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Bohumı́r Bastl
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7.1.1 Sylvester̊uv rezultant, dialytická methoda . . . . . . . . . . . . . . 104
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Kapitola 1

Abstraktńı algebraické struktury

1.1 Relace, ekvivalence, uspořádáńı

Pojmy týkaj́ıćı se teorie množin, jako je identické zobrazeńı, prosté zobrazeńı, vzájemně
jednoznačné zobrazeńı, inverzńı zobrazeńı atd. jsou dostatečně dobře známy, proto se jimi
v tomto textu nebudeme zabývat. Začneme pojmem binárńı relace.

Definice 1.1.1 Necht’ M je množina, M×M je množina všech uspořádaných dvojic (a, b),
kde a, b ∈ M . Necht’ R je libovolná podmnožina M ×M . Potom R definuje na množině
M binárńı relaci takto: jsou-li a, b ∈ M , ř́ıkáme, že prvek a je v relaci R s prvkem b a
zapisujeme aRb nebo (a, b) ∈ R.

Studium binárńıch relaćı na množině M se tedy nelǐśı od studia podmnožin množiny
M×M . Lze tedy mluvit o pr̊uniku a sjednoceńı binárńıch relaćı, komplementu R̄ k binárńı
relaci R (R̄ = (M × M) \ R), součinu binárńıch relaćı R a S (a(RS)b ⇐⇒ ∃c ∈ M :
aRc ∧ cSb) apod. Násobeńı binárńıch relaćı je asociativńı, tzn.

(RS)T = R(ST );

obecně ale neńı komutativńı.
Jednotková relace E : aEb ⇐⇒ a = b (jinak řečeno, relace E je dána množinou všech

dvojic (a, a), kde a ∈M). Zřejmě E−1 = E a pro libovolnou relaci R je

ER = RE = R.

Prázdná relace O : definována prázdnou podmnožinou množiny M × M . Zřejmě pro
libovolnou binárńı relaci R na M plat́ı

O ⊆ R a RO = OR = O.

Vlastnosti binárńıch relaćı:

1. reflexivita: aRa, ∀a ∈M (jinak řečeno E ⊆ R),
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2. tranzitivita: je-li aRb a bRc, potom aRc (jinak řečeno RR ⊆ R),

3. symetrie: je-li aRb, potom bRa (jinak řečeno R−1 = R),

4. antisymetrie: je-li aRb ∧ bRa, potom a = b (jinak řečeno R ∩ R−1 ⊆ E).

Má-li binárńı relace R libovolnou z těchto vlastnost́ı, má inverźı relace R−1 tutéž vlastnost.

Pojem binárńı relace je možné zobecnit. Vezměme n-tou mocninu Mn množiny M , tj.
množinu všech uspořádaných n-tic (a1, a2, . . . , an) prvk̊u množiny M . Každá podmnožina
R množiny Mn definuje n-árńı relaci (např. ternárńı relaci).

Definice 1.1.2 Binárńı relace, které jsou reflexivńı, tranzitivńı a symetrické se nazývaj́ı
ekvivalence (např. rovnost zlomk̊u, kongruence celých č́ısel podle určitého modulu). Ekvi-
valence obvykle znač́ıme ∼ nebo ≡.

Ekvivalence definované na množině M velmi úzce souvisej́ı s rozkladem množiny M na
disjunktńı tř́ıdy. Rozkladem množiny rozumı́me soustavu podmnožin M vybraných tak,
aby každý prvek M patřil do právě jedné z těchto podmnožin.

Věta 1.1.1 Každý rozklad Π množiny M definuje na M ekvivalenci.

D̊ukaz: (náznak) Jsou-li a, b ∈M a polož́ıme-li a ∼ b⇐⇒ a i b patř́ı do téže tř́ıdy rozkladu
Π, dostaneme na M binárńı relaci, která zřejmě vyhovuje všem požadavk̊um uvedeným v
definici ekvivalence. �

Věta 1.1.2 Každá ekvivalence R na množině M definuje rozklad této množiny.

D̊ukaz: Necht’ Ka (tř́ıda prvku a) je množina všech x ∈ M , pro které aRx. Z vlastnost́ı
ekvivalence vyplývá:

• reflexivita: a ∈ Ka, tj. množina tř́ıd Ka, a ∈M pokrývá celou množinu M .

• symetrie: jestliže b ∈ Ka, potom a ∈ Kb.

• tranzitivita: je-li b ∈ Ka ∧ c ∈ Kb, potom c ∈ Ka, tj. Kb ⊆ Ka. Odtud plyne, že je-li
b ∈ Ka, pak Kb = Ka, tj. tř́ıda je definována libovolným prvkem.

Jsou-li Ka a Kb dvě libovolné tř́ıdy s neprázdným pr̊unikem obsahuj́ıćım např. prvek c,
potom Ka = Kc i Kb = Kc, tj. Ka = Kb. �

=⇒ mezi ekvivalencemi na množině M a rozklady množiny M na disjunktńı tř́ıdy exis-
tuje tedy vzájemně jednoznačné zobrazeńı.

Definice 1.1.3 Množinu tř́ıd rozkladu, odpov́ıdaj́ıćı dané ekvivalenci R na množině M ,
budeme označovat M/R a nazývat faktorová množina množiny M podle ekvivalence R.
Zobrazeńı množiny M na faktorovou množinu M/R, v němž obrazem každého prvku a ∈M
je tř́ıda rozkladu, do ńı̌z prvek a patř́ı, nazveme přirozené zobrazeńı M na M/R.
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Definice 1.1.4 Binárńı relace, která je reflexivńı, tranzitivńı a antisymetrická, se nazývá
uspořádáńı. Obvykle se znač́ı ≤, je-li a, b ∈ M a a ≤ b, ř́ıkáme, že a je menš́ı nebo rovno
než b, a je před b.

Je-li a ≤ b a a 6= b, ṕı̌seme a < b a ř́ıkáme, že a je menš́ı než b. Binárńı relace < už
neńı reflexivńı.

Je-li na množině M definováno uspořádáńı, ř́ıkáme, že prvky a, b této množiny jsou
srovnatelné, je-li a ≤ b nebo b ≤ a. Libovolné dva prvky množiny M však nemusej́ı být
v̊ubec srovnatelné — hovoř́ıme pak o částečném uspořádáńı. Např. polož́ıme-li a ≤ b ⇔
a = b, dostáváme triviálńı uspořádáńı množiny M , v němž r̊uzné prvky nejsou srovnatelné.

Uspořádaná množina, jej́ıž každé dva prvky jsou srovnatelné, se nazývá úplně uspořádaná
množina nebo řetězec.

Př́ıklady úplně uspořádaných množin:

• množina přirozených č́ısel s přirozeným uspořádáńım,

• množina bod̊u př́ımky (množina reálných č́ısel) s přirozeným uspořádáńım.

Př́ıklady částečně uspořádaných množin:

• množina všech podmnožin nějaké množinyM s uspořádáńım definovaným množinovou
inkluźı ⊆,

• množina všech spojitých reálných funkćı definovaných na 〈0, 1〉, jestliže f ≤ g ⇔
∀x ∈ 〈0, 1〉 : f(x) ≤ g(x),

• množina všech přirozených č́ısel, jestliže a ≤ b⇔ a⊥b.

Věta 1.1.3 Každé uspořádáńı dané množiny M lze rozš́ıřit na úplné uspořádáńı této
množiny, tj. lze naj́ıt úplné uspořádáńı, v němž je dané uspořádáńı obsaženo (ve smyslu
inkluze binárńıch relaćı).

Definice 1.1.5 Necht’ f : M →M ′ je vzájemně jednoznačné zobrazeńı dvou uspořádaných
množin, tzn. pro a ∈ M , a′ ∈ M ′ je f(a) = a′. Jestlǐze z a ≤ b, a, b ∈ M VŽDY plyne
f(a) ≤ f(b) a obráceně, nazývá se f izomorfismem množin M a M ′ a o množinách M a
M ′ ř́ıkáme, že jsou to izomorfńı uspořádané množiny.

V př́ıpadech, kdy studujeme jen uspořádáńı a povaha prvk̊u, z nichž se obě zkoumané
množiny skládaj́ı, nás nezaj́ımá, lze zřejmě izomorfńı množiny ztotožnit.

Definice 1.1.6 Prvek a uspořádané množinyM nazveme minimálńım prvkem této množiny,
neńı-li v M ani jeden prvek x, pro který x < a.

Množina M může zřejmě obsahovat mnoho r̊uzných minimálńıch prvk̊u, nemuśı však
obsahovat ani jeden takový prvek. Např. množina všech podmnožin množiny M obsahuje
jediný minimálńı prvek — prázdnou množinu. V množině všech neprázdných podmnožin
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množiny M jsou minimálńımi prvky všechny podmnožiny obsahuj́ıćı jediný prvek. Je-li M
nekonečná množina, nemá množina všech nekonečných podmnožin žádný minimálńı prvek.

Pojem minimálńıho prvku lze využ́ıt k zavedeńı speciálńı tř́ıdy uspořádaných množin.
Tato tř́ıda je bohatš́ı než tř́ıda konečných uspořádaných množin a plat́ı v ńı následuj́ıćı
věta:

Věta 1.1.4 Následuj́ıćı tři podmı́nky jsou ekvivalentńı:

1. Minimálńı podmı́nka: Každá neprázdná podmnožina N uspořádané množiny M ob-
sahuje alespoň jeden (v N) minimálńı prvek.

2. Podmı́nka konečnosti klesaj́ıćıch řetězc̊u: Každý klesaj́ıćı řetězec prvk̊u uspořádané
množiny M

a1 > a2 > . . . > an > . . .

má jen konečný počet prvk̊u. Jinak řečeno, pro každý nerostoućı řetězec

a1 ≥ a2 ≥ . . . ≥ an ≥ . . .

existuje index n tak, že
an = an+1 = . . .

3. Indukčńı podmı́nka: Všechny prvky uspořádané množiny M maj́ı vlastnost ε, maj́ı-
li tuto vlastnost všechny minimálńı prvky množiny M (pokud existuj́ı) a je-li možno
dokázat, že prvek a má vlastnost ε z předpokladu, že tuto vlastnost maj́ı všechny prvky
menš́ı než a.

D̊ukaz: Minimálńı podmı́nka ⇒ indukčńı podmı́nka ⇒ podmı́nka konečnosti klesaj́ıćıch
řetězc̊u ⇒ minimálńı podmı́nka. Podrobněji viz [14], str. 20-21. �

Definice 1.1.7 Úplně uspořádaná množina, v ńı̌z plat́ı minimálńı podmı́nka a ovšem též
obě ekvivalentńı podmı́nky, se nazývá dobře uspořádaná množina.

Př́ıkladem dobře uspořádané množiny je množina všech přirozených č́ısel s přirozeným
uspořádáńım.

Každá podmnožina dobře uspořádané množiny je dobře uspořádanou množinou. Z de-
finice dobře uspořádané množiny plyne, že obsahuje jediný minimálńı prvek.

Ke každému prvku a dobře uspořádané množiny M existuje následovńık, tj. prvek, který
za a bezprostředně následuje. K prvku a však nemuśı existovat bezprostředně předcházej́ıćı
prvek — prvek a pak nazveme limitńım prvkem.

Věta 1.1.5 V uspořádané množině plat́ı minimálńı podmı́nka právě tehdy, když všechny
řetězce (tj. úplně uspořádané množiny) jsou dobře uspořádány.
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D̊ukaz: Plat́ı-li v uspořádané množiněM minimálńı podmı́nka, plat́ı i v každé jej́ı podmnožině
a speciálně v každém řetězci. Obrácené tvrzeńı plyne z toho, že při formulaci podmı́nky
konečnosti klesaj́ıćıch řetězc̊u, která je s minimálńı podmı́nkou ekvivalentńı, se mluv́ı jen
o řetězćıch množiny M . �

V uspořádané množině M lze přej́ıt k inverzńımu uspořádáńı. Minimálńı prvky tohoto
inverzńıho uspořádáńı jsou potom maximálńımi prvky množiny M v p̊uvodńım uspořádáńı.
Podobně klesaj́ıćı řetězec v inverzńım uspořádáńı nazýváme v p̊uvodńım uspořádáńı ros-
toućı řetězec. Obecně lze takto z každého pojmu (nebo tvrzeńı) souvisej́ıćıho s uspořádáńım
odvodit duálńı pojem (tvrzeńı).

Jestliže v uspořádané množině M plat́ı minimálńı podmı́nka a vezmeme-li v M inverzńı
uspořádáńı, dostaneme uspořádanou množinu, v ńıž plat́ı maximálńı podmı́nka. Pro tyto
množiny z̊ustanou správná všechna tvrzeńı dokázaná o množinách, v nichž plat́ı minimálńı
podmı́nka, zaměńıme-li ovšem relaci ≤ za ≥ a obráceně.

1.2 Grupoid, pologrupa, grupa

Základem všech pojmů, které studujeme v r̊uzných partíıch algebry, je pojem algebraické
operace, přičemž nejprve se omeźıme na binárńı operace — v neǰsirš́ım slova smyslu je
to zákon, který některým uspořádaným dvojićım prvk̊u dané množiny M přǐrazuje jeden
nebo několik prvk̊u množiny M . Nazveme-li tuto operaci násobeńı a užijeme-li obvyklý
multiplikativńı zápis, vyjadřuje rovnost

ab = c,

že pro dvojici prvk̊u a, b ∈ M je součin definován a že jednou z hodnot tohoto součinu
je c. Pojem binárńı algebraické operace je, v tomto širokém slova smyslu, ekvivalentńı s
pojmem ternárńı relace na množině M .

Binárńı algebraickou operaci běžně chápeme v užš́ım slova smyslu — násobeńı muśı být
definováno pro každou uspořádanou dvojici prvk̊u z M a muśı být jednoznačné.

Definice 1.2.1 Každá množina, v ńı̌z je dána binárńı algebraická operace uvedeného typu,
se nazývá grupoid.

Tento pojem je stále př́ılǐs široký. Užš́ı je již pojem pologrupy, který již má r̊uzné
aplikace.

Definice 1.2.2 Grupoid, v němž plat́ı asociativńı zákon, se nazývá pologrupa.

V pologrupě tedy pro libovolné prvky a, b, c plat́ı

(ab)c = a(bc).

Odtud plyne, že součin abc tř́ı libovolných prvk̊u pologrupy je určen jednoznačně. Z toho
ihned plyne, že pro všechna přirozená n je součin a1·a2 · · ·an libovolných n prvk̊u pologrupy
(v uvedeném pořad́ı) také jednoznačně určeným prvkem pologrupy.
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Ještě užš́ı je jeden z nejd̊uležitěǰśıch algebraických pojmů — grupa.

Definice 1.2.3 Pologrupa, v ńı̌z existuj́ı inverzńı operace, tj. v ńı̌z pro libovolné prvky a, b
má každá z rovnic

ax = b, ya = b (1.1)

jednoznačné řešeńı, se nazývá grupa.

Protože rovnice (1.1) maj́ı jednoznačné řešeńı, lze v grupě krátit zleva nebo zprava. Je-li

ab1 = ab2 nebo b1a = b2a,

je b1 = b2.
Řešeńı x a y rovnic (1.1) nemuśı být v libovolné grupě identická. O uvažované operaci

totiž nepředpokládáme, že je komutativńı, takže součin může záviset na pořad́ı faktor̊u.

Definice 1.2.4 Grupa (pologrupa, grupoid), pro jej́ı̌z každé dva prvky a, b plat́ı komutativńı
zákon

ab = ba,

se nazývá Abelova nebo komutativńı.

Věta 1.2.1 V každé grupě G existuje právě jeden prvek e tak, že

ae = ea = a

pro všechna a ∈ G. Prvek e se nazývá jednotkový prvek grupy G a obvykle se označuje
symbolem 1.

D̊ukaz: Z definice grupy plyne, že pro každý prvek a ∈ G existuje v G právě jeden prvek
e′a tak, že ae′a = a. Je-li b libovolný jiný prvek grupy G a y řešeńı rovnice ya = b, plyne z
asociativńıho zákona

be′a = (ya)e′a = y(ae′a) = ya = b,

takže e′b = e′a. Prvek e′a tedy nezáviśı na volbě prvku a a můžeme ho označit e′. Je tud́ıž

ae′ = a pro všechna a ∈ G. (1.2)

Analogicky dokážeme existenci a jednoznačnost takového prvku e′′, že

e′′a = a pro všechna a ∈ G. (1.3)

Aplikujeme-li identity (1.2) a (1.3) na součin e′′e′, dostaneme e′′e′ = e′′ i e′′e′ = e′, z čehož
plyne e′′ = e′. T́ım je věta dokázána. �

Lemma 1.2.2 Ke každému prvku a grupy G existuje právě jeden prvek a−1 tak, že

aa−1 = a−1a = 1.

Prvek a−1 se nazývá inverzńı prvek k prvku a.

8



D̊ukaz: Z definice grupy plyne, že existuj́ı jednoznačně definované prvky a′ a a′′ tak, že

aa′ = 1, a′′a = 1.

Užit́ım asociativńıho zákona dostaneme

a′′aa′ = a′′(aa′) = a′′ · 1 = a′′,
a′′aa′ = (a′′a)a′ = 1 · a′ = a′,

takže a′′ = a′. �

Ověřeńı, že daná pologrupa je grupou, často usnadňuje následuj́ıćı věta.

Věta 1.2.3 Pologrupa G je grupou právě tehdy, když v G existuje alespoň jeden pravý
jednotkový prvek e tak, že

ae = a pro všechna a ∈ G,

přičemž e lze vybrat tak, že ke každému a ∈ G existuje alespoň jeden pravý inverzńı prvek
a−1, pro který

aa−1 = e.

D̊ukaz: Viz [14], str. 28-29. �

Poznámka 1.2.4 Někdy, zvláště při studiu Abelových grup, už́ıváme aditivńı zápis mı́sto
multiplikativńıho. Grupové operaci pak ř́ıkáme sč́ıtáńı a součet zapisujeme a + b, jednot-
kovému prvku grupy ř́ıkáme nulový prvek a označujeme jej symbolem 0. Mı́sto o inverzńım
prvku mluv́ıme o opačném prvku a znač́ıme jej −a. Inverzńı operace se v aditivńım zápise
Abelových grup nazývá odeč́ıtáńı.

Př́ıklady:

1. celá č́ısla s operaćı sč́ıtáńı — Abelova grupa,

2. racionálńı č́ısla s operaćı sč́ıtáńı — Abelova grupa,

3. reálná (komplexńı) č́ısla s operaćı sč́ıtáńı — Abelova grupa,

4. přirozená č́ısla s operaćı sč́ıtáńı — pologrupa (nelze odeč́ıtat),

5. multiplikativńı grupy č́ısel — nutno vynechat 0, protoze nulou nelze dělit, např.
nenulová racionálńı č́ısla, kladná racionálńı č́ısla — Abelova grupa,

6. množina všech celých č́ısel s operaćı násobeńı, množina všech celých nezáporných
č́ısel s operaćı násobeńı, přirozená č́ısla s operaćı násobeńı — pologrupy.

Př́ıklady nekomutativńıch grup a pologrup:

1. regulárńı čtvercové matice n-tého stupně (n ≥ 2) s reálnými prvky vzhledem k operaci
násobeńı matic — nekomutativńı grupa.
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1.3 Okruh, těleso

Druhým nejd̊uležitěǰśım algebraickým pojmem je, vedle pojmu grupy, okruh.

Definice 1.3.1 Okruhem nazýváme množinu R, v ńı̌z jsou definovány dvě binárńı alge-
braické operace — sč́ıtáńı a násobeńı, přičemž vzhledem ke sč́ıtáńı je R Abelovou grupou
— je to tzv. aditivńı grupa okruhu R, a vzhledem k násobeńı je R grupoidem — je to tzv.
multiplikativńı grupoid okruhu R. Násobeńı souviśı se sč́ıtáńım distributivńımi zákony

a(b+ c) = ab+ ac, (b+ c)a = ba+ ca.

Je-li násobeńı v okruhu R asociativńı, hovoř́ıme o asociativńım okruhu a jeho multipli-
kativńı pologrupě.

Je-li násobeńı v okruhu R asociativńı i komutativńı, ř́ıkáme, že okruh je asociativńı a
komutativńı.

V každém okruhu plat́ı distributivńı zákony i pro rozd́ıl, tj. plat́ı

a(b− c) = ab− ac, (b− c)a = ba− ca.

Př́ıklady okruh̊u:

1. celá č́ısla — asociativńı a komutativńı okruh,

2. čtvercové matice n-tého stupně (n ≥ 2) s reálnými prvky — asociativńı okruh, ne
komutativńı,

3. vektory v E3 s operacemi skládáńı vektor̊u a vektorový součin — neasociativńı a
nekomutativńı okruh.

Definice 1.3.2 Nenulové prvky a, b, jejichž součin je roven nulovému prvku, tzn.

ab = 0,

se nazývaj́ı dělitelé nuly.

Některé okruhy obsahuj́ı dělitele nuly, jsou to např. okruhy matic. Je-li R libovolný
okruh, lze obecně studovat všechny možné čtvercové matice n-tého stupně s prvky z okruhu
R. Definujeme-li obvyklým zp̊usobem sč́ıtáńı a násobeńı matic, dostaneme okruh, který je
asociativńı, pokud je asociativńı okruh R. Nulovým prvkem je nulová matice sestavená z
nulových prvk̊u. Tento okruh se nazývá úplný okruh matic n-tého stupně nad okruhem R
a označujeme ho Rn.

Lemma 1.3.1 Je-li n ≥ 2 a okruh R neobsahuje pouze nulový prvek, existuj́ı v úplném
okruhu matic Rn dělitelé nuly.
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D̊ukaz: Je-li totiž a nenulový prvek z okruhu R, nerovná se žádná z matic







a 0 . . . 0
0 0 . . . 0
...

. . .
...

0 0 . . . 0







, . . . ,








0 0 . . . 0
0 0 . . . 0
...

. . .
...

0 0 . . . a








nulové matici, ale jejich součin je nulovou matićı. �

Daľśım př́ıkladem okruh̊u obsahuj́ıćıch dělitele nuly jsou úplně okruhy funkćı. Mějme
libovolnou množinu M a libovolný okruh R. Utvořme množinu všech možných funkćı na
M , jejichž hodnoty jsou v R, tj. všech možných zobrazeńı f množiny M do okruhu R.
Definujeme-li násobeńı a sč́ıtáńı funkćı jako obvykle vzorci

(f + g)(x) = f(x) + g(x),
(fg)(x) = f(x)g(x),

stane se tato množina funkćı okruhem, který je asociativńı nebo komutativńı, pokud je
výchoźı okruh R asociativńı nebo komutativńı. Tento okruh se nazývá úplný okruh funkćı
nad M s hodnotami v okruhu R. Je-li M množina bod̊u č́ıselné osy a R množina všech
reálných č́ısel, je náš okruh obyčejným okruhem všech reálných funkćı reálné proměnné.

Lemma 1.3.2 Každý úplný okruh funkćı s hodnotami v okruhu R nad množinou M ob-
sahuj́ıćı alespoň dva prvky, má dělitele nuly, jestlǐze R obsahuje alespoň jeden nenulový
prvek.

D̊ukaz: Nulovým prvkem je v tomto okruhu nulová funkce, identicky rovná nulová nulovému
prvku ve všech bodech M . Rozlož́ıme-li množinu M na dvě neprázdné disjunktńı množiny
A a B, existuj́ı zřejmě dvě takové nenulové funkce f a g, že f je rovna nulové funkci na A
a g na B. Součin fg je potom zřejmě nulovou funkćı. �

Definice 1.3.3 Asociativńı a komutativńı okruh, který neobsahuje dělitele nuly, se nazývá
obor integrity.

Mezi obory integrity patř́ı speciálně všechny č́ıselné okruhy.
Je-li R libovolný asociativńı a komutativńı okruh, je možné studovat všechny polynomy

a0 + a1x+ a2x
2 + · · ·anx

n, n ≥ 0

proměnné x s koeficienty a0, a1, . . . , an ∈ R, an 6= 0, n je stupeň polynomu. Definujeme-li
sč́ıtáńı a násobeńı standardně, dostaneme okruh, který se nazývá okruh polynom̊u R[x].
Tento okruh je asociativńı a komutativńı.

Analogicky definujeme okruh R[x1, . . . , xn] libovolného konečného počtu proměnných.
Je to vlastně okruh polynomů proměnné xn nad okruhem R[x1, . . . , xn−1].

Lze mluvit i o okruhu polynomů libovolné nekonečné množiny proměnných nad R,
předpokládáme-li, že každý konkrétńı polynom záviśı jen na konečně mnoha z těchto
proměnných.
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Věta 1.3.3 Je-li R oborem integrity, je každý okruh polynom̊u nad R také oborem integrity.

D̊ukaz: Tvrzeńı plyne z toho, že jsou-li f a g nenulové polynomy nad okruhem R, který
nemá dělitele nuly, je stupeň součinu fg roven součtu stupň̊u obou faktor̊u, takže součin
nemůže být nulovým polynomem. K okruh̊um polynomů libovolného konečného počtu
proměnných přejdeme jednoduše indukćı a u okruh̊u polynomů s nekonečnou množinou
proměnných stač́ı uvážit, že každý polynom je polynomem jen v konečně mnoho proměnných.
�

Definice 1.3.4 Okruh, jehož nenulové prvky tvoř́ı grupu vzhledem k násobeńı, je nutně
asociativńı a nazývá se těleso.

Grupa jeho nenulových prvk̊u je multiplikativńı grupou tohoto tělesa.
Těleso s komutativńım násobeńım se nazývá komutativńı těleso, těleso s nekomuta-

tivńım násobeńım se nazývá nekomutativńı těleso.

Př́ıklady těles: těleso racionálńıch č́ısel, reálných č́ısel, komplexńıch č́ısel.

Z definice tělesa př́ımo plyne, že těleso neobsahuje dělitele nuly. V každém tělese je
jednotkový prvek, nebot’ jednotkový prvek multiplikativńı grupy je jednotkovým prvkem
tělesa.

Konečně v každém tělese má každá z rovnic

ax = b, ya = b, kde a 6= 0

právě jedno řešeńı.

1.4 Ideály v okruhu

Definice 1.4.1 Neprázdná podmnožina I okruhu R je ideálem, jestlǐze:

1. ∀a, b ∈ I plat́ı, že a− b ∈ I,

2. je-li a ∈ I a r ∈ R, potom ar ∈ I.

Ideály každého okruhu jsou: sám okruh R a nulový ideál O, obsahuj́ıćı jen nulový prvek.
Okruh, který nemá jiné ideály, se nazývá jednoduchý. Př́ıklady jednoduchých okruh̊u jsou:

1. každé těleso,

2. okruh s děleńım (může obsahovat dělitele nuly),

3. úplný okruh matic Rn libovolného stupně n nad každým okruhem s děleńım R.

Nevyžadujeme-li v definici ideálu, aby pro každé a ∈ I a každé r ∈ R patřily do I oba
součinu ar i ra, ale požadujeme-li jen, aby do I patřil bud’ součin ar nebo ra, dojdeme k
pojmu jednostranného ideálu, konkrétně k pravému ideálu, když ra ∈ I, a k levému ideálu,
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když ar ∈ I. V komutativńıch okruźıch je ale každý jednostranný ideál ideálem (nebo, jak
se také někdy ř́ıká, oboustranným ideálem).

Př́ıklady ideál̊u:

1. násobky celého č́ısla: 〈2〉, 〈7〉, 〈9〉,

2. násobky daného polynomu: 〈x+ 1〉.

Definice 1.4.2 Necht’ R je obor integrity s jednotkovým prvkem. Je-li a ∈ R, je množina

〈a〉 = {ar; r ∈ R},

tj. množina prvk̊u tvaru ar, r ∈ R, ideálem okruhu R a nazývá se hlavńı ideál generovaný
prvkem a.

Definice 1.4.3 Jsou-li všechny ideály okruhu R hlavńı, tj. každý z nich je generovaný
některým prvkem, ř́ıkáme, že R je okruhem hlavńıch ideál̊u.

Definice 1.4.4 Řekneme, že obor integrity R s jednotkovým prvkem je Eukleidovým okru-
hem, lze-li každému nenulovému prvku a ∈ R přiřadit nezáporné celé č́ıslo n(a) a kromě
toho k libovolným prvk̊um a, b ∈ R, b 6= 0 lze v okruhu R naj́ıt prvky q a r tak, že

a = bq + r,

přičemž bud’ r = 0, nebo n(r) < n(b).

Př́ıkladem Eukleidova okruhu je např. R[x],Z.

Věta 1.4.1 Každý Eukleid̊uv okruh je okruhem hlavńıch ideál̊u.

D̊ukaz: Zvolme v R ideál I. Je-li I = O, je I = 〈0〉. Je-li I 6= O, označme a0 jeden z těch
nenulových prvk̊u z I, jemuž je přǐrazeno n(a0) tak, že n(a0) ≤ n(a) pro všechny nenulové
prvky z I. Podle předpokladu lze pro každé a ∈ I naj́ıt v R takové prvky q a r, že

a = a0q + r.

Je-li r 6= 0, je n(r) < n(a0), ale
r = a− a0q ∈ I,

což je ve sporu s t́ım, jak jsme vybrali prvek a0. Proto je r = 0, takže a = a0q a I je hlavńı
ideál generovaný prvkem a0. �

Eukleidovým okruhem je tedy okruh celých č́ısel Z, úlohu n(a) v něm hraje absolutńı
hodnota |a| č́ısla a, a také okruh polynomů P [x] nad tělesem P , ve kterém hraje úlohu n(a)
stupeň polynomu. Okruhy Z a P [x] jsou tedy okruhy hlavńıch ideál̊u. V každém Eukleidově
okruhu je možné naj́ıt největš́ıho společného dělitele dvou prvk̊u známým Eukleidovým
algoritmem.
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Definice 1.4.5 Ideál I je konečně generovaný, jestlǐze existuj́ı a1, . . . , at ∈ I takové, že

I = 〈a1, . . . , at〉 =

{
t∑

i=1

hiai : h1, . . . , ht ∈ R
}

.

Definice 1.4.6 Součinem IJ ideál̊u I, J ⊆ R nazveme ideál generovaný všemi možnými
součiny tvaru ab, kde a ∈ I a b ∈ J .

Poznamenejme, že samotné součiny netvoř́ı výsledný ideál, jsou pouze generátory výsledného
ideálu, který tvoř́ı součin těchto ideál̊u.

Lemma 1.4.2 Necht’ I = 〈a1, . . . , at〉 a J = 〈b1, . . . , bs〉. Potom IJ je generováno množinou
všech součin̊u generátor̊u ideál̊u I a J , tj.

IJ = 〈figj : 1 ≥ i ≥ t, 1 ≥ j ≥ s〉.

D̊ukaz: Zřejmé. �

Jednou z možných aplikaćı součinu ideál̊u je, pokud se omeźıme na polynomiálńı ideály,
úzká souvislost mezi součinem ideál̊u a sjednoceńım afinńıch variet (pojem afinńı variety,
viz část věnovaná afinńım varietám).

