
(2.4) There exist constents K,e>0, p>1 and a finite dimen=
gional subspace VC B with a bounded linear projection 4:8 —» V
such that

<an,u>Z cllull® = € hgull P - X whenever us 3,

2.5, Definition. A contimuous opereitor A:d —» 3

ler if the variational ineguality
{An-f,u~-v> £ 0, vel

hag e solution ue K

Isr every feB¥,

!

The main result of

2.6, Theorem. Let A:B —>:

conditions (2.1)(1) i

th =

BN

Then the esquation Au = f hes
i
if fL(RA))T .

Uoreover, dim R(A)* £ dim V<4 20,

oy

[

shall use the next lerrma in

theorems.

pokad

BT be an asymptotl

2.7, Lenmsa.

1y TonoTone Le0G-

lynomial operator, A(C) = O, Suppose that for scme v&€ K there
exist constants J7, ¢, KXZ 0 such that the inequality
; o
) {Aw,v) £ C + Kilwi

holds for every we 3, If a Z o then v.iIR(A).

Irnof. The inequality (2.8) implies {A(w+tv),v> £ C +

+ K4 wetv 0 and from the asymptotical monotonicity of the




operator A (i.e. 1'i£1|11_)ié10f lt\-1<A(w+tv) - Aw,tv > Z 0) we ob-
tain (A(w+tv),v) 2 < Aw,v> - € for every tZt  with some t >0,
€ > 0. Together with the supposition (2.,8) and the condition
(2.1) we have

(2.9) { A(w+tv),v) = {Aw,v> for every t€R.

Using the inequality 1:Lm 1nf 111 ¢ Alwatw) = A(2w),~w+tvD Z O
we get that 1im sup lt\ 1<A(w+tv) ,w> £ K(w) with some constant
K(w). It yields together with (2. 9 lim sup (¢1” lop(t)<+ oo
where cp(t) = { A(w+tv),w+tv> . Prom condltlons (2.2),(2.3),
A(O) = O 1t follows that

-1
. 1im t7 (t
(2.10) 1ti—>+co el =

Let se R be fixed. It is obvious that
1im inf \t|-1<A(w+tv) - A(aw),(1 = s)w+tv2 Z O
1t\=> +o0
and this together with (2.9) yields
1lim inf lt\‘l[(l-s)cy(t) + 8 {Aw,tv> = CA(eW), (1-8)w+tv2>] Z
itl=>+c0
According to this fact and with respect to the condition (2.10)
we have a8 (Aw,v) = {A(aw),vD> Z 0, -8 {Aw,v) + {A{sw),v>Z 0 and
(2.11) g {Aw,v> =<A(sw),v> , BER.
If a<1 then 04 o< 1 and as s {Aw,v> 4£C + Kisl” I w
we get {Aw,v> = O, taking the limits s —>* oo . This completes

the proof for a<l.

Let aZ1, There exists 2% > O such that auli£1 + a0 =

= 1 for every ue B, full £ . The inequality

Gy = L a5 ,v> 2 - AFh A, weo,

iw i
is en immediate consequence of (2.11), Therefore, there exists
the constant L> O such that {Aw,v>Z ~Liiwl, weB, Using the

inequality (2.8) and the fact that aZl we obtain
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1im sup t72{<A(tw),vD>|< + <0 .
t>+o00
Prom (2.1) we get {Aw,v> = {A(0),v> = O, It means that vl R(A)
and the proof of the lemma is complete,
Let S:B —> B¥ be an operator satisfying conditions
(212)  hsull pyécc+ s lul?, «, 8,520,
(2.13) there exist constants G,H>0 such that the inequality

in it Nugl "2 <5, - swou, - w>Zz -0 - B Awt®

is fulfilled for every wec B.

2,14, Definition. Let V be a closed linear subspace of B,

r =4uveV, lull S rf. A mapping ¥:V;—> R will be said &
strong subasymptote of the operator S with respect to V if

(2.15) V()£ 11.m inf 4 S“,j' Ilu.'.j i 'l(u -w)> , we B,

holds for any sequence -iuj}:] -1 Such that Mu l—> +c0 and
Hu il ]\1 ~—> z (i.e. weakly) for j —> + 0 , where 240, z€V,
2,16, Theorem. Let 4,S:B —>B* be continuoue operators with
the following properties
(1) A is an asymptotically monotone a~polynomial opera-
tor, A(0) = O and A satisfies (2.4),
(1i) S setisfies (2.12),(2,13) and p>1 +0”°, a2 &,
(ii1) A + 8 is a regular operator.
Ir V(r(A)*: )1—-> R 1s a strong subasymptote of the operator
S with respect to R(A)L end if
(2.17) <2,z><V¥(2) for every ze(R(A)"L )1 2¥0,

then the equation (1.2) has at least one solution.

