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'« Introduction. This Paper deals with the solvability
of the Stokes problem

(1) -UAﬁ+gradp=? in Q,
aivid =g inq,

T= ¢ on M,
in a bounded domain fLcr? with a Lipschits boundary, where
V> 0 and Sn.g dx =j‘m¢.3 dS. In comparison with the clas-
sical case we assume that right-hend sides f,g,? of (1) in-
clude certain singularities which are described by weighted
spaces. Those circumstances make impossible to find a weak
solution in (classical) Sobolev spaces. Moreover, from the
properties of the right-hand sides of (1) we are abie to des~
eribe the behaviour of the solution of (1) neap the boundary
using the methods of ;"eighted spaces,
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In order to avoid technical difficulties, we shall con-
sider spaces with weights related to the whole boundary ofN..
In the case of weights related to a part M of the boundary AL,
where M is a manifold of the dimension less than or equal to
N-1 we can use the same ideas of the proofs.

Fundamental properties of weighted spaces we shall use

can be found e.g. in [1],[2].

Section 2. Troughout this paper L1 will be a bounded

domain in the Euclidean N-space RN with a Lipschitz bounda-

ry OL . We shall use the distance d(x) of a point x €}

from OfL defined by d(x) = inf |x-yl . The Sobolev power
year

weight space W"Z(Q ;d,& ) is defined to be the set of all

functions u defined a.e. on {1 whose (distributional) deriva-

tives Iu with lwl 41 belong to the weighted Lebesgue space

L2(.n.;d,e ) endowed with the norm

bplg = < Sn_l‘f(")‘z at(x) ax

The space [W‘ ’2(.(\. ;d, & )]N with the norm

)1/2 .

N du. (2 N
'L { T g ok f R g]u.|2 a€ ax)'/?
& i,J= N vx; =1 4 J '

is a Hilbert space. The set [c”(x‘i)]" is dense in
[w"z(.ﬂ;d,i )]N for &€(-1,1) and therefore we can consider

traces of functions from this space on the boundary oL

(see e.g. [1]).
The weighted analogy of the Sovolev space [Wl’z(.ﬂ.)]N
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is defi 1,2 H N
ined by the formula [wo' (fL;4,¢ )] = C:’(.ﬂ.) where
the closure is taken with respect to the norm Bl
clg o

Further we shall use the shorter notation
L(8) = Ly(n3d,8), L3(&) ={yeL,(n;q, £); f ¢ ax=0} ,
1,2 .
vie) = [whease, )", voce) = [w)2n;a,e )Y,

where g€ (-1,1). Let Bg be the space {?e Vo(s, }; div ¥ = O}
with L
the norm ”"& and By its orthogonal complement in Vo(é ).
According to the following consequence of Hardy’s ine-

quality
(2) S d‘-zlu.ledx £ ¢ (n) ! S € 2
= 4 .
J 1 *“2“2_” IVuJI ax,

J = 1,.00,N, aevom ) with £€(~1,1)

we can consider the norm equivalent to "”
& 2

2
Ry, = == Kde|m| oo}
1)J=1 0 axi

t
on the space VO(E Y.

In the proof of Theorem 2 we shsll use the following

lemma proved for example in [2].

Lemma 1. If th i i i
e derivatives D;p, 1 £4 £ N, of a distri-

buti -1 g
ution p belong to H™'(f) (:[W;;Z(n)j*), then p€Ly(N) and

LN

CZ(Q) "grad pﬁ

[ iad

Iol
Ly () /g CRITLE
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The following Theorems 2-6 imply some properties of
mappings grad and div defined in weighted spaces. Analogous

results concerning classical spacea are proved in {4],[5].

Iheorem 2. There exists a symmetric intervel I, O€int I,
such that for every €& I the operator grad is an isomorphism
of the space L,(& ), onto its range in [VO(-E n*.

Proof. The continuity of the operator grad follows from
the estimate

lgrad plwo(_£ )]* = gup <grad P, ?) =

evo(-e)
l?l_e £1
¢ .
= gup ( - pdivvdx)‘iNlp . é
€V, (-£) L le 5uepv°(-s.) Wil
", & l_g &
£ ol .