Definice 1.4.7 Ideál L je prvoideálem právě tehdy, když pro libovolné ideály I, J z inkluze
IJ ⊆ L plyne bud’ I ⊆ L nebo J ⊆ L. Jinak řečeno, jestlǐze a·b ∈ L, potom a ∈ L ∨ b ∈ L.

Pro př́ıklad můžeme opět uvést vztah k afinńım varietám. Prvoideál v tomto př́ıpadě
odpov́ıdá ireducibilńı varietě V (vyjádř́ıme-li ireducibilńı varietu V ve tvaruV = V1 ∪ V2,
kde V1 a V2 jsou opět afinńı variety, potom V1 = V nebo V2 = V ). Podobným př́ıkladem pr-
voideál̊u, uvažujeme-li tentokrát ideály nad č́ıselnými okruhy, mohou být ideály generované
prvoč́ısly.

Definice 1.4.8 Maximálńım ideálem I je vlastńı ideál v okruhu R (tj. ideál r̊uzný od R),
který přidáńım libovolného prvku z R \ I přejde na celý okruh R.

Maximálńı ideál I je tedy největš́ım možným vlastńım ideálem v okruhu R. Př́ıkladem
maximálńıho ideálu, polož́ıme-li R = k[x1, . . . , xn] a k je těleso, je ideál

I = 〈x1 − a1, . . . , xn − an〉,

kde a1, . . . , an ∈ k.

Věta 1.4.3 Každý maximálńı ideál je prvoideálem.

D̊ukaz: Předpokládejme, že I je vlastńı ideál, který neńı prvoideálem a že ab ∈ I, přičemž
a /∈ I a b /∈ I. Uvažujme ideál 〈a〉 + I. Potom I $ 〈a〉 + I, protože a /∈ I. Nav́ıc, jestliže
by platilo, že 〈a〉 + I = R, potom 1 = ca + h pro nějaké c ∈ R a h ∈ I. Vynásobeńım
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b dostaneme b = cfb + hb ∈ I, což je ve sporu s volbou b. Tedy, I + 〈a〉 je vlastńı ideál
obsahuj́ıćı I a tedy I neńı maximálńı. �

V okruhu hlavńıch ideál̊u jsou prvoideály právě ty ideály, které maj́ı tvar 〈p〉, kde p je
prvočinitel.

V daľśım stručně zmı́ńıme rozkladové věty pro ideály, které popisuj́ı strukturu ideál̊u.

Definice 1.4.9 Primárńı ideál je takový ideál, ve kterém plat́ı:

a · b ∈ I ∧ a /∈ I ⇒ ∃% : b% ∈ I.

Je zřejmé, že prvoideály jsou také primárńımi ideály, naopak to ale samozřejmě neplat́ı.

Definice 1.4.10 Prvoideál asociovaný k primárńımu ideálu je definován vztahem

Ī = {a ∈ R : ∃% : a% ∈ I}.

Definice 1.4.11 Dělitel ideálu A je
”
nadmnožina“, která je ideálem, tj. B ⊇ A. Pravým

dělitelem ideálu A je potom ideál B takový, že B ⊃ A.

Např. 〈2〉 | 〈4〉, 〈x+ 1〉 | 〈x2 − 1〉.

Definice 1.4.12 Ireducibilńı ideál je ideál, který nelze vyjádřit jako pr̊unik pravých dělitel̊u.

Např. ideál 〈x2− 1〉 = 〈x− 1〉 ∩ 〈x+ 1〉 neńı ireducibilńım ideálem, zat́ımco ideály 〈x− 1〉
a 〈x+ 1〉 jsou ireducibilńı ideály.

Věta 1.4.4 (1. rozkladová) Každý ideál lze vyjádřit jako pr̊unik konečného počtu iredu-
cibilńıch ideál̊u.

Věta 1.4.5 Každý ireducibilńı ideál je primárńı.

Pozor, obecně neplat́ı opak! Např. ideál 〈x2, xy, yk〉 je reducibilńı a primárńı ideál, což
vyplývá z toho, že prvky ideálu nemaj́ı absolutńı členy a z toho, že lze tento ideál přepsat
do tvaru

〈x2, xy, yk〉 = 〈x2, y〉 ∩ 〈x, yk〉.

Poznámka 1.4.6 Rozklad lze
”
optimalizovat“ eliminaćı skupin primárńıch ideál̊u se stejným

přidruženým prvoideálem, tzn. rozklady nejsou jednoznačné.

Věta 1.4.7 (2. rozkladová) Každý ideál lze vyjádřit jako pr̊unik maximálńıch primárńıch
ideál̊u, tzn. I =

⋂
Pi, kde Pi jsou maximálńı primárńı ideály.

Věta 1.4.8 (O jednoznačnosti) Mějme dva rozklady [P1, . . . , Pn] a [Q1, . . . , Qm] téhož
ideálu maximálńımi primárńımi ideály. Potom m = n a existuje oindexováńı (uspořádáńı)
takové, že P̄i = Q̄i, tj. splývaj́ı asociované prvoideály.
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Kapitola 2

Voroného diagramy

2.1 Úvod

Předpokládejme, že máte naplánovat umı́stěńı nového supermarketu. Muśıte zjistit, pro
kolik zákazńık̊u bude supermarket atraktivńı, aby se dalo odhadnout, zda bude supermarket
vydělávat. Pro toto rozhodnut́ı je nezbytné modelovat chováńı lid́ı, potenciálńıch zákazńık̊u:
jak se tedy chovaj́ı, kde budou nakupovat?

Obecněji se samozřejmě nemuśı jednat jen o supermarkety, ale i o jiná mı́sta (střediska),
poskytuj́ıćı r̊uzné služby či zbož́ı, přičemž chceme zjistit množstv́ı lid́ı, kteř́ı budou toto
středisko využ́ıvat. Ve výpočtové geometrii se tato střediska tradičně reprezentuj́ı poštovńımi
úřady, proto se tento problém typicky označuje jako poštovńı problém.

V daľśım budeme uvažovat následuj́ıćı zjednodušuj́ıćı předpoklady:

1. Cena služby nebo zbož́ı je stejná ve všech středisćıch.

2. Náklady na źıskáńı zbož́ı nebo služby = cena zbož́ı či služby + cena dopravy do
střediska.

3. Cena dopravy do střediska = Eukleidovská vzdálenost do střediska × pevná cena za
jednotku vzdálenosti.

4. Zákazńıci se snaž́ı minimalizovat náklady na źıskáńı zbož́ı nebo služby.

Obvykle samozřejmě nejsou všechny tyto předpoklady splněny. Později si ukážeme, jak
některá tato zjednodušeńı odstranit a přibĺıžit se v́ıce reálné situaci. Je zřejmé, že zbož́ı
může být v některých středisćıch levněǰśı a cena dopravy ve městě nemuśı r̊ust lineárně s
Eukleidovskou vzdálenost́ı. Nicméně tento model může poskytnout alespoň hrubou apro-
ximaci oblast́ı př́ıslušných k daným středisk̊um.

Nyńı si uvedeme je geometrickou interpretaci předchoźıho modelu. Z předpoklad̊u vyplývá,
že model indukuje rozděleńı roviny na určité podoblasti (regiony) takové, že lidé bydĺıćı
v této oblasti budou nakupovat zbož́ı, př́ıp. využ́ıvat služeb střediska umı́stěného v této
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podoblasti. Z předpoklad̊u potom dále vyplývá, že lidé nakupuj́ı ve středisćıch, která maj́ı
nejbĺıže, a proto každá podoblast daného střediska obsahuje všechny body, ze kterých je k
tomuto středisku bĺı̌ze než k jakémukoliv jinému středisku.

Toto rozděleńı, indukované daným modelem, se nazývá Voroného diagram dané množiny
středisek. Z Voroného diagramu se daj́ı odvodit r̊uzné informace o oblastech př́ıslušných
k daným středisk̊um a o vztaźıch mezi nimi, např. jestliže oblasti dvou středisek maj́ı
společnou hranici, potom si tato dvě střediska př́ımo konkuruj́ı o zákazńıky, žij́ıćı na (resp.
okolo) této hranice.

Voroného diagramy maj́ı r̊uzné aplikace v mnoha r̊uznorodých oblastech, např. ve fy-
zice, astronomii, robotice a daľśıch. Jsou také úzce svázány s daľśı d̊uležitou geometrickou
strukturou, tzv. Delaunayho triangulaćı.

2.2 Definice a základńı vlastnosti

Definice 2.2.1 Eukleidovská vzdálenost mezi dvěma body P = [px, py] a Q = [qx, qy] je
definována vztahem

|PQ| = dist(P,Q) =
√

(px − qx)2 + (py − qy)2.

Definice 2.2.2 Necht’ P = {P1, . . . , Pn} je množina n r̊uzných bod̊u v rovině, které nazýváme
generuj́ıćı body. Voroného diagram množiny bod̊u P je rozděleńı roviny na n buněk př́ıslušných
k jednotlivým bod̊um Pi takových, že libovolný bod Q lež́ı v buňce př́ıslušné k bodu Pi právě
tehdy, když

|QPi| < |QPj| ∀Pj ∈ P, j 6= i.

Voroného diagram množiny P označ́ıme Vor(P). Buňku Vor(P), patř́ıćı k bodu Pi, označ́ıme
ν(Pi) a nazveme ji Voroného buňkou bodu Pi.

Nyńı se budeme podrobněji zabývat strukturou Voroného buňky. Pro dva body P , Q
v rovině definujeme osu P , Q jako osu úsečky PQ. Tato osa děĺı rovinu na 2 poloroviny.
Označeńı (viz obr. 2.1(a)):

h(P,Q) . . . otevřená polorovina obsahuj́ıćı bod P ,

h(Q,P ) . . . otevřená polorovina obsahuj́ıćı bod Q.

Poznámka 2.2.1 R ∈ h(P,Q)⇐⇒ |RP | < |RQ|.

Poznámka 2.2.2
ν(Pi) =

⋂

1≤j≤n

j 6=i

h(Pi, Pj),

tedy Voroného buňka ν(Pi) je pr̊unikem n − 1 polorovin a je to tedy otevřená konvexńı
polygonálńı oblast, ohraničená nejvýše n− 1 body (vrcholy) a nejvýše n− 1 hranami (m̊uže
být i neohraničená).
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P Q

R

ÈRPÈ ÈRQÈ

hHP,QL hHQ,PL

(a) Voroného diagram pro dva body,
ukázka otevřených polorovin h(P, Q) a
h(Q, P ).

(b) Voroného diagram pro tři body.

(c) Voroného diagram pro čtyři body. (d) Voroného diagram pro pět bod̊u.

Obrázek 2.1: Př́ıklady Voroného diagramů.
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(a) Voroného diagram pro body lež́ıćı na
př́ımce.

(b) Voroného diagram pro př́ıpad, kdy ale-
spoň jeden bod nelež́ı na př́ımce.

Obrázek 2.2: Př́ıklady Voroného diagramů.

Voroného diagram je tedy rozděleńı roviny, jehož hrany jsou úsečky, polopř́ımky a ve
speciálńım př́ıpadě i př́ımky. Pokud lež́ı všechny generuj́ıćı body na jedné př́ımce, potom
všechny hrany Voroného diagramu jsou rovnoběžné př́ımky (viz obr. 2.2(a)). V opačném
př́ıpadě Voroného diagram neobsahuje žádnou př́ımku, pouze úsečky a polopř́ımky (viz
obr. 2.2(b)).

Věta 2.2.3 Necht’ P je množina n generuj́ıćıch bod̊u v rovině. Jestlǐze všechny generuj́ıćı
body jsou kolineárńı, potom Vor(P) obsahuje n− 1 rovnoběžných př́ımek. Jinak, Vor(P) je
souvislý a jeho hrany jsou úsečky nebo polopř́ımky.

Pi Pj

Pk

e

D̊ukaz: Prvńı část je zřejmá, zaměř́ıme se proto pouze na
druhou část. Předpokládejme tedy, že všechny generuj́ıćı
body nejsou kolineárńı. Nejprve ukážeme, že hrany Vor(P)
jsou úsečky nebo polopř́ımky. V́ıme, že hrany Vor(P) jsou
části os mezi dvojicemi generuj́ıćıch bod̊u. Nyńı předpokládejme
pro spor, že existuje hrana e Voroného diagramu Vor(P),
která je př́ımkou. Necht’ e je na hranici buněk ν(Pi) a
ν(Pj). Necht’ Pk ∈ P je bod, který neńı kolineárńı s body
Pi a Pj . Osa Pj, Pk neńı rovnoběžná s e a tedy prot́ıná e.
Ale potom tedy část e, která lež́ı uvnitř h(Pk, Pj) nemůže
být na hranici ν(Pj), protože body této části jsou bĺıže k
Pk než k Pj , což vede ke sporu s předpokladem.

Zbývá ukázat, že Vor(P) je souvislý. Pokud by to tak nebylo, potom by existovala
Voroného buňka ν(Pi), která rozděluje rovinu na dvě části. Protože jsou Voroného buňky
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konvexńı, ν(Pi) by se skládalo z pruhu, ohraničeného dvěma rovnoběžnými př́ımkami. Ale
právě jsme dokázali, že hrany Voroného diagramu nemohou být př́ımky ⇒ SPOR. �

Nyńı se budeme zabývat celkovým počtem vrchol̊u a hran Voroného diagramu, odtud
potom plynou vztahy pro očekávanou složitost algoritmu sestaveńı Voroného diagramu.
Jelikož máme n generuj́ıćıch bod̊u a každá Voroného buňka má nejvýše n − 1 vrchol̊u a
hran, složitost nalezeńı Voroného diagramu Vor(P) je nejvýše kvadratická.

Věta 2.2.4 Necht’ n ≥ 3. Potom počet vrchol̊u Voroného diagramu množiny n generuj́ıćıch
bod̊u v rovině je nejvýše 2n− 5 a počet hran je nejvýše 3n− 6.

D̊ukaz: Jsou-li všechny generuj́ıćı body kolineárńı, potom d̊ukaz vyplývá z předchoźı věty.
Pokud ne, použije se k d̊ukazu Eulerova věta, která ř́ıká, že vztah

V −E + F = 2

plat́ı pro libovolný souvislý rovinný graf s V vrcholy, E hranami a F stěnami. Eulerovu
větu nelze použ́ıt př́ımo, protože Vor(P) může obsahovat hrany tvořené polopř́ımkami a
tedy neńı grafem. Proto přidáme nevlastńı vrchol v∞ v

”
nekonečnu“ do množiny vrchol̊u a

všechny tyto polopř́ımky ve Vor(P) spoj́ıme s t́ımto bodem v∞. Nyńı již můžeme aplikovat
Eulerovu větu. Necht’:

• nV . . . počet vrchol̊u Vor(P),

• nE . . . počet hran Vor(P),

• n . . . počet generuj́ıćı bod̊u a jelikož každý generuj́ıćı bod lež́ı uvnitř jedné stěny,
odpov́ıdá také počtu stěn grafu.

Potom
(nV + 1)− nE + n = 2.

Necht’ dále di je stupeň i-tého vrcholu Vor(P). Jelikož každá hrana daného grafu má právě
dva vrcholy, plat́ı

∑

i

di = 2nE .

Protože každý vrchol (včetně vrcholu v∞) má stupeň nejméně 3, plat́ı

2nE ≥ 3(nV + 1).

Potom

(nV + 1) = nE − n + 2 nE = (nV + 1) + n− 2
2nE ≥ 3(nV + 1) = 3(nE − n+ 2) 2nE = 2(nV + 1) + 2n− 4

2nE ≥ 3(nE − n+ 2) 2(nV + 1) + 2n− 4 ≥ 3(nV + 1)
3n− 6 ≥ nE 2n− 5 ≥ nV
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Nyńı tedy v́ıme, že hrany jsou části os dvojic generuj́ıćıch bod̊u a vrcholy jsou pr̊useč́ıky
těchto os. Počet os odpov́ıdá kvadrátu počtu generuj́ıćıch bod̊u, ale složitost Vor(P) je
lineárńı. Zřejmě tedy, ne všechny osy definuj́ı hrany Vor(P) a ne všechny pr̊useč́ıky jsou
vrcholy Vor(P). Abychom charakterizovali, které osy a které pr̊useč́ıky budou hranami a
vrcholy Vor(P), je třeba uvést následuj́ıćı definici.

Definice 2.2.3 Necht’ Q je bod v rovině. Největš́ı prázdnou kružnićı bodu Q vzhledem k
P je nejvěťśı kružnice se středem v bodě Q, která neobsahuje uvnitř žádný bod z P. Tuto
kružnici označ́ıme CP(Q).

Následuj́ıćı věta potom charakterizuje vrcholy a hrany Voroného diagramu.

Věta 2.2.5 Pro Voroného diagram Vor(P) množiny bod̊u P plat́ı:

1. Bod Q je vrcholem Vor(P) právě tehdy, když kružnice CP(Q) obsahuje tři nebo v́ıce
bod̊u z množiny P na své hranici.

2. Osa generuj́ıćıch bod̊u Pi a Pj definuje hranu Vor(P) právě tehdy, když existuje bod
Q na ose Pi, Pj takový, že generuj́ıćı body Pi, Pj lež́ı na hranici kružnice CP(Q) a
žádný daľśı generuj́ıćı bod na ńı nelež́ı.

D̊ukaz:

1. Předpokládejme, že Q je střed kružnice, na které lež́ı alespoň 3 generuj́ıćı body.
Označme tyto body Pi, Pj , Pk. Vnitřek kružnice je prázdný a tedy Q muśı ležet na
hranici buněk ν(Pi), ν(Pj), ν(Pk), protože Q je stejně vzdálený k bodu Pi i k Pj, z
čehož vyplývá, že lež́ı na hranici buněk ν(Pi) a ν(Pj) (podobně pro Pi, Pk a Pj , Pk).
Odtud potom plyne, že Q muśı být vrchol.

Obráceně: Q je vrchol ⇒ Q je pr̊useč́ıkem alespoň tř́ı hran ⇒ Q nálež́ı alespoň třem
buňkám ν(Pi), ν(Pj), ν(Pk) Voroného diagramu. Plat́ı

|QPi| = |QPj| = |QPk|,

protože Q lež́ı v pr̊useč́ıku os úseček PiPj, PiPk, PjPk a je tedy středem kružnice
opsané trojúhelńıku 4PiPjPk. Žádný daľśı bod nemůže být bĺıž k bodu Q než body
Pi, Pj, Pk, protože jinak by Q neleželo v pr̊useč́ıku os úseček PiPj, PiPk, PjPk a
odpov́ıdaj́ıćı Voroného buňky ν(Pi), ν(Pj), ν(Pk) by se v tomto bodě nesetkaly ⇒
kružnice je prázdná.

2. Předpokládejme, že existuje bod Q na ose úsečky PiPj takový, že body Pi, Pj lež́ı na
hranici kružnice CP(Q) a žádný jiný bod P uvnitř této kružnice, tedy plat́ı

|QPi| = |QPj | < |QPk| ∀k : 1 ≤ k ≤ n, k 6= i, j.
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Obrázek 2.3: Voroného diagramy pro množiny bod̊u, obsahuj́ıćı alespoň čtyři body lež́ıćı
na kružnici.

Odtud vyplývá, že Q lež́ı na hraně Vor(P) (nemůže ležet ve vrcholu, body jsou jen
dva).

Obráceně: necht’ osa úsečky PiPj definuje Voroného hranu. Potom největš́ı prázdná
kružnice pro libovolný bod z vnitřku hrany muśı na hranici obsahovat body Pi, Pj

a žádné daľśı body (muśı obsahovat oba body, protože pro libovolný bod hrany je
|QPi| = |QPj| a bude obsahovat pouze tyto dva body, protože jinak by se jednalo o
vrchol, který jsme ale zde vyloučily). �

Věta 2.2.6 Voroného buňka ν(Pi) je neohraničená právě tehdy, když bod Pi patř́ı hraně
konvexńıho obalu množiny P.

V př́ıpadě, že množina bod̊u P obsahuje čtyři nebo v́ıce bod̊u, které lež́ı na jedné
kružnici, přestane platit, že vrchol Voroného diagramu je tvořen pr̊useč́ıkem tř́ı os, resp.
Voroného hran (viz obr. 2.3(a)). V takovém př́ıpadě se hovoř́ı o Voroného diagramu jako
o degenerovaném a existuje vrchol Voroného diagramu Vor(P) tvořený pr̊useč́ıkem tolika
Voroného hran, kolik bod̊u lež́ı na odpov́ıdaj́ıćı kružnici.

2.3 Algoritmy konstrukce Voroného diagramů

Existuje několik možnost́ı, jak zkonstruovat Voroného diagram, které se lǐśı složitost́ı a efek-
tivnost́ı výpočtu. Obecně lze ukázat, že sestrojeńı Voroného diagramu pro n bod̊u zabere
čas nejméně O(n logn), jelikož je to úloha ekvivalentńı s tř́ıděńım. To tedy znamená, že
každý algoritmus s touto složitost́ı je optimálńı. Klasické algoritmy pro sestrojeńı Voroného
diagramu jsou následuj́ıćı:
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1. naivńı algoritmus,

2. inkrementálńı algoritmus,

3. algoritmus
”
rozděl a panuj“,

4. zametaćı
”
Fortuneho“ algoritmus,

5. metoda zdvihu.

Nyńı se budeme věnovat každému z těchto algoritmů podrobněji.

2.3.1 Naivńı algoritmus

Nejjednodušš́ı a nejpř́ıměǰśı algoritmus, založený na př́ımé aplikaci definice Voroného di-
agramu, kdy každá oblast ν(Pi) Voroného diagramu je źıskána jako pr̊unik polorovin
h(Pi, Pj), ∀j 6= i. Složitost tohoto algoritmu neńı zdaleka optimálńı, protože je O(n2 log n).

2.3.2 Inkrementálńı algoritmus

Jeden z klasických př́ıstup̊u použ́ıvaných ve výpočtové geometrii — inkrementálńı algorit-
mus — lze použ́ıt i v př́ıpadě Voroného diagramů. Nejprve provedeme výpočet Voroného
diagramu pro jednoduchý a snadno zvládnutelný př́ıpad, např. náhodně vybereme dva
nebo tři z množiny generuj́ıćıch bod̊u a najdeme pro ně Voroného diagram. Poté postupně
přidáváme po jednom zbylé body z generuj́ıćı množiny a vždy modifikujeme stávaj́ıćı struk-
turu (Voroného diagram pro do té doby použité body).

Postup modifikace stávaj́ıćı struktury při přidáńı (i + 1)-ńıho bodu je následuj́ıćı (viz
obr. 2.4(a)):

1. Lokalizace — v prvńım kroku urč́ıme, v jaké Voroného buňce stávaj́ıćıho Voroného
diagramu se nově přidávaný bod Pi+1 nacháźı. Generuj́ıćı bod Voroného buňky, ve
které se bod Pi+1 nacháźı, označ́ıme Pi1 .

2. Najdeme osu úsečky Pi+1Pi1.

3. Najdeme pr̊useč́ıky osy úsečky Pi+1Pi1 s hranićı Voroného buňky, ve které se bod
Pi+1 nacháźı.

4. Vybereme si jeden z pr̊useč́ık̊u, č́ımž urč́ıme Voroného buňku, do které budeme po-
kračovat v daľśım kroku algoritmu. Označme generuj́ıćı bod této buňky Pi2 .

5. Najdeme osu úsečky Pi+1Pi2 a jej́ı pr̊useč́ıky s hranićı buňky, ve které se nacháźı
bod Pi2. Vybereme pr̊useč́ık, který nelež́ı na společné hraně Voroného buněk ν(Pi1)
a ν(Pi2) a pokračujeme dále.

6. Opakujeme krok 5, dokud se nedostaneme do druhého pr̊useč́ıku osy úsečky Pi+1Pi1

s hranićı Voroného buňky ν(Pi1).
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(a) Inkrementálńı algoritmus. (b) Algoritmus
”
rozděl a panuj“.

Obrázek 2.4: Algoritmy nalezeńı Voroného diagramu.

Na konci je nezbytné provést tzv.
”
začǐstěńı“ — tzn. vyrušit hrany uvnitř nově vzniklé

Voroného buňky.
Složitost inkrementálńıho algoritmu je obecně O(n2), ve speciálńıch př́ıpadech ale může

být i O(n).

2.3.3 Algoritmus
”
rozděl a panuj“

Daľśı z klasických př́ıstup̊u použ́ıvaných ve výpočtové geometrii, který lze i v tomto př́ıpadě
aplikovat na nalezeńı Voroného diagramu dané množiny bod̊u.

Algoritmus funguje následovně: zadanou generuj́ıćı množinu bod̊u děĺıme rekurzivně na
dvě části až do té úrovně, dokud nedostaneme množinu pouze tř́ı bod̊u, pro které už lze
sestrojit Voroného diagram jednoduše. Následuje

”
zpětný chod“, při kterém jsou jednotlivé

části — Voroného diagramy pro tři body — opět postupně spojovány do jednoho Voroného
diagramu, což je nejsložitěǰśı část tohoto algoritmu.

Nevýhodou tohoto algoritmu je náchylnost na numerické chyby a z toho plynoućı nu-
merická nestabilita. Výhodou potom je to, že algoritmus dosahuje optimálńı složitosti
O(n logn).

2.3.4 Zametaćı
”
Fortuneho“ algoritmus

I v tomto př́ıpadě se v principu jedná o klasický př́ıstup použ́ıvaný ve výpočtové geometrii
— použit́ı zametaćı př́ımky. Nicméně pro nalezeńı Voroného diagramu je nezbytné klasický
algoritmus mı́rně modifikovat.
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Základem je tzv. zametaćı př́ımka — horizont, který se postupně pohybuje od shora dol̊u
a během pohybu jsou uchovávány všechny informace potřebné pro výpočet a vytvářena
hledaná struktura, v tomto př́ıpadě Voroného diagram. Klasickým př́ıstupem by bylo zkou-
mat pr̊useč́ıky zametaćı př́ımky s Voroného diagramem. To ale bohužel neńı možné, jelikož
Voroného diagram nad zametaćı př́ımkou l záviśı nejen na bodech nad př́ımkou l, ale také
na bodech pod ńı. Jinak řečeno, pokud se zametaćı př́ımkou l dojdeme do nejvyšš́ıho bodu
Voroného buňky ν(Pi), bod Pi ještě stále neńı mezi zpracovávanými body, protože je pod
zametaćı př́ımkou l a algoritmus o něm ještě stále

”
nev́ı“ – nejsou tedy k dispozici ještě

všechny potřebné informace.

Q

Pi
Pj

Proto je nutné modifikovat tento klasický př́ıstup následuj́ıćım
zp̊usobem — mı́sto udržováńı informaćı o pr̊useč́ıćıch Vo-
roného diagramu se zametaćı př́ımkou l budeme uchovávat
informace o té části Voroného diagramu nad l, která již
nemůže být změněna, resp. která již nemůže být ovlivněna
body pod zametaćı př́ımkou l.

Označme uzavřenou polorovinu nad zametaćı př́ımkou
l symbolem l+. Nyńı nás tedy zaj́ımá, která část Voroného
diagramu Vor(P) již nemůže být modifikována, neboli pro
které body Q ∈ l+ již v́ıme, který generuj́ıćı bod je k
nim nejbĺıže? Je zřejmé, že vzdálenost libovolného bodu
Q ∈ l+ k libovolnému generuj́ıćımu bodu pod zametaćı př́ımkou l je větš́ı než vzdálenost
Q od př́ımky l a tedy nejbližš́ı generuj́ıćı bod k bodu Q ∈ l+ nemůže ležet pod zametaćı
př́ımkou l, jestliže existuje generuj́ıćı bod Pi ∈ l+ takový, že |QPi| ≤ |Ql|.

Dále v́ıme, že množina všech bod̊u v rovině, které maj́ı
stejnou vzdálenost od pevně daného bodu a od pevně
dané př́ımky tvoř́ı parabolu. Proto množina bod̊u, které
jsou bĺıže k danému generuj́ıćımu bodu Pi ∈ l+ než k
zametaćı př́ımce l je ohraničena právě parabolou. To sa-
mozřejmě plat́ı pro libovolný generuj́ıćı bod nad př́ımkou
l, a proto množina všech bod̊u Q ∈ l+, které maj́ı bĺıže k některému z generuj́ıćıch bod̊u
lež́ıćıch v l+ je ohraničena parabolickými oblouky. Tato posloupnost parabolických oblouk̊u
se nazývá beach line.

Poznámka 2.3.1 Beach line je x-monotónńı, tzn. že každá vertikálńı př́ımka prot́ıná beach
line právě v jednom bodě.

Zřejmě jedna parabola může do beach line přispět několikrát r̊uznými částmi (viz např.
obr. 2.5(c)). Pr̊useč́ıky parabolických oblouk̊u, které lež́ı na beach line, lež́ı na hranách Vo-
roného diagramu a s pohybem zametaćı př́ımky l tyto pr̊useč́ıky vytvářej́ı hrany Voroného
diagramu Vor(P) pro danou množinu generuj́ıćıch bod̊u P.

V pr̊uběhu prováděńı algoritmu jsou nejd̊uležitěǰśımi operacemi následuj́ıćı dvě akce:

• site event — na beach line se objev́ı nový generuj́ıćı bod, je nutné ho přidat do
struktury,
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(a) Prvńı krok – jsou uvažovány jen dva body nad
př́ımkou l, o bodu pod l algoritmus

”
nev́ı“.

(b) Druhý krok – př́ımka naraźı na daľśı gene-
ruj́ıćı bod, dojde k vytvořeńı nové degenerované
paraboly nulové š́ı̌rky.

(c) Třet́ı krok — s posunem př́ımky l dojde k
rozš́ı̌reńı paraboly.

(d) Pokud stále posouváme s př́ımkou l, nově
vzniklá parabola se stále rozšǐruje.

Obrázek 2.5: Pr̊uběh jedné ze základńıch událost́ı, nastávaj́ıćıch v pr̊uběhu zametaćıho

”
Fortuneho“ algoritmu — site event.
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• circle event — dojde k zániku jednoho z parabolických oblouk̊u.

Site event (viz obr. 2.5) tedy nastává v př́ıpadě, že se na beach line objev́ı nový, dosud
nepoužitý generuj́ıćı bod. T́ım zároveň vzniká nový parabolický oblouk, na počátku ve své
degenerované formě jako parabola nulové š́ı̌rky. Jelikož pr̊useč́ıky parabol, tvoř́ıćıch beach
line, sleduj́ı hrany Voroného diagramu, přidáńım nového bodu do stávaj́ıćı struktury dojde
ke vzniku dvou nových pr̊useč́ık̊u (na počátku totožných), které se s pohybem beach line
od sebe vzdaluj́ı a vytvářej́ı novou hranu Voroného diagramu. Zpočátku tato hrana neńı
napojena na zbytek Voroného diagramu, později ale k tomu napojeńı dojde v nějakém
vrcholu. Beach line se tedy skládá nejvýše z 2n− 1 parabolických oblouk̊u, protože každý
generuj́ıćı bod představuje vznik jedné paraboly a rozděleńı nejvýše jednoho parabolického
oblouku na dvě části.

