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1. INTRODUCTION

Let us consider the nonlinear Dirichlet boundary value problem

N
(1.1) -y ;— ai(x,u, Vu) + ag(x,u, Vu) = f in Q

i=1 0x;

s

u=¢ on 0Q,

where 2 < RY is a bounded domain. Our aim is to give conditions for the solvability
of the problem (1.1) in weighted Sobolev spaces. It is motivated by the two following
reasons: First, the behaviour of the right-hand side f near the boundary 0Q may
cause non-solvability of the problem (1.1) in a classical (nonweighted) Sobolev
space, or the function ¢ may not possess the suitable trace on 9Q. In such cases it
is sometimes possible to overcome these difficulties by formulating the problem
(1.1) in terms of weighted Sobolev spaces (with weights of a positive power).

Second, from the behaviour of the right-hand side f near the boundary 8Q we
should Iike to deduce the analogous behaviour of the solution. The use of suitable
(negative power-type) weights could answer some of such regularity questions.

We shall consider the equations which are elliptic within the classical Sobolev
space theory. The case when the coefficients a; include singularities or are degenerate

and when the ellipticity can be regarded only with respect to the weighted Sobolev
spaces is discussed in [5].

The problem (1.1) for linear equations is investigated in [1], [2], [9], [10]. The
application of the generalized Lax-Milgram lemma (see e.g. [9] or [10], Ch. 6, § 3,
p. 294) is essential in these papers. Such a procedure, which would be relatively
simpler, cannot be applied to the nonlinear case and thus we transform the problem
(1.1) to the operator form usually used in the theory of pseudomonotone operators
(see [7], Ch. 2, §2). Although we cannot prove the pseudomonotonicity of the
operator obtained (on the other hand, we do not know of any counterexample),
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in Section 2 we use methods of pseudomonotone operators in order to find a sequence
convergent to a solution of the operator equation (21) S9me necessary concg')ts
concerning Sobolev power weight spaces are recalled in Section 3 and the solv§b111(1ty
of (1‘1) in these spaces is studied in Section 4. .L.emma 4.4 ap‘pears here tq be 11:'l e key
to the verification of the problematical condition (2.8). 'It is not essential that we
work with operators of the second order and with weights related to the whole
‘ nly. .
boI‘inr(izrl;Zizs t)(l) remark that our procedure gives the solva.bility of (1.1) for weighted
spaces with small powers only. On the other hand, evidently better results were
achieved merely for several special examples with linear operators (see e.g. [2], [10]).
The answer as to the uniqueness of the solution is not complete, either.

2. ABSTRACT CONSIDERATIONS

In this part we shall study the solvability of the operator equation

(2.1) Su=4g,

where S is a nonlinear operator acting from a real reflexive Banach space V into its

dual V* and g € V*. )
Let V.. m e N, be such closed subspaces of Vthat V,, = V, for m < n and the set

U V,, is dense in V. We define g,, € V* by {g,,, v> = {g, vy forallveV,, and by S,

mE/\/ o e
we denote the restriction of S onto the set V.

We shall suppose that the equations
(2.1), Splhy = g, mMeN,

have solutions u, €V, (i.e. {Su,,v)> =g, o> for all veV,) satisfying the con-

ditions

(2.2)

u, —»u weaklyinV,
Su,, is weakly convergent in V* (for m — +0) .

Theorem 2.1. Let S be an operator acting from a real reflexive Banac.h space V
into its dual V* and let g € V*. Further, let solutions u,, of the equations (2.1),,,

satisfy the conditions (2.2) and
(2.3)) lim inf <Su,,, u, — v = {Su,u — vy forall vel.

m—+ o

Then u is a solution of the equation (2.1).

Proof. Since Su,, = S,ln = Jm applying (2.2) we obtain. that Su, — ghweakly
in V*. Now we have (Su,,, > = {g, > = {9, 4> and with regard to the con
vergence {Su,,, uy — {g, u) we conclude

(2.4) {Sthpyy Uy, — thy = 0.
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This fact together with the condition (2.3) implies lim inf (Su,, u — v) >
= {Su,u — vy for all veV, otherwise {g,u — v) = {Su,u — vy for all ve V.
This inequality yields Su = g.

The verification of (2.3) for a particular operator S frequently requires elaborated
and rather complicated procedures which are analogous to an investigation of pseudo-
monotonicity. Therefore the following modified Leray-Lions conditions (2.5)—(2.8)
form important tools in applications (see e.g. [7], Ch. 2, § 2).

We shall suppose that the operator S has the form Sv = S(v, v) where the mapping
(w, v) > S(w, v) acting from V x Vinto V* satisfies the following conditions (here,
u,, are solutions of the equations (2.1),, with the property (2.2)):

(2.5) For an arbitrary w € Vthe mapping v — S(w, v) is a bounded hemicontinuous
operator from V into V* (i.e., for all u, he V and for an arbitrary sequence
(.}, t,— 0, we have S(w,u + t,h) — S(w,u) weakly in V*) satisfying
{S(w, w) — S(w, v), w — v> 2 0 whenever ve V.