Proof. Let us suppose that the equation is not solvable
and let u, be the solution of the variational inequality
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(2,18) {Au + Su-f,u-w>£ 0, wWe€B.,

Observe that u, e OB, and therefore It u,ll = r. Choose a sequen-

ce £r.3°% so that flu_ | =1 4 —~ z weakly in B. According to
i’ 1i=1 Ty Ty

(2.,18) with w = O and in view of the growth of S (see (2.12))
we get the inequality <Aur ou, Y€ L \lur { 149" por 12 1, with
i i i

some positive constant L. Since p>1 +J we obtain from (2.4)

that 1im inf JQu, NP Hu. ) ~Pz §>o. The fact that dim R(Q)<
i >tev Ty r 1

< + 00 implies Q(ur fl u, A7")—> Qz in B for 1 — + oo and
i i
i Qz § >0, therefore z0,

We claim zlR(A), Observe that

lm inf hu, | "P<Au, - Awu, - w220,
r I‘i

i —>+ec0 i i
1im inf flu_ 0" <f - Au, - Su_,u, -w>Z0
i>+0  Ti Ty Ty'ry

and therefore

(2.19) lim inf flu, | “l¢g - su. - Awm, -w>ZO,
i>+oo  Ti Ty Ty

From (2.,13) we have

Lin int lu_ I 72< = hw - Swpu, - w>Z ¢ - Hlwi"
Ti

A->+ 00 i
and this gives the estimate
lim inf < -Aw,u_ ]lur i=1>z ¢ - H]Iwil‘f - (x+f3 lel‘;) -
4>+ 00 i i
~1<g,22]
Consequently, { Aw,z7>% G + I<f,z2>] +¢ + (B + H) lwh? end the
Lemma 2,7 implies z1R(A).

Cbserve that the inequality (2.19) yields
1>+ e0

{£,27 - {Aw,2z? - lim inf <Su v’ |luri It "]'(uri ~-w)y Zz

As ¥ is the strong subasymptote of the operator S we get
{£,27 = ¥(2)Z 0, which is the contradiction witn (2.17) and

the proof is complete.
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2,20, Proposition. The condition (2.17) is necessary for the
solvability of (1.2), if<Su,z> < ¥ (z) for every uc B, z+0,
z e (R(A)L);.

Proof. If Au + Su = f then {£,z27=<Su,z” < ¥(z) for
ze (R(A)),.

In the case J < 1, the strong subasymptote of the opera-

tor S can be replaced by more verifiable conditions:

(2.21) 1im in? flug F~

i, int (Su:L - Swi’“i -w2Z -G

for every bounded sequence {wi§ i=1'

(2.,22) For every ze€ R(A)'L » 240, there exist t e R, v, €B such
that <S(tzz + vz),z> > G, where G 1s the constant from (2.21).

(2.23) 1im inf(S('czi + v),-z.’> £ 8(tz + V),~-z”

holds for any te€ R, ve B and any sequence iz, 51 1¢ B, zy —> 2
weakly for 1— +c0 , zeR(A)‘L s 2¥0,

A strongly continuous operator S satisfies the condition (2.23).

2.24, Theorem. Let A,5:B~— B* be continuous operators with
the following properties

(i) A is an esymptotically monotone a-polynomial operator
gsatisfying (2.4), A(0) = O,

(1) S satisfies (2.12),(2.21)-(2.23) end p>1 +d , aZd,
&< 1,

(iii) A + S is a regular operator.

Then the equation Au + Su = O has at least one solution,

Proof. The condition (2.21) implies (2.13)., Let us suppo-
se that the equation Au + Su = O is not solvable. Analogously

as in the proof of Theorem 2.16 there exists a sequence

- 677 ~



iu zial’ lu, I— + 00 ,llu, | =1 u, —~ 3 weakly in B for

i-——) +c0 , ch(A)‘L s 2%0, a.nd(Au +8u, ,u, - w>%50 for
Ty i

Ty

every we Bri. As the operator S satisfies (2.21) and (2.22) we

have

- G4 -1 -1 -

13"_‘,.,1_’:: a, ll <S(tz“ri ] urill +v,) S%i,
tu, fu, Il ev, -~u de
zory iy ur1
lim inf<S(t -1 - - -1
= lnu int ( mr ill +v,) Suri, uri Ilurill >

because o' < 1, The operator A + S is regular and therefore we

get {Au_ + Su_ ,~u_ >Z 0 and
Ty Tyt Ty

lim int (S(tu, -1y 2 g,

i+

flu, £~L 4 v ) & du ,-a_ fu |
uri z u.ri’ 'Lri Ty
Further, A is asymptotically monotone, e.g.