Circle event (viz obr. 2.6) nastává v př́ıpadě, že docháźı k zániku některého parabo-
lického oblouku. Oblouk paraboly vymiźı v př́ıpadě, že tři paraboly př́ıslušné třem gene-
ruj́ıćım bod̊um Pi, Pj, Pk procházej́ı společným bodem Q, pro který tedy plat́ı

|QPi| = |QPj| = |QPk| = |Ql|.

Zřejmě tedy kružnice se středem Q procházej́ıćı body Pi, Pj , Pk se dotýká l a má nejnižš́ı
bod právě na l. Žádný daľśı generuj́ıćı bod nemůže ležet uvnitř této kružnice, protože v
takovém př́ıpadě by vzdálenost od bodu Q k tomuto bodu byla menš́ı než vzdálenost Q
od zametaćı př́ımky l, což je ale ve sporu s t́ım, že bod Q lež́ı na beach line. Odtud potom
vyplývá, že bod Q muśı být vrcholem Voroného diagramu. Shrnuto — zánikem některého
z oblouk̊u beach line vzniká vrchol Voroného diagramu Vor(P).

Složitost je stejně jako v př́ıpadě algoritmu
”
rozděl a panuj“ i u tohoto algoritmu op-

timálńı, tedy O(n logn).

2.3.5 Metoda zdvihu

Uvažujme transformaci, která libovolnému bodu P = [px, py] ∈ E2 přǐrad́ı rovinu

h(p) : z = 2pxx+ 2pyy − (p2
x + p2

y) ∈ E3.

Geometricky, h(P ) je tečná rovina k paraboloidu z = x2 + y2 v bodě P̄ = [px, py, p
2
x + p2

y],
tzn. v bodě odpov́ıdaj́ıćım kolmému pr̊umětu bodu P na paraboloid z = x2 + y2.

Necht’ P = {Pi : 1 ≤ i ≤ n} je množina generuj́ıćıch bod̊u Voroného diagramu a
necht’ H(P) je množina tečných rovin h(Pi), ∀i. Pr̊unikem všech kladných poloprostor̊u,
definovaných rovinami z H(P), vznikne konvexńı mnohostěn P, tedy

P =
⋂

h(Pi)∈H(P)

h(Pi)
+,

kde h(Pi)
+ označuje poloprostor nad h(Pi). Pokud provedeme projekci hran a vrchol̊u

tohoto vzniklého mnohostěnu zpět do roviny xy, dostaneme Voroného diagram množiny P.
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(a) Prvńı krok — beach line složena ze tř́ı ob-
louk̊u, pr̊useč́ıky oblouk̊u vytvář́ı hrany Voroného
diagramu, zametaćı př́ımka se pohybuje směrem
dol̊u.

(b) Druhý krok — docháźı k zániku jednoho z
oblouk̊u, resp. přestane tento oblouk přisṕıvat do
beach line, vzniká vrchol Voroného diagramu.

(c) Třet́ı krok — beach line už má jen dva ob-
louky, ze vzniklého vrcholu pokračuje dále hrana
Voroného diagramu.

Obrázek 2.6: Pr̊uběh daľśı ze základńıch událost́ı, nastávaj́ıćıch v pr̊uběhu zametaćıho

”
Fortuneho“ algoritmu — circle event.
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(a) Triangulace, která neńı Delaunayova. (b) Triangulace, která je Delaunayova.

Obrázek 2.7: Triangulace na čtyřech bodech.

2.4 Delaunayho triangulace

Duálńı strukturou k Voroného diagramu je Delaunayho triangulace (triangulace = pokryt́ı
nepřekrývaj́ıćımi se trojúhelńıky). Tedy, pro daný Voroného diagram Vor(P) dostaneme
Delaunayho triangulaci bod̊u množiny P tak, že hrana PiPj je v Delaunayho triangulaci
právě tehdy, když Voroného buňky ν(Pi) a ν(Pj) soused́ı, tzn. maj́ı společnou hranu.

Pokud je množina bod̊u P degenerovaná, tzn. obsahuje čtyři a v́ıce bod̊u, které lež́ı na
jedné kružnici, potom dualizaćı nemuśı vzniknout triangulace, ale může se objevit polygon
o v́ıce hranách. Nicméně i tento polygon je možné dodatečně rozdělit na trojúhelńıky
přidáńım hran.

Existuje vzájemně jednoznačné zobrazeńı mezi Voroného body (body generuj́ıćı množiny)
a Delaunayho polygony, podobně existuje také vzájemně jednoznačné zobrazeńı mezi Vo-
roného hranami a Delaunayho hranami — dvojice odpov́ıdaj́ıćıch hran je tvořena vzájemně
kolmými hranami. Nav́ıc v́ıme, že Delaunayho polygon je konvexńı obálka generuj́ıćıch
bod̊u, jejichž Voroného buňky inciduj́ı s daným Voroného vrcholem.

Důležitou vlastnost́ı Delaunayho triangulace v E2 je, že poskytuje optimálńı triangulaci
v tom smyslu, že maximalizuje minimálńı úhel v trojúhelńıku.

Věta 2.4.1 (Kritérium prázdného kruhu) Triangulace množiny bod̊u P je Delaunay-
ova právě tehdy, když opsaná kružnice každého trojúhelńıka, tvoř́ıćıho Delaunayho trian-
gulaci, neobsahuje žádný daľśı bod z množiny P.
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Věta 2.4.2 (Max-min lokálńı kritérium) Delaunayho triangulace maximalizuje lokálně
minimálńı úhel.

Na větách 2.4.1 a 2.4.2 je založen tzv. překlápěćı algoritmus, který z libovolné trian-
gulace, která neńı Delaunayova, dokáže vytvořit Delaunayho triangulaci překlápěńım hran
ve smyslu obr. 2.7. Stač́ı tedy postupně brát čtyřúhelńıky a zkoumat, jestli je splněno
kritérium prázdného kruhu. Pokud neńı, zaměńı se úhlopř́ıčka uvnitř tohoto čtyřúhelńıka.

Vlivem vlastnosti uvedené ve větě 2.4.2 Delaunayho triangulace neobsahuje (pokud
to jde) protáhlé trojúhelńıky, resp. dává nejlepš́ı možné výsledky v tomto směru, což je
d̊uležité zejména v aplikaćıch, jako je MKP, interpolace apod.

Existuje samozřejmě celá řada jiných typ̊u triangulaćı, resp. algoritmů pro nalezeńı
triangulace dané množiny bod̊u, jako je např. žravá triangulace, nejkratš́ı triangulace,
triangulace, která splňuje min-max kritérium (minimalizuje maximálńı úhel, což obecně
nedává stejné triangulace jako Delaunayho triangulace).

2.5 Zobecněńı Voroného diagramů

Zobecněńı je možné provést v zásadě několika zp̊usoby:

• změnou dimenze,

• změnou metriky,

• přidáńım váhy generuj́ıćım bod̊um.

2.5.1 Změna dimenze

Předpokládejme, že máme množinu generuj́ıćıch bod̊u P = {P1, . . . , Pn} ⊂ Ed. Pro každé
Pi potom zcela analogicky definujeme Voroného buňky vztahem

ν(Pi) = {Q ∈ Ed : ||Q− Pi|| < ||Q− Pj || ∀j 6= i},

kde ||Q− P || je Eukleidovská vzdálenost bod̊u P a Q. Tedy, ν(Pi) obsahuje body Q ∈ Ed,
které jsou bĺıže k Pi než k libovolnému jinému bodu Pj ∈ P. Opět analogicky, ν(Pi) je
pr̊unikem všech poloprostor̊u ohraničených nadrovinami ||Q− Pi|| = ||Q− Pj||, tedy plat́ı

ν(Pi) =
⋂

j 6=i

{Q ∈ Ed : ||Q− Pi|| < ||Q− Pj ||}.

Odtud plyne, že Voroného buňka (oblast) je konvexńı polyhedron (mnohostěn). Rozděleńı
prostoru Ed na buňky ν(P1), . . . , ν(Pn) představuje Voroného diagram pro danou množinu
bod̊u P.

Obecně Voroného vrchol inciduje s d+1 Voroného oblastmi. Degenerovanost se objev́ı v
př́ıpadě, že d+2 nebo v́ıce generuj́ıćıch bod̊u lež́ı na kouli dimenze d−1 a žádné generuj́ıćı
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body nelež́ı uvnitř této koule. Potom Voroného oblasti těchto kosférických generuj́ıćıch
bod̊u inciduj́ı se společným Voroného vrcholem.

Souvislost mezi Voroného vrcholy a Delaunayho polygony je možné také zobecnit do
prostoru vyšš́ı dimenze. Pro každý Voroného vrchol se konvexńı obal generuj́ıćıch bod̊u,
jejichž Voroného oblasti inciduj́ı s Voroného vrcholem, nazývá Delaunayho mnohostěn.
Delaunayho mnohostěny odpov́ıdaj́ıćı všem Voroného vrchol̊um dávaj́ı rozděleńı konvexńıho
obalu množiny generuj́ıćıch bod̊u. Pro každý Delaunayho mnohostěn dále plat́ı, že všechny
jeho vrcholy lež́ı na kouli dimenze d−1 a uvnitř této koule neńı žádný jiný generuj́ıćı bod.
Jestliže množina generuj́ıćıch bod̊u P neńı degenerovaná, Delaunayho mnohostěn je d-
dimensionálńım simplexem. V takovém př́ıpadě se pro Delaunayho diagram použ́ıvá název
Delaunayho triangulace (v E3 se použ́ıvá termı́n Delaunayho tetrahedronizace).

Do vyšš́ı dimenze lze také zobecnit metodu zdvihu. Necht’ P = {P1, . . . , Pn} ⊂ Ed.
Definujme množinu P∗ = {P ∗

1 , . . . , P
∗
n} tak, že bod P ∗

i dostaneme vytažeńım Pi ve směru
nově přidané proměnné xd+1 na plochu

xd+1 = x2
1 + x2

2 + · · ·+ x2
d.

Potom kolmá projekce (d+1)-dimensionálńıho konvexńıho obalu množiny P∗ dává Delauna-
yho triangulaci.

2.5.2 Změna metriky

Voroného diagram je rozděleńı prostoru vzhledem k vzdálenostem definovaným metrikou.
Doposud jsme použ́ıvali klasickou Eukleidovskou vzdálenost (metriku). Nicméně pojem
vzdálenosti (metriky) lze samozřejmě chápat obecněji a i v př́ıpadě Voroného diagramů
můžeme nahradit Eukleidovskou vzdálenost libovolnou jinou metrikou. T́ım dostáváme
tzv. zobecněné Voroného diagramy, kde pro každou Voroného buňku plat́ı

ν(Pi) =
⋂

j 6=i

{Q ∈ Ed : dist(Q,Pi) < dist(Q,Pj)}

a tedy mı́sto Eukleidovské vzdálenosti je použita libovolná metrika dist.
Standardńım př́ıkladem jiných metrik, které je možné použ́ıt, jsou tzv. Lp-metriky (mezi

které patř́ı i Eukleidovská metrika jako L2-metrika):

L1-metrika . . . definována vztahem

dist1(P,Q) = ||PQ||1 =
d∑

i=1

|Pxi
−Qxi

|.

Všechny hrany v této metrice jsou složeny z horizontálńıch, vertikálńıch nebo dia-
gonálńıch (pod úhlem π/4) úseček.

Lp-metrika . . . definována vztahem

distp(P,Q) = ||PQ||p =

(
d∑

i=1

|Pxi
−Qxi

|p
) 1

p

.
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L∞ −metrika . . . definována vztahem

dist∞(P,Q) = ||PQ||∞ = max{|Px1 −Qx1|, . . . , |Pxd
−Qxd

|}.

V jistém smyslu podobné L1-metrice — Voroného diagramy vzhledem k L∞-metrice
jsou opět složeny pouze z úseček.

2.5.3 Přidáńı váhy

Daľśı možnost́ı jak zobecnit Voroného diagramy je přidat váhy jednotlivým generuj́ıćım
bod̊um, což může odpov́ıdat např. r̊uzným cenách v supermarketech, kdy nižš́ı cena je
zohledněna vyšš́ı váhou generuj́ıćıch bodu, protože lidé budou v́ıce chodit do tohoto super-
marketu. Potom dostáváme tzv. vážené Voroného diagramy, které můžeme rozdělit ještě
na dvě podskupiny:

Aditivńı vážené Voroného diagramy — necht’ bodu Pi př́ısluš́ı váha wi ∈ R. Potom
můžeme definovat metriku vztahem

dista(P,Q) = dist(P,Q)− wi,

kde dist je opět libovolná metrika. Pokud zvyšujeme váhu daného bodu, př́ıslušná
Voroného buňka (oblast) se zvětšuje (vyplývá př́ımo z definované metriky). Jestliže
dist(P,Q) je Eukleidovská vzdálenost, potom dista(P, Pi) lze interpretovat jako Eu-
kleidovskou vzdálenost bodu P od kružnice se středem v Pi a poloměrem wi —
množina bod̊u, které maj́ı stejnou vzdálenost od dvou kružnic tvoř́ı hyperbolu a tedy
Voroného hrany jsou v tomto př́ıpadě části hyperbol.

Multiplikativńı vážené Voroného diagramy — podobně můžeme definovat metriku
vztahem

distm(P,Q) =
1

wi

dist(P,Q).

Množina bod̊u, pro něž je poměr Eukleidovských vzdálenost́ı ke dvěma bod̊um Pi a
Pj konstantńı, tvoř́ı kružnici, která se nazývá Apolloniova kružnice. Tedy Voroného
hrany multiplikativńıho váženého Voroného diagramu jsou kruhové oblouky.

2.6 Aplikace

Na závěr této kapitoly si uvedeme několik možných aplikaćı Voroného diagramů, a to jak
klasických, tak zobecněných i vážených:

• dopravńı problém — v podstatě př́ımo vyplývá z poštovńıho problému, zmı́něného
na začátku kapitoly. Př́ıkladem může být např. určeńı spádových oblast́ı Záchranné
služby, př́ıp. určeńı nejbližš́ı nemocnice, do které má sanitka jet.
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• osa objektu — množina P bude tvořena body na hranici daného objektu, které muśı
být rozmı́stěny dostatečně hustě. Poté se sestav́ı Voroného diagram a spojnice Vo-
roného vrchol̊u odpov́ıdá ose objektu.

• ekvidistanty — použit́ı např. při plánováńı cesty frézy při obráběńı.

• interpolace.
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Kapitola 3

Afinńı variety a ideály

Tato kapitola bude věnována seznámeńı se základńımi pojmy, se kterými se bude dále
pracovat. Půjde zejména o afinńı variety, což jsou objekty definované polynomiálńımi rov-
nicemi. S pojmem afinńı variety úzce souviśı pojem ideálu v okruhu polynomů k[x1, . . . , xn].
Formálńı aparát popsaný v této kapitole může mı́t mnoho aplikaćı všude, kde se pracuje
s objekty a ději popsatelnými polynomy, resp. systémy polynomiálńıch rovnic. Jedná se
např́ıklad o:

• hledáńı extrémů na ploše,

• analýzu pohyb̊u součást́ı nějakého stroje,

• hledáńı př́ıslušnosti bodu k nějakému tělesu.

3.1 Polynomy a afinńı prostor

Tato část bude věnována studiu polynomů nad jistým č́ıselným tělesem. Těleso je množina,
kde jsou definovány operace sč́ıtáńı, odč́ıtáńı, násobeńı a děleńı s obvyklými vlastnostmi
(viz kapitola 1). Typickým př́ıkladem jsou reálná č́ısla R (naproti tomu množina celých
č́ısel Z neńı tělesem).

Definice 3.1.1 Monomem v proměnných x1, . . . , xn se nazývá výraz tvaru

xα1
1 · xα2

2 · · ·xαn

n ,

kde αi ∈ N. Celkový stupeň monomu je součet α1 + α2 + . . .+ αn.

Zápis monomu lze zjednodušit pomoćı pojmu multiindexu, kde pro každou n-tici α =
(α1, . . . , αn) polož́ıme xα = xα1

1 · xα2
2 · · ·xαn

n . Celkový stupeň je potom |α| = α1 + · · ·+ αn.

Definice 3.1.2 Polynomem v proměnných x1, . . . , xn s koeficienty z tělesa k je konečná
lineárńı kombinace monom̊u, která se zapisuje ve tvaru

f =
∑

α

aαx
α, aα ∈ k,
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kde se sč́ıtá přes konečný počet n-tic α = (α1, . . . , αn). Množina všech polynom̊u s koefici-
enty v k se znač́ı k[x1, . . . , xn].

Př́ıkladem polynomu z Q[x, y, z] je f = 2x3y2z + 3
2
y3z3 − 3xyz + y2 (je to polynom tř́ı

proměnných x, y, z s koeficienty z tělesa racionálńıch č́ısel Q).

Věta 3.1.1 Množina k[x1, . . . , xn] všech polynom̊u v proměnných x1, . . . , xn s koeficienty
z tělesa k tvoř́ı komutativńı okruh.

D̊ukaz: Viz [14]. �

Jelikož z věty 3.1.1 vyplývá, že k[x1, . . . , xn] tvoř́ı komutativńı okruh, nazývá se okru-
hem polynom̊u.

Definice 3.1.3 Je dáno těleso k a kladné celé č́ıslo n. Afinńım prostorem nad tělesem k
se rozumı́ množina

kn = {(a1, . . . , an) : a1, . . . , an ∈ k}.
Ukažme, jaká je souvislost mezi polynomy a afinńım prostorem. Kĺıčem je myšlenka, že

polynom f =
∑

α aαx
α lze chápat jako zobrazeńı

f : kn → k

definované následuj́ıćım zp̊usobem: pro dané (a1, . . . , an) ∈ kn se ve vyjádřeńı f nahrad́ı
všechna xi hodnotami ai. Protože koeficienty také lež́ı v k, je f(a1, . . . , an) ∈ k.

Věta 3.1.2 Necht’ k je nekonečné těleso a necht’ f ∈ k[x1, . . . , xn]. Potom f = 0 tehdy a
jen tehdy, když f : kn → k je nulové zobrazeńı, tzn. pro libovolnou n-tici (a1, . . . , an) ∈ kn

je f(a1, . . . , an) = 0.

D̊ukaz: Indukćı podle n. Podrobně viz [27], str. 2. �

Požadavek nekonečného tělesa je v tomto př́ıpadě d̊uležitý, protože např. pro k = Z2 a
f = x2 − x je f(x) = x(x− 1) = 0 pro každé x ∈ Z2, ale f neńı nulový polynom.

Důsledek 3.1.3 Necht’ k je nekonečné těleso a necht’ f, g ∈ k[x1, . . . , xn]. Potom f = g
v k[x1, . . . , xn] tehdy a jen tehdy, když f : kn → k a g : kn → k jsou stejná zobrazeńı, tzn.
pro libovolnou n-tici (a1, . . . , an) ∈ kn je f(a1, . . . , an) = g(a1, . . . , an).

3.2 Afinńı variety

Definice 3.2.1 Necht’ k je těleso a necht’ f1, . . . , fs jsou polynomy z k[x1, . . . , xn]. Potom
množina

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 pro všechna 1 ≤ i ≤ s }

se nazývá afinńı varieta určená polynomy f1, . . . , fs.
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Afinńı varieta V(f1, . . . , fs) ⊂ kn je tedy množina všech řešeńı soustavy nelineárńıch
algebraických rovnic f1(x1, . . . , xn) = . . . = fs(x1, . . . , xn) = 0. Afinńımi varietami jsou
tedy grafy všech funkćı daných polynomy nebo racionálńımi funkcemi, např́ıklad kružnice
V(x2 + y2 − 1) je varietou v R2, paraboloid V(z − x2 − y2) je varietou v R3.

Jedna rovnice v R2 obvykle určuje křivku. Podobně jedna rovnice v R3 obvykle dává
plochu, která má dimenzi 2, dimenze se tedy opět sńıžila o jedna. Dvě rovnice v R3 obvykle
určuj́ı křivku. Intuitivně se zdá, že každá rovnice sńıž́ı dimenzi o jedna. Bohužel to ale
neplat́ı vždy, např. V(xz, yz) odpov́ıdá varietě ve tvaru sjednoceńı roviny xy s osou z.

Zbývá uvést několik př́ıklad̊u variet ve vyšš́ıch dimenźıch. Řešeńı soustavy m lineárńıch
rovnic pro n neznámých x1, . . ., xn

a11x1 + . . . + a1nxn = b1
...

am1x1 + . . . + amnxn = bm.

(3.1)

s koeficienty v k tvoř́ı afinńı varietu v kn, která se nazývá lineárńı varieta. Z lineárńı algebry
je známa metoda pro řešeńı takové soustavy rovnic (Gaussova eliminace). V kapitole 4 bude
uvedeno zobecněńı tohoto algoritmu pro řešeńı obecné soustavy polynomiálńıch rovnic.
Dimenze lineárńı variety je rovna n − r, kde r je hodnost matice (aij). Tedy dimenze je
dána počtem nezávislých rovnic.

Daľśım př́ıkladem afinńı variety je Lagrangeova úloha, tzn. úloha hledáńı minima nebo
maxima funkce (v tomto př́ıpadě pouze funkce dané polynomem) na dané oblasti, které
je také určena polynomiálńımi podmı́nkami. Např́ıklad pro nalezeńı minima nebo maxima
funkce f(x, y, z) = x3 + 2xyz− z2 na oblasti dané vztahem g(x, y, z) = x2 + y2 + z2 = 1 je
třeba řešit soustavu rovnic

3x2 + 2yz = 2xλ,
2xz = 2yλ,

2xy − 2z = 2zλ,
x2 + y2 + z2 = 1,

(3.2)

která definuje afinńı varietu v R4.
Daľśı možné aplikace afinńıch variet lze nalézt v robotice. Většinu sériových robot̊u i

manipulátor̊u lze popsat pomoćı soustavy polynomiálńıch rovnic. Pro nalezeńı řešeńı př́ımé
i obrácené úlohy je potom nutné řešit tuto soustavu rovnic. Podrobněji se této problematice
věnuje část 6.5.

Lemma 3.2.1 Necht’ V , W ⊂ kn jsou afinńı variety. Potom také V ∪W a V ∩W jsou
afinńı variety a plat́ı

V ∩W = V(f1, . . . , fs, g1, . . . , gt),
V ∪W = V(figj) pro 1 ≤ i ≤ s, 1 ≤ j ≤ t.

D̊ukaz: Je zřejmý, podrobně viz [3], str. 11. �
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Z lemmatu 3.2.1 pro výše uvedený př́ıklad vyplývá, že

V(zx, zy) = V(z) ∪V(x, y).

Obecně lze ř́ıci, že pr̊unik konečného počtu afinńıch variet, resp. sjednoceńı konečného
počtu afinńıch variet je opět afinńı varietou.

3.3 Parametrizace afinńıch variet

Tato část bude věnována problému popisu bod̊u afinńı variety. Pokud existuje nekonečně
mnoho řešeńı soustavy obecně nelineárńıch algebraických rovnic f1 = . . . = fs = 0, potom
je nutné danou afinńı varietu parametrizovat.

Jednoduchým př́ıkladem z lineárńı algebry může být soustava dvou lineárńıch rovnic
pro tři neznámé

x+ y + z = 1,
x+ 2y − z = 3.

Geometricky je řešeńı této soustavy reprezentováno př́ımkou v R3 danou jako pr̊unik rovin
x+y+ z = 1 a x+2y−z = 3. Soustava má nekonečně mnoho řešeńı a ze základńıch kurz̊u
matematiky je zřejmé, že př́ıslušná parametrizace bude

x = −1− 3t,
y = 2 + 2t,
z = t.

Definice 3.3.1 Necht’ k je těleso. Racionálńı funkćı v proměnných t1, . . . , tm s koeficienty
v k se rozumı́ pod́ıl f/g dvou polynom̊u f, g ∈ k[t1, . . . , tm], kde g neńı nulový polynom.
Nav́ıc dvě racionálńı funkce f/g a h/k jsou si rovny, jestlǐze kf = gh v k[t1, . . . , tm].
Množina všech racionálńıch funkćı v proměnných t1, . . . , tm s koeficienty v k se znač́ı
k(t1, . . . , tm).

Snadno se definuj́ı operace sč́ıtáńı a násobeńı, existuje inverzńı prvek a tedy k(t1, . . . , tm)
je těleso.

Racionálńı parametrickou reprezentaćı variety V = V(f1, . . . , fs) ⊂ kn se rozumı́ ra-
cionálńı funkce r1,. . .,rn ∈ k(t1, . . . , tm) takové, že body dané vztahy

x1 = r1(t1, . . . , tm),
...

xn = rn(t1, . . . , tm)

lež́ı na V . Požaduje se také, aby V byla
”
nejmenš́ı“ varieta obsahuj́ıćı tyto body.

Často je varieta V parametrizována polynomy mı́sto racionálńımi funkcemi, což se
nazývá polynomiálńı parametrická reprezentace variety V .

Naproti tomu p̊uvodńı soustava rovnic f1 = · · · = fs = 0, určuj́ıćı varietu V , se nazývá
implicitńı reprezentace.
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Často je výhodné mı́t k dispozici jak parametrické tak implicitńı vyjádřeńı variety.
Zat́ımco např. pro zobrazeńı variety pomoćı poč́ıtače je výhodné parametrické vyjádřeńı
(a implicitńı je naprosto nevhodné), pro zjǐstěńı, zda daný bod lež́ı na varietě, je výhodné
implicitńı vyjádřeńı (do kterého se pouze dosad́ı př́ıslušné souřadnice a okamžitě je vidět
výsledek) a parametrické je zde nevhodné, jelikož vede na řešeńı soustavy rovnic pro para-
metry variety. Potřeba mı́t k dispozici parametrické i implicitńı vyjádřeńı vede k následuj́ıćım
otázkám:

• Existuje racionálńı parametrická reprezentace pro každou afinńı varietu a lze ji nalézt?

• Existuje k parametricky zadané varietě implicitńı popis a lze ho nalézt?

Obecná odpověd’ na prvńı otázku je záporná. V podstatě lze ř́ıci, že většinu afinńıch variet
parametrizovat nelze. Ty, u kterých se to podař́ı, nazýváme neiracionálńı. Obecně je obt́ıžné
ř́ıci, zda je varieta neiracionálńı nebo ne. Naproti tomu odpověd’ na druhou otázku je
kladná. Existuje algoritmus, kterým k dané parametrizaci lze vždy nalézt implicitńı popis.
Tento algoritmus bude popsán v části 6.2.

3.4 Ideály

Tato část bude věnována seznámeńı s pojmem ideálu a naznačeńı souvislosti mezi ideály a
afinńımi varietami. Důležitost ideál̊u je dána t́ım, že umožňuj́ı provádět výpočty na afinńıch
varietách.

Definice 3.4.1 Množina I ⊂ k[x1, . . . , xn] se nazývá ideál v k[x1, . . . , xn], jestlǐze plat́ı:

1. 0 ∈ I,

2. jestlǐze f, g ∈ I, potom f + g ∈ I,

3. jestlǐze f ∈ I a h ∈ k[x1, . . . , xn], potom hf ∈ I.

Prvńım př́ıkladem ideálu v okruhu polynomů je ideál generovaný konečným počtem
polynomů. Pro libovolnou s-tici polynomů f1, . . . , fs ∈ k[x1, . . . , xn] označme

〈f1, . . . , fs〉 =
{ s∑

i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]
}

. (3.3)

Jak se ukáže v následuj́ıćım lemmatu, množina 〈f1, . . . , fs〉 je ideál.

Lemma 3.4.1 Jestlǐze f1, . . . , fs ∈ k[x1, . . . , xn], potom 〈f1, . . . , fs〉 je ideál na množině
k[x1, . . . , xn].
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D̊ukaz: 0 ∈ 〈f1, . . . , fs〉, protože 0 =
∑s

i=1 0 · fi. Dále necht’ f =
∑s

i=1 pifi a g =
∑s

i=1 qifi

a necht’ h ∈ k[x1, . . . , xn]. Potom

f + g =
∑s

i=1(pi + qi)fi,
hf =

∑s

i=1(hpi)fi,

č́ımž je d̊ukaz proveden. �

Definice 3.4.2 Necht’ f1, . . . , fs ∈ k[x1, . . . , xn]. Ideál 〈f1, . . . , fs〉, definovaný vztahem
(3.3), se nazývá ideál generovaný polynomy f1, . . . , fs.

Ideál I ⊂ k[x1, . . . , xn] je konečně generovaný, jestliže existuj́ı f1, . . . , fs ∈ k[x1, . . . , xn]
takové, že I = 〈f1, . . . , fs〉 a f1, . . . , fs tvoř́ı bázi I. Takových báźı je pro každý ideál mnoho.
V části 4.5 bude ukázáno, že každý ideál v k[x1, . . . , xn] je konečně generovaný (Hilbertova
věta o bázi) a že existuje jedna speciálńı a užitečná báze, která se nazývá Gröbnerova báze.

Věta 3.4.2 (Souvislost ideál̊u a afinńıch variet) Jestlǐze f1, . . . , fs a g1, . . . , gt gene-
ruj́ı stejný ideál v k[x1, . . . , xn], tedy 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, potom se rovnaj́ı př́ıslušné
afinńı variety, tj. plat́ı

V(f1, . . . , fs) = V(g1, . . . , gt).

D̊ukaz: Uvažujme libovolný (a1, . . . , an) ∈ V(f1, . . . , fs). Pro něj plat́ı, že

fi(a1, . . . , an) = 0 pro i = 1, 2, . . . , s.

Protože g1, . . . , gt ∈ 〈f1, . . . , fs〉, existuj́ı nějaké polynomy h1,1, . . . , ht,s v n proměnných
tak, že

gj =
s∑

i=1

hj,i · fi pro j = 1, 2, . . . , t.

Odtud plyne, že gj(a1, . . . , an) = 0 pro j = 1, 2, . . . , t. Máme tedy

V(f1, . . . , fs) ⊆ V(g1, . . . , gt).

Opačná inkluze se dokáže zcela analogicky. �

Př́ıklad 3.1 Uvažujme afinńı varietu V(2x2 + 3y2 − 11, x2 − y2 − 3). Jelikož plat́ı

2x2 + 3y2 − 11 = 2(x2 − 4) + 3(y2 − 1),
x2 − y2 − 3 = 1(x2 − 4)− 1(y2 − 1),

lze psát, že 〈2x2 + 3y2 − 11, x2 − y2 − 3〉 = 〈x2 − 4, y2 − 1〉 a tedy podle věty 3.4.2 plat́ı

V(2x2 + 3y2 − 11, x2 − y2 − 3) = V(x2 − 4, y2 − 1) = {(±2,±1)}.