(2.6) For an arbitrary ve Vthe mapping w — S(w, v) is a bounded hemicontinuous

from Vinto V*.
(2.7) If  lim <{S(u,, t,) — S(ty ), u, — u> =0 then there is a subsequence
m— + oo

{tm i = {tn}m satisfying S, v) > S(u,v) weakly in V* for all veV.

(2.8) If S(u,, v) > W weakly in V* then lim {S(u,, v), u,> = <Y, ud.

m—+ w0

Lemma 2.2. Let u, €V,, meN, be solutions of the equations (2.1),, with the
operator S satisfying the conditions (2.2) and (2.5)—(2.8). Then there exists a sub-
sequence {u,, }, for which

lim inf {Su,, , u,, ~ v> = {Su,u — vy whenever
k=4 o0

velV.

Proof. We remark that (2.2) implies {S(i,,, t,,), th, — > — O (see (2.4)). Since the
sequence {S(u,, u)},, is bounded in V* we can choose a subsequence (by a small
abuse of the notation we denote it in the same way) such that S(u,,, u) - ¢ weakly
in V* 1In virtue of (2.8) we obtain {(S(u,, u), u,> — {@, uy, thus <{S(u,, u),
u,, — wy — 0. This fact together with the condition (2.7) yields S(u,,, v) - S(u, v)
weakly in V* for allv e V ({u,, }, is a subsequence from (2.7)) and using (2.8) we have

(2.9)

In accordance with (2.5) we have {S(u,, t,,) — S(tty,, W), ,,, — w> = 0 for all

w e ¥V and substituting w = (1 - t) u + tv, t € {0, 1), in this inequality we obtain
1S (s U, )s b — VY Z = Sty Uy )s Uy, — 4+ {S(thyys W), Uy, — U +

-+ t(S(umk, W), u — U>’ .

{S(thy,> V), thy, — uy -0 forall veV.

252

Now according to (2.4), (2.9) and because (i, w) = S(u, w) weakly in V* we have

lim inf (S(tpys Um,)> b — V> Z lim inf {S(tty,, W), & — V> = S(u, w), u — vy

Again using (2.4) we can write
lim inf {S(Upmys Ymy)s tm, — V) 2 S, (1 = t)u + ), u — Uy.

Finally, the convergence  — 0, yields the requested inequality.

Theorem 2.2. Let the assumptions of Lemma 2.2 be fulfilled. Then uis a solution

of the equation (2.1).

i ma 2.2 satisfies the
Proof. The subsequence {u,,}, from the assertion of Lem

i i i 2.1
conditions (2.2) as well, thus it satisfies all the assumptions of Theorem

3. TECHNICAL PRELIMIN ARIES

- . N
Throughout this paper Q denotes a bounded domain in the Euchfiean N-sp'flce R
with a Lipschitz boundary ¢ For a manifold M < ¢Q we consider th.e distance
dy(x) = inf‘x — v[ of a point xe€ @ from M. The Sobolev power weight space
m\X) = )

eM

] i 5 i defined a.c. on
Lr(Q; i > 1 is defined to be the set of all functions u
B )l der 1 belong to the weighted Lebesgue

whose (distributional) derivatives D*u with la\ <
space L (Q; dyr &) endowed with the norm

1/p
o= j ol ) 85
2
i 1 = d
In order to avoid technical difficulties, we.shall deal with the case M = 02 an

p > 1 only. Then the space W1P(Q; dso, £) With the norm

hujpa = ( 5, ] 197 i) )"

ES!

(3.1)

I . (O .
is a reflexive Banach space. The set C»(Q) is dense in whr(Q; dm,sg fonrd;alr
e(=1,p - 1) and we can consider traces of functions of this space on the bou y
0Q (see e.g. [2])-

The weighted analogue of the Sobolev space We o)
War(Q; dog, €) = C2(Q) where the closure is taken with respect to the norm (3.1).
0 s ]

1LP(Q; = for
For the sake of brevity we shall denote d,o =d and Wy "(Q;d,e) = Ve

P(Q; hall con-
e<p—1 (If ¢ £ —1 then Wwio(Q; d, &) = Wo "(Q;d,e).) On V,, We S

sider the norm ,
(32) il = (L\ww\v &(x) dx) ,

#(Q) is defined by the formula
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which is equivalent to the norm (3.1) (see e.g. [10]; it also follows directly from the
next lemma).

Let us mention the often used Hardy inequality. If —o0 < a < b £ 4o0,p>1,
¢ <p—1and feLy(a, b);d,, ¢) then

(3 ﬂu—w*{[}wmﬂ%xéQ ? ffu—armwkw

8_p:T| a

(in the case ¢ = 0 see e.g. [10], for & + 0 the proof is analogous).
Further, we shall work with the set

(3.4) Q, = fx € Q; dist (x, 0Q) > 1}
n

1

which is a domain with a Lipschitz boundary for sufficiently large integer n.