Let V be the orthogonel complement of the subspace
{const} + {d's/z const} in L,(€ ) and let p€V, i.e.

c i
gdzpdx=0, gd/zpdx=0. As the mappingx?—-)dt/zq
n a

is an isomorphism of [L2(£ )]N onto [Lz(.(‘l.)]N and of V_(0)
onto vo(-g ) (see e.g. [3]) and moreover as ds/zp is orthogo-
nal to the subspace {const} in L2(-Q.), using Lemma 1, H&1-

der’s inequality and the inequality (2) we obtain the estimate

- _ .82 &/
Il, = la*%) = fa¥% € ¢, fgraa a¥2 <
{3 0 ‘Lz(n.)/R 2l p“[H-1(n )]N
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&2, =
aa . =
£y 7 2an® ere P ¥
19 8
&2 &2
= dp,4 - {p,V-grad @ £
°2 3u2wg’2(n ))N[<8T3 '> (P gra >]

13 %1

¢ °3[§“epvo(-a) Comed 2D +
Wi 6

Iel |S %271y F.graa a ax| ] &
N

+ sup
velw2(an®
I71,6

£ ey 'Sradplyo(-g )]‘ + e, ltl’lple

(we use that |vd|£ 1 a.e. infl). Hence there exists a symme-
tric interval I, O€int I, such that for every £ € I we have

Inlg £ eg(n) lgraa pU[vo(_a )J* whenever p€V.
Therefore, the set grad[V] is a closed subspace of [Vo(-& )J*.
Since grad [{'d"/zconst}] is also a closed subspace of the
same space, the subspace grad[Lz(E )] = gradiv] +
+ grad [{d"g/zqonst}] is closed as well. Now, the null-space
of the operator grad is the space of constants and the asser-

tion of Theorem 2 is a consequence of the open mapping theorem.

Theorem 3. Let € € I. Then the operator div acts from
o
vo(-s ) onto Lz(—F. ).
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Proof. The subspace grad[L2(£ )/R] is closed in
[vo(-e )]“ and hence the adjoint operator div maps the
space V,(~ &) onto the anihilator of the subspace Ker[grad] =
= {const} which has the form {ueLz(-é ); ‘Lu ax = 0} .

Theorem 4. There exists a symmetric interval 17,
O€int I°, and a constant ¢g such that for every €I’ the
inverse of the operator div: B‘:’-—'Lg(a) satisfies the
estimate

n aiv™! |

£c. .
BAY(E); V(e) )  °

Proof. Since [|div || L0,

£V, (0); L3(0) ) )
there exists an element 3€V°(O) with l}'o £ 2 satisfying
{aiv ﬂo = L. If P denotes the projection of V,(€ ) onto B“_L ,
we have

b ¥2nle ¢ 1 ¥FN, € o ITL & 2¢,,

for every £€€1I1 and therefore

. 1 . - &/2
d 25— |div(a ?)‘ =
Boivll g oa; ncen 2257 ! .
= 5“:—7 [a=%/%aiv 3 + F.grea 0~ ¥2|¢ &
- -5
2 2_1c; [ ja~*2aiv g - |7.graa o /21l 2
1
3 ?‘é; [v- ]%l ( gd'zw.grad d|2 dx)zlé 2_::'7' [L- IGITE;}.
n

L ]
#e can choose now a symmetric interval I, O€ int I, in such
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. L .
a way that ﬂdlv| 2 = for all E€1I”.
2oL ; 1e ) %7

This completes the proof.

Theorem 5. Let €€ I, geL,(&) and Fevie) satisfy
2
the condition

>
S‘gdx=5\ N 4S .
a.n.:é

0
Then there exists T€ V(€ ) such that div ¥ = g in {1,
g = ¢ on s\,
R 0 = 4N . .

Proof. Since the set [T (QL)]" is dense in V(& ) (see

e.g. [1]) the trace of the vector function \? on 9l makes
. - _ .

sence and it holds Xan\?.\) 4as = _Yndlv \-p' dx. Therefore

we have g - div\?é Lg(a ) and with respect to Theorem 3
there exists WeVO(E) such that g - div? = div W. It is

sufficient to put F=%+ ‘3 .

Theorem 6. Let £e€1I, ?e[vo(—s )]* . Then the following
conditions are equivalent
1/ <}", 3) = 0 for every 3&,8_8 ,

2/ F = grad p for some p€L2( g).

Proof. Since the range of the operator grad acting from
L2(£ ) is a closed subspace of [Vo(—é‘.)]* , it follows from
the theory of linear operators that ? is an element of this
range if and only if ? belongs to the anihilator of the null-
space of the adjoint operator, i.e. ? belongs to the anihila-

tor of Ker[div] = E-E .
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Section 3.
Definition. A couple (G’,p)ev(e )x Lg(e) is said to

be the weak solution of the Stokes problem (1) with
2 .
felv(-e))* , geL, (&) ana Jevie), if

N du, 9z,
v 3> T:JT:de-g pdiv?dx=(},—z’>
53719, °%i 9% N
for a11 e ()],
agivid =g infL,
3=¢ on 0LL .,

00
In consequence of the density of [Co(-ﬂ.)]N in V (-¢)

we can consider the first equality for all 'z’evo(— g).
Since S g dx =_r \{7.3 dS there exists WeV (&)
A8 oa o
satisfying conditions divw = g inQ) , 1 =¢ on 9L\ and

H?lle £ cg(n,€) [‘g'e + Idiv.?lt] .