Změnou báze ideálu je tedy možné snáze určit, jak daná varieta vypadá. �
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Věta 3.4.2 ve spojeńı s tzv. Gröbnerovou báźı ideálu dává mocný nástroj pro hledáńı
přesného řešeńı soustav rovnic definuj́ıćıch afinńı variety.

Pro libovolnou afinńı varietu V ⊂ kn označme

I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 pro všechna (a1, . . . , an) ∈ V }. (3.4)

Tato množina zahrnuje všechny polynomy, které nabývaj́ı nulové hodnoty ve všech bodech
afinńı variety, např. pro varietu V(y − x2, z − x3) patř́ı do I(V ) také polynomy z − xy a
y2 − xz. To lze snadno ověřit, protože parametrizace řešeńı afinńı variety může být např.
x = t, y = t2, z = t3.

Lemma 3.4.3 Jestlǐze V ⊂ kn je afinńı varieta, potom I(V ) ⊂ k[x1, . . . , xn] je ideál.

D̊ukaz: Je zřejmé, že 0 ∈ I(V ). Necht’ f, g ∈ I(V ) a h ∈ k[x1, . . . , xn]. Necht’ (a1, . . . , an) je
libovolný bod z V . Potom

f(a1, . . . , an) + g(a1, . . . , an) = 0 a h(a1, . . . , an)f(a1, . . . , an) = 0.

Odtud potom plyne, že I(V ) je ideál. �

Definice 3.4.3 Necht’ V ⊂ kn je afinńı varieta. Ideál I(V ), definovaný vztahem (3.4), se
nazývá ideál variety V .

Př́ıkladem může být např. ideál variety I
(
(0, 0, . . . , 0)

)
= 〈x1, . . . , xn〉, tzn. v počátku

se nuluj́ı všechny polynomy, patř́ıćı do ideálu 〈x1, . . . , xn〉. Daľśım př́ıkladem je I(kn) = 0
pro libovolné nekonečné těleso k, tzn. jediný polynom, který nabývá nuly ve všech bodech
daného prostoru je nulový polynom.

Lemma 3.4.4 Jestlǐze f1, . . . , fs ∈ k[x1, . . . , xn] a V = V(f1, . . . , fs), potom je 〈f1, . . . , fs〉 ⊂
I(V ), přičemž rovnost nemuśı nastat.

D̊ukaz: Uvažujme libovolný f ∈ 〈f1, . . . , fs〉. Ten lze psát jako

f =

s∑

i=1

hifi pro nějaká h1, . . . , hs ∈ k[x1, . . . , xn].

Pro (a1, . . . , an) ∈ V je tedy f(a1, . . . , an) = 0. Proto plat́ı 〈f1, . . . , fs〉 ⊆ I(V ). Dá se ale
ukázat, že nemuśı nastat rovnost. Např́ıklad varieta V(x2, y2) má jediný bod (0, 0). Potom
je ale I(V ) = 〈x, y〉 a je zřejmé, že 〈x2, y2〉 $ 〈x, y〉 (x /∈ 〈x2, y2〉). �

Ačkoliv pro obecné těleso se I(V(f1, . . . , fs)) nemuśı rovnat 〈f1, . . . , fs〉, ideál variety
vždy obsahuje dostatek informaćı pro jednoznačné určeńı variety.

Věta 3.4.5 Jsou-li V a W afinńı variety v kn, plat́ı:

1. V ⊂W právě tehdy, když I(V ) ⊃ I(W ),
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2. V = W právě tehdy, když I(V ) = I(W ).

D̊ukaz: Viz [3], str. 34. �

Základńı otázky týkaj́ıćı se ideál̊u v k[x1, . . . , xn] lze formulovat následuj́ıćım zp̊usobem:

• Lze každý ideál I ⊂ k[x1, . . . , xn] napsat jako I = 〈f1, . . . , fs〉 pro nějaké polynomy
f1, . . . , fs ∈ k[x1, . . . , xn]?

• Mějme dány polynomy f1, . . . , fs ∈ k[x1, . . . , xn]. Existuje algoritmus, pomoćı kterého
lze rozhodnout, zda dané f ∈ k[x1, . . . , xn] nálež́ı ideálu 〈f1, . . . , fs〉?

Řešeńı těchto otázek pro polynomy z k[x1, . . . , xn] bude provedeno v kapitole 4, pro speciálńı
př́ıpad polynomů z k[x] v části 3.5.

3.5 Polynomy v jedné proměnné

Tato část je věnována polynomům v jedné proměnné a známému algoritmu děleńı po-
lynomů. Tento jednoduchý algoritmus má některé překvapivě hluboké d̊usledky. Lze jej
použ́ıt např. k určeńı struktury ideálu z k[x] a k vysvětleńı myšlenky největš́ıho společného
dělitele.

Definice 3.5.1 Mějme dán nenulový polynom f ∈ k[x]. Necht’

f = a0x
m + a1x

m−1 + · · ·+ am,

kde ai ∈ k a a0 6= 0 (tedy m = deg(f)). Potom a0x
m je hlavńı člen f a znač́ı se LT(f) =

a0x
m.

Např́ıklad pro polynom f = 2x3− 4x+3 je hlavńı člen LT(f) = 2x3. Jestliže f a g jsou
nenulové polynomy, potom

deg(f) ≤ deg(g)⇔ LT(f) děĺı LT(g).

Věta 3.5.1 (Algoritmus děleńı polynomů) Necht’ k je těleso a necht’ g je nenulový
polynom v k[x]. Potom každé f ∈ k[x] lze zapsat ve tvaru

f = qg + r,

kde q,r ∈ k[x] a bud’ r = 0 nebo deg(r) < deg(g). Nav́ıc q a r jsou jednoznačně určeny a
existuje algoritmus pro jejich nalezeńı.

D̊ukaz: Je konstrukčńı, z d̊ukazu plyne algoritmus pro nalezeńı q a r. Podrobně viz [3], str.
38. �

Důsledek 3.5.2 Jestlǐze k je těleso a f ∈ k[x] je nenulový polynom, potom f má nejvýše
deg(f) kořen̊u v k.
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Důsledek 3.5.3 Jestlǐze k je těleso, potom každý ideál z k[x] je možné napsat ve tvaru
〈f〉 pro nějaké f ∈ k[x]. Nav́ıc f je jednoznačně určeno vzhledem k násobeńı nenulovou
konstantou z k.

Generátor ideálu je nenulový polynom minimálńıho stupně obsažený v ideálu. Tento
popis ale neńı vhodný k praktickému určeńı generátoru ideálu, jelikož by bylo nutné testovat
stupně všech polynomů v ideálu, kterých je ale nekonečně mnoho. Existuje ale lepš́ı cesta,
jak naj́ıt generátor ideálu. Nástrojem potřebným k řešeńı tohoto problému je největš́ı
společný dělitel.

Definice 3.5.2 Největš́ım společným dělitelem polynom̊u f, g ∈ k[x] je takový polynom h,
pro který plat́ı:

1. h děĺı f , g,

2. jestlǐze p je jiný polynom, který děĺı f a g, potom p děĺı h.

Pokud h splňuje obě tyto vlastnosti, lze psát h = GCD(f, g).

Věta 3.5.4 (Vlastnosti největš́ıho společného dělitele) Necht’ f, g ∈ k[x]. Potom:

1. GCD(f, g) existuje a je jediný vzhledem k násobeńı nenulovou konstantou z k,

2. GCD(f, g) je generátor ideálu 〈f, g〉,

3. existuje algoritmus pro nalezeńı GCD(f, g).

D̊ukaz: Podrobně viz [3], str. 41. Algoritmus pro nalezeńı největš́ıho společného dělitele je
založen na myšlence popsané v poznámce 3.5.5 a nazývá se Euklid̊uv algoritmus. �

Poznámka 3.5.5 Použije-li se zápis f = qg + r, potom plat́ı

GCD(f, g) = GCD(f − qg, g) = GCD(r, g),

protože ideály 〈f, g〉 a 〈f − qg, g〉 jsou stejné. Jestlǐze r 6= 0, je možné proces opakovat. Lze
psát, že g = q′r + r′, a podobnou úvahou se dostane, že

GCD(g, r) = GCD(r, r′),

kde deg(r) > deg(r′) nebo r′ = 0. Opakováńım tohoto procesu se dospěje k zápisu

GCD(f, g) = GCD(g, r) = GCD(r, r′) = GCD(r′, r′′) = · · · ,

kde stupně polynom̊u g, r′, r′′, . . . postupně klesaj́ı nebo proces konč́ı, když některý polynom
r, r′, r′′, . . . je nulový.
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Př́ıklad 3.2 Euklid̊uv algoritmus demonstrujme na př́ıkladě stanoveńı největš́ıho společného
dělitele polynomů x4 − 1 a x6 − 1. Pomoćı algoritmu děleńı polynomů se dostane

x4 − 1 = 0 · (x6 − 1) + x4 − 1,
x6 − 1 = x2(x4 − 1) + x2 − 1,
x4 − 1 = (x2 + 1)(x2 − 1) + 0,

což odpov́ıdá zápisu

GCD(x4 − 1, x6 − 1) = GCD(x6 − 1, x4 − 1) = GCD(x4 − 1, x2 − 1) =
= GCD(x2 − 1, 0) = x2 − 1.

Poznamenejme, že výpočet GCD dává odpověd’ na otázku, jak naj́ıt generátor pro ideál
〈x4− 1, x6− 1〉. Vzhledem k vlastnostem GCD a tomu, že GCD(x4− 1, x6− 1) = x2− 1 lze
psát

〈x4 − 1, x6 − 1〉 = 〈x2 − 1〉.
T́ım byl nalezen generátor uvedeného ideálu. �

Nyńı je přirozené se ptát, co se stane, bude-li ideál generovaný třemi nebo v́ıce poly-
nomy. Odpověd’ dává rozš́ı̌reńı definice pojmu GCD pro v́ıce než dva polynomy.

Definice 3.5.3 Největš́ı společný dělitel polynom̊u f1, . . . , fs ∈ k[x] je takový polynom h,
pro který plat́ı:

1. h děĺı f1, . . . , fs,

2. jestlǐze p je jiný polynom, který děĺı f1, . . . , fs, potom p děĺı h.

Pokud má h tyto vlastnosti, lze psát h = GCD(f1, . . . , fs).

Věta 3.5.6 (Vlastnosti největš́ıho společného dělitele) Necht’ f1, . . . , fs jsou poly-
nomy z k[x] a s ≥ 2. Potom:

1. GCD(f1, . . . , fs) existuje a je jediný vzhledem k násobeńı nenulovou konstantou z k,

2. GCD(f1, . . . , fs) je generátor ideálu 〈f1, . . . , fs〉,

3. jestlǐze s ≥ 3, potom GCD(f1, . . . , fs) = GCD(f1,GCD(f2, . . . , fs)),

4. existuje algoritmus nalezeńı GCD(f1, . . . , fs).

D̊ukaz: Viz [3], str. 43. �

Poznámka 3.5.7 K určeńı nejvěťśıho společného dělitele v́ıce polynom̊u lze použ́ıt opako-
vaně Euklid̊uv algoritmus.
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Př́ıklad 3.3 Uvažujme ideál 〈x3 − 3x + 2, x4 − 1, x6 − 1〉 ⊂ k[x]. Z věty 3.5.6 v́ıme, že
GCD(x3 − 3x+ 2, x4 − 1, x6 − 1) je generátor ideálu. Dá se ukázat, že plat́ı

GCD(x3 − 3x+ 2, x4 − 1, x6 − 1) = GCD(x3 − 3x+ 2,GCD(x4 − 1, x6 − 1)) =

= GCD(x3 − 3x+ 2, x2 − 1) = x− 1.

Odtud potom plyne, že

〈x3 − 3x+ 2, x4 − 1, x6 − 1〉 = 〈x− 1〉.

T́ım byl nalezen generátor uvedeného ideálu. �

Závěr této části bude věnován řešeńı problému př́ıslušnosti k ideálu, tzn. nalezeńı al-
goritmu pro ověřeńı, zda polynom f ∈ k[x] nálež́ı ideálu 〈f1, . . . , fs〉. Prvńım krokem al-
goritmu je nalezeńı generátoru h ideálu 〈f1, . . . , fs〉 pomoćı největš́ıho společného dělitele
a úloha f ∈ 〈f1, . . . , fs〉 je potom ekvivalentńı s úlohou f ∈ 〈h〉. Užit́ım algoritmu děleńı
polynomů lze f vyjádřit ve tvaru f = qh + r, kde deg(r) < deg(h). Je zřejmé, že f nálež́ı
ideálu právě tehdy, když r = 0.

Př́ıklad 3.4 Chtějme určit, zda

x3 + 4x2 + 3x− 7 ∈ 〈x3 − 3x+ 2, x4 − 1, x6 − 1〉.

Z př́ıkladu 3.3 plyne, že generátor uvedeného ideálu je x− 1 a zbývá tedy určit, zda

x3 + 4x2 + 3x− 7 ∈ 〈x− 1〉.

Pomoćı algoritmu děleńı lze x3 + 4x2 + 3x− 7 zapsat ve tvaru

x3 + 4x2 + 3x− 7 = (x2 + 5x+ 8)(x− 1) + 1

a tedy x3 + 4x2 + 3x− 7 nenálež́ı ideálu 〈x3 − 3x+ 2, x4 − 1, x6 − 1〉. �
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Kapitola 4

Gröbnerovy báze

4.1 Úvod

Tato kapitola je věnována Gröbnerovým báźım, které umožňuj́ı řešit problémy spojené
s polynomiálńımi ideály. V kapitole 3 bylo nast́ıněno několik problémů, které budou nyńı
probrány podrobněji.

Problémy:

1. Problém popisu ideálu: Je každý ideál I ⊂ k[x1, . . . , xn] generovaný konečnou množinou
polynomů? Neboli lze psát I = 〈f1, . . . , fs〉 pro nějaká fi ∈ k[x1, . . . , xn]?

2. Problém př́ıslušnosti k ideálu: Mějme dán polynom f ∈ k[x1, . . . , xn] a ideál I =
〈f1, . . . , fs〉 a chtějme vědět, jestli f ∈ I. Geometricky tento problém úzce souviśı
s problémem určeńı, zda V(f1, . . . , fs) lež́ı na varietě V(f).

3. Problém řešeńı soustav nelineárńıch algebraických rovnic: Chtějme naj́ıt v kn všechna
řešeńı soustavy nelineárńıch algebraických rovnic

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0.

Tento problém je shodný s hledáńım bod̊u afinńı variety V(f1, . . . , fs).

4. Problém převodu parametrického vyjádřeńı na implicitńı: Necht’ V je podmnožina
kn daná parametricky vztahy

x1 = g1(t1, . . . , tm),
...

xn = gn(t1, . . . , tm).

Jestliže jsou gi polynomy (nebo racionálńı funkce) v proměnných tj , potom V bude
afinńı varieta nebo jej́ı část. Chtějme naj́ıt soustavu nelineárńıch algebraických rovnic
(v proměnných xi), které definuj́ı tuto varietu.
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Pro nalezeńı odpovědi na otázku (1) lze ř́ıci, že pro každý ideál definovaný na množině
polynomů v konečně mnoha proměnných existuje konečná generuj́ıćı množina. Pouze v př́ıpadě
polynomů v nekonečně mnoha proměnných je odpověd’ záporná. Dále je zřejmé, že problémy
(3) a (4) jsou vlastně vzájemně inverzńı. V problému (3) se hledá řešeńı dané soustavy ne-
lineárńıch algebraických rovnic. Naopak v problému (4) jsou dána řešeńı a úkolem je naj́ıt
soustavu rovnic, která má tato řešeńı.

Př́ıklad 4.1 Uvažujme afinńı lineárńı podprostor V ⊂ k4 definovaný vztahy

x1 = t1 + t2 + 1,
x2 = t1 − t2 + 3,
x3 = 2t1 − 2,
x4 = t1 + 2t2 − 3

a hledejme soustavu lineárńıch rovnic, jej́ımž řešeńım jsou body V . Odečteńım xi od obou
stran i-té rovnice lze rozš́ı̌renou matici soustavy zapsat ve tvaru







1 1 −1 0 0 0 −1
1 −1 0 −1 0 0 −3
2 0 0 0 −1 0 2
1 2 0 0 0 −1 3






,

kde prvńı dva sloupce odpov́ıdaj́ı tj, daľśı xi a posledńı sloupec je pravá strana. Matici lze
převést na trojúhelńıkový tvar







1 0 0 0 −1/2 0 1
0 1 0 0 1/4 −1/2 1
0 0 1 0 −1/4 −1/2 3
0 0 0 1 −3/4 1/2 3






.

Posledńı dva řádky této matice představuj́ı rovnice

x1 −
1

4
x3 −

1

2
x4 − 3 = 0,

x2 −
3

4
x3 +

1

2
x4 − 3 = 0,

které už neobsahuj́ı tj a definuj́ı varietu V v k4. �

Zbývaj́ıćı část této kapitoly bude věnována rozš́ı̌reńı metody užité v předchoźım př́ıkladě
pro soustavy nelineárńıch algebraických rovnic libovolného stupně a libovolného počtu
proměnných. K tomu je třeba zavést uspořádáńı monomů.
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4.2 Uspořádáńı monomů v k[x1, . . . , xn]

Podrobným studiem algoritmu děleńı polynomů v k[x] a algoritmu Gaussovy eliminace pro
soustavy lineárńıch rovnic lze doj́ıt k závěru, že v obou těchto algoritmech hraje d̊uležitou
roli uspořádáńı člen̊u v polynomech. V algoritmu děleńı polynomů v jedné proměnné jsou
jednotlivé členy řazeny sestupně podle jejich stupně, tzn.

· · · > xm+1 > xm > · · · > x2 > x > 1.

Funkčnost algoritmu záviśı na tom, zda jsou systematicky brány vždy hlavńı členy poly-
nomů f a g.

Podobně při Gaussově eliminaci se pracuje v řádce vždy postupně s členy zleva. Uspořádáńı
proměnných x1, . . . , xn je tedy následuj́ıćı:

x1 > x2 > · · · > xn.

Odtud lze usoudit, že d̊uležitou součást́ı jakéhokoliv zobecněńı algoritmu děleńı pro
polynomy ve v́ıce proměnných bude opět uspořádáńı člen̊u v polynomech z k[x1, . . . , xn].
Tato část bude věnována studiu vlastnost́ı, které muśı uspořádáńı mı́t a př́ıklad̊um několika
uspořádáńı, které tyto vlastnosti maj́ı.

Nejdř́ıve připomeňme, že existuje vzájemně jednoznačné přǐrazeńı mezi monomy xα =
xα1

1 · · ·xαn
n ∈ k[x1, . . . , xn] a n-ticemi α = (α1, . . . , αn) ∈ Zn

≥0. Nav́ıc každé uspořádáńı >
vytvořené na prostoru Zn

≥0 dává uspořádáńı monomů: jestliže α > β vzhledem k tomuto
uspořádáńı, potom lze ř́ıci, že xα > xβ .

Jelikož polynom je suma monomů, je nutné uspořádat členy polynomů v sestupném
(resp. vzestupném) pořad́ı. K tomu je třeba porovnat každé dva monomy a stanovit jejich
vzájemnou pozici. Proto je nezbytné požadovat, aby naše uspořádáńı bylo lineárńı neboli
úplné, tzn. že pro každou dvojici monomů xα a xβ plat́ı právě jeden ze vztah̊u

xα > xβ, xα = xβ, xβ > xα.

Každé uspořádáńı člen̊u muśı mı́t také následuj́ıćı vlastnost: jestliže xα > xβ a xγ je
libovolný monom, potom xαxγ > xβxγ . Pro odpov́ıdaj́ıćı vektory exponent̊u a operace nad
nimi to znamená, že jestliže α > β v uspořádáńı na Zn

≥0, potom pro všechna γ ∈ Zn
≥0 je

α + γ > β + γ.

Definice 4.2.1 Uspořádáńı monomů na k[x1, . . . , xn] je libovolná relace > na Zn
≥0 nebo

ekvivalentně libovolná relace na množině monom̊u xα, α ∈ Zn
≥0, která splňuje:

1. > je úplné (neboli lineárńı) uspořádáńı na Zn
≥0,

2. jestlǐze α > β a γ ∈ Zn
≥0, potom α + γ > β + γ,

3. > je dobré uspořádáńı na Zn
≥0. To znamená, že v každé neprázdné podmnožině B ⊂

Zn
≥0 existuje prvek m ∈ B takový, že pro každé α ∈ B plat́ı α ≥ m.
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Lemma 4.2.1 Relace uspořádáńı > na Zn
≥0 je dobré uspořádáńı právě tehdy, když každá

ostře klesaj́ıćı posloupnost v Zn
≥0

α(1) > α(2) > α(3) > · · ·

je konečná.

D̊ukaz: Viz [3], str. 54. �
Důležitost tohoto lemmatu se ukáže až dále. Některé algoritmy muśı skončit po určité době
právě proto, že členy ostře klesaj́ı (vzhledem k danému uspořádáńı monomů) v každém
kroku algoritmu.

Nyńı bude uvedeno několik možných zp̊usob̊u uspořádáńı monomů, které budou dále
použ́ıvány.

Definice 4.2.2 (Lexikografické uspořádáńı) Necht’ α, β ∈ Zn
≥0. Potom α >lex β, jestlǐze

ve vektoru α− β ∈ Zn je prvńı nenulová složka vektoru kladná a lze psát, že xα >lex x
β.

Uved’me několik př́ıklad̊u:

• (3, 2, 3) >lex (1, 3, 6), jelikož α− β = (2,−1,−3),

• (1, 4, 3) >lex (1, 4, 2), jelikož α− β = (0, 0, 1),

• proměnné x1, . . . , xn jsou uspořádány obvyklým zp̊usobem při lexikografickém uspořádáńı:

(1, 0, . . . , 0) >lex (0, 1, . . . , 0) >lex · · · >lex (0, . . . , 0, 1)

a tedy x1 >lex x2 >lex · · · >lex xn.

Existuje mnoho lex uspořádáńı pro daný polynom, vždy zálež́ı na tom, jak jsou seřazeny
proměnné, např. pro x > y > z je lex uspořádáńı jiné než pro z > y > x. To znamená, že
pro n proměnných existuje n! r̊uzných lex uspořádáńı.

Při lexikografickém uspořádáńı hraje rozhoduj́ıćı roli uspořádáńı proměnných bez ohledu
na celkový stupeň monomu. To znamená, že např. pro uspořádáńı x > y > z je x >lex y

5z3.
Pro některé účely je ale třeba vźıt v úvahu i celkový stupeň monomu a uspořádáńı monomů
provést podle vyšš́ıho stupně monomu. Jednou z možných cest je stupňované lexikografické
uspořádáńı.

Definice 4.2.3 (Stupňované lexikografické uspořádáńı) Necht’ α, β ∈ Zn
≥0. Označme

|α| =
n∑

i=1

αi, |β| =
n∑

i=1

βi.

Potom α >grlex β, jestlǐze plat́ı

|α| > |β| nebo |α| = |β| ∧ α >lex β.
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Je vidět, že při tomto uspořádáńı se nejdř́ıve uvažuje celkový stupeň monomu a až následně
pro stejný stupeň monomů lexikografické uspořádáńı, např.

• (1, 2, 3) >grlex (3, 2, 0), jelikož |(1, 2, 3)| = 6 > |(3, 2, 0)| = 5,

• (1, 2, 4) >grlex (1, 1, 5), jelikož |(1, 2, 4)| = |(1, 1, 5)| a (1, 2, 4) >lex (1, 1, 5),

• proměnné jsou uspořádány podle lexikografického uspořádáńı x1 >grlex · · · >grlex xn.

Podobně jako u lex uspořádáńı existuje n! r̊uzných grlex uspořádáńı na n proměnných,
závisej́ıćıch na seřazeńı daných proměnných.

Daľśım př́ıkladem uspořádáńı monomů je stupňované inverzńı lexikografické uspořádáńı.

Definice 4.2.4 (Stupňované inverzńı lexikografické uspořádáńı) Necht’ α, β
∈ Zn

≥0. Označme

|α| =
n∑

i=1

αi, |β| =
n∑

i=1

βi.

Potom α >grevlex β, jestlǐze plat́ı
|α| > |β|

nebo |α| = |β| a v rozd́ılu α− β ∈ Zn je posledńı nenulová složka vektoru záporná.

Jednoduché př́ıklady:

• (4, 7, 1) >grevlex (4, 2, 3), jelikož |(4, 7, 1)| = 12 > |(4, 2, 3)| = 9,

• (1, 5, 2) >grevlex (4, 1, 3), jelikož |(1, 5, 2)| = |(4, 1, 3)| a α− β = (−3, 4,−1),

• proměnné jsou uspořádány standardńım zp̊usobem, tzn. x1 >grevlex x2 >grevlex · · · >grevlex

xn.

Rozd́ıly mezi grlex a grevlex uspořádáńım nastanou v př́ıpadě rovnosti celkových
stupň̊u monomů. Uspořádáńı grlex použ́ıvá v takovém př́ıpadě lex uspořádáńı a upřednostňuje
vyšš́ı mocninu největš́ı proměnné. Naproti tomu uspořádáńı grevlex dává přednost nižš́ı
mocnině nejmenš́ı proměnné.

Jestliže f =
∑

α

aαx
α je polynom v k[x1, . . . , xn], potom každé uspořádáńı monomů

jednoznačně určuje pořad́ı monomů.

Př́ıklad 4.2 Vezměme polynom f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈ k[x, y, z]. Potom

• pro lex uspořádáńı dostaneme f = −5x3 + 7x2z2 + 4xy2z + 4z2

• pro grlex uspořádáńı dostaneme f = 7x2z2 + 4xy2z − 5x3 + 4z2

• pro grevlex uspořádáńı dostaneme f = 4xy2z + 7x2z2 − 5x3 + 4z2 �
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V následuj́ıćı definici zavedeme některá označeńı, která budou použ́ıvána v daľśıch
částech textu.

Definice 4.2.5 Necht’ f =
∑

α

aαx
α je nenulový polynom v k[x1, . . . , xn] a necht’ > je

uspořádáńı monom̊u. Potom:

1. Maximálńı stupeň polynomu f je multideg(f) = max(α ∈ Zn
≥0 : aα 6= 0).

2. Hlavńı koeficient polynomu f je LC(f) = amultideg(f) ∈ k.

3. Hlavńı monom polynomu f je LM(f) = xmultideg(f).

4. Hlavńı člen polynomu f je LT(f) = LC(f) · LM(f).

Např́ıklad pro f = 4xy2z+4z2−5x3 +7x2z2 s uvažováńım lexikografického uspořádáńı
je multideg(f) = (3, 0, 0), LC(f) = −5, LM(f) = x3, LT(f) = −5x3.

4.3 Algoritmus děleńı v k[x1, . . . , xn]

V této části bude uvedeno rozš́ı̌reńı klasického algoritmu děleńı v k[x] pro polynomy
v k[x1, . . . , xn]. V obecném př́ıpadě je ćılem vyděleńı polynomu f ∈ k[x1, . . . , xn] s-tićı
polynomů f1, . . . , fs ∈ k[x1, . . . , xn].

Základńı myšlenka algoritmu je stejná jako v př́ıpadě jedné proměnné: je nutné anulovat
hlavńı člen f (s ohledem na uspořádáńı monomů) vynásobeńım některého fi vhodným
monomem a odečteńım. Potom tento monom odpov́ıdá ai. Nejdř́ıve bude uveden př́ıklad.

Př́ıklad 4.3 V tomto př́ıkladě budou demonstrovány problémy, které mohou vznikat pouze
v souvislosti s děleńım polynomů ve v́ıce než jedné proměnné. Úkolem je vydělit f =
x2y+ xy2 + y2 polynomy f1 = xy− 1 a f2 = y2− 1 s použit́ım lexikografického uspořádáńı
s x > y. Prvńı dva kroky algoritmu jsou standardńı, přičemž dostaneme

fi ai

x2y + xy2 + y2 :

{
xy − 1
y2 − 1

=
x+ y

x2y − x
xy2 + x + y2

xy2 − y
x + y2 + y

Je vidět, že ani LT(f1) = xy ani LT(f2) = y2 neděĺı LT(x+ y2 + y) = x. Ale x+ y2 + y neńı
zbytek po děleńı, protože LT(f2) děĺı y2. Proto se x přesune do zbytku a děleńı pokračuje
dále. Pro zbytek r je vytvořen zvláštńı sloupec, kam budou zařazovány členy patř́ıćı do
zbytku.

Obecněji lze ř́ıci, že pokud nelze dělit ani LT(f1) ani LT(f2), přesune se hlavńı člen do
zbytku a děleńı pokračuje dále. Celé děleńı lze zapsat ve tvaru:
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fi ai r

x2y + xy2 + y2 :

{
xy − 1
y2 − 1

=
x+ y
1

x2y − x
xy2 + x + y2

xy2 − y
x + y2 + y
y2 + y −→ x
y2 − 1
y + 1
1 −→ x+ y
0 −→ x+ y + 1

Lze tedy psát x2y + xy2 + y2 = (x+ y) · (xy − 1) + 1 · (y2 − 1) + x+ y + 1. �

Věta 4.3.1 (Algoritmus děleńı v k[x1, . . . ,xn]) Necht’ > je uspořádáńı monom̊u na Zn
≥0

a necht’ F = (f1, . . . , fs) je uspořádaná s-tice polynom̊u z k[x1, . . . , xn]. Potom každý poly-
nom f ∈ k[x1, . . . , xn] je možné vyjádřit ve tvaru

f = a1f1 + · · ·+ asfs + r,

kde ai, r ∈ k[x1, . . . , xn] a bud’ r = 0 nebo r je lineárńı kombinace monom̊u s koeficienty z
k, z nichž žádný neńı dělitelný LT(f1), . . . , LT(fs). Člen r se nazývá zbytek f po děleńı F .
Nav́ıc jestlǐze aifi 6= 0, potom plat́ı multideg(f) ≥ multideg(aifi).

D̊ukaz: Existence koeficient̊u ai a zbytku r se dokáže sestrojeńım algoritmu pro jejich
nalezeńı. Algoritmus pro děleńı polynomů ve v́ıce proměnných má následuj́ıćı podobu:

Input: f1, . . . , fs, f
Output: a1, . . . , as, r
a1 := 0; . . . ; as := 0; r := 0
p := f
WHILE p 6= 0 DO

i := 1
provedeno děleńı := false

WHILE i ≤ s AND provedeno děleńı = false DO

IF LT(fi) děĺı LT(p) THEN

ai := ai + LT(p)/LT(fi)

p := p−
(

LT(p)/LT(fi)
)

fi

provedeno děleńı := true

ELSE

i := i+ 1
IF provedeno děleńı = false THEN

r := r + LT(p)
p := p− LT(p)
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Při každém pr̊uchodu vněǰśım cyklem se provede právě jeden z př́ıkaz̊u p := p− LT(p),
p := p−

(
LT(p)/LT(fi)

)
fi a tedy stupeň p klesne. Proto algoritmus skonč́ı.