Lemma 3.1. Let p> 1, e < p — 1. Then there exists a positive constant ¢ =
= ¢(Q, p) such that the inequality

(3.5) L]u(x)]vdw(x) dx < c( 4

}e—p-i—ll

),, f ) [Vu(x)]? d*(x) dx

holds for allue V, ,, where ¢ = Q or 0 = Q\ Q, withn = n, (no sufficiently large).
Moreover, if Q is convex then ¢ = 1.

Proof. The application of the partition of unity and the inequality (3.3) give the
proof in the case ¢ = Q (see e.g. [2], [10]). If 0 = @\ Q, we proceed analogously
using the fact that the inequality (3.3) is fulfilled for every interval (a, b) with the
same constant (p/!e - p+ 1])”.

We claim to demonstrate the inequality (3.5) in the case ¢ = Q when Q is convex.
For ¢ = Q\ Q, the proof is similar.

The first step. We shall consider (3.5) for 0 = G and ue Cy(int G) where G is
a closed convex polyhedron. We can decompose this polyhedron with sides s, ..., s,
into closed polyhedrons G, ..., G, such that x € G is an element of G; if and only
if dist (x, 8G) = dist (x, s;). Then G = {J G,, int G,nint G; = @ for i + j, G; con-

i=1
tains the side s;, i = 1, ..., n (see Fig. 1).

It is sufficient to establish the inequality (3.5) only for ® = G,. There is an ortho-
normal matrix A € RV, a vector Vo € RN and a local system of coordinates ¥ such
that y = Ax + y,, s; belongs to the hyperplane y, = 0 and G, belongs to the
halfspace y; = 0. If now y = (v, y’)e R x R¥"!, Ps, = WV eRr"1(0,y)es,},
R(y') = max {y,; y = (y,, y')€ Gy, y'€Ps;}, then using the Hardy inequality
(3.3) we can write
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Ry

I, = J lu(x‘)i” deP(x)dx = J‘ J lu()’p J")lp ¥y Pdy,dy =
; Ps;J O

Gy

~ P
o vanar s

0y
2\p/2 ,
) s

7Lli (y . y/)

é(k—ﬁiﬂYL(i

Since A is orthonormal, for e CF(Q) we have

2 2

N

2

i=1

ou

Cu i
oy;

i=1

0x;

in © and finally
s (o) |, e ames
- 4 14 G,

() in the space Vit is suf-
(). Since such a u has
aconvex polyhedron
n for all xedG™.

The second step. With regard to the density'of c? n
ficient to prove the inequality (3.5) for an ?rbltrary ue C§ 2
a compact support, for any sufficiently large mtegq n there exis ]s
G™ with the properties suppu = G™ < @, dist (x,0Q) < 1]
According to the first step

[ s e os 2 (1= ) e domr®
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and applying the Lebesgue Convergence Theorem for n — +oo we obtain the
inequality (3.5) with ¢ = Q.

Lemma 3.2. Let p > |, ¢ < p — 1. Then the mapping J d:fined by J(u) = d*u

is an isomorphism of V, , onto V, ._, whenever & > (¢ — p + 1)/p.

Proof. It is evident that the mapping J is injective and continuous because, in
view of Lemma 3.1,

g 53 [

(we have |6d/6xi' =hLi=1,..,N,ae in Q).

Analogously for any ve V,,_,, we have

cul? ~
ol s [ s o [ e as <l
0X; o 0

t

ov

N
[a7olf. = X
i=1 Jo

- pd““" dx + Nla]"f Iul”cls‘”’_”dx +
Ox; o

* f IU!P d*=r dx S0 ”U”Z-s—w
2
whenever ¢ — ap < p — 1. This completes the proof.

Let us now briefly deal with the Nemyckij operators in Sobolev power weight
spaces. Suppose that a function h: Q x R* - R (h = h(x, &, ..., &)) satisfies the
Carathéodory conditions (i.e., it is measurable on Q for all ¢ = (¢, ..., &)e R

and continuous in ¢ for a.a. x in Q). If the Nemyckij operator H: (uy, ..., u,) -
— h(x,uq, ..., u,) acts from ];[Lpi(Q; d,g) into L(Q;d,e), 1 Zp;, ¢ < 4w,
i=1

then it is continuous. Actually, because J: L(Q) > L(Q;d,¢), J(u) = d™ %,
Ji L, (2) = L,(2;d,g), J{u)=d *P,  i=1,..s, are isomorphisms, the
formula

(Wi oon W) = T h(x, T gy ooy J)

defines a continuous mapping from 1_[ L,(Q)into L(9Q)(sce e.g.[11]). Consequently,
i=1

the operator
H:(Jphy, o, Jys) > h(x, Jyy, ..., Jy)

acting on weighted spaces is continuous as well.
Finally, in Section 4 we use functions the existence of which is guaranteed by the
following lemma.

Lemma 3.3. Let {ak}k be an increasing sequence of integers with a sufficiently
large a,. Then there exist functions {ou}x satisfying the conditions:

@€ C*(RY),
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pe=1 in BYNQ 0. =0 in Q, (forQ, see(34)),

ar+1°

0<ox)=1 and quok(x)‘ = C3a—ak—a"fl— forall xeRY

k+1 ayg

with a positive constant ¢3 = c3(Q).