lim inf<{-Au_ ,-u, llu 1=1>zo

i+ e Ty 1 Ty
and

1im inf (S(% i -1 - “lyz .
i inf ($gu, r, i ur:l I +v,), ur1 |luri|| >Z -G,

From (2.23) we obtain {(S(t,2 + v,),2> % G, which is the contra-
diction with (2,22),

3. Examples. Let P, R°—> R, J = 1,2,...,8, be polynomi-
als satisfying the following conditions (with C,K,0>0)

(3.1) IPj(g & + (g P-1y for every € e R®,
A

(3.2) .=, Py(§)§yZcifIP - K for every § e B,
Vd

(3.3)

Let Qc RN be a bounded domein with & smooth boundary and let
V= w2m,p(_o_ n W'g’p(_ﬂ). p>1l, We define
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5§4 (B4($) = 25(n)) (§4 = m4)Z0 for all ¢, <R,

|

ﬁ

r (3) -
By = 0 T m D) D"(apy’ (x)D%), § = 1,..048,
for every uc V where ai,g)e c® (L) (Irl,lqlém, 3 = 1,.c.
veeyB8)e Let

2m
i T (D" 280 Tl g = s,

hold with some o« > O for every ge RH. Let us define the
operator AV —> v* by
»
{Au,v) = i§l ,{1 Py(LyuyeeesLgu) Lyv, vEV,
Using the Theorem 2.6, we see that the equation Au = £
is solvable if (f - A(0))1 (R(4) - A(O))‘L « Let us remark that

for 8 = 1 it i8 posmible to show: if we consider the operator

*
A‘V/Ker[Lll —> (17/K er[Ll]) then this result follows from the

theory of monotone operators and (R(A) - A0 = Ker[I.lJ o

Let the function ¢ be continuous, odd, increasing,
@(t) = +0 and @ (¥)|1 £ oo+73'ltl‘;, t &R, with some

t-)+ao
L p. 4 > 0, Let 2mp>N, We define the operator S:V—> v by

{Su,v? = f.n. @(u) v, VeV,
We note that the inequality (2.12) holds with some constants

&y 3 » Let us assume the conditions

(3.4) Lm sup @ (@) [g(DI™} = g (@)<+
for every @ Z

113;4«» Yo ) = 1,

1, where 3 18 a continuous function with

(3.5) meas 0 > 2 meas {x e £ ;2(x) = 0%
for every ze(R(A) - A(O))‘L s 40,

3.6. Proposition. The mapping ¥ :((R(A) =~ A(O))‘L )1-->{K3,

where K is a real number, is & strong subasymptote of the
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operator S defined above with respect to (R(A) - A(O))-L o

Proof, We assume that A(0) = O and that for a sequence
+ 0o -1 -
{un}nzlcv it is |lun|\ >+, (u, -w) llun i1~ 2 weak-

ly for n—>» + 0 , zeR(A)J' y 2%0, weV, It suffices to show
that

w
lim inf f ¢ (u,) —-{——r--KéO.

Mn—y+ 0O
As WZm,p(Q_) is compactly imbedded into C(IL ) we have
-1 -
u, |lunl\ —> zand (u, - w)liu l 1 5 2in Lo ()e If we de-
+
noteﬂez{x efl;a(x)zel, Q._6=-{xeﬂ. sz(x)£-¢€3, Q‘e =
. a- +
= ‘Q'e U Q’E then according to (3.4) and (3.5) there exist & >

>0, an integer ko>1 such that the inequality
(3.6) meas,()_g r—l' 7 (k s 1) meas(_().\_().g)>0

holds for every k2 ko. There exists a natural number n_ such

<}
that

fv. ?(un) EF_:T; = f 9 (uy) uIml -'[w + f (-uy,) '—ﬂ n“[{‘" =
< Ly, .\’).E n un] T ? n u,

g
~
™

o
3

St

Iy

‘_f;\n{;6 ko k n‘

k -1 k -1 k +1 k+1
fne € oko (5’(5 ok “un ) - ‘{r‘z\nte oko (?(E 120 |‘|‘un“)'z
k - k
Ze —-k——q:(e

|lu I\)me&sﬂ -
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k +1 k + 1 k-1

-2 [y (g2 1 (ANQg)g e —Nu 1)
X, 8].7((1;—1—0_ ) + D) meas L - 0,
where ‘ﬁn——ro for n ~> + 00 . Observe that

up- W k-1 ( k-1
ot Fap e 9 X

It unH Y[ meas & -

% (’{(E—I) + ) meas (N D )]
Denote the expression in the square brackets by Che It focllows
from (3.6) that 1im ¢, > 0 and therefore
k- l
miiinao&—r— cg(e—k-——-llu i) e, =+00.
The proof is finished.