Plat́ı invariant f = a1f1 + · · · + p + r, a přitom každý člen každého ai je pod́ılem
LT(p)/LT(fi) z nějakého okamžiku. Proto stupeň těchto člen̊u je menš́ı než stupeň p
v daném okamžiku a ten je nejvýše roven stupni f . Dohromady stupeň každého aifi je
menš́ı nebo roven stupni f . �

Tato část bude uzavřena posouzeńım vlastnost́ı algoritmu děleńı polynomů ve v́ıce
proměnných. Důležitou vlastnost́ı algoritmu děleńı v k[x] je jednoznačné určeńı zbytku.
Z př́ıkladu 4.4 ale vyplývá, že to už neplat́ı pro algoritmus děleńı ve v́ıce proměnných.
Nejlépe uvedený algoritmus funguje ve spojeńı s tzv. Gröbnerovou báźı.

Př́ıklad 4.4 Polynom f = x2y+xy2+y2 má být vydělen polynomy f1 = y2−1 a f2 = xy−1
s použit́ım lexikografického uspořádáńı s x > y. Jedná se tedy o obdobu př́ıkladu 4.3, pouze
je zaměněno pořad́ı dělitel̊u. Provedeńı děleńı podle uvedeného algoritmu vede k zápisu

fi ai r

x2y + xy2 + y2 :

{
y2 − 1
xy − 1

=
x+ 1
x

x2y − x
xy2 + x + y2

xy2 − x
2x + y2

y2 −→ 2x
y2 − 1
1
0 −→ 2x+ 1

Potom tedy

x2y + xy2 + y2 = (x+ 1) · (y2 − 1) + x · (xy − 1) + 2x+ 1.

Srovnáńım s př́ıkladem 4.3 je zřejmé, že zbytek je při záměně pořad́ı dělitel̊u jiný. �

Zbytek r tedy neńı jednoznačně určený vzhledem k požadavku, aby žádný z člen̊u
r nebyl dělitelný LT(f1), . . . , LT(fs). Př́ıklady 4.3 a 4.4 ukazuj́ı, že a1 . . . , as, r záviśı na
uspořádáńı s-tice polynomů (f1, . . . , fs).

Algoritmus děleńı polynomů ve v́ıce proměnných úzce souviśı s řešeńı problému př́ıslušnosti
k ideálu. Jestliže po děleńı polynomu f s-tićı F = (f1, . . . , fs) je zbytek r = 0, potom

f = a1f1 + · · ·+ asfs

a f ∈ 〈f1, . . . , fs〉. Je tedy vidět, že r = 0 je postačuj́ıćı podmı́nkou pro př́ıslušnost k ideálu.
Následuj́ıćı př́ıklad demonstruje, že to ale neńı podmı́nka nutná.
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Př́ıklad 4.5 Necht’ f1 = xy + 1, f2 = y2 − 1 ∈ k[x] s lex uspořádáńım. Úkolem je vydělit
polynom f = xy2−x dvojićı polynomů F = (f1, f2). Provedeńım algoritmu děleńı je možné
f vyjádřit ve tvaru

xy2 − x = y · (xy + 1) + 0 · (y2 − 1) + (−x− y).

Děleńı dvojićı polynomů F = (f2, f1) vede k zápisu

xy2 − x = x · (y2 − 1) + 0 · (xy + 1) + 0.

Odtud je vidět, že f ∈ 〈f1, f2〉, a přesto při děleńı F = (f1, f2) je zbytek nenulový. �

Daľśı části budou věnovány hledáńı vhodné generuj́ıćı množiny, pro kterou dává al-
goritmus děleńı polynomů ve v́ıce proměnných jednoznačné výsledky. Ukáže se, že touto
vhodnou generuj́ıćı množinou ideálu je tzv. Gröbnerova báze daného ideálu.

4.4 Monomické ideály a Dicksonovo lemma

Tato část se bude zabývat speciálńım př́ıpadem ideál̊u, tzv. monomickými ideály.

Definice 4.4.1 Ideál I ⊂ k[x1, . . . , xn] se nazývá monomický ideál, jestlǐze existuje podmnožina
A ⊂ Zn

≥0 (i nekonečná) taková, že I obsahuje všechny polynomy ve tvaru konečné sumy
∑

α∈A

hαx
α, kde hα ∈ k[x1, . . . , xn]. Potom I = 〈xα : α ∈ A〉.

Př́ıkladem monomického ideálu je ideál I = 〈x4y2, x3y4, x2y5〉 ⊂ k[x, y]. Naopak př́ıkladem
ideálu, který neńı monomický, je ideál J = 〈xy2 − y3, x2y3 + xy4〉.

Lemma 4.4.1 Necht’ I = 〈xα : α ∈ A〉 je monomický ideál. Potom monom xβ nálež́ı I
právě tehdy, když xβ je dělitelné xα pro nějaké α ∈ A.

D̊ukaz: Je technický, podrobně viz [3], str. 69. �

Lemma 4.4.2 Necht’ I je monomický ideál a necht’ f ∈ k[x1, . . . , xn]. Potom jsou následuj́ıćı
tvrzeńı ekvivalentńı:

1. f ∈ I,

2. každý člen f lež́ı v I,

3. f je lineárńı kombinaćı monom̊u z I s koeficienty z k.

D̊ukaz: Implikace 3 ⇒ 2 ⇒ 1 jsou triviálńı. Zbývá tedy ukázat, že 1 ⇒ 3. Plat́ı, že
f =

∑

α aαx
α ∈ I, kde aα ∈ k. Z předpokladu vyplývá, že lze vyjádřit f =

∑

β∈A hβx
β ,

kde hβ ∈ k[x1, . . . , xn]. Každý člen aαx
α se muśı rovnat některému členu z druhé rovnosti,

tedy existuj́ı taková d ∈ k, δ ∈ Zn
≥0 tak, že aαx

α = dxβ+δ. Proto xα ∈ I a tedy plat́ı 3. �
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Důsledek 4.4.3 Dva monomické ideály splývaj́ı právě tehdy, když obsahuj́ı stejné mo-
nomy.

Hlavńım výsledkem této části je tvrzeńı, že každý monomický ideál z k[x1, . . . , xn] je
konečně generovaný.

Věta 4.4.4 (Dicksonovo lemma) Každý monomický ideál I = 〈xα : α ∈ A〉 ⊂ k[x1, . . . , xn]
lze napsat ve tvaru

I = 〈xα(1), . . . , xα(s)〉,
kde α(1), . . . , α(s) ∈ A. Ideál I má konečnou bázi.

D̊ukaz: Provád́ı se indukćı podle počtu proměnných, podrobně viz [3], str. 70. �

Důsledek 4.4.5 Necht’ > je relace na Zn
≥0 splňuj́ıćı:

1. > je úplné uspořádáńı na Zn
≥0,

2. jestlǐze α > β a γ ∈ Zn
≥0, potom α + γ > β + γ. Potom > je dobré uspořádáńı právě

tehdy, když α ≥ 0 ∀α ∈ Zn
≥0.

Užit́ım d̊usledku 4.4.5 lze zjednodušit definici 4.2.1. Podmı́nky 1 a 2 z̊ustanou beze
změn, pouze podmı́nka 3 se nahrad́ı jednodušš́ı podmı́nkou α ≥ 0 ∀α ∈ Zn

≥0. Ověřeńı této
podmı́nky (a tedy zjǐstěńı, zda uspořádáńı je uspořádáńım monomů) je mnohem snazš́ı.

4.5 Věta o Hilbertově bázi a Gröbnerovy báze

V této části bude provedeno kompletńı řešeńı problému popisu ideálu, přičemž bude zaměřena
na báze ideálu, které maj́ı jisté dobré vlastnosti vzhledem k algoritmu děleńı popsanému
v 4.3. Kĺıčem je myšlenka, že pro dané uspořádáńı monomů odpov́ıdá každému polynomu
f ∈ k[x1, . . . , xn] jednoznačně určený hlavńı člen LT(f).

Definice 4.5.1 Necht’ I ⊂ k[x1, . . . , xn] je ideál r̊uzný od {0}, tzn. obsahuje alespoň jeden
polynom r̊uzný od nuly.

1. Označme LT(I) množinu hlavńıch člen̊u prvk̊u I. Tedy

LT(I) = {cxα : existuje f ∈ I takové, že LT(f) = cxα}.

2. Označme 〈LT(I)〉 ideál generovaný prvky LT(I).

Hlavńı členy hrály d̊uležitou roli v algoritmu děleńı popsanému v 4.3. Pro danou
konečnou generuj́ıćı množinu ideálu I = 〈f1, . . . , fs〉, mohou být 〈LT(I)〉 a 〈LT(f1), . . . , LT(fs)〉
r̊uzné ideály. Je pravda, že LT(fi) ∈ LT(I) ⊂ 〈LT(I)〉, z čehož plyne 〈LT(f1), . . . , LT(fs)〉 ⊂
〈LT(I)〉. Avšak 〈LT(I)〉 může být i ostře větš́ı. To bude ukázáno v následuj́ıćım př́ıkladě.
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Př́ıklad 4.6 Necht’ I = 〈f1, f2〉, kde f1 = x3− 2xy a f2 = x2y− 2y2 + x a použijme grlex
uspořádáńı monomů v k[x, y]. Potom

x · (x2y − 2y2 + x)− y · (x3 − 2xy) = x2

a tedy x2 ∈ I. Tud́ıž x2 = LT(x2) ∈ 〈LT(I)〉. Ale x2 neńı dělitelné LT(f1) = x3 nebo
LT(f2) = x2y a tedy x2 /∈ 〈LT(f1), LT(f2)〉. �

Věta 4.5.1 Necht’ I ⊂ k[x1, . . . , xn] je ideál. Potom

1. 〈LT(I)〉 je monomický ideál,

2. existuje g1, . . . , gt ∈ I takové, že 〈LT(I)〉 = 〈LT(g1), . . . , LT(gt)〉.
D̊ukaz: Podrobně viz [3], str. 75. �

Jelikož je 〈LT(I)〉 monomický ideál , je možné aplikovat poznatky z části 4.4, zejména
Dicksonovo lemma k d̊ukazu druhé části věty 4.5.1. Tato věta může být potom společně s
algoritmem děleńı polynomů použita k d̊ukazu existence konečné generuj́ıćı množiny pro
každý polynomiálńı ideál.

Věta 4.5.2 (Hilbertova věta o bázi) Každý ideál I ⊂ k[x1, . . . , xn] má konečnou ge-
neruj́ıćı množinu. Proto I = 〈g1, . . . , gt〉 pro nějaké g1, . . . , gt ∈ I.
D̊ukaz: Pokud by I = {0}, za generuj́ıćı množinu lze vźıt {0}, která je jistě konečná. Pokud
I obsahuje nějaký nenulový polynom, potom podle předchoźı věty (a podle Dicksonova
lemmatu) existuj́ı g1, . . . , gt takové, že 〈LT(I)〉 = 〈LT(g1), . . . , LT(gt)〉. Předpokládejme, že
I = 〈g1, . . . , gt〉.

Je zřejmé, že 〈g1, . . . , gt〉 ⊂ I, protože každé gi ∈ I. Vezměme nyńı libovolný polynom
f ∈ I a vydělme ho polynomy g1, . . . , gt. Potom lze psát

f = a1g1 + · · ·+ atgt + r,

kde žádný člen r neńı dělitelný LT(g1), . . . , LT(gt). Je vidět, že

r = f − a1g1 − · · · − atgt ∈ I.
Pokud by r 6= 0, potom nutně LT(r) ∈ 〈LT(I)〉 = 〈LT(g1), . . . , LT(gt)〉, a protože je 〈LT(I)〉
monomiálńı, muśı být LT(r) dělitelný některým z jeho generátor̊u LT(gi). To je ale ve sporu
s t́ım, že r je zbytek po děleńı. Proto r = 0. Potom

f = a1g1 + · · ·+ atgt + 0 ∈ 〈g1, . . . , gt〉.
Odtud plyne, že I ⊂ 〈g1, . . . , gt〉, č́ımž je d̊ukaz ukončen. �

Věta 4.5.2 dává odpověd’ na problém popisu ideálu. Nav́ıc speciálńı vlastnost́ı báze
popsané ve větě 4.5.2 je, že

〈LT(I)〉 = 〈LT(g1), . . . , LT(gt)〉.
Taková báze bude speciálně označena.
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Definice 4.5.2 Zvolme uspořádáńı monom̊u. Řekneme, že konečná množina G = {g1, . . . , gt}
ideálu I je Gröbnerovou báźı (nebo standardńı báźı), jestlǐze

〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉.
Ekvivalentně lze ř́ıci, že množina {g1, . . . , gt} ⊂ I je Gröbnerovou báźı I právě tehdy,

když hlavńı člen libovolného prvku I je dělitelný LT(gi) pro nějaké i.

Důsledek 4.5.3 Zvolme uspořádáńı monom̊u. Potom každý ideál I j k[x1, . . . , xn] má
Gröbnerovu bázi. Naopak každá množina polynom̊u g1, . . . , gt ∈ I, pro kterou plat́ı 〈LT(I)〉 =
〈LT(g1), . . . , LT(gt)〉, je Gröbnerovou báźı ideálu I.

Např́ıklad pro bázi {f1, f2} = {x3 − 2xy, x2y − 2y2 + x} z př́ıkladu 4.6 je vidět, že
vzhledem ke grlex uspořádáńı neńı Gröbnerovou báźı, jelikož x2 ∈ 〈LT(I)〉, ale x2 /∈
〈LT(f1), LT(f2)〉. Podrobněji bude problematika určováńı, zda je daná báze Gröbnerovou
báźı, zmı́něna později.

Tato část bude zakončena dvěma aplikacemi Hilbertovy věty o bázi. Prvńı je tvrzeńı
o ideálech v k[x1, . . . , xn]. Vzestupná řada ideálu je posloupnost

I1 ⊂ I2 ⊂ I3 ⊂ · · · .
Např́ıklad posloupnost 〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉 tvoř́ı konečnou vzestupnou
řadu ideál̊u.

Věta 4.5.4 (Podmı́nka vzestupné řady) Necht’ I1 ⊂ I2 ⊂ I3 ⊂ · · · tvoř́ı vzestupnou
řadu ideál̊u v k[x1, . . . , xn]. Potom existuje N ≥ 1 takové, že

IN = IN+1 = IN+2 = · · · .
D̊ukaz: Označme I =

⋃∞
i=1 Ii. Zřejmě I je ideál. Podle Hilbertovy věty existuj́ı f1, . . . , fs

tak, že I = 〈f1, . . . , fs〉. Ale každý generátor je obsažen v nějakém Ij , tedy fi ∈ Iji
pro

nějaké ji. Vezměme N jako maximum z těchto ji. Potom tedy fi ∈ IN pro všechna i. Lze
tedy psát

I = 〈f1, . . . , fs〉 ⊂ IN ⊂ IN+1 ⊂ · · · ⊂ I

a všechny tyto ideály jsou si rovny. �

Tvrzeńı, že každá vzestupná řada ideálu v k[x1, . . . , xn] se stabilizuje, se zkráceně nazývá
ACC (Ascending Chain Condition) a je ekvivalentńı d̊usledku Hilbertovy věty o bázi.

Druhý d̊usledek Hilbertovy věty o bázi je geometrický. Afinńı variety byly dosud uvažovány
jako množiny řešeńı konečné soustavy polynomiálńıch rovnic

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 ∀i}.
Hilbertova věta o bázi ukazuje, že má také smysl hovořit o afinńıch varietách definovaných
ideálem I ⊂ k[x1, . . . , xn].
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Definice 4.5.3 Necht’ I ⊂ k[x1, . . . , xn] je ideál. Označme V(I) množinu

V(I) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 ∀f ∈ I}.

Přestože nenulový ideál I vždy obsahuje nekonečně mnoho r̊uzných polynomů, množinu
V(I) lze vždy definovat pomoćı konečné soustavy polynomiálńıch rovnic.

Věta 4.5.5 Jestlǐze I = 〈f1, . . . , fs〉, potom V(I) = V(f1, . . . , fs) a tedy V(I) je afinńı
varieta.

Nejd̊uležitěǰśım d̊usledkem věty 4.5.5 je, že variety jsou určeny ideály.

4.6 Vlastnosti Gröbnerových báźı

Tato část bude věnována vlastnostem Gröbnerových báźı a možnostem určeńı, zda daná
báze ideálu je Gröbnerovou báźı.

Věta 4.6.1 Necht’ G = {g1, . . . , gt} je Gröbnerova báze ideálu I ⊂ k[x1, . . . , xn] a f ∈
k[x1, . . . , xn]. Potom existuje jediné r ∈ k[x1, . . . , xn] s následuj́ıćımi vlastnostmi:

1. žádný člen r neńı dělitelný žádným z hlavńıch člen̊u LT(g1), . . . , LT(gt),

2. existuje g ∈ I takové, že f = g + r.

D̊ukaz: Viz [27], str. 17. �

Ačkoliv zbytek r je určený jednoznačně, koeficienty ai źıskané algoritmem děleńı (do-
staneme f = a1g1 + · · ·+ atgt + r) se mohou měnit v závislosti na pořad́ı g1, . . . , gt.

Důsledek 4.6.2 Necht’ f ∈ k[x1, . . . , xn] a necht’ G = {g1, . . . , gt} je Gröbnerova báze pro
ideál I ⊂ k[x1, . . . , xn]. Potom f ∈ I právě tehdy, když zbytek po děleńı f prvky báze G je
nula.

Tato vlastnost se také někdy bere jako definice Gröbnerovy báze, protože je ekvivalentńı
s podmı́nkou 〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉. Užit́ı d̊usledku 4.6.2 vede k algoritmu pro
řešeńı př́ıslušnosti k ideálu. Za předpokladu, že je známa Gröbnerova báze G ideálu, je
potřeba pouze spoč́ıtat zbytek po děleńı f prvky báze G.

Zbývá ukázat, jak lze naj́ıt Gröbnerovu bázi. K tomu je nutné zavést nejprve některé
daľśı pojmy a označeńı.

Definice 4.6.1 Označ́ıme f̄F zbytek po děleńı f uspořádanou s-tićı F = (f1, . . . , fs).

Definice 4.6.2 Necht’ f, g ∈ k[x1, . . . , xn] jsou nenulové polynomy.
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1. Necht’ multideg(f) = α, multideg(g) = β a necht’ γ = (γ1, . . . , γn), kde γi = max(αi, βi)
pro každé i. Monom xγ se nazývá nejmenš́ı společný násobek LM(f) a LM(g) a znač́ı
se xγ = LCM(LM(f), LM(g)).

2. S-polynom polynom̊u f a g je kombinace

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

Např́ıklad necht’ f = x3y2 − x2y3 + x a g = 3x4y + y2 v R[x, y] a uvažujme grlex
uspořádáńı. Potom γ = (4, 2) a

S(f, g) =
x4y2

x3y2
· f − x4y2

3x4y
· g = x · f − 1

3
y · g = −x3y3 + x2 − 1

3
y3.

Lemma 4.6.3 Mějme součet tvaru
t∑

i=1

cix
α(i)gi, kde c1, . . . , ct jsou konstanty a α(i) +

multideg(gi) = δ ∈ Zn
≥0 pro ci 6= 0. Jestlǐze

multideg
( t∑

i=1

cix
α(i)gi

)

< δ,

potom existuj́ı konstanty cjk takové, že

t∑

i=1

cix
α(i)gi =

∑

j,k

cjkx
δ−γjkS(gj, gk),

kde xγjk = LCM(LM(gj), LM(gk)). Nav́ıc každé xδ−γjkS(gj, gk) má maximálńı stupeň menš́ı
než δ.

D̊ukaz: Podrobně viz [3], str.83. �

Pomoćı S-polynomu a lemmatu 4.6.3 lze formulovat následuj́ıćı kritérium, ze kterého
vyplývá algoritmus pro ověřeńı, kdy je báze ideálu Gröbnerovou báźı.

Věta 4.6.4 (Nutná a postačuj́ıćı podmı́nka Gröbnerovy báze) Necht’ I je polynomiálńı
ideál. Potom báze G = {g1, . . . , gt} je Gröbnerovou báźı pro ideál I právě tehdy, když pro
všechny dvojice i, j, i 6= j je zbytek po děleńı S(gi, gj) prvky báze G (seřazené v jistém
pořad́ı) roven nule.

D̊ukaz: Viz [27], str. 19. �

58



Př́ıklad 4.7 Uvažujme ideál I = 〈y − x2, z − x3〉 a ukažme, že G = {y − x2, z − x3} je
Gröbnerova báze vzhledem k lex uspořádáńı pro y > z > x. K d̊ukazu lze už́ıt větu 4.6.4.
Báze G má pouze dva členy a tedy stač́ı ověřit, že zbytek po děleńı S-polynomu

S(y − x2, z − x3) =
yz

y
(y − x2)− yz

z
(z − x3) = yx3 − zx2

prvky báze G je nula. Provedeńım algoritmu děleńı lze dostat

yx3 − zx2 = x3 · (y − x2) + (−x2) · (z − x3) + 0

a tedy S(y − x2, z − x3)
G

= 0. Podle předchoźı věty je tedy G Gröbnerovou báźı. Podobně
by bylo možné ověřit, že G neńı Gröbnerovou báźı vzhledem k lex uspořádáńı pro x > y >
z. �

4.7 Buchberger̊uv algoritmus

Tato část bude věnována zejména algoritmu nalezeńı Gröbnerovy báze pro ideál I ⊂
k[x1, . . . , xn].

Př́ıklad 4.8 Uvažujme k[x, y] s grlex uspořádáńım a necht’ I = 〈f1, f2〉 = 〈x3−2xy, x2y−
2y2 + x〉. Podle věty 4.6.4 lze snadno ověřit, že {f1, f2} neńı Gröbnerovou báźı ideálu I,
jelikož LT(S(f1, f2)) = −x2 /∈ 〈LT(f1), LT(f2)〉.

Prvńı přirozenou myšlenkou, jak vytvořit Gröbnerovu bázi, je rozš́ı̌rit p̊uvodńı gene-
ruj́ıćı množinu na Gröbnerovu bázi přidáńım polynomů do generuj́ıćı množiny ideálu I.
V jistém smyslu to nepřináš́ı nic nového a pouze to vnáš́ı redundanci do báze I. Avšak
daľśı informace, které lze źıskat z Gröbnerovy báze, to vynahrad́ı.

Které daľśı generátory je nutné přidat? Pro S-polynom S(f1, f2) = −x2 ∈ I je zbytek
po děleńı F = {f1, f2} roven −x2, je tedy nenulový a měl by být přidán do generuj́ıćı
množiny jako nový generátor f3 = −x2. Potom F = {f1, f2, f3} a pomoćı věty 4.6.4 lze
ověřit, zda je to Gröbnerova báze. Tedy

S(f1, f2) = f3 tedy S(f1, f2)
F

= 0,

S(f1, f3) = (x3 − 2xy)− (−x)(−x2) = −2xy ale S(f1, f3)
F

= −2xy 6= 0.

Do generuj́ıćı množiny se tedy přidá f4 = −2xy. Potom F = {f1, f2, f3, f4} a lze psát

S(f1, f2)
F

= S(f1, f3)
F

= 0,

S(f1, f4) = −2xy2 = yf4 tedy S(f1, f4)
F

= 0,

S(f2, f3) = −2y2 + x ale S(f2, f3)
F

= −2y2 + x 6= 0.

Rozš́ı̌reńım generuj́ıćı množiny o f5 = −2y2+x je F = {f1, f2, f3, f4, f5}. Snadno lze ověřit,
že plat́ı

S(fi, fj)
F

= 0 pro všechna 1 ≤ i < j ≤ 5.
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Z věty 4.6.4 potom plyne, že

{f1, f2, f3, f4, f5} = {x3 − 2xy, x2y − 2y2 + x,−x2,−2xy,−2y2 + x}

je Gröbnerovou báźı pro ideál I. �

Postup, předvedený v př́ıkladě 4.8, lze zapsat jako algoritmus pro sestrojeńı Gröbnerovy
báze. Verze, která zde bude uvedena, je pouze základńı. V 70. a 80. letech 20. stolet́ı
byla provedena mnohá vylepšeńı tohoto algoritmu vedoućı ke zvýšeńı efektivity výpočtu.
Některá z těchto vylepšeńı budou uvedena v části 4.8.

Věta 4.7.1 (Buchberger̊uv algoritmus) Necht’ I = 〈f1, . . . , fs〉 6= {0} je polynomiálńı
ideál. Potom lze Gröbnerovu bázi sestrojit konečným počtem krok̊u následuj́ıćıho algoritmu:

Input: F = (f1, . . . , fs)
Output: Gröbnerova báze G = (g1, . . . , gt) pro ideál I, F ⊂ G
G := F
REPEAT

G′ := G
FOR každou dvojici {p, q}, p 6= q v G′ DO

S := S(p, q)
G′

IF S 6= 0 THEN G := G ∪ {S}
UNTIL G = G′

D̊ukaz: Nejdř́ıve se ukáže, že G ⊂ I plat́ı v každé fázi algoritmu. Kdykoliv dojde k rozš́ı̌reńı

G, přidá se zbytek S = S(p, q)
G′

pro p, q ∈ G. A tedy, jestliže G ⊂ I, potom i p, q a také
S(p, q) jsou v I, a protože se dělilo prvky G′ ⊂ I, je G ∪ S ⊂ I. G také obsahuje danou
bázi F a tedy G je báze I.

Algoritmus konč́ı, když G = G′, což znamená, že S(p, q)
G

= 0 pro všechna p, q ∈ G.
Proto podle věty 4.6.4 je G Gröbnerovou báźı I.

Zbývá ukázat, že algoritmus skonč́ı. K tomu je nutné podrobněji zkoumat, co se stane
po každém pr̊uchodu hlavńım cyklem algoritmu. Množina G se skládá z G′ (G z minulého
pr̊uchodu cyklem) a z nenulových zbytk̊u S-polynomů prvk̊u množiny G′. Potom tedy

〈LT(G′)〉 ⊂ 〈LT(G)〉,

protože G′ ⊂ G. Nav́ıc je-li G′ 6= G, předpokládá se, že 〈LT(G′)〉 je ostře menš́ı než 〈LT(G)〉.
Pro d̊ukaz předpokládejme, že do G′ byl přidán nenulový zbytek r po děleńı S-polynomu
prvky báze. Jelikož r je zbytek po děleńı prvky G′, LT(r) neńı dělitelný žádným z hlavńıch
člen̊u prvk̊u G′, a tedy LT(r) /∈ 〈LT(G′)〉. Ale LT(r) ∈ 〈LT(G)〉, což dokazuje předpoklad.

Z předchoźıho je vidět, že ideály 〈LT(G′)〉 tvoř́ı vzestupnou řadu ideál̊u v k[x1, . . . , xn].
Z ACC potom plyne, že po konečném počtu iteraćı se řada stabilizuje a bude 〈LT(G′)〉 =
〈LT(G)〉. Z předchoźıho odstavce potom plyne, že G′ = G a algoritmus skonč́ı po konečném
počtu krok̊u. �
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Ihned je nutné upozornit, že algoritmus uvedený ve větě 4.7.1 byl vybrán hlavně pro
svoji názornost. Neńı to př́ılǐs vhodná cesta, jak opravdu realizovat výpočet, jelikož se př́ımo

nab́ıźı zřejmé vylepšeńı tohoto algoritmu. Pokud je jednou vypočten zbytek S(p, q)
G′

= 0,
potom bude tento zbytek stále nula i po přidáńı člen̊u na konec uspořádané generuj́ıćı
množiny G′. Neńı tedy nutné tento zbytek znovu poč́ıtat. Ve skutečnosti je po přidáńı

nového generátoru fj nezbytné spoč́ıtat pouze zbytky S(fi, fj)
G′

, kde i ≤ j − 1. Daľśı
možná vylepšeńı algoritmu budou uvedena v části 4.8.

Gröbnerova báze vypočtená uvedeným algoritmem je často větš́ı než je nezbytné. Ne-
potřebné generátory lze eliminovat užit́ım následuj́ıćıho faktu.

Lemma 4.7.2 Necht’ G je Gröbnerova báze pro polynomiálńı ideál I. Necht’ p ∈ G je
takový polynom, že LT(p) ∈ 〈LT(G−{p})〉. Potom G−{p} je také Gröbnerova báze ideálu
I.

D̊ukaz: V́ıme, že 〈LT(G)〉 = 〈LT(I)〉. Je-li LT(p) ∈ 〈LT(G − p)〉, potom 〈LT(G − p)〉 =
〈LT(G)〉. Odtud již podle definice plyne, že G− p je také Gröbnerova báze I. �

Definice 4.7.1 Minimálńı Gröbnerova báze pro polynomiálńı ideál I je Gröbnerova báze
G taková, že:

1. LC(p) = 1 pro všechny p ∈ G,

2. pro všechny p ∈ G je LT(p) /∈ 〈LT(G− {p})〉.

Minimálńı Gröbnerovu bázi pro daný nenulový ideál lze sestrojit užit́ım algoritmu uve-
deném ve větě 4.7.1 a následně lemmatu 4.7.2.

Př́ıklad 4.9 V př́ıkladě 4.8 byla vzhledem ke grlex uspořádáńı vypočtena Gröbnerova
báze

{f1, f2, f3, f4, f5} = {x3 − 2xy, x2y − 2y2 + x,−x2,−2xy,−2y2 + x}.
Jelikož jsou některé hlavńı koeficienty r̊uzné od 1, nejdř́ıve se vynásob́ı generátory vhodnými
konstantami, aby byly všechny hlavńı koeficienty 1. Vzhledem k lemmatu 4.7.2 se nezařad́ı
f1 do minimálńı Gröbnerovy báze, jelikož plat́ı LT(f1) = x3 = −x · LT(f3). Podobně, je-
likož LT(f2) = x2y = −1

2
xLT(f4), je možné eliminovat f2. Dále již nelze nalézt žádný daľśı

př́ıpad, kdy hlavńı člen generátoru děĺı hlavńı člen jiného generátoru a tedy

f̃3 = x2, f̃4 = xy, f̃5 = y2 − 1

2
x

je minimálńı Gröbnerova báze ideálu I. �

Bohužel ideál uvedený v př́ıkladě 4.9 může mı́t v́ıce minimálńıch Gröbnerových báźı,
jelikož také

f̂3 = x2 + axy, f̂4 = xy, f̂5 = y2 − 1

2
x
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je minimálńı Gröbnerova báze pro a ∈ k (libovolná konstanta). Pro k nekonečné tedy
existuje nekonečně mnoho minimálńıch Gröbnerových báźı. Naštěst́ı lze vybrat minimálńı
Gröbnerovu bázi, která je v jistém smyslu lepš́ı než ostatńı.

Definice 4.7.2 Redukovaná Gröbnerova báze pro polynomiálńı ideál I je Gröbnerova báze
G pro ideál I taková, že:

1. LC(p) = 1 pro všechna p ∈ G,

2. pro všechna p ∈ G žádný monom p nenálež́ı 〈LT(G− {p})〉.