Proof. We can consider domains @, k = 1,2, ..., with Lipschitz boundaries

which have the following properties:

dist (x, Q,,) > l<i 1 ) for all xe 0Q,

3\ar g4y

Quch,",CQ

A1

and

dist(x,Q,’()>1 L 1) forall xedQ,
3

a, Gy

Let us define functions y, on B" by
_fo if xeq,
20l PRRTINP

and let

1 x — _
Ryku:xH-TVj‘g)(A y)u(y)d_\', k=1,2,...,
Yk Jo Yk

be mollifiers with a kernel

eeCi®), | aex=1,
R~

supp ¢ = {xe B"; |xl < 1}. If we substitute

1<l 1>
1
¢ 4\a, gy

then R, 7, € C*(R"), (R,x) (x) = 1 forall xe RN\ Q, ., and we have the estimate
YRR 3

Ryt @) < L rax |vo(2)| j )] 4y
ox; ¢ R By

i =1,...,N, where B, (x) = {y € R"; Ix — yl < 7). Hence we can deduce

IM forall xeQ,

k

IV(R,, 1) (x)] £ V() max Vo(2)|

k=1,2,.... Now, it is sufficient to put ¢, = R, %k
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4. WEAK SOLUTION OF THE NONLINEAR DIRICHLET
BOUNDARY VALUE PROBLEM

Let us consider the nonlinear Dirichlet boundary value problem (b.v.p.) (1.1).
(We remember that Q = B" is a bounded domain with a Lipschitz boundary.) We
assume that functionsa;: @ x R x RY = R, i = 0, 1,..., N, satisfy the Carathéodory
conditions as well as the following inequalities:

There exist numbers p > 1, 5€(0, p — 1), ee(~1, p — 1), positive functions
keL,(Q;d,¢), geL,(Q;d, ¢), where p’ > 1, (1/p) + (1/p’) = 1, and positive
constants oy, ..., oy such that

(4.1)
(4.2)

lai(x, n, &) < wo(jfP~t + |nr=t + K(x)), i=0,1,..,N,

2 ailx.n, &) &+ aolx 1, &) 2 ol — alnfr=? — ay g(x),

(4.3)

Joraa. xeQ allneR, &, eR", & + &

Let o e W?(Q; d, &) and fe [V, ~er-1,]*, where the latter symbol denotes the
dual space to W P(Q; d, —e(p — 1)). Analogously as in the case of classical Sobolev
spaces there exist distributions f,, ..., fy e L,{(; d, ¢) such that

N
ofi
J=fo— Z i .

i=1 0x;

il[a.-(x, &) — ax,n, &)] (& = &) > 0,

Let us reformulate the b.v.p. (1.1) in the equivalent form

(4.9)

N
-y 5—6— bi(x, v, Vv) + by(x, v, Vo)=f in @,
i=1 Xi

v=0 on 0Q,

where the functions b;,i = 0,1, ..., N, are defined for a.a. x € Q and for all ne R,
Ee RV by bx,n, &) = ai(x,n + o(x), & + Vo(x)). It is easy to see that b,: Q x
XRxRV>R, i=0, ..., N, satisfy the Carathéodory conditions and the ine-
qualities (4.1), (4.3) with suitable constants and that the relation (4.2) is valid with
0 = 0 for a sufficiently small constant ;. However, we shall require the following
weaker inequalities:

(4.5) There exist o,7 > 0 and a positive Junction he L,{(Q;d,¢) such that
b, 1 ] = Bo[d™1(5) |1 + ™7 e + d=1() ()]
o 1. €) = Bl + a0 ) et 4 b, T= 1,
Jfor aa xeQandallneR, ¢c RV,
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{ (47)

(4.6) There exist f, > 0, a positive function r € L,(Q; d, &) and for every o > 0
a number B,(w) > 0 such that

I

M=

bi(x, 1, &) &+ bo(x,n, &) n Z By|E]P — wd P(x) [n]? = By(w) r(x)

for a.a. xe Q and all ne R, & e R".

N

Y Ibilxom &) = bilx,n, &) (& — &) >0

i=1

foraa. xeQand allneR, &, & e R with & £ &

| Let us define an operator T: V, , = [V, _y,-1,]* by the formula

N
(To,wy =Y j b(x, v, Vv) Z—de + J bo(x, 0, Vo) wdx, weV, _,,—i,-
i=tJo i Po}

i

i By the use of the Hélder inequality, the inequalities (4.5) and Lemma 3.1 with

0 = Q and with —¢(p — 1) instead of ¢ it is not difficult to verify that

<TU, W> _.—<: C4 . (”U[ I;_Sl + |h g!;,:r',e) N ”W“P,—e(p—1)
for al veV,,, weV, _,,-1, With =1 <& < p — 1. Thus the operator T is
bounded and Tve [V, _,,-1,]* for every ve V,  (with an admissible &).