If the operator A satisfies the conditiocn (3.5) then the
Theorem 2,16 can be applied. If J" « 1 then the cperator S - f
satisfies the conditions (2,21)~(2.23) and the Theore 2.24 can
be used., In these cases, if p>1 +d , a Z o > O then the equa-
tion Au + Su = f has at least one solution.

For example, the problem

(A=2)0CAu =Aw)5 + (Au -2uw)?] + [ul® sign u

u

f inﬂ_;
0 on a5l

it

. .
has at least one weak solution uc-zwg"o(ﬂ_)mwz’b(ﬂ) for
0<d <3,

4., Problems with a bounded nonlineerity. Let B be s line~

ar closed subspace of Wk’p(.O.), kp>N, p>1, A(0) = O,

(4.1) { Su,v) = -[1 @ (u) v, for u,ve B,
where the function ¢ is contimuous, odd, im cs,(t) = 0, Then
+20

h sull B“é e for every u€ B with some coms tant @ . Purther,



we shall assume the following conditlions be satisfied
(4.2) for all weR(A)L , teR, veB it 18 A(v + tw) = Av,

(4.3) there exists a bounded linear projection Q:B —> R(A)‘L
and <Au,u>ZCllull P - K 1Qull P - L for every ue B, where
p>1l, C,K,L>0,

4.4, Propogition. Let the function t+><{ A(u + tv),w?
be & polynomial for any fixed u,v,we B, If A is regular and
satisfies (2.3),(2.4), A(0O) = 0, then the condition (4.2) is
fulfilled,

The proof can be found in Frehse’s papers or in [51.

Let ¥ :(0,+00)—> (0,+c0) be the increasing function sa-

tiafying
£
wERA: L‘e“‘”h‘ £ ¥(e),
nw“c&\‘”
where '0‘8(') a{x el ;0<lw(x)l< €} and such that

1im sup (¥ (e "1 ¥ (we )<+ for every w € (0,+00).
€—> Oy

4.5, Theorem. Let a regular asymptotically monotone O-po-
lynomial operator A satisfy the conditions (4.2),(4.3), A(0) =
= 0 and let S be given by (4.1). If

‘6 _-l -1 =
(4.6) 9__l)i;_mco [’&’(S)J 1:mei::b’g)cy('t:') +

for some a> 0 then the equation Au + Su = f has at least one

solution for an arbitrary fl R(A)‘L .
Sketch of the proof, Let us consider the function
~9(E‘) for Ig.‘l £ b,

§=§"‘—) @(v) for § > b,
P(-b) for $<-b,
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snd the corresponding equation Au + §u = f, Prom the Theorem

2,16 this equation has a solution u because

0 = su 1{,w>l< | & (b)) int lwl.
weraY T erRart Jotw
lacrlig giy=1 o g y=1

Using the condition (4.2) we can obtain a priori estimate
| o° _&cy = c; (2l ge)e
I Qu cm 1T B

Purther, methods from [3],[4] give a priori estimate

i Qull C(ﬁ)é cy = c3(a.$ . 1),

where a>0,

a+cl
ESETE TR §(p) +sup 130N
$Za eR
c=c(;~9f"if i int (¢ ‘
= 0o(8,F 1) inf o (rgmga(g)fgnwn

“wllc(ﬁ)x'f
It there exist numbers a,be R, O<a<b, such that b> cl(é}’,f)+
+ ¢,(a,® ,£) then the solution u of the equation Au + ’Svu = I
3 q
is also the solution of the equation Au + Su = f because Su =
= Su. The condition (4.6) guarantees the existence of such num-
bers a, b,

For example, the problem

{(A-?L)[(Au 2w + (Au -2uw)3] +1_u_2. = fin 0,
+u

u =0 on 3f,
has at least-one weak solution ue Wg’a(_()_ n W2’6(ﬂ) it
f1lKerl A -2 1al,

It is also possible to apply the abstract results to the
existence of solution of the Neuman problem.
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N
«2?‘1

3

-1 0
3 [(a+|Vul®) il W

+ =f£inQ
k
x; oxy 1 + [ul

A S Q
55 0 on 34lL,

where ¢>0, p>1, kZ2. If feLi(f), [ #(x)ax = 0, this

problem has at least one weak solution ue Wl'p(_Q. Ye

£1

(2l

[3]

4]

[s5]

J.

Je

S.

s.

Je
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