Věta 4.7.3 Necht’ I 6= {0} je polynomiálńı ideál. Potom pro dané uspořádáńı monom̊u
má I jedinou redukovanou Gröbnerovu bázi.

D̊ukaz: Předpokládejme, že G je minimálńı Gröbnerova báze I. Algoritmus minimalizace
je zřejmý, stač́ı testovat pouze dělitelnost hlavńıch člen̊u.

Necht’ g ∈ G neńı redukovaný, tzn. obsahuje monom, který nálež́ı v 〈LT(G−{g})〉. Při
děleńı g/(G− g) se tedy LT(g) nutně dostane do zbytku, protože nemá č́ım být dělitelný
(báze je minimálńı). Tedy LT(gG−g) = LT(g), protože nic jiného už nemůže být vedoućım
členem zbytku. Označme

g′ = gG−g a G′ =
(
G− g

)
∪ g′.

G′ je opět minimálńı Gröbnerovou báźı ideálu I, protože 〈LT(G′)〉 = 〈LT(G)〉, tj. také
plat́ı 〈LT(G′)〉 = 〈LT(I)〉. Polynom g′ je zřejmě redukovaný pro G′ d́ıky vlastnostem algo-
ritmu děleńı. Byl-li nějaký h 6= g redukovaný pro G, z̊ustává podle předchoźıho lemmatu
redukovaný i pro G′. T́ım je dán algoritmus pro redukci Gröbnerovy báze.

Zbývá dokázat jednoznačnost. Předpokládejme dvě redukované Gröbnerovy báze G, G̃
nenulového ideálu I. Plat́ı tedy 〈LT(G)〉 = 〈LT(I)〉 = 〈LT(G̃)〉. Protože tento ideál je
monomiálńı, lze pro něj aplikovat Dicksonovo lemma. S odvoláńım na konstrukci báze
v jeho d̊ukazu (podrobně viz [3], str. 70) lze tvrdit, že existuje právě jedna monomiálńı
báze monomiálńıho ideálu tak, že koeficienty jej́ıch člen̊u jsou rovny jedné a žádný z člen̊u
této báze neděĺı jiný.

Podle definice minimality muśı být LT(G) i LT(G̃) právě takovou báźı. Tedy LT(G) =
LT(G̃). Ke každému g ∈ G tedy existuje právě jedno g̃ ∈ G̃ takové, že LT(g) = LT(g̃).

Plat́ı g− g̃ ∈ I. Protože G je Gröbnerova báze, plat́ı g − g̃G
= 0. Členy LT(g), LT(g̃) se

odečtou už v g − g̃. Protože obě báze jsou redukované, nemůže být žádný ze zbývaj́ıćıch
člen̊u g− g̃ dělitelný kterýmkoliv z LT(G) = LT(G̃) a muśı se tedy dostat do zbytku. Plat́ı
tedy

g − g̃ = g − g̃G
= 0.

T́ım je jednoznačnost dokázána. �

Důsledkem věty 4.7.3 je algoritmus pro ověřeńı, zda množiny polynomů {f1, . . . , fs}
a {g1, . . . , gt} generuj́ı stejný ideál: pro dané uspořádáńı monomů se najdou redukované
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Gröbnerovy báze pro 〈f1, . . . , fs〉 a 〈g1, . . . , gt〉 a ideály jsou si rovny právě tehdy, když
jejich redukované Gröbnerovy báze jsou stejné.

Závěr této části bude věnován př́ıkladu, který demonstruje souvislost Buchbergerova
algoritmu a Gaussovy eliminace.

Př́ıklad 4.10 Uvažujme soustavu lineárńıch rovnic

3x − 6y − 2z = 0
2x − 4y + 4w = 0
x − 2y − z − w = 0.

Užit́ım Gaussovy eliminaci na matici koeficient̊u soustavy lze p̊uvodńı matici převést do
tvaru 



1 −2 −1 −1
0 0 1 3
0 0 0 0



 . (4.1)

Pro źıskáńı redukované matice muśı být každá hlavńı 1 jedinou nenulovou hodnotou v
daném sloupci, tedy 



1 −2 0 2
0 0 1 3
0 0 0 0



 . (4.2)

Necht’ I je ideál

I = 〈3x− 6y − 2z, 2x− 4y + 4w, x− 2y − z − w〉 ⊂ k[x, y, z, w]

odpov́ıdaj́ıćı p̊uvodńı soustavě rovnic. Minimálńı Gröbnerova báze vzhledem k lex uspořádáńı
pro x > y > z > w je

I = 〈x− 2y − z − w, z + 3w〉,
což odpov́ıdá lineárńı formě dané matićı (4.1). Redukovaná Gröbnerova báze pro ideál I je

I = 〈x− 2y + 2w, z + 3w〉,

což odpov́ıdá matici (4.2). �

Na základě př́ıkladu 4.10 lze ř́ıci, že Gaussova eliminace je speciálńım př́ıpadem obecného
Buchbergerova algoritmu pro soustavu lineárńıch rovnic.

4.8 Vylepšeńı Buchbergerova algoritmu

Základńı Buchberger̊uv algoritmus je značně výpočetně náročný. Nejnáročněǰśı část́ı algo-
ritmu je výpočet S-polynomu a zejména následné děleńı, při kterém se zjǐst’uje zbytek po
děleńı prvky báze. Proto bude tato část věnována jednomu z možných zp̊usob̊u, jak vy-
lepšit algoritmus uvedený ve větě 4.7.1 a podstatně tak zkrátit výpočetńı dobu. Zejména
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v posledńı době se objevuj́ı zcela nové př́ıstupy, jak naj́ıt Gröbnerovu bázi. Nejedná se už
ale jen o vylepšeńı uvedeného algoritmu a jejich rozbor přesahuje možnosti tohoto textu.

Snahou je naj́ıt takové S-polynomy, které neńı třeba při děleńı uvažovat. K tomu
potřebujeme obecněǰśı náhled na pojem nulového zbytku, uvedený v následuj́ıćı definici.

Definice 4.8.1 Zvolme uspořádáńı monom̊u. Necht’ G = {g1, . . . , gt} ⊂ k[x1, . . . , xn]. Pro
libovolné f ∈ k[x1, . . . , xn] lze ř́ıci, že f se redukuje na nulu modulo G a označit f →G 0,
jestlǐze existuj́ı a1, . . . , at ∈ k[x1, . . . , xn] taková, že lze psát

f = a1g1 + · · ·+ atgt

a je-li aigi 6= 0, pak multideg(f) ≥ multideg(aigi).

Vztah mezi redukćı na nulu modulo G a algoritmem děleńı množinou polynomů G
popisuje následuj́ıćı lemma.

Lemma 4.8.1 Necht’ G = {g1, . . . , gt} a f ∈ k[x1, . . . , xn]. Potom plat́ı implikace

f̄G = 0 =⇒ f →G 0.

Obrácené tvrzeńı obecně neplat́ı.

D̊ukaz: Prvńı část plyne ihned z algoritmu děleńı. Zbývá ukázat, že obrácené tvrzeńı nemuśı
platit, což lze předvést na př́ıkladě. Vezměme f = xy2− x a G = {xy+ 1, y2− 1}. Pomoćı
algoritmu děleńı lze f vyjádřit ve tvaru xy2−x = y ·(xy+1)+0 ·(y2−1)+(−x−y). Lze ale
také psát xy2−x = 0·(xy+1)+x·(y2−1) a jelikož multideg(xy2−x) ≥ multideg(x·(y2−1)),
je f →G 0. �

Věta 4.8.2 Báze G = {g1, . . . , gt} pro ideál I je Gröbnerovou báźı právě tehdy, když plat́ı
S(gi, gj)→G 0 pro všechna i 6= j.

D̊ukaz: Plyne okamžitě z d̊ukazu věty 4.6.4, podrobně viz [3], str. 103. �

Z lemmatu 4.8.1 vyplývá, že věta 4.6.4 je speciálńım př́ıpadem věty 4.8.2. Postačuj́ıćı
podmı́nka redukce S-polynomu na nulu je formulována v následuj́ıćı větě.

Věta 4.8.3 Mějme konečnou množinu G ⊂ k[x1, . . . , xn] a předpokládejme, že existuj́ı
f, g ∈ G takové, že

LCM(LM(f), LM(g)) = LM(f) · LM(g).

Potom S(f, g)→G 0.

D̊ukaz: Viz [3], str. 103. �

Př́ıklad 4.11 Uvažujme G = 〈yz+y, x3 +y, z4〉 s grlex uspořádáńım na k[x, y, z]. Potom

S(x3 + y, z4)→G 0
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podle věty 4.8.3. Algoritmem děleńı se ale dostane

S(x3 + y, z4) = yz4 = (z3 − z2 + z − 1)(yz + y) + y

a tedy S(x3 + y, z4)
G

= y 6= 0. �

Věta 4.8.3 ve spojeńı s větou 4.8.2 umožňuje výrazně zefektivnit algoritmus pro výpočet
Gröbnerovy báze. Stač́ı ověřit podmı́nku S(gi, gj) →G 0 pro i < j taková, že LM(gi) a
LM(gj) nesplňuj́ı podmı́nku z věty 4.8.3.

K zavedeńı daľśıho možného vylepšeńı věty 4.8.2 je nutné nejdř́ıve definovat některé
nové pojmy.

Definice 4.8.2 Necht’ F = {f1, . . . , fs}. Syzygy1 hlavńıch člen̊u LT(f1), . . . , LT(fs) se
nazývá s-tice polynom̊u S = (h1, . . . , hs) taková, že

s∑

i=1

hi · LT(fi) = 0.

Množina S(F ) obsahuje všechny syzygy hlavńıch člen̊u F .

Např́ıklad pro F = (x, x2 + z, y + z) definuje trojice S = (−x + y, 1,−x) jedno možné
syzygy z S(F ), jelikož plat́ı

(−x+ y) · LT(x) + 1 · LT(x2 + z) + (−x) · LT(y + z) = 0.

Necht’ ei = (0, . . . , 0, 1, 0, . . . , 0) jsou vektory s jedničkou na i-tém mı́stě. Potom syzygy
S ∈ S(F ) lze napsat ve tvaru S =

∑s

i=1 hiei. Jako př́ıklad je možné uvažovat syzygy pro
S-polynomy. Pro každý pár {fi, fj} ⊂ F , kde i < j a xγ je nejmenš́ı společný násobek
hlavńıch člen̊u polynomů fi a fj, označme

Sij =
xγ

LT(fi)
ei −

xγ

LT(fj)
ej . (4.3)

Potom Sij patř́ı do S(F ). Jelikož S(F ) má konečnou bázi, každé S ∈ S(F ) lze vyjádřit
jako lineárńı kombinaci bázových syzygy s polynomiálńımi koeficienty.

Definice 4.8.3 Syzygy S ∈ S(F ) je homogenńı stupně α ∈ Zn
≥0, jestlǐze

S = (c1x
α(1), . . . , csx

α(s)),

kde ci ∈ k a αi + multideg(fi) = α pro i taková, že ci 6= 0.

Lemma 4.8.4 Každé syzygy S ∈ S(F ) lze vyjádřit jednoznačně jako součet homogenńıch
syzygy.

1česky
”
spřažeńı“
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D̊ukaz: Podrobně viz [3], str. 105. �

Věta 4.8.5 Necht’ F = (f1, . . . , fs). Potom každé syzygy S ∈ S(F ) lze vyjádřit ve tvaru

S =
∑

i<j

uijSij ,

kde uij ∈ k[x1, . . . , xn] a syzygy Sij je definováno vztahem (4.3).

D̊ukaz: Je založen na lemmatu 4.8.4 a využ́ıvá definice 4.8.3. Podrobněji viz [3], str. 105.
�

Z věty 4.8.5 vyplývá, že syzygy Sij definované vztahem (4.3) tvoř́ı bázi všech syzygy
hlavńıch člen̊u. Následuj́ıćı př́ıklad ale ukazuje, že pro bázi S(F ) neńı zapotřeb́ı vždy všech
Sij .

Př́ıklad 4.12 Pro F = (x2y2+z, xy2−y, x2y+yz) vzhledem k lex uspořádáńı s x > y > z
je

S12 = (1,−x, 0),
S13 = (1, 0,−y),
S23 = (0, x,−y).

(4.4)

Z (4.4) plyne, že S23 = S13 − S12. Syzygy S23 je tedy nadbytečné, jelikož ho lze źıskat
jako lineárńı kombinaci S12 a S13. Bázi syzygy tedy tvoř́ı {S12, S13}. Později bude ukázána
metoda pro nalezeńı menš́ı báze S(F ). �

Věta 4.8.6 Báze G = {g1, . . . , gt} pro ideál I je Gröbnerovou báźı právě tehdy, když pro
každé syzygy S = (h1, . . . , ht) v homogenńı bázi S(G) plat́ı

S ·G =
t∑

i=1

higi −→G 0.

D̊ukaz: Je analogický s d̊ukazem věty 4.6.4. Podrobně viz [3], str. 106-107. �

Věta 4.6.4 je opět speciálńım př́ıpadem této věty. Vezme-li se {Sij} za bázi všech syzygy
S(G), potom polynomy Sij · G jsou právě S-polynomy S(gi, gj). K zužitkováńı śıly věty
4.8.6 je nutné naj́ıt zp̊usob, jak zmenšit bázi S(G). Následuj́ıćı věta hovoř́ı o tom, jak pro
bázi {Sij : i < j} určit, které prvky mohou být vynechány.

Věta 4.8.7 Necht’ G = {g1, . . . , gt} a necht’ S ⊂ {Sij : 1 ≤ i < j ≤ t} je báźı S(G). Nav́ıc
předpokládejme, že existuj́ı navzájem r̊uzné polynomy gi, gj, gk ∈ G takové, že plat́ı

LT(gk) děĺı LCM(LT(gi), LT(gj)).

Potom jestlǐze Sik, Sjk ∈ S, pak S − {Sij} je také báze S(G).
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D̊ukaz: Pro zjednodušeńı se bude předpokládat, že plat́ı i < j < k. Necht’ xγij = LCM(LM(gi), LM(gj)),
podobně jsou definovány také xγik a xγjk . Z předpokladu potom plyne, že xγik i xγjk děĺı
xγij . Snadno lze potom ověřit, že plat́ı

Sij =
xγij

xγik
Sik −

xγij

xγjk
Sjk.

A tedy Sij je v bázi zbytečný, protože ho lze vyjádřit jako lineárńı kombinaci Sik a Sjk. �

Nyńı je možné formulovat vylepšený Buchberger̊uv algoritmus, který zahrnuje poznatky
z vět 4.8.3 a 4.8.7. Pro úplnost je ale nutné zavést ještě jedno označeńı. V algoritmu bude
použ́ıvána uspořádaná dvojice (i, j). Pro daná i, j, i 6= j nebude ale vždy jasné, které z
nich je větš́ı. Proto bude použ́ıváno označeńı

[i, j] =

{
(i, j) pro i < j,
(j, i) pro i > j.

Věta 4.8.8 Necht’ I = 〈f1, . . . , fn〉 je polynomiálńı ideál. Potom Gröbnerovu bázi pro ideál
I lze sestrojit konečným počtem krok̊u následuj́ıćıho algoritmu:

Input: F = (f1, . . . , fs)
Output: Gröbnerova báze G = (g1, . . . , gt) pro ideál I
B := {(i, j)|1 ≤ i < j ≤ s}
G := F
t := s
WHILE B 6= ∅ DO

Vyber (i, j) ∈ B
IF LCM(LT(fi)LT(fj)) 6= LT(fi)LT(fj) AND NOT Test(fi, fj, B) THEN

S := S(fi, fj)
G

IF S 6= 0 THEN

t := t+ 1; ft := S
G := G ∪ {ft}
B := B ∪ {(i, t)|1 ≤ i ≤ t− 1}

B := B − {(i, j)},

kde Test(fi, fj, B) nabývá hodnoty true právě tehdy, když existuje k /∈ {i, j} takové, že
dvojice [i, k] a [j, k] nejsou v B a současně LT(fk) děĺı LCM(LT(fi), LT(fj)).

D̊ukaz: Je založen na větách uvedených v této části textu. To, že algoritmus skonč́ı, vyplývá
z podmı́nky ACC (věta 4.5.4). Podrobněji viz [3], str. 108-109. �

Přestože je tento algoritmus podstatně lepš́ı než základńı verze Buchbergerova algo-
ritmu, stále neńı optimálńı. Prováděné testy jsou mnohem méně pracné a umožńı vynechat
v některých př́ıpadech velké množstv́ı výpočt̊u S-polynomů a následných děleńı, která jsou
nejpracněǰśı část́ı algoritmu. Přesto je výpočetńı doba v některých př́ıpadech stále značná.
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Jak bylo řečeno, nejpracněǰśı část́ı algoritmu je prováděńı děleńı S-polynomu prvky
báze G. Jedńım z možných zp̊usob̊u urychleńı děleńı S-polynomu prvky báze G, které má
implementačńı charakter, je uspořádáńı prvk̊u báze fi ve vzestupném pořad́ı vzhledem k
hlavńım člen̊um s ohledem na použ́ıvané uspořádáńı monomů.
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Kapitola 5

Teorie eliminaćı

Tato kapitola bude věnována metodě eliminace proměnných ze soustavy polynomiálńıch
rovnic a zejména jej́ı souvislosti s Gröbnerovou báźı. Základńı principy teorie eliminaćı bu-
dou dány větou o eliminaci a větou o rozš́ı̌reńı. Zmı́něna bude také geometrická interpretace
uvedených vět.

5.1 Základńı věty teorie eliminaćı

Nejdř́ıve bude naznačeno, jak eliminace proměnných funguje. Řešme soustavu rovnic

x2 + y + z = 1,
x+ y2 + z = 1,
x+ y + z2 = 1.

(5.1)

Pro ideál I = 〈x2 + y+ z− 1, x+ y2 + z− 1, x+ y+ z2− 1〉 je redukovaná Gröbnerova báze
vzhledem k lexikografickému uspořádáńı pro x > y > z

g1 = x+ y + z2 − 1,
g2 = y2 − y − z2 + z,
g3 = yz2 + 1

2
z4 − 1

2
z2,

g4 = z6 − 4z4 + 4z3 − z2.

(5.2)

Z věty 3.4.2 je zřejmé, že soustavy (5.1) a (5.2) maj́ı stejná řešeńı. Posledńı rovnice je jen
v proměnné z a lze ji přepsat do tvaru

g4 = z6 − 4z4 + 4z3 − z2 = z2(z − 1)2(z2 + 2z − 1).

Kořeny g4 tedy jsou 0, 1 a −1 ±
√

2. Zpětným dosazeńım lze naj́ıt př́ıslušná řešeńı y a x.
T́ımto postupem lze nalézt všechna řešeńı soustavy (5.1).

Řešeńı soustavy rovnic bylo možné provést popsaným zp̊usobem ze dvou d̊uvod̊u:
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• Eliminace — Gröbnerova báze obsahuje rovnici g4, která je pouze v proměnné z, tzn.
byly eliminovány proměnné x a y z posledńı rovnice.

• Rozš́ı̌reńı — vyřešeńım rovnice g4 = 0 lze z ostatńıch rovnic dopoč́ıtat odpov́ıdaj́ıćı
x a y a dostat tak řešeńı p̊uvodńı soustavy.

Základńı myšlenkou teorie eliminaćı je, že eliminaci lze provádět zcela obecně, pro libovol-
nou soustavu polynomiálńıch rovnic a libovolný počet proměnných.

Definice 5.1.1 Necht’ I ⊂ k[x1, . . . , xn]. k-tým eliminačńım ideálem Ik se nazývá ideál z
k[xk+1, . . . , xn] definovaný vztahem

Ik = I ∩ k[xk+1, . . . , xn].

Intuitivně se zdá, že Ik obsahuje všechny prvky Gröbnerovy báze, které obsahuj́ı jen
proměnné xk+1, . . . , xn. Eliminace proměnných tedy znamená naj́ıt nenulové polynomy,
které definuj́ı eliminačńı ideál Ik.

Věta 5.1.1 (O eliminaci) Necht’ I ⊂ k[x1, . . . , xn] je ideál a necht’ G je Gröbnerova báze
pro ideál I vzhledem k lex uspořádáńı pro x1 > x2 > . . . > xn. Potom pro každé 0 ≤ k ≤ n
je

Gk = G ∩ k[xk+1, . . . , xn]

Gröbnerovou báźı k-tého eliminačńıho ideálu Ik.

D̊ukaz: Zvolme k mezi 0 a n a předpokládejme, že G = {g1, . . . , gm}. Bez újmy na obecnosti
je možné předpokládat, že Gk = {g1, . . . , gr}, tzn. prvńıch r prvk̊u G lež́ı v k[xk+1, . . . , xn]
(pokud by to nebyla pravda, provede se přeznačeńı).

Nejdř́ıve se ukáže, že Gk je báźı Ik. Jelikož určitě Gk ⊂ Ik, potom také 〈g1, . . . , gr〉
⊂ Ik, protože Ik je ideál. Zbývá tedy ukázat, že každý prvek Ik lze napsat ve tvaru f =
h1g1 + · · ·+hrgr. To je možné ukázat pomoćı algoritmu děleńı. Provede se děleńı polynomu
f polynomy g1, . . . , gm vzhledem k lex uspořádáńı. Je nutné si uvědomit následuj́ıćı dvě
věci:

• jelikož G = {g1, . . . , gm} je Gröbnerova báze I a f ∈ I, plat́ı f̄G = 0,

• jelikož je použito lexikografické uspořádáńı, muśı hlavńı členy gr+1, . . . , gm obsahovat
některou z proměnných x1, . . . , xk. Proto pokud se použije algoritmus děleńı, neobjev́ı
se členy s gr+1, . . . , gm.

Odtud potom
f = h1g1 + · · ·+ hrgr + 0 · gr+1 + · · ·+ 0 · gm + 0,

z čehož plyne, že f ∈ 〈g1, . . . , gr〉. T́ım je dokázáno, že Gk je báźı Ik.
Zbývá ukázat, že Gk je Gröbnerovou báźı. Podle věty 4.6.4 k tomu stač́ı, aby pro

všechna 1 ≤ i < j ≤ r byl zbytek po děleńı S-polynomu S(gi, gj) prvky báze Gk roven
nule. Ale všechny S-polynomy lež́ı v Ik, jelikož tam lež́ı i gi a gj. Odtud ale plyne, že zbytek
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je roven nule. T́ım je d̊ukaz proveden. �

Jako př́ıklad lze použ́ıt opět soustavu (5.1) a j́ı př́ıslušnou Gröbnerovu bázi (5.2). Z
věty 5.1.1 plyne, že

I1 = I ∩ C[y, z] = 〈y2 − y − z2 + z, yz2 + 1
2
z4 − 1

2
z2, z6 − 4z4 + 4z3 − z2〉,

I2 = I ∩ C[z] = 〈z6 − 4z4 + 4z3 − z2〉.

Je zřejmé, že Gröbnerova báze ve spojeńı s lexikografickým uspořádáńım eliminuje
nejen prvńı proměnnou, ale také prvńı dvě, prvńı tři proměnné atd. Zálež́ı jen na počtu
proměnných v dané soustavě rovnic a také na počtu rovnic soustavy. Nevýhodou tohoto
postupu je značná časová náročnost výpočtu Gröbnerovy báze vzhledem k lex uspořádáńı.

Druhým krokem potřebným pro řešeńı soustavy rovnic je rozš́ı̌reńı na úplné řešeńı. Jak
bylo uvedeno v kapitole 4, ideálu I ⊂ k[x1, . . . , xn] odpov́ıdá afinńı varieta

V(I) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 ∀f ∈ I}.

K popisu bod̊u afinńı variety je nutné nejdř́ıve naj́ıt řešeńı rovnice v jedné proměnné,
źıskané eliminaćı ostatńıch proměnných. Poté se řešeńı postupně rozšǐruje přidáváńım
daľśıch proměnných.

Danému k mezi 0 a n odpov́ıdá eliminačńı ideál Ik a řešeńı (ak+1, . . . , an) ∈ V(Ik) se
nazývaj́ı parciálńı řešeńı p̊uvodńı soustavy rovnic. K rozš́ı̌reńı (ak+1, . . . , an) na úplné řešeńı
z V(I) je nutné nejprve přidat proměnnou xk a dopoč́ıtat odpov́ıdaj́ıćı (ak, ak+1, . . . , an).
Hledá se tedy ak takové, že (ak, ak+1, . . . , an) lež́ı na varietě V(Ik−1). Konkrétně je třeba
naj́ıt xk = ak, které je řešeńım soustavy rovnic

g1(xk, ak+1, . . . , an) = · · · = gr(xk, ak+1, . . . , an) = 0.

Jelikož se pracuje s polynomy v jedné proměnné, všechna možná řešeńı ak soustavy jsou
rovna kořen̊um největš́ıho společného dělitele polynomů g1, . . . , gr.

Problémy nastanou v př́ıpadě, že polynomy g1, . . . , gr nemaj́ı společný kořen, tzn. exis-
tuj́ı parciálńı řešeńı, která nelze rozš́ı̌rit na úplná řešeńı. Jako př́ıklad uvažujme soustavu
rovnic

xy = 1,
xz = 1.

(5.3)

Pro ideál I = 〈xy−1, xz−1〉 je Gröbnerova báze G = 〈y−z, xz−1〉. Z prvńıho eliminačńıho
ideálu I1 = 〈y− z〉 plynou parciálńı řešeńı ve tvaru (a, a), která lze rozš́ı̌rit na úplná řešeńı
(1/a, a, a) s výjimkou bodu (0, 0). Geometricky vyjadřuje rovnice y = z rovinu ve E3.
Varieta (5.3) potom vyjadřuje hyperbolu lež́ıćı v rovině y = z. Je tedy zřejmé, že bodu
(0, 0) opravdu neodpov́ıdá žádné úplné řešeńı (viz obr. 5.1).

Následuj́ıćı věta ř́ıká, která parciálńı řešeńı (a2, . . . , an) ∈ V(I1) je možné rozš́ı̌rit na
úplná řešeńı (a1, . . . , an) ∈ V(I). Pro zjednodušeńı bude věta omezena pouze pro př́ıpad,
kdy byla eliminována jen proměnná x1.
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Věta 5.1.2 (O rozš́ı̌reńı) Necht’ I = 〈f1, . . . , fs〉 ⊂ C[x1, . . . , xn] a necht’ I1 je prvńı
eliminačńı ideál pro I. Pro každé 1 ≤ i ≤ s lze fi napsat ve tvaru

fi = gi(x2, . . . , xn)xNi

1 + členy, ve kterých je xi stupně < Ni,

kde Ni ≥ 0 a gi ∈ C[x2, . . . , xn] jsou nenulová. Předpokládejme, že existuje parciálńı řešeńı
(a2, . . . , an) ∈ V(I1). Jestlǐze (a2, . . . , an) /∈ V(g1, . . . , gn), potom existuje a1 ∈ C takové,
že (a1, a2, . . . , an) ∈ V(I).

D̊ukaz: Je poměrně náročný, podrobně viz [3], str.163-164. �

Jak je vidět, věta je formulována pro k = C. Proč je to d̊uležité, lze ukázat na př́ıkladě.

Př́ıklad 5.1 Uvažujme k = R a soustavu rovnic

x2 = y,
x2 = z.

Eliminace x vede k rovnici y = z a tedy parciálńı řešeńı jsou (a, a) pro všechny a ∈ R.
Pro k = C lze z rovnic x2 − y = 0 a x2 − z = 0 bez problémů dopoč́ıtat úplná řešeńı
soustavy rovnic. Věta 5.1.2 zaručuje, že všechna řešeńı (a, a) lze rozš́ı̌rit na úplná řešeńı.
Nad R je ale situace jiná. Jelikož x2 = a nemá reálné řešeńı pro a < 0, lze na úplná řešeńı
rozš́ı̌rit pouze ta částečná řešeńı, pro která je a ≥ 0. Odtud je vidět, že věta 5.1.2 neplat́ı
pro k = R. �

Ačkoliv věta 5.1.2 o rozš́ı̌reńı je formulována jen pro př́ıpad, kdy byla ze soustavy rovnic
eliminována pouze prvńı proměnná x1, je možné ji použ́ıt pro eliminaci libovolného počtu
proměnných.

Př́ıklad 5.2 Mějme soustavu rovnic

x2 + y2 + z2 = 1,
xyz = 1.

(5.4)

Gröbnerova báze pro ideál I = 〈x2 + y2 + z2 − 1, xyz − 1〉 vzhledem k lex uspořádáńı je

g1 = y4z2 + y2z4 − y2z2 + 1,
g2 = x+ y3z + yz3 − yz.

Z věty 5.1.1 o eliminaci potom vyplývá, že

I1 = I ∩C[y, z] = 〈g1〉,
I2 = I ∩C[z] = {0}.

Jelikož I2 = {0}, je V(I2) = C a tedy každé c ∈ C je parciálńım řešeńım. K rozš́ı̌reńı na
úplná řešeńı (a, b, c) ∈ V(I) se použije věta 5.1.2. Nejdř́ıve se přejde od I2 k I1 = 〈g1〉.
Koeficient u y4 v polynomu g1 je z2 a tedy řešeńı lze rozš́ı̌rit na (b, c) pro libovolné c 6= 0. To
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je ale rozumné, protože g1 nemá pro c = 0 řešeńı. Zbývá přej́ıt od I1 k I, což znamená naj́ıt
takové a, aby (a, b, c) ∈ V(I). Dosazeńı (y, z) = (b, c) do (5.4) vede ke dvěma rovnićım v
proměnné x, ze kterých neńı na prvńı pohled zřejmé, jestli maj́ı nějaké společné řešeńı. Zde
se ukáže śıla věty 5.1.2 o rozš́ı̌reńı. Hlavńı koeficienty u mocnin x jsou 1, resp. yz, a jelikož
1 je vždy r̊uzná od nuly, věta 5.1.2 o rozš́ı̌reńı zaručuje existenci a ∈ C. T́ım je dokázáno,
že všechna parciálńı řešeńı c 6= 0 lze rozš́ı̌rit na úplná řešeńı (a, b, c) ∈ V(I). �

Užit́ı věty 5.1.2 o rozš́ı̌reńı je zvláště jednoduché, pokud je koeficient u hlavńıho členu
některé z rovnic soustavy roven nenulové konstantě. Tento př́ıpad je často užitečný, a proto
bude formulován jako d̊usledek věty 5.1.2 o rozš́ı̌reńı.

Důsledek 5.1.3 Necht’ I = 〈f1, . . . , fs〉 ⊂ C[x1, . . . , xn] a předpokládejme, že pro nějaké i
má fi tvar

fi = cxN
1 + členy, ve kterých je xi stupně < N,

kde c ∈ C je nenulové a N > 0. Je-li I1 prvńı eliminačńı ideál I a (a2, . . . , an) ∈ V(I1),
potom existuje a1 ∈ C takové, že (a1, a2, . . . , an) ∈ V(I).