Definition. Let p > 1, ce(—1, p — 1). A function u eV, is said to be a weak
solution of the problem (4.4) if

{Tu,w> = {f,w) for every

As in Section 3, the operator

we Vp,—s(p—l) :

J:u— du

is an isomorphism of the space V, . onto V, _,,_,, for ee (—1, p — 1) and there-
fore its dual mapping J*: [V, _.,-1,]* = [V,.]* is an isomorphism as well.
The equation Tu = f now has at least one solution for f € [V, _,,-;,]* if and only
if the equation

(4.8)

has a solution. Since we cannot prove the pseudomonotonicity of the mapping
STV, - [Vp .J* we shall study its range in a similar way as in Section 2. In
what follows, let us put

J*Tu = J*f

S=J*T, g=J%

and let us denote
V), ={ueV,,; suppu = Q,} (for Q,sce (3.4)).
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The space V; is a classical (non-weighted) Sobolev space and J is an isomorphism

of ¥, onto itself. Further, the equations
(4.8),

where the solvability is investigated in spaces v, correspond to (2.1),,. From Lemmas
4.1 and 4.2 below we obtain that the equations (4.8), have solutions satisfying the
conditions (2.2). According to Theorem 2.1 and Lemma 2.2, the forthcoming
investigation of the solvability of (4.4) in Sobolev power weight spaces is reduced
to the verification of the conditions (2.5)—(2.8). To verify the validity of (2.5)—(2.7)s
it is more or less sufficient to follow Lions’ approach (see [7], Ch. 2, §2). On the
other hand, when verifying the condition (2.8) we shall essentially employ the
assertion of Lemma 4.4 which concerns the behaviour of the solutions u, of (4.8),,
near the boundary.

J*Tu = J*f

n,
VP

Lemma 4.1. There exists an interval I, 0 € int I, such that the operator S:V,.—

N [VM]"‘ is coercive for every € l.

Proof. By means of the Holder inequality and of (3.5) we obtain forueV,,

(Su, u)y = (Tu, Juy = i \ij
i=1

Q

bix, u, Vu) —fﬁ dédx +
ox;

=

+ aJ‘ bi(x, u, Vi) u od det dx] + J bo(x, u, Vu) ud® dx
o ox o

i

29, [ [oupaax o [ ¢ a0 [[rras-

g [ e | Q\u[vde-éﬂ a4 [ @ ] 2

> [, — 2wes — |¢| NBo(es” + cs max d'(x))] [fullz.e -

xef?

- Bz(w)j rd®dx — cé(a))j he'd® dx,
o 0

where ¢5 = c(p/la —p+ 1|)’J is the constant from (3.5). (We have used the ine-
quality hlu| @®' = 1/p(w?/?p'’® u| dP 7P + 1/p (0™ Yep~ YPhd Py =

= wlulf &7 + l/p'(w_1/“’*1)p1/("_1)h”'d5) with © > 0.) Since we can choose
® > 0 arbitrarily small the operator S will be coercive if

)

c(__——l’
la—p-i—l

N S
‘s—p+1|+

max dV(x)> >0.

xef2

(49) B, — |o| NBo (c”"

Obviously, this inequality is valid for the values & from a suitable interval I with
Qeintl.

Lemma 4.2. There exists an integer n; > 0 such that every equation (4.8), with
n = n, has a solution u,eV,.

Moreover, if €€l (for the interval I see Lemma 4.1), then for a suitable ¢c; > 0

(4.10) >

[, £ ¢; whenever nzn,.

Proof. There is an integer n, such that Q,, n = n,, is a nonempty domain with
a Lipschitz boundary. Since J is an isomorphism of the space V onto itself, the
function u, eV, is a solution of (4.8), if and only if {Tu,, w) = {f, w) for all
w e V,. However, viewing the operator T as a mapping acting from V' into its dual
space we can use the well known results concerning pseudomonotone coercive
operators. (See e.g. [7], Ch. 2, § 2, Theorem 2.8. The assumptions of this assertion

result from (4.5)—(4.7).) Thus the equation (4.8), has at leas one solution. Finally,
from

(St uyy = {Tity, Ju,> = Iy = sl flv, it

ol p.s

. and from Lemma 4.1 we derive the estimate (4.10).

With regard to the estimate (4.10), to the boundedness of the operator § and the
réﬂex1v1ty of V,, for € € I we can consider a subsequence {1t,,,}; of solutions of (4.8),,
(in what follows, we shall omit the index j) with the property '

(4.11)

For all w, v, zeV,, we put

{um — u weakly in 'V, .,
Su,, is weakly convergent in [V, ]*.

(S(w, ), z> = {Si(w, v), > + {Syw, 2>,

where
l 0
(S (w, ), 2> =3 f bi(x, w, Vuv) Z grdx,
i=1])go Jax;
N Al
(S,w, =y = j bo(x, w, Vw) zd®dx + & ) J bi(x, w, Vw) zd* ™! o dx
fo) i=1Jo axi

Further, we shall verify the validity of the conditions (2.5)—(2.8) for the operator
(w, v) > S(w, v). Applying Theorem 2.2 we get existence results for the b.v.p. (4.4)
and (1.1) which will be formulated later in Theorems 4.6 and 4.7.