Putting ¥=9 -V we transform the problem (1) to the

homogenous one

(3) -vad+ grad p =R in 0,
div¥ =0 inQ,
¥=0 on a0,

-»
where h = ?4- v AW.

Further, we shall study the solvability of (3). Let us
define a bilinear form a: Vo(s )x Vo(-a )—9»R by the rela-
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tion

N dv. dz.
aT, D = v %1 g XL FEs dx . VeV, (&), Tev (-€).
3=
H

i i
From (3) we obtain the equation
() a(??) = (ﬁ,:) , for all 268-8 .

»
This equation has unique solution ¥ €Bg for every 36[\70(-8 )3
. > s . s
with IVIE § g 'hl[VO(-é )Ji if the form a(.,.) is elliptic

on Bg x B‘& in both its components, i.e.

(5) 3, oI D) 2 oy 1Pl , for a11 FeBg ,
12y &

(6) up a(? D) 2 o, §T)_ , for a11 ZeB_¢,
€ By

171, &1
where constants ou‘(e ),0u,(&€)> 0. (The proof of this “gene-
ralized Lax-Milgram” lemma can be found in 2], {6].) we shell
prove the inequalities (5),(6) for the bilinear form a(.,.)’
defined above. Since for ?eB,_ we have d’?e VO(-EI) and since

the operator div: BT —-ng_(-E. ), E€ 1°, is an isomorphism

1
then there exists an element 8 = div™ '[div d‘?_]eB;"e .

According to div ¥ = O and to the inequality (2) we obtain
3o & cg |aiv T = cg [aS aiv F + ¢ a7 Foaival_, 4

£ e lel- 0Ty . ae a*Y - Ben_ 4atF - I £ 05k, o (14 18D)

we can write
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N2
diz - s a(yvd‘y) '012")'15 l£| N

a(? EY
HatF - 3L, Wi, c,, 1+ 1e1)
N Dy 2
S . A
“37“& c”(l+l£I) [ ZEJ_—:.‘ lbxi‘

dy.
o 525 [ 38T 10 ox - oy 9 ] 2
’ o

"w

1 a2 X 2y;)2 %
T [ 7l -l 3 S at l-s-;;l) ax)®.
70, ey (1) ¢ 1,351 dp i

-

1
N - -—
(iz?f‘ S €72 1512 a0 - ¢, el T2 ] :
Kol

Ve, - lel (ovey/ie -0+ cy,)
€ ¢y 1+tel )

w

7

Hence the inequality (5) is fulfiled for every £ from a suit-
able interval JCINI’, 0€int J. Analogously, the inequality
(6) holds for E€ (-J).

Consequently, the equation (4) has a solution -‘7658 ,
for every 3€[Vo(-s )]*, with €€ JnN(-J) and
NV"" £ iy [IH[]EVO(_e ]* Let €€ JN(~J). Since

(R + v AV, 2y = (?1,?) -a®?) =0 for all QEB_E ,
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by Theorem 6 there exists pé€ L‘z’(s ) such that
grad p = I + O AV, i.e. the couple (¥,p) is the weak solu-
tion of (3), and according to Theorem 2 we obtain the esti-

mate

< b d
Iplg £ °14['h"[v°(-£ n* * 9] .
Therefore, the couple (U,p)e€ V(& )x Lg(e ), where U = T+ W,
is the weak solution of the problem (1) and it holds

(1) N8l + Iply £ 015[‘?|[V°(-€)]* + lgle + laiv ?“_] .

Remark. In the last inequality it is possible to write
the norm of the trace of ‘? on AL\ instead of the norm of
div \? .

Let us summarize the results of this Section in

Theorem 7. There exists an interval J, O€int J,
such that for every €€ J the Stokes problem (1) has the
unique weak solution (ﬁ,p)e[ﬂi’z(ﬂ;d,t )]Nx Lg(.ﬂ.;d,a ),
whenever }'.G ([w;’z(-ﬁ;d,-f, )JN) , BEL (N 34,8),
> 1,2 N :
ye W' c(a;a,e)]"  (with fng dx = San¥°3 as).

Moreover, the solution (3,p) satisfies the estimate (7).
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