D̊ukaz: Plyne okamžitě z věty 5.1.2 o rozš́ı̌reńı. Jelikož gi = c 6= 0, je V(g1, . . . , gs) = ∅ a
tedy určitě (a2, . . . , an) /∈ V(g1, . . . , gs) pro všechna parciálńı řešeńı. �

Na závěr této části uvedeme několik př́ıklad̊u.

Př́ıklad 5.3 Chtějme naj́ıt všechna řešeńı soustavy rovnic

x2 + 2y2 = 3,
x2 + xy + y2 = 3.

(5.5)

Redukovaná Gröbnerova báze pro ideál I = 〈x2 + 2y2 − 3, x2 + xy + y2 − 3〉 vzhledem k
lex uspořádáńı pro x > y je

g1 = y3 − y,
g2 = xy − y2,
g3 = x2 + 2y2 − 3.

(5.6)

Prvńı eliminačńı ideál je tedy I1 = I ∩ k[y] = 〈g1〉 = 〈y3 − y〉. Kořeny g1 potom jsou

g1 = y3 − y = y(y − 1)(y + 1) = 0 =⇒ y1 = 0, y2 = −1, y3 = 1.

Postupným dosazováńım źıskaných kořen̊u do soustavy (5.5) se źıskaj́ı odpov́ıdaj́ıćı hod-
noty xi a tedy řešeńı p̊uvodńı soustavy rovnic. Tedy

y1 = 0 :
x2 − 3 = 0
x2 − 3 = 0

}

⇒ kořeny x1,2 = ±
√

3 ⇒ řešeńı [−
√

3, 0],

[
√

3, 0]

y2 = −1 :
x2 − 1 = 0

x2 − x− 2 = 0

}

⇒ společný kořen x1 = −1 ⇒ řešeńı [−1,−1]

y3 = 1 :
x2 − 1 = 0

x2 + x− 2 = 0

}

⇒ společný kořen x1 = 1 ⇒ řešeńı [1, 1]
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Stejná řešeńı lze dostat i v př́ıpadě, že se kořeny yi dosad́ı do g2, g3. Důležité je nevybrat
si např. jen g2 a hledat úplná řešeńı soustavy jen z jedné rovnice. Mezi řešeńı by tak byly
zahrnuty i dvojice, které nejsou řešeńım p̊uvodńı soustavy rovnic.

Uvedeným postupem byla źıskána čtyři přesná řešeńı soustavy (5.5). Toto je ale ideálńı
stav, který nemuśı nastat vždy, jak se ukáže v následuj́ıćım př́ıkladě. �

Př́ıklad 5.4 Chtějme naj́ıt všechna řešeńı soustavy rovnic

xy = 4,
y2 = x3 − 1.

(5.7)

Redukovaná Gröbnerova báze pro ideál I = 〈xy−4, y2−x3 +1〉 vzhledem k lex uspořádáńı
je

g1 = y5 + y3 − 64,
g2 = 16x− y4 − y2.

(5.8)

Bohužel polynom g1 nelze rozložit na součin jako v předchoźım př́ıkladě. Jeho kořeny jsou

y1 = 2.2136, y2,3 = 0.6804± 2.2697i, y4,5 = −1.7872± 1.3984i

a muśı se nalézt některou z numerických metod pro hledáńı kořen̊u polynomů v jedné
proměnné. Nalezené kořeny se dosad́ı do g2 = 16x − y4 − y2, odkud potom plynou řešeńı
p̊uvodńı soustavy. Hledáńım kořen̊u numerickou metodou se ale bohužel částečně ztráćı
přesnost nalezených řešeńı a źıskaná řešeńı jsou pouze numerickými aproximacemi řešeńı
soustavy (5.7). �

5.2 Geometrická interpretace eliminace proměnných

V této části uvedeme geometrickou interpretaci vět uvedených v 5.1. Základńı myšlenkou
je, že eliminace odpov́ıdá projekci variety na podprostor nižš́ı dimenze. Bude také uvedena
věta o uzávěru, která popisuje vztah mezi parciálńımi řešeńımi a eliminačńımi ideály. Pro
jednoduchost bude uvažováno k = C.

Necht’ je dáno V = V(f1, . . . , fs) ⊂ Cn. Projekčńı zobrazeńı

πk : Cn → Cn−k

převede (a1, . . . , an) na (ak+1, . . . , an) a zajist́ı tak eliminaci prvńıch k proměnných x1, . . . , xk.
Působ́ı-li πk na V ⊂ Cn, je πk(V ) ⊂ Cn−k. O vztahu mezi πk(V ) a k-tým eliminačńım
ideálem vypov́ıdá následuj́ıćı lemma.

Lemma 5.2.1 Použijme výše uvedené označeńı. Necht’ Ik = 〈f1, . . . , fs〉 ∩C[xk+1, . . . , xn]
je k-tý eliminačńı ideál. Potom v Cn−k plat́ı

πk(V ) ⊂ V(Ik).
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D̊ukaz: Zvolme polynom f ∈ Ik. Jestliže (a1, . . . , an) ∈ V , potom f(a1, . . . , an) = 0, protože
f ∈ 〈f1, . . . , fs〉. Ale f obsahuje jen proměnné xk+1, . . . , xn a tedy lze psát

f(ak+1, . . . , an) = f(πk(a1, . . . , an)) = 0.

Odtud již plyne, že f = 0 pro všechny body πk(V ). �

Stejně jako v 5.1, body variety V(Ik) se nazývaj́ı parciálńı řešeńı. S využit́ım lemmatu
5.2.1 lze πk(V ) vyjádřit následuj́ıćım zp̊usobem

πk(V ) = {(ak+1, . . . , an) ∈ V(Ik) : ∃a1, . . . , ak ∈ C,
pro které (a1, . . . , ak, ak+1, . . . , an) ∈ V }.

Tedy πk(V ) obsahuje přesně ta parciálńı řešeńı, která lze rozš́ı̌rit na úplná řešeńı. Např́ıklad
pro soustavu rovnic (5.3) z části 5.1

xy = 1,
xz = 1

(5.9)

zobrazuje obr. 5.1 vztah mezi úplnými řešeńımi soustavy rovnic (5.9) a jej́ımi parciálńımi
řešeńımi.

Obrázek 5.1: Parciálńı a úplná řešeńı soustavy rovnic (5.9)

V části 5.1 již bylo ukázáno, že V(I1) je př́ımka y = z v rovině yz a tedy

π1(V ) = {(a, a) ∈ C2 : a 6= 0}.
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Jelikož π1(V ) neobsahuje (0, 0), neńı to afinńı varieta.
Základem pro porozuměńı existenci takových chyběj́ıćıch bod̊u je věta 5.1.2 o rozš́ı̌reńı

z části 5.1. Ta je sice formulována jen pro π1, tzn. jen pro eliminaci prvńı proměnné x1,
ale přesto dává dobrý náhled na to, co se v takovém př́ıpadě děje. Geometricky je možné
větu o rozš́ı̌reńı formulovat následovně:

Věta 5.2.2 (Geometrická věta o rozš́ı̌reńı) Necht’ V = V(f1, . . . , fs) ⊂ Cn a necht’ gi

je definováno jako ve větě 5.1.2 o rozš́ıřeńı v části 5.1. Jestlǐze I1 je prvńı eliminačńı ideál
pro 〈f1, . . . , fs〉, potom v Cn−1 plat́ı

V(I1) = π1(V ) ∪
(
V(g1, . . . , gs) ∩V(I1)

)
,

kde π1 : Cn → Cn−1 je projekce na posledńıch n− 1 souřadnic.

D̊ukaz: Věta plyne rovnou z lemmatu 5.2.1 a z věty 5.1.2. �

Věta 5.2.2 ř́ıká, že π1(V ) zcela vyplňuje afinńı varietu V(I1), s výjimkou části lež́ıćı na
V(g1, . . . , gs). Neńı ale zřejmé, jak velká část to je. Např́ıklad soustava rovnic

(y − z)x2 + xy = 1,
(y − z)x2 + xz = 1

(5.10)

generuje stejný ideál jako soustava (5.9). Jelikož g1 = g2 = y− z generuje prvńı eliminačńı
ideál, geometrická věta o rozš́ı̌reńı nám v tomto př́ıpadě nic neř́ıká o velikosti π1(V ).

Nicméně i přesto je možné formulovat následuj́ıćı větu o vztahu mezi πk(V ) a V(Ik).

Věta 5.2.3 (O uzávěru) Necht’ V = V(f1, . . . , fs) ⊂ Cn a necht’ Ik je k-tý eliminačńı
ideál pro 〈f1, . . . , fs〉. Potom:

1. V(Ik) je nejmenš́ı afinńı varieta obsahuj́ıćı πk(V ) ⊂ Cn−k, tzn.

• πk(V ) ⊂ V(Ik),

• je-li Z jiná afinńı varieta v Cn−k obsahuj́ıćı πk(V ), potom V(Ik) ⊂ Z.

2. Jestlǐze V 6= ∅, potom existuje afinńı varieta W $ V(Ik) taková, že V(Ik) −W ⊂
πk(V ).

D̊ukaz: Je náročný, podrobně viz [3], str. 123-124. �

Je možné formulovat také geometrickou verzi d̊usledku 5.1.3, který ř́ıká, kdy je možné
všechna parciálńı řešeńı rozš́ı̌rit na úplná řešeńı.

Důsledek 5.2.4 Necht’ V = V(f1, . . . , fs) ⊂ Cn a předpokládejme, že pro nějaké i lze fi

vyjádřit ve tvaru

fi = cxN
1 + členy, ve kterých je x1 stupně < N,
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kde c ∈ C je nenulová konstanta a N > 0. Jestlǐze I1 je prvńı eliminačńı ideál, potom v
Cn−1 plat́ı

π1(V ) = V(I1),

kde π1 je projekce na posledńıch n− 1 souřadnic.

Na závěr je třeba zmı́nit, pro která tělesa uvedená tvrzeńı plat́ı. Věta o rozš́ı̌reńı i
věta o uzávěru (a jejich d̊usledky) jsou formulovány pro těleso komplexńıch č́ısel C. Dá se
ukázat (neńı to ale triviálńı), že jak věta o rozš́ı̌reńı, tak věta o uzávěru plat́ı pro libovolné
algebraicky uzavřené těleso k.

77



Kapitola 6

Aplikace metody Gröbnerových báźı

Tato kapitola bude věnována aplikaćım teorie Gröbnerových báźı. Konkrétně p̊ujde o
př́ıklady z oblasti geometrie, automatického dokazováńı, poč́ıtačové grafiky a robotiky.
Nejprve je ale třeba se zabývat řešitelnost́ı soustav polynomiálńıch rovnic a jej́ı souvislost́ı
s teoríı Gröbnerových báźı. Z této části vyplynou některé d̊uležité poznatky užitečné v celé
kapitole.

6.1 Řešitelnost soustavy polynomiálńıch rovnic

Hledáńı redukované Gröbnerovy báze úzce souviśı s hledáńım přesného řešeńı soustavy po-
lynomiálńıch rovnic. Pokud soustava polynomiálńıch rovnic má řešeńı, potom dojde k eli-
minaci proměnných z rovnic soustavy a p̊uvodńı soustava je převedena na snáze řešitelnou
soustavu rovnic, jak bylo předvedeno v části 5.1. Jak se projev́ı, že soustava polynomiálńıch
rovnic nemá řešeńı, o tom hovoř́ı následuj́ıćı věta.

Věta 6.1.1 (Řešitelnost soustavy rovnic) Soustava rovnic

f1 = 0, . . . , fs = 0,

kde f1, . . . , fs ∈ k[x1, . . . , xn] a k je algebraicky uzavřené těleso, nemá řešeńı právě tehdy,
když redukovaná Gröbnerova báze ideálu I = 〈f1, . . . , fs〉 je {1}.
D̊ukaz: Viz [27], str. 38. �

Jelikož je věta formulována pouze pro algebraicky uzavřená tělesa, což je např. těleso
komplexńıch č́ısel C, je možné v praxi pouze rozhodnout, zda soustava polynomiálńıch
rovnic nemá žádné obecně komplexńı řešeńı. Často je ale třeba hledat reálná řešeńı soustavy
rovnic. Bohužel těleso reálných č́ısel R neńı algebraicky uzavřené, a proto věta 6.1.1 pro
R neplat́ı. Snadno lze naj́ıt soustavu polynomiálńıch rovnic, kde koeficienty budou reálná
č́ısla a soustava má pouze komplexńı řešeńı.

Je třeba si uvědomit, co znamená, že redukovaná Gröbnerova báze ideálu je {1} a
proč v takovém př́ıpadě soustava polynomiálńıch rovnic nemá řešeńı. Jelikož koeficienty
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polynomů jsou z č́ıselného tělesa k, zřejmě se v Gröbnerově bázi objev́ı bázový prvek a,
kde a ∈ k, a 6= 0. To ale samozřejmě vede k rovnici a = 0, která nemá řešeńı. Proto soustava
rovnic nemá řešeńı. Tento prvek potom zp̊usob́ı, že při výpočtu minimálńı Gröbnerovy báze
jsou vyloučeny všechny ostatńı bázové prvky.

Platnost věty 6.1.1 lze předvést na několika př́ıkladech. Soustavy rovnic budou voleny
tak, aby měly snadnou geometrickou interpretaci a bylo snadné určit, zda má soustava
reálné řešeńı. Taková soustava rovnic může mı́t komplexńı řešeńı, která nejsou z geometrické
interpretace zpravidla na prvńı pohled vidět.

Př́ıklad 6.1 Soustava rovnic

x2 + y2 − z = 0,
x2 + y2 + (z − 4)2 − 1 = 0,
x2 + y2 + (z − 6)2 − 9

4
= 0

(6.1)

představuje hledáńı pr̊uniku rotačńıho paraboloidu a dvou kulových ploch. Gröbnerova
báze pro ideál I = 〈x2 + y2 − z, x2 + y2 + (z − 4)2 − 1, x2 + y2 + (z − 6)2 − 9

4
〉 vzhledem k

lex uspořádáńı pro x > y > z je

1065/256 = 0,
−4z + 75/4 = 0,

x2 + y2 + z2 − 12z + 135/4 = 0,
x2 + y2 + z2 − 8z + 15 = 0,

x2 + y2 − z = 0.

Př́ıslušná redukovaná Gröbnerova báze je vzhledem k prvńımu prvku Gröbnerovy báze
samozřejmě {1}. Jelikož prvńı rovnice nemůže být nikdy splněna, soustava nemá řešeńı
nad C. �

Poznámka 6.1.2 Při výpočtu redukované Gröbnerovy báze m̊uže být výhodněǰśı použ́ıt
grlex uspořádáńı. Výpočet je často rychleǰśı než při použit́ı lex uspořádáńı a věta 6.1.1
plat́ı nezávisle na zvoleném uspořádáńı. Na druhou stranu při použit́ı grlex uspořádáńı
nemuśı vždy doj́ıt k úplné eliminaci proměnných, což m̊uže být nevýhodné z hlediska daľśıho
řešeńı soustavy polynomiálńıch rovnic.

Př́ıklad 6.2 Soustava rovnic

x2 + y2 − z = 0,
x2 + y2 + (z − 4)2 − 1 = 0,
x2 + (y − 4)2 + z2 − 1 = 0

(6.2)

představuje opět hledáńı pr̊uniku rotačńıho paraboloidu a dvou kulových ploch, pouze
poloha jedné kulové plochy byla změněna. Pro ideál I = 〈x2 + y2 − z, x2 + y2 + (z − 4)2 −
1, x2 + (y − 4)2 + z2 − 1〉 je redukovaná Gröbnerova báze vzhledem k lex uspořádáńı s
x > y > z

z2 − 7z + 15 = 0,
y2 + yz + 2y + 5z − 11/2 = 0,

x+ y − z − 2 = 0.

79



Kořeny polynomu z2 − 7z + 15 = 0 jsou komplexńı (konkrétně z1,2 = 3.5± 1.6583i) a tedy
neexistuje žádné reálné řešeńı. Nicméně soustava má řešeńı v oboru komplexńıch č́ısel. �

Pokud koeficienty polynomů f1, . . . , fs, které definuj́ı soustavu rovnic, nejsou jen z
č́ıselného tělesa, ale obsahuj́ı parametry, je možné provést úpravu. Pokud f1, . . . , fs jsou
polynomy v proměnných x1, . . . , xj s koeficienty, které záviśı na parametrech u1, . . . , ui,
potom lze psát, že f1, . . . , fs ∈ k(u1, . . . , ui)[x1, . . . , xj ]. O této situaci již př́ımo věta 6.1.1
nehovoř́ı. Redukovaná Gröbnerova báze {1} v tomto př́ıpadě znamená, že daná soustava
rovnic nemá řešeńı pro některé hodnoty parametr̊u. Nemuśı to ale znamenat, že nemá
řešeńı pro všechny hodnoty parametr̊u u1, . . . , ui. Pro podrobněǰśı analýzu je třeba zkou-
mat př́ımo Gröbnerovu bázi. Gröbnerova báze může obsahovat prvek a ∈ k, a 6= 0, ale
také může obsahovat nějakou funkci g parametr̊u u1, . . . , ui. Pokud báze obsahuje prvek
a ∈ k, a 6= 0, lze použ́ıt větu 6.1.1 a ř́ıci, že soustava rovnic nemá řešeńı pro libovolné hod-
noty parametr̊u u1, . . . , ui. V př́ıpadě, že Gröbnerova báze obsahuje funkci g(u1, . . . , ui), je
situace složitěǰśı. Pro hodnoty parametr̊u u1, . . . , ui, pro které plat́ı g(u1, . . . , ui) = 0, totiž
soustava rovnic m̊uže mı́t řešeńı. Pokud existuj́ı takové hodnoty parametr̊u, je třeba dořešit
soustavu rovnic z nalezené Gröbnerovy báze (pokud je to možné), př́ıpadně provést řešeńı
p̊uvodńı soustavy rovnic s těmito parametry opět pomoćı algoritmu hledáńı redukované
Gröbnerovy báze. Jak to lze konkrétně provést, je uvedeno v následuj́ıćım př́ıkladě.

Př́ıklad 6.3 Uvažujme soustavu rovnic

x2 + y2 + z2 − 1 = 0,
x2 + y2 + (z − a)2 − 1 = 0,
x2 + y2 + (z − b)2 − 1 = 0,

(6.3)

kde a, b jsou parametry. Tato soustava zřejmě pro jisté hodnoty parametr̊u nemá žádné
reálné a dokonce ani komplexńı řešeńı. Existuj́ı ale i hodnoty parametr̊u a, b, pro které
soustava má dokonce nekonečně mnoho reálných řešeńı. Gröbnerova báze pro ideál gene-
rovaný rovnicemi soustavy (6.3) je

(ab2 − a2b)/(a− b) = 0,
(2a− 2b)z + (b2 − a2) = 0,

x2 + y2 + z2 − 2bz + (b2 − 1) = 0,
x2 + y2 + z2 − 2az + (a2 − 1) = 0,

x2 + y2 + z2 − 1 = 0

(6.4)

a redukovaná Gröbnerova báze je {1}. Odtud plyne, že je třeba podrobněji rozebrat př́ıpady
a = 0, b = 0 a a = b. Pro a = 0 plyne z druhé rovnice (6.4) z = b/2 a po dosazeńı do
libovolné zbývaj́ıćı rovnice

x2 + y2 − 4− b2
4

= 0.

Pro |b| < 2 tedy existuje nekonečně mnoho reálných řešeńı, která lež́ı na kružnici se
středem v bodě (0, 0, b/2) a poloměrem

√
4− b2/2. Pro b = 2 existuje jediné řešeńı (0, 0, 1).
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V ostatńıch př́ıpadech existuj́ı pouze komplexńı řešeńı soustavy rovnic (6.3). Zcela obdobný
př́ıpad nastává pro b = 0.

Řešeńı lze s výhodou provést opakovaným použit́ım algoritmu hledáńı redukované
Gröbnerovy báze. Po dosazeńı a = 0 do p̊uvodńı soustavy rovnic (6.3) je pro ideál I =
〈x2 + y2 + z2 − 1, x2 + y2 + z2 − 1, x2 + y2 + (z − b)2 − 1〉 redukovaná Gröbnerova báze
vzhledem k lex uspořádáńı pro x > y > z

z − b/2 = 0,
x2 + y2 − (4− b2)/4 = 0.

Řešeńı je tedy naprosto shodné jako v předchoźım př́ıpadě. Zcela obdobná situace opět
nastává i pro b = 0.

Pokud je a = b, nelze soustavu dořešit př́ımo z Gröbnerovy báze. Problémy p̊usob́ı
prvńı a druhá rovnice soustavy (6.4), kde by docházelo k děleńı nulou. Nicméně lze využ́ıt
opakovaně metodu hledáńı redukované Gröbnerovy báze. Po dosazeńı a = b do soustavy
(6.3) je redukovaná Gröbnerova báze pro ideál I = 〈x2 + y2 + z2 − 1, x2 + y2 + (z − b)2 −
1, x2 + y2 + (z − b)2 − 1〉 vzhledem k lex uspořádáńı pro x > y > z

z − b/2 = 0,
x2 + y2 − (4− b2)/4 = 0

a je tedy naprosto stejná jako v př́ıpadě a = 0. Soustava rovnic (6.3) tedy má řešeńı pouze
pro a = 0, b = 0 a a = b. �

6.2 Převod parametrického vyjádřeńı afinńı variety

na implicitńı

Tato část bude věnována podrobnému studiu převodu parametrického vyjádřeńı afinńıch
variet na implicitńı vyjádřeńı, což lze zkráceně nazývat implicitizace. Problém implicitizace
lze s výhodou řešit užit́ım Gröbnerovy báze ideálu ve spojeńı s lex uspořádáńım a je úzce
spjat s teoríı eliminaćı proměnných popsanou v kapitole 5. Problému implicitizace bude
dále věnována kapitola 8, kde budou uvedeny daľśı možné metody a př́ıstupy k řešeńı
tohoto problému.

Prvńım př́ıpadem je parametrizace zadaná pomoćı polynomů. Polynomiálńı paramet-
rizaci lze vyjádřit ve tvaru

x1 = f1(t1, . . . , tm),
...

xn = fn(t1, . . . , tm),

(6.5)

kde f1, . . . , fn jsou polynomy z k[t1, . . . , tm]. Geometricky představuje soustava (6.5) zob-
razeńı F : km → kn definované vztahem

F (t1, . . . , tm) = (f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).
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Potom F (km) ⊂ kn je podmnožina kn parametrizovaná rovnicemi (6.5). Jelikož F (km) ne-
muśı být afinńı varieta, řešeńım problému převodu parametrického vyjádřeńı na implicitńı
je nalezeńı nejmenš́ı variety obsahuj́ıćı F (km).

Úkolem implicitizace tedy je vyloučeńı parametr̊u z parametrického vyjádřeńı (6.5).
Výsledné rovnice pak obsahuj́ı pouze proměnné x1, . . . , xn. Eliminaci proměnných lze provést
pomoćı výpočtu redukované Gröbnerovy báze pro ideál I = 〈x1− f1, . . . , xn− fn〉. K tomu
stač́ı pouze vhodná volba uspořádáńı proměnných. Podrobně o tom hovoř́ı následuj́ıćı věta.

Věta 6.2.1 (Polynomiálńı implicitizace) Necht’ k je nekonečné těleso a F : km →
kn je zobrazeńı definované polynomiálńı parametrizaćı (6.5). Necht’ I je ideál I = 〈x1 −
f1, . . . , xn−fn〉 ⊂ k[t1, . . . , tm, x1, . . . , xn] a necht’ Im = I ∩k[x1, . . . , xn] je m-tý eliminačńı
ideál. Potom V(Im) je nejmenš́ı varieta v kn obsahuj́ıćı F (km).

D̊ukaz: Viz [3], str. 128. �

Věta 6.2.1 dává algoritmus převodu polynomiálńı parametrizace na implicitńı vyjádřeńı.
Polynomiálńı parametrizace (6.5) odpov́ıdá ideálu I = 〈x1 − f1, . . . , xn − fn〉, pro který se
provede výpočet redukované Gröbnerovy báze vzhledem k lex uspořádáńı pro t1 > · · · >
tm > x1 > · · · > xn. Členy báze, které neobsahuj́ı žádné ti, představuj́ı implicitńı vyjádřeńı
dané afinńı variety.
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4Př́ıklad 6.4 Uvažujme křivku zadanou parametrickými
rovnicemi

x = t, y = t2, z = t3.

Plochu tečen této křivky potom lze vyjádřit ve tvaru

x = t+ u, y = t2 + 2tu, z = t3 + 3t2u.

Použit́ım algoritmu převodu polynomiálńı parametri-
zace na implicitńı vyjádřeńı dostaneme redukovanou
Gröbnerovu bázi o 7 prvćıch, z nichž pouze jeden neobsahuje žádný z parametr̊u t, u a má
tvar

x3z − 3

4
x2y2 − 3

2
xyz + y3 +

1

4
z2 = 0,

což je implicitńı vyjádřeńı dané plochy. �

Daľśım př́ıpadem je tzv. racionálńı implicitizace. Zde mohou nastat jisté pot́ıže, které
lze dokumentovat na jednoduchém př́ıkladě. Pro racionálńı parametrizaci plochy (u, v jsou
parametry)

x =
u2

v
, y =

v2

u
, z = u (6.6)

lze snadno ověřit, že libovolný bod (x, y, z) splňuj́ıćı (6.6) lež́ı na ploše x2y = z3. Odstraněńı
zlomk̊u a provedeńı algoritmu převodu polynomiálńı parametrizace na implicitńı vyjádřeńı
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pro ideál I = 〈vx−u2, uy−v2, z−u〉 ⊂ k[u, v, x, y, z] vede k druhému eliminačńımu ideálu
ve tvaru I2 = I ∩ k[x, y, z] = 〈z(x2y − z3)〉 a tedy

V(I2) = V(x2y − z3) ∪V(z).

Odtud je zřejmé, že do výsledku byla přidána celá rovina z = 0 a tedy V(I2) neńı nejmenš́ı
varieta obsahuj́ıćı danou parametrizaci. Problém je právě v odstraněńı zlomk̊u, které se
muśı provést

”
lépe“, jelikož je třeba zajistit nenulovost jmenovatel̊u. Ideál I je možné

upravit přidáńım jedné proměnné a jedné rovnice, která zajist́ı nenulovost jmenovatel̊u u
a v. Ideál I lze nahradit ideálem

J = 〈vx− u2, uy − v2, z − u, 1− w(uv)〉 ⊂ k[w, u, v, x, y, z],

kde rovnice 1 − wuv = 0 zajist́ı nenulovost u a v ve všech bodech V(J). Třet́ı eliminačńı
ideál potom je J3 = J ∩ k[x, y, z] = 〈x2y − z3〉.

Racionálńı parametrizaci lze obecně vyjádřit ve tvaru

x1 =
f1(t1, . . . , tm)
g1(t1, . . . , tm)

,

...

xn =
fn(t1, . . . , tm)
gn(t1, . . . , tm)

,

(6.7)

kde f1, g1, . . . , fn, gn jsou polynomy z k[t1, . . . , tm]. Zobrazeńı F z km do kn ale nelze defino-
vat na celém km, jelikož je nutné vyjmout takové body (t1, . . . , tm), pro které gi(t1, . . . , tm) =
0 pro nějaké i. Označ́ıme-li W = V(g1, . . . , gn) ⊂ km, potom

F (t1, . . . , tm) =

(
f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . ,

fn(t1, . . . , tm)

gn(t1, . . . , tm)

)

definuje zobrazeńı F : km − W → kn. Ćılem je naj́ıt nejmenš́ı varietu v kn obsahuj́ıćı
F (km −W ).

Věta 6.2.2 (Racionálńı implicitizace) Necht’ k je nekonečné těleso a necht’ F : km −
W → kn je zobrazeńı definované racionálńı parametrizaćı (6.7). Necht’ J je ideál J =
〈g1x1− f1, . . . , gnxn− fn, 1− gy〉 ⊂ k[y, t1, . . . , tm, x1, . . . , xm], kde g = g1 · g2 · · · gn a necht’

Jm+1 = J∩k[x1, . . . , xn] je (m+1)-ńı eliminačńı ideál. Potom V(Jm+1) je nejmenš́ı varieta
v kn obsahuj́ıćı F (km −W ).

D̊ukaz: Obdobný jako d̊ukaz věty 6.2.1. �

Věta 6.2.2 dává algoritmus převodu racionálně parametrizované afinńı variety na impli-
citńı vyjádřeńı. V dané parametrizaci se odstrańı zlomky vynásobeńım i-té rovnice funkćı
gi a přidáńım rovnice 1−g1 · · · gny = 0 se zajist́ı nenulovost g1, . . . , gn na dané varietě. Poté
se pro ideál J provede výpočet redukované Gröbnerovy báze vzhledem k lex uspořádáńı
pro y > t1 > · · · > tm > x1 > · · · > xn. Členy Gröbnerovy báze, které neobsahuj́ı žádnou
z proměnných y, ti, definuj́ı implicitńı vyjádřeńı dané afinńı variety.
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1.5Př́ıklad 6.5 Parametrické vyjádřeńı Descartova listu lze za-
psat ve tvaru

x =
3at

1 + t3
, y =

3at2

1 + t3
.

Algoritmus převodu racionálńı parametrizace na implicitńı vyjádřeńı
vede k ideálu I = 〈x(1+t3)−3at, y(1+t3)−3at2, 1−w(1+t3)〉 ⊂
k[w, t, x, y]. Redukovaná Gröbnerova báze ideálu I obsahuje 5
prvk̊u, z nichž právě jeden neobsahuje proměnné w, t a má tvar

x3 − 3axy + y3 = 0,

což je známé implicitńı vyjádřeńı Descartova listu. �

Př́ıklad 6.6 Jednu z možných racionálńıch parametrizaćı koule lze vyjádřit ve tvaru

x =
4ur2

u2 + v2 + 4r2
, y =

4vr2

u2 + v2 + 4r2
, z =

r(u2 + v2 − 4r2)

u2 + v2 + 4r2
.

V tomto př́ıpadě stač́ı použ́ıt algoritmus převodu polynomiálńı parametrizace na implicitńı
vyjádřeńı, jelikož jmenovatele zlomk̊u jsou vždy r̊uzné od nuly (vždy je r 6= 0). Reduko-
vaná Gröbnerova báze ideálu generovaného rovnicemi parametrického vyjádřeńı koule po
odstraněńı zlomk̊u obsahuje 5 prvk̊u, z nichž pouze jeden neobsahuje parametry u, v a má
tvar

x2 + y2 + z2 − r2 = 0.

To je známé implicitńı vyjádřeńı koule. �

Z věty 6.2.2 dále plyne, že ke všem NURBS objekt̊um lze naj́ıt jejich implicitńı vyjádřeńı.
Podrobněǰśı informace o problematice NURBS objekt̊u lze naj́ıt např. v [21].