Condition (2.5). Analogously as for the operator T'it is possible to show that the
operator v — S(w, v) is bounded. To verify its hemicontinuity we have to deduce

(S(w, vy + tv;), 2> = (S(w, v;),z) for t—-0
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with any w, vy, v,, z € V, .. But the properties of the Nemyckij operators (see SectionJ
3) yield

by(x, w, Vo, + tV;) = by(x, w, Vo;) for ¢—0

strongly in L, (Q;d,¢), i =1,...,N.
Further, the inequality

(S(w, w) — S(w, v), w — v) = (Sy(w,w), w —v) — (Sy(w,v),w—2v>=0

is a direct consequence of (4.7).

Condition (2.6). Using Lemma 3.1, the Holder inequality and (4.5) we hav

s

N A
Zj bi(x, w, Vw) zdt ! od dx| £
2

i=1 0x; le = p + 1] (w5t + [tloc.p.c) I205. -

Now, it is easy to see that the operator w — S(w, v) is bounded. Its hemicontinuity|
follows again from the properties of the Nemyckij operators.
d*(x). e

Lemma 4.3. If [, G,(x)dx — 0 then there exists a subsequence {u}; of {u.m}mJ
(in what follows, our notation will not distinguish between a sequence and its

Condition (2.7). Let us put

=

G,(x)

1

il

i

e ) V) = 5 o Vat) (52 09 = 22 (9)

subsequences) satisfying the condition
bi(x, uy, Vi) = by(x, u, Vu) weakly in L,(%; d, g), i=0,..,N.

Proof. With regard to (4.7) we have G,, =2 0. As u,, > u strongly in L(2; d, €)

(the imbedding V,, “-— L,(Q; d, €)iscompact) we can choose a subsequence {k}
of integers such that

(4.12) w(x) > u(x), Gyx)—>0 forall xeQ\Z, meas Z=0.

Let r, h be the functions from (4.5) and (4.6), #(x), h(x) < +co for a fixed x € @\ Z.
Let us put 7, = w(x), n = u(x), & = Vu(x). Further, let ¢* be a cluster point of the
sequence {&},, where & = Viy(x). We have

(4.13) & < +w
since
G(x) = d'(x) [iilbi(x, M &) & — NBo|E] (&7 +
£ A=) |pfr !+ b)) = NBo(lE] + &) - (€
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+d P OH() |7t + h(x) + bo(x i &) e =
— Bolmd (@71 (X) &~ + d77(x) Infr=t + d7H(x) - h(x)] =
> (%) B|&l” — o™t +1ed + 1)

and since Gy(x) — 0 by (4.12). In view of (4.12), (4.13) and of the continuity of the
functions b; in n and & we obtain

d&*(x) i[bi(x, n, &) = bilx,m, O (€7 = &) =0,

therefore, by (4.7), &* = & N .
Finally, the Carathéodory conditions yield
bi(x, w(x), Vul(x)) = bi(x, u(x), Vu(x)) a.e. in @ for i

Because the sequence {b{x, u, Vi)l i =0,..., N, are bounded in L, (®;d,¢)
and this space is reflexive we can write

by(x, ty, Vity) = bx,u, Vu) weakly in L,(Qd,e).

0,...,N.

(The weak limit is independent of the selection of a subsequence of {u}y.) The asser-
tion of the lemma is proved.

Now, in our case the condition (2.7) means that fo Gu(x)dx — 0 and we can
consider the subsequence {i}; from Lemma 4.3. The convergence u;, — U a.e. in Q
yields by(x, u(x), Vi(x)) - bx, u(x), Vo(x)) for a.a. x€ Q i=0,...,N, and in
virtue of the boundedness of the sequences {bilx, i Vo), i =0,...,N,in L,(Q;d, £)
we get

(4.14)
Further, if z e C3(Q) then

bi(x, uy, V) — bi(x, u, Vv) weakly in L,(Q;d,¢).

& oz ’

-~

0x;

gt L, (@ d, o] =

0x;

&z (2;d, —e(p — 1)) >

b

i=1,...,N,
and from Lemma 4.3 and from (4.14) we obtain
{S(uy, v), 2> — {S(u,v), zy forall ze Cy(Q).
However, the set C7(Q) is dense inV,, , and s0
S(uy, v) — S(u, v} weakly in [V,.]*-

Condition (2.8). Let u, satisfy the assumption of (2.8), i.e. S(ut,, 0) = ¥ weakly
in [V,,]*. The first condition of (4.11) implies the strong cc?nvergence u, > U
in L(@2d,e —p+7p) (for y > 0 see (4.5)) since the imbeddl_nfg Ve S Lo(25
d, & — p + yp') is compact (see e.g. [10]). By the growth conditions, for a fixed
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veV,, the mappings z > b,(x,z, Vo), i = 1,..., N, act from L(Q;d,& ~ p + yp’)
into Lp,(Q; d, ¢) and so they are continuous due the properties of Nemyckij operators.
Hence we obtain

bi(x, tty, VV) = by(x,u, Vo) strongly in L, (Q;d,¢), i=1..N,

and so
(4.15) (S1(tty, v), thyy — (S,(1, v), u» for an arbitrary veV,,

The most complicated part of the verification of (2.8) is to show that
(4.16) {Sytby, U, —

we shall postpone it for a while.
Now, the condition (4.15) yields

uy>—0;

(St )y = {S(t,,, v), uy — (S, (14, V), 0> > Y, ud> — {S;(u, v), uy
and according to (4.16) we deduce
{8ty thyy > (P, )y — {Sy(u, v), u).
Finally, we have
{S(thys V), thyy = <S4

which is the assertion of (2.8).
In the proof of (4.16) we cannot employ the imbedding of ¥, ,
since it is not compact. However, we can use the following

(u‘nw U)? um> + <Szum’ um> - <l//, u> >

into L(Q;d, e — p)

Lemma 4.4. Let c €1, where I is the interval from Lemma 4.1. Then there exist

a constant cio = ¢1o(f> 2 P, & Po, B1, 7, 1, ¥) and an increasing sequence {a;jy
of integers such that the inequalities

_[ Vi, ()P di(x)dx = 210, k21,
ON\Qay 41 k
hold for all solutions u,, of the equations (4.8),, with m 2 ny (for n, see Lemma 4.2).

Remark 4.1. This fact together with Lemma 3.1 implies

[ lmearareans S
2\Qay +1

k
where ¢, is a positive constant.
Proof. Since meas(@2\Q,) - 0 for n » + o0, h,f;€ L, (Q;d,¢), i =0,...,N

re L,(Q; d, ¢), there exists an increasing sequence {a;}, of integers satisfying the
conditions
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|

dvc<1

uMQ

f IRCECEETE 4 NS

a
R(f) < 1. Jkr)l > 2 for
1 un

Let us consider the functions l(/)k} from Lemma 3.3 corresponding to the sequence
’Uk}k We have g, d°€ V) and the equality {Tu,, ou,d> = S, @b, d°y yields

k=12,...,

(4.17) J[
|
l

ip]8

k

where

N

(4.18) Y

i=1

¢ ((Pku,,,d
e

i

j bf('\’v Upys Vu‘m) d + J‘ bO(X Uy Vu‘m) (pku‘md dx =

((pkumd ) d\

0x;

j‘f()(pl\umd dx + z J‘
Q Q

forall m =z n,, k=12,
We denote by L(P) the left-hand (right-hand) side of (4.18). Then L = I, + I, + I3
where

\/
11 = J‘ [z b, (X U s V“m) E m -+ bo(‘( Uy Vu ) m] (pkds dx +
E\2ap v LT ;

-~

od
e—1
b; (\{ Uy, Vum) u'm(r/)kd‘ Ox

dx,

o

O\Qay 41

i

g N Old,, :
12 = J [-zlbi(x, U, VU—,,,) Ea—x" -+ bo(-‘, s Vu‘m) um] (Pkd dx +
Qa1 LT

ax;

J _, 0d
+e) j bi(x, thy, Vid,) t,pd° -
= Qay +1

N 5
I, = le bi(x, Uy, Vi) thy 2""‘ de dx .

Xi

Using Lemma 3.1 for ¢ = 2\ Q, ., we obtain analogously as in the proof of Lemma
4.1
L = [By — 2005 — |g| NBo(cs” + ¢5 max d”(x))] Vi, |7 d° dx —
xel2 ON\Qay + 1
-~ By(w) j rd®dx — ce(w) h?'de dx,

ON\Qay 41 2N\Qag +1
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where the term in the square brackets is positive for & el. (I is the interval from
Lemma 4.1.) The inequality (for the properties of ¢, see Lemma 3.3)

N

0
Y J‘ v, 9Pk g gx
i=1 ) oa 4 \Quk axi

N
j Y |oi| @t dx
Qa+ \Qay 171

holds for all v;e Ly(Q:d,e — 1), i =1,...,N, and using (4.5) and the inequality

1 ad;
< ooy AL
Ay g — Ay

N
2c3j Y \uil drtdx
Qay + (\Qag !

[IA

=1

(4.19) ab§1‘a|"+l,lbl”', a,beR,
p p

we obtain

(d*

|u+v4gmj

Qay + 1 \Qay

Vigl? + d P + 47

(Evidently ¢, = 0 in Q, and ¢, = lin Q\Q, .,.) Via the Holder inequality we
deduce, for the right-hand side of (4.18),

N

1P| < j 1ol [ea] d* dx + j 1 [V] e dx +
O\Qay i o\fay

=1

RN VAT P PR s
i=1

=1 o\nay dy

N 1/p’ i/p
i (e ()
= 2N\Qay Q

Finally, from these inequalities and from (4.10), (4.17), (4.18) we have

J IVu.,,,l” dtdx £ c¢qq [J‘ rdt dx + j h?'d® dx +
N\Qag +1 O\Qay + 1 O\Qay

+ R(f) + j.