Mohlo by se zdát, že lze převést parametrické vyjádřeńı afinńı variety na implicitńı
jen pro variety zadané polynomiálńı nebo racionálńı parametrizaćı. To by ale znamenalo
značné omezeńı, jelikož mnoho afinńıch variet (zejména křivek a ploch) lze snadno para-
metrizovat pomoćı goniometrických funkćı. V některých př́ıpadech sice lze naj́ıt racionálńı
parametrizace, bývá to ale nesrovnatelně obt́ıžněǰśı.

Nicméně po jistých úpravách lze už́ıt redukované Gröbnerovy báze i pro nalezeńı im-
plicitńıho vyjádřeńı některých afinńıch variet parametrizovaných pomoćı goniometrických
funkćı. Stač́ı zavést označeńı př́ıslušných funkćı, např. ct = cos t, st = sin t (př́ıpadně i pro
daľśı parametry), což vede k polynomům v proměnných ct, st. Dále je nutné přidat identitu

c2t + s2
t = 1,

jinak by počet rovnic byl př́ılǐs malý a nebylo by možné eliminovat všechny parametry.
Dále už se postupuje podle algoritmů převodu polynomiálńı nebo racionálńı parametrizace
na implicitńı vyjádřeńı.
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Př́ıklad 6.7 Parametrické vyjádřeńı Bernoulliho lemniskáty
lze zapsat ve tvaru

x =
a cos t

1 + sin2 t
, y =

a cos t sin t

1 + sin2 t
.

Zavede se označeńı ct = cos t, st = sin t, což vede k poly-
nomům v proměnných ct, st, x, y, z ve tvaru

x(1 + s2
t )− act = 0, y(1 + s2

t )− actst = 0. (6.8)

Muśı se ještě přidat identita

cos2 t+ sin2 t = 1 ←→ c2t + s2
t − 1 = 0. (6.9)

Nyńı již stač́ı použ́ıt algoritmus převodu polynomiálńı parametrizace na implicitńı vyjádřeńı,
jelikož jmenovatel zlomk̊u nemůže být nikdy nulový. Pro ideál generovaný polynomy (6.8)
a (6.9) má redukovaná Gröbnerova báze 5 prvk̊u, z nichž pouze jeden neobsahuje žádnou
z proměnných ct, st a má tvar

x4 + 2x2y2 − a2x2 + y4 + a2y2 = 0.

To lze ještě přepsat do tvaru

(x2 + y2)2 − a2(x2 − y2) = 0,

což je hledané implicitńı vyjádřeńı Bernoulliho lemniskáty. �
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Př́ıklad 6.8 Parametrické vyjádřeńı anuloidu lze vyjádřit
ve tvaru

x = r cosu cos t+R cos t,
y = r cosu sin t+R sin t,
z = r sin u.

Zavede se označeńı

cu = cosu, ct = cos t, su = sin u, st = sin t,

což vede k polynomům v proměnných cu, su, ct, st, x, y, z ve tvaru

x− rcuct −Rct = 0,
y − rcust −Rst = 0,

z − rsu = 0.
(6.10)
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Zbývá přidat identity

cos2 u+ sin2 u = 1 ←→ c2u + s2
u − 1 = 0,

cos2 t+ sin2 t = 1 ←→ c2t + s2
t − 1 = 0.

(6.11)

Redukovaná Gröbnerova báze pro ideál generovaný polynomy (6.10) a (6.11) obsahuje 9
prvk̊u, z nichž právě jeden neobsahuje žádnou z proměnných cu, ct, su, st a má tvar

x4 + 2x2y2 + 2x2z2 − (2R2 + 2r2)x2 + y4 + 2y2z2 − (2R2 + 2r2)y2+
+z4 − (2r2 − 2R2)z2 + r4 − 2r2R2 +R4 = 0.

To lze ještě přepsat do tvaru

(x2 + y2 + z2 − r2 − R2)2 = 4R2(z2 − r2),

což je hledané implicitńı vyjádřeńı anuloidu. �
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Př́ıklad 6.9 Parametrické vyjádřeńı Möbiova listu
lze zapsat ve tvaru

x = cosu+ v sin 1
2u cosu,

y = sin u+ v sin 1
2u sinu,

z = v cos 1
2u.

Zavede se označeńı

c1 = cos u, s1 = sin u, c2 = cos
1

2
u, s2 = sin

1

2
u.

To vede k polynomům
x = c1 + vs2c1,
y = s1 + vs2s1,
z = vc2,

(6.12)

což jsou polynomy v proměnných c1, c2, s1, s2, v, x, y, z. Úkolem implicitizace je eliminovat
proměnné c1, c2, s1, s2, v. Je nutné ještě přidat identity

cos2 u+ sin2 u = 1 ←→ c21 + s2
1 − 1 = 0,

cos2 1
2
u+ sin2 1

2
u = 1 ←→ c22 + s2

2 − 1 = 0.
(6.13)

To ale ještě nestač́ı. Parametrické vyjádřeńı (6.12) a identity (6.13) představuj́ı pouze 5
rovnic a je třeba eliminovat 5 parametr̊u. To je zřejmě málo, jelikož muśı být alespoň o
jednu rovnici v́ıce, než je počet proměnných, které chceme eliminovat. Muśı se tedy přidat
ještě daľśı vztahy

sin u = 2 sin 1
2
u cos 1

2
u ←→ s1 − 2s2c2 = 0,

cosu = cos2 1
2
u− sin2 1

2
u ←→ c1 − c22 + s2

2 = 0.
(6.14)
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Redukovaná Gröbnerova báze pro ideál generovaný polynomy (6.12), (6.13) a (6.14) obsa-
huje 11 prvk̊u, z nichž pouze jeden neobsahuje žádnou z proměnných c1, c2, s1, s2, v a má
tvar

x2y − 2x2z + 2xz + y3 − 2y2z + yz2 − y = 0. (6.15)

Polynom (6.15) je implicitńım vyjádřeńım Möbiova listu. �

6.3 Automatické dokazováńı v geometrii

Základńım principem automatického dokazováńı geometrických tvrzeńı je, že zavede-li se
kartézský souřadnicový systém do euklidovské roviny, mnoho předpoklad̊u a závěr̊u geo-
metrických tvrzeńı lze vyjádřit ve tvaru polynomiálńıch rovnic souřadnic bod̊u v rovině.

Dá se ukázat, že ve tvaru polynomiálńıch rovnic lze zapsat např. tato geometrická
vyjádřeńı:

• AB je rovnoběžné se CD.

• AB je kolmé na CD.

• Body A,B,C lež́ı na jedné př́ımce.

• Rovnost vzdálenost́ı dvou bod̊u: AB = CD.

• C lež́ı na kružnici se středem A a poloměrem AB.

• C je střed úsečky AB.

• Ostrý úhel ]ABC je roven ostrému úhlu ]DEF .

• BD p̊uĺı úhel ]ABC.

Následuj́ıćı věta hovoř́ı o tom, jak lze poznat, že dané tvrzeńı vyplývá z formulovaných
předpoklad̊u.

Věta 6.3.1 Necht’ jsou dány předpoklady h1 = 0, . . . , hi = 0 a s1 6= 0, . . . , sj 6= 0 a
chtějme ukázat, že tvrzeńı g vyplývá z platnosti uvedených předpoklad̊u, přičemž h1, . . . , hi,
s1, . . . , sj, g ∈ Q[u1, . . . , uk, x1, . . . , xl]. Necht’ dále

f =
(

(h1 = 0 ∧ . . . ∧ hi = 0 ∧ s1 6= 0 ∧ . . . ∧ sj 6= 0)⇒ g = 0
)

.

Potom výraz f je pravdivý nad algebraicky uzavřeným tělesem obsahuj́ıćım Q právě tehdy,
když soustava rovnic

h1 = 0, . . . , hi = 0, s1z1 − 1 = 0, . . . , sjzj − 1 = 0, gz − 1 = 0, (6.16)

kde z1, . . . , zj jsou nově přidané proměnné, nemá řešeńı nad t́ımto algebraicky uzavřeným
tělesem.
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D̊ukaz: Viz [30]. �

Mı́sto podrobného d̊ukazu se provede pouze úvaha, odkud plyne tvrzeńı věty. Uvažujme
soustavu (6.16). Pokud plat́ı prvńı část výroku f , tj.

h1 = 0 ∧ . . . ∧ hi = 0 ∧ s1 6= 0 ∧ . . . ∧ sj 6= 0,

potom to znamená, že rovnice

h1 = 0, . . . , hi = 0, s1z1 − 1 = 0, . . . , sjzj − 1 = 0

jsou určitě splněny, jelikož sj 6= 0 pro každé j, a tedy určitě lze nalézt takové zj , pro které
plat́ı rovnice sjzj − 1 = 0. Pokud soustava nemá řešeńı, potom to znamená, že posledńı
rovnice 1 − gz = 0 nemůže být splněna. Pokud by g bylo r̊uzné od nuly, potom lze jistě
nalézt takové z, aby rovnice splněna byla. Odtud tedy plyne, že muśı být g = 0.

Poznámka 6.3.2 Předpoklady s1 6= 0, . . . , sj 6= 0 často vyjadřuj́ı omezeńı daného geome-
trického útvaru a vylučuj́ı r̊uzné degenerované př́ıpady daného objektu.

Ověřeńı, zda soustava rovnic (6.16) má řešeńı, lze provést pomoćı Gröbnerovy báze
ideálu a podrobněji byla tato problematika probrána v části 6.1. Stač́ı tedy ukázat, že
redukovaná Gröbnerova báze vzhledem k lex uspořádáńı pro ideál generovaný polynomy
určuj́ıćımi soustavu rovnic (6.16) je {1}.

Počet rovnic soustavy a počet nových proměnných je možné ještě zredukovat. Mı́sto
soustavy rovnic (6.16) lze uvažovat soustavu

h1 = 0, . . . , hi = 0, s1 · · · sjgz − 1 = 0. (6.17)

Pokud soustava rovnic (6.17) nemá řešeńı, potom výraz f je pravdivý a tvrzeńı g vyplývá
z předpoklad̊u h1 = 0, . . . , hj = 0 s omezeńımi s1 6= 0, . . . , sj 6= 0.

Existuje ale také daľśı možnost ověřeńı, zda tvrzeńı g vyplývá z předpoklad̊u h1, . . . , hi,
aniž je nuné uvažovat omezeńı s1, . . . , sj. Dá se ukázat, že g vyplývá z hypotéz h1, . . . , hi

právě tehdy, když {1} je redukovanou Gröbnerovou báźı ideálu 〈h1, . . . , hi, 1 − yg〉, kde
h1, . . . , hi, g ∈ R(u1, . . . , uk)[x1, . . . , xl]. Volné proměnné u1, . . . , uk se berou pouze jako
parametry a mohou se vyskytovat i ve jmenovateĺıch zlomk̊u. V tomto př́ıpadě je ale
nutné zkoumat také př́ımo Gröbnerovu bázi, která může obsahovat polynom ve volných
proměnných a ze kterého plynou degenerované př́ıpady, tzn. omezeńı s1, . . . , sj za kterých
dané tvrzeńı plat́ı.

Jako vhodněǰśı z uvedených metod se jev́ı metoda druhá, kdy se volné proměnné berou
jako parametry. Vhodněǰśı je zejména z časových d̊uvod̊u, jelikož méně proměnných téměř
vždy znamená také kratš́ı výpočet, a to často velmi podstatně.

Použit́ı obou možných zp̊usob̊u bude předvedeno na několika př́ıkladech.
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Obrázek 6.1: Rovnoběžńık

Př́ıklad 6.10 Dokažme tvrzeńı, že úhlopř́ıčky rovnoběžńıka se navzájem p̊uĺı. Uvažujme
rovnoběžńık se souřadnicemi vrchol̊u podle obr. 6.1.

Vlastnosti rovnoběžńıka se neměńı vzhledem k posunut́ı a rotaci, proto jej lze po-
sunout do počátku soustavy souřadnic. Proměnné u1, u2, u3 jsou volné (ale nesmı́ být
u1 = 0 ani u3 = 0, jinak by rovnoběžńık degeneroval na úsečku) a určuj́ı rovnoběžńık.
Proměnné x1, . . . , x4 jsou na nich závislé (jsou jistě afinńım invariantem). Nejdř́ıve zformu-
lujme předpoklady rovnoběžnosti protilehlých stran, které zaruč́ı, že se jedná o rovnoběžńık.
Plat́ı:

AB || CD : h1 = x2 − u3 = 0,
AD || BC : h2 = (x1 − u1)u3 − x2u2 = 0.

Dále je nutné požadovat, aby trojice bod̊u A,N,C a B,N,D byly kolineárńı, tzn. ležely
na jedné př́ımce. Odtud plynou daľśı dva vztahy

A,N,C jsou kolineárńı : h3 = x4x1 − x3u3 = 0,
B,N,D jsou kolineárńı : h4 = x4(u2 − u1)− (x3 − u1)u3 = 0.

Zbývá vyjádřit tvrzeńı, že bod N p̊uĺı obě úhlopř́ıčky. To lze zapsat také pomoćı polynomů,
a to ve tvaru

AN = NC : g1 = x2
3 + x2

4 = (x3 − x1)
2 + (x4 − x2)

2,
BN = ND : g2 = (x3 − u1)

2 + x2
4 = (x3 − u2)

2 + (x4 − u3)
2,

resp. ekvivalentně např. ve tvaru

AN = NC : g1 = x1 − 2x3 = 0,
BN = ND : g2 = u1 − u2 − 2(x3 − u2) = 0.

Je dobré si všimnout, že uvedené vztahy obsahuj́ı čtyři závislé proměnné xi a pro d̊ukaz
se vycházelo ze čtyř předpoklad̊u. Všechna správně formulovaná tvrzeńı maj́ı stejný počet
předpoklad̊u jako závislých proměnných.
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K ověřeńı, že tvrzeńı g1, resp. g2 plyne z formulovaných předpoklad̊u, je nutné zavést
omezeńı

s1 : u1 6= 0, s2 : u3 6= 0,

jelikož v obou př́ıpadech by rovnoběžńık degeneroval na úsečku. Podle věty 6.3.1 a následuj́ıćıch
odstavc̊u se pro daný př́ıpad uvažuje ideál I1 = 〈h1, . . . , h4, 1 − u1u3g1z〉, resp. I2 =
〈h1, . . . , h4, 1 − u1u3g2z〉. Redukovaná Gröbnerova báze pro ideál I1, resp. I2 vzhledem
k lex uspořádáńı je skutečně {1}.

Daľśı možnost́ı je uvažovat ideál J1 = 〈h1, . . . , h4, 1−g1z〉, resp. J2 = 〈h1, . . . , h4, 1−g2z〉
a volné proměnné považovat za parametry. I v tomto př́ıpadě je redukovaná Gröbnerova
báze pro ideál J1, resp. J2 vzhledem k lex uspořádáńı {1}. �

Př́ıklad 6.11 (Apolloniova úloha) Necht’ 4ABC je pravoúhlý trojúhelńık s pravým
úhlem u bodu A. Dokažme, že středy všech stran trojúhelńıka a pata výšky z bodu A na
stranu BC lež́ı na jedné kružnici.

Souřadnice bod̊u označme podle obr. 6.2. Umı́stěńı lze zvolit tak, aby bod A měl
souřadnice (0, 0) a bod B měl souřadnice (u1, 0). Potom bod C má souřadnice (0, u2).
Dále je nutné sestrojit středy jednotlivých stran trojúhelńıka M1, M2 a M3. Pro závislé
proměnné xi plat́ı

h1 = 2x1 − u1 = 0,
h2 = 2x2 − u2 = 0,
h3 = 2x3 − u1 = 0,
h4 = 2x4 − u2 = 0.

Dále je třeba sestrojit patu výšky, tzn. bod H = (x5, x6), pro který plat́ı

AH⊥BC : h5 = x5u1 − x6u2 = 0,
B,H,C jsou kolineárńı : h6 = x5u2 + x6u1 − u1u2 = 0.

Zbývá ještě vyjádřit, že body M1,M2,M3, H lež́ı na jedné kružnici. Obecně samozřejmě
čtyři body v rovině na jedné kružnici ležet nemuśı. Ale tři body, které nelež́ı na jedné
př́ımce, vždy lež́ı na jedné kružnici. Jestliže body M1,M2,M3 nelež́ı na jedné př́ımce, lež́ı
na jedné kružnici. Tedy dokážeme, že bodH lež́ı na kružnici procházej́ıćı těmito třemi body.
Označme ještě souřadnice středu této kružnice O = (x7, x8), což vede k předpoklad̊um

M1O = M2O : h7 = (x1 − x7)
2 + x2

8 − x2
7 − (x8 − x2)

2 = 0,
M1O = M3O : h8 = (x1 − x7)

2 + x2
8 − (x3 − x7)

2 − (x4 − x8)
2 = 0.

Chtějme dokázat, že HO = M1O, což znamená

g = (x5 − x7)
2 + (x6 − x8)

2 − (x1 − x7)
2 − x2

8 = 0.

Je vidět, že počet závislých proměnných xi je opět stejný jako počet předpoklad̊u. Nejdř́ıve
je možné uvažovat volné proměnné u1, u2 jako parametry, tzn. h1, . . . , h8, g jsou poly-
nomy z R(u1, u2)[x1, . . . , x8]. Redukovaná Gröbnerova báze pro ideál 〈h1, . . . , h8, 1− yg〉 je
opravdu {1} a tvrzeńı vyplývá z uvedených předpoklad̊u.
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Obrázek 6.2: Apolloniova úloha

Daľśı možnost́ı je chápat h1, . . . , h8, g jako polynomy z R[u1, u2, x1, . . . , x8]. Potom je
ale nutné vyloučit degenerované př́ıpady u1 = 0 a u2 = 0, kdy trojúhelńık degeneruje na
úsečku, př́ıp. bod. Pro ideál 〈h1, . . . , h8, 1 − u1u2yg〉 je redukovaná Gröbnerova báze opět
{1}. �

Př́ıklad 6.12 Necht’ 4ABC je libovolný trojúhelńık v rovině. Dokažme, že všechny tři
jeho výšky se prot́ınaj́ı v jednom bodě (obr. 6.3).

Bez újmy na obecnosti lze trojúhelńık zvolit tak, aby bod A byl v počátku a strana
AB splývala s osou x. Bod B má potom souřadnice (u1, 0). Bod C je již libovolný a má
souřadnice (u2, u3). Dále zavedeme paty výšek H1, H2 a H3. Podle toho, kolik bod přidává
závislých proměnných, tolik předpoklad̊u se pro něj muśı formulovat. Pro bod H1 tedy
stač́ı jedna podmı́nka, a to

CH1⊥AB : h1 = u1(x1 − u2) = 0.

Pro body H2 a H3 se muśı formulovat po dvou podmı́nkách. Prvńı dva předpoklady jsou
podmı́nky kolmosti

AH2⊥BC : h2 = x2(u2 − u1) + x3u3 = 0,
BH3⊥AC : h3 = u2(x4 − u1) + u3x5 = 0,

zbylé dva jsou podmı́nky kolinearity

BH2C jsou kolineárńı : h4 = x3(u2 − u1)− u3(x2 − u1) = 0,
AH3C jsou kolineárńı : h5 = x5u2 − u3x4 = 0.

Dále se zvoĺı bod H = (x1, x6) na úsečce CH1 tak, aby body BHH3 byly kolineárńı. To
lze vyjádřit podmı́nkou

BHH3 jsou kolineárńı : h6 = x6(x4 − u1)− x5(x1 − u1) = 0.
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Obrázek 6.3: Všechny tři výšky trojúhelńıka se prot́ınaj́ı v jednom bodě

Nyńı již zbývá jen formulovat tvrzeńı. Chtějme dokázat, že za uvedených podmı́nek jsou
také body AHH2 kolineárńı, tzn.

AHH2 jsou kolineárńı : g = x6x2 − x3x1 = 0.

Nejdř́ıve se uvažuj́ı volné proměnné u1, u2, u3 jako parametry, tzn. h1, . . . , h6, g jsou
polynomy z R(u1, u2, u3)[x1, . . . , x6]. Pro ideál 〈h1, . . . , h6, 1 − yg〉 je potom redukovaná
Gröbnerova báze {1} a tvrzeńı vyplývá z uvedených předpoklad̊u.

Je také možné chápat h1, . . . , h6, g jako polynomy z R[u1, u2, u3, x1, . . . , x6]. Potom je
ale nutné vyloučit degenerované př́ıpady u1 = 0 a u3 = 0, kdy se nevhodnou volbou volných
proměnných u1, u2, u3 nedostane trojúhelńık. Potom pro ideál 〈h1, . . . , h6, 1− u1u3yg〉 je
redukovaná Gröbnerova báze {1}. �

Př́ıklad 6.13 Necht’ 4ABC je libovolný trojúhelńık v rovině. Necht’ M1 je střed BC, M2

střed AC a M3 střed AB. Dokažme, že těžnice AM1, BM2 a CM3 se prot́ınaj́ı v jediném
bodě M (obr. 6.4).

Jako obvykle se umı́stěńı trojúhelńıka zvoĺı tak, aby bod A byl v počátku souřadného
systému a úsečka AB splývala s osou x. Dostáváme tedy souřadnice vrchol̊u trojúhelńıka

A = (0, 0), B = (u1, 0), C = (u2, u3).

Jelikož souřadnice střed̊u stran jsou již určeny souřadnicemi vrchol̊u trojúhelńıka, lze je
vyjádřit pouze pomoćı závislých proměnných. To vede k 5 závislým proměnným. Je tedy
nutné formulovat 5 podmı́nek, popisuj́ıćıch závislé proměnné x1, . . . , x5. Každý z bod̊u Mi

je středem př́ıslušné strany, což dává tři podmı́nky ve tvaru

AM1 = BM1 : h1 = 2x1 − u1 = 0,
CM2 = BM2 : h2 = (u2 − x2)

2 + (u3 − x3)
2 − (u1 − x2)

2 − x2
3 = 0,

AM3 = CM3 : h3 = (u2 − x4)
2 + (u3 − x5)

2 − x2
4 − x2

5 = 0.
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Obrázek 6.4: Všechny tři těžnice trojúhelńıka se prot́ınaj́ı v jediném bodě

Zbývá zapsat dvě podmı́nky. Body B,M2, C, resp. A,M3, C zřejmě muśı ležet na jedné
př́ımce, což vede ke zbývaj́ıćım dvěma podmı́nkám

B,M2, C jsou kolineárńı : h4 = x3(u2 − u1)− u3(x2 − u1) = 0,
A,M3, C jsou kolineárńı : h5 = x5u2 − u3x4 = 0.

Bod M se zavede jako pr̊useč́ık úseček CM1 a AM2. Takový bod jistě existuje (pro nede-
generované př́ıpady trojúhelńıka, tzn. pro u1 6= 0 a u3 6= 0) a muśı pro něj platit

C,M,M1 jsou kolineárńı : h6 = x7(u2 − x1)− u3(x6 − x1) = 0,
A,M,M2 jsou kolineárńı : h7 = x7x2 − x3x6 = 0.

Za uvedených předpoklad̊u chtějme ukázat, že také body B,M,M3 muśı být kolineárńı,
tzn.

B,M,M3 jsou kolineárńı : g = x7(x4 − u1)− x5(x6 − u1) = 0.

Redukovaná Gröbnerova báze v R(u1, u2, u3)[x1, . . . , x7, y] vzhledem k lex uspořádáńı
pro ideál 〈h1, . . . , h7, 1−yg〉 je potom {1}. Tvrzeńı tedy vyplývá z uvedených předpoklad̊u.

Provede-li se výpočet redukované Gröbnerovy báze v R[u1, u2, u3, x1, . . . , x7, y], je nutné
vyloučit degenerované př́ıpady trojúhelńıka, tzn. vyloučit př́ıpady u1 = 0 a u3 = 0. Potom
pro ideál 〈h1, . . . , h7, 1− u1u3yg〉 je redukovaná Gröbnerova báze opět {1}. �

Př́ıklad 6.14 (Pappova věta) Mějme dvě kolineárńı trojice bod̊u A, B, C a A′, B′, C ′.
Necht’ dále plat́ı

P = AB′ ∩ A′B, Q = AC ′ ∩A′C, R = BC ′ ∩B′C.

Potom také P,Q,R jsou kolineárńı (obr. 6.5).
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Obrázek 6.5: Pappova věta

Označeńı bod̊u a jim př́ıslušných souřadnic provedeme podle obr. 6.5, odkud je vidět,
že bod C ′ nemůže být volen zcela libovolně a jedna jeho souřadnice je závislá na volbě
souřadnic bod̊u A′ a B′. To je zřejmé z toho, že trojice bod̊u A′, B′, C ′ muśı být ko-
lineárńı. Je vidět, že dostaneme 7 volných proměnných a 7 závislých proměnných. Je nutné
tedy formulovat 7 podmı́nek. Vzhledem k charakteru úlohy to budou výhradně podmı́nky
kolinearity. Plat́ı:

A′, B′, C ′ jsou kolineárńı : h1 = (u6 − u4)(u7 − u3)− (x1 − u4)(u5 − u3) = 0,
A′, P, B jsou kolineárńı : h2 = x3(u3 − u1)− u4(x2 − u1) = 0,
A′, Q, C jsou kolineárńı : h3 = x5(u3 − u2)− u4(x4 − u2) = 0,
B′, P, A jsou kolineárńı : h4 = u5x3 − u6x2 = 0,
B′, R, C jsou kolineárńı : h5 = x7(u5 − u2)− u6(x6 − u2) = 0,
C ′, Q,A jsou kolineárńı : h6 = x5u7 − x1x4 = 0,
C ′, R,B jsou kolineárńı : h7 = x7(u7 − u1)− x1(x6 − u1) = 0.

Zbývá ještě zformulovat tvrzeńı. Chtějme dokázat, že za uvedených předpoklad̊u muśı být
také body P,Q,R kolineárńı, tzn.

P,Q,R jsou kolineárńı : g = (x5 − x3)(x6 − x2)− (x7 − x3)(x4 − x2) = 0.

Redukovaná Gröbnerova báze v R(u1, . . . , u7)[x1, . . . , x7, y] vzhledem k lex uspořádáńı
pro ideál 〈h1, . . . , h7, 1− yg〉 je {1}. Tvrzeńı tedy vyplývá z uvedených předpoklad̊u.

Provede-li se výpočet redukované Gröbnerovy báze v R[u1, . . . , u7, x1, . . . , x7, y], je nutné
vyloučit degenerované př́ıpady, které pro tuto úlohu jsou u2 = 0, u4 = 0 a u7 = 0. Potom
pro ideál 〈h1, . . . , h7, 1− u2u4u7yg〉 je redukovaná Gröbnerova báze opět {1}. �
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Obrázek 6.6: Eulerova věta

Př́ıklad 6.15 (Eulerova věta) Mějme libovolný 4ABC v rovině. Dokažme, že střed
kružnice opsané, pr̊useč́ık výšek (ortocentrum) a pr̊useč́ık těžnic (těžǐstě) trojúhelńıka ABC
lež́ı na jedné př́ımce (obr. 6.6).

Souřadnice bod̊u se přǐrad́ı podle obr. 6.6. Body H1, H2, H3 představuj́ı paty výšek,
body M1,M2,M3 jsou středy stran. Je vidět, že opět jsou třeba jen 3 volné proměnné
u1, u2, u3, určuj́ıćı body A,B,C a t́ım i umı́stěńı trojúhelńıka. S využit́ım př́ıkladu 6.12 lze
formulovat podmı́nky pro bod H

CH1⊥AB : h1 = u1(x8 − u2) = 0,
AH2⊥BC : h2 = x9(u2 − u1) + x10u3 = 0,
BH3⊥AC : h3 = u2(x11 − u1) + u3x12 = 0,
BH2C jsou kolineárńı : h4 = x10(u2 − u1)− u3(x9 − u1) = 0,
AH3C jsou kolineárńı : h5 = x12u2 − u3x11 = 0,
BHH3 jsou kolineárńı : h6 = x13(x11 − u1)− x12(x8 − u1) = 0.

Podobně pro zavedeńı bodu M lze využ́ıt již formulovaných předpoklad̊u z př́ıkladu 6.13

AM1 = BM1 : h7 = 2x1 − u1 = 0,
CM2 = BM2 : h8 = (u2 − x2)

2 + (u3 − x3)
2 − (u1 − x2)

2 − x2
3 = 0,

AM3 = CM3 : h9 = (u2 − x4)
2 + (u3 − x5)

2 − x2
4 − x2

5 = 0,
B,M2, C jsou kolineárńı : h10 = x3(u2 − u1)− u3(x2 − u1) = 0,
A,M3, C jsou kolineárńı : h11 = x5u2 − u3x4 = 0,
C,M,M1 jsou kolineárńı : h12 = x7(u2 − x1)− u3(x6 − x1) = 0,
A,M,M2 jsou kolineárńı : h13 = x7x2 − x3x6 = 0.
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Střed kružnice opsané O dostaneme jako pr̊useč́ık os stran. To vede k podmı́nkám

OM2⊥BC : h14 = (x2 − x14)(u2 − u1) + u3(x3 − x15) = 0,
OM3⊥AC : h15 = u2(x4 − x14) + u3(x3 − x15) = 0.

Ještě je třeba formulovat dokazované tvrzeńı. Chtějme dokázat, že za uvedených předpoklad̊u
muśı být body H,M,O kolineárńı, tzn.

H,M,O jsou kolineárńı : g = (x7 − x15)(x8 − x14)− (x13 − x15)(x6 − x14) = 0.

Podmı́nky h1, . . . , h15 a dokazované tvrzeńı g je možné chápat jako polynomy z okruhu
R(u1, u2, u3)[x1, . . . , x15]. Redukovaná Gröbnerova báze pro ideál 〈h1, . . . , h15, 1 − yg〉 je
{1}. Tvrzeńı tedy vyplývá ze zadaných předpoklad̊u.

I v tomto př́ıpadě je ale také možné chápat podmı́nky h1, . . . , h15 a tvrzeńı g jako po-
lynomy z R[u1, u2, u3, x1, . . . , x15]. Je ale nutné vyloučit degenerované př́ıpady trojúhelńıka
u1 = 0 a u3 = 0. Potom pro ideál 〈h1, . . . , h15, 1− u1u3yg〉 je redukovaná Gröbnerova báze
{1}. �

6.4 Kótováńı a variačńı geometrie

Kótováńı objektu může velice dobře sloužit k variantńımu návrhu tohoto objektu. Popis
objektu je v takovém př́ıpadě dán okótováńım a každá změna některé z kót vede ke změně
metrické informace v popisu objektu a následně také k novému výkresu, zobrazuj́ıćımu
daný objekt.

Nejdř́ıve bude popsán potřebný aparát pro užit́ı kót k variantńımu konstruováńı. Každá
kóta bude generovat jednu (jednoduché podmı́nky) nebo dvě (složené podmı́nky) obecně
nelineárńı algebraické rovnice, jejichž řešeńım lze dostat souřadnice opěrných bod̊u objektu.
Mezi jednoduché podmı́nky patř́ı:

Kóta rozd́ılu x-ových souřadnic: Pro dva