Qay + 1 \2ar

N
Ay 41 Z J~ |f1‘ l“’m‘ da-—1 dx <
Qay + \Qay;

vy — G i=1

(@l + @ rjul?) x|

and

i j |Vie,|? df dx < 014[3 +I (d|Vu,|” + >~ ?|u,,|?) dx] < co-
k=1 ON\Qay +1 2

Since @\ Q,, « 2\ Q, for i > ! and since the constant ¢, is independent of m,
the proof is complete.

The proof of (4.16). The inequalities (4.5), (4.19) together with Lemma 4.4 and
Remark 4.1 yield
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X (m) =

j. | bo(X, Uy Vitw) (U — u)d®dx +
ON\Qajer1

IA

N e—1 ad
+e)y J bi(x, Ypms Vir,,) (e — u)d a—x—dx
O\Qag +1

i=1 i

< [ Ivupaaxs [ Jurdracs
O\Qag + 1 O\Qag +1

+ |u|P @*77 dx + j' hr'd? dX] < x(k) »
O\Qag +1 2N\Qapc+ 1

where 7 is independent of m and (k) - 0 for k > + . Similarly, using the Holder
inequality, (4.5) and (4.10) we estimate

Y(m) =

j. bo(Xs thms Vid) (e — u)d®dx +
Qap +1

<

o Qag+ 1

1/p ; r 5 1/p
- Bip _ ylp gJEe—p
= C1s(j\ ‘“m - ““P d° pdx) = Crefi+ 1(J lum “‘l d dx
Qay +1 Q

with a number B > 0. In virtue of the compactness of the imbedding V. “—>
‘L, (Q2;d,e —p + B) we obtain the convergence Y,(m) — 0 form — + o0, where k
is arbitrary.

Finally, given a > 0 we find integers k > 0 and n, = n, such that

od
. v, " — demt —Zdx
bi(x, thm> ) (1 w) ™

(S st thy — W] S Xi(m) + Vilm)< 22 for all m = n,,

which completes the proof.

Let us now summarize the results concerning the solvability of the problems (1.1)
and (4.4) into the following theorems.

Theorem 4.6. Let functions b;: Q x R X RN > R, i=0,...,N, satisfy the
Carathéodory conditions and the inequalities (4.5)—(4.7). Then there exists an
interval I with 0 € int I such that if e€1, then the b.v.p. (4.4) has at least one weak
solution ue WyP(Q; d, &) whenever
S ofi

Ed

i=10x;

f=f0_ fo’fls""fNELp/(Q;d’g)‘

Theorem 4.7. Let functions a;:Q x R X RN >R, i=0,...,N, satisfy the
Carathéodory conditions and the inequalities (4.1)—(4.3). Then there exists an
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interval I with 0 € intI such that if e €1, then the b.v.p.(1.1) has at least one wea
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and ¢ € WhP(Q; d, ¢).

Remark 4.2. In the case of ¢ < 0 and of a degenerate right-hand side the weak
solution of the problem (1.1) or (4.4) belonging to the space W'?(Q;d,¢) or
Wé”’(Q; d, ¢), respectively, will be a weak solution of the same problem in the
corresponding classical Sobolev space as well. Therefore, if the b.v.p. (1.1) or (4.4)
has a unique weak solution in the classical sense (for example, if the operator
is strongly monotone) then this will be the unique solution in the corresponding
Sobolev power weight space.

An open problem, however, is to find reasonable conditions of the uniqueness
for ¢ > 0.

Remark 4.3. It would require rather lengthy and purela technical considerations
to get analogous results for Sobolev power weight spaces W'?(Q; dy, ¢), M < 0Q
being a manifold with dim M < N — 1, and the same is true for operators of higher
orders. One can make use of estimates similar to that in Lemma 4.4 to verify the
condition (2.8). Author’s address: 306 14 Plzefi, Nejedlého sady 14 (VSSE).

Remark 4.4. Finally, it remains to discuss the situation from Lemma 4.1 where
the interval I obtained in the course of the proof determines the choice of the
suitable weight.

Very often, the situation met in particular cases is such that I can be larger than the
interval which we get from (4.9). For example, a finer estimate guarantees the
solvability of the b.v.p.

N o)
(4.20) -Z-Qmeﬂ@ng in @,
i=1 0X; 0x

i i

u=0 on 09,

(with p > 1, fe [V, _.p-1)]*) in the Sobolev power weight space for

ce ) = -p+1 ’ p—1 ,
c’Pp — 1" Mrp 4+ 1
where ¢ is the constant from (3.5); note that ¢ = 1 if Q is convex.
However, there is still another interesting problem to be solved. Namely, the
problem (4.20) and the corresponding b.v.p. with non-zero boundary data can also

be formulated in spaces V, , for e e (—1, p — 1)\ J (because a suitable trace theorem
is available), and an existence theorem would be desirable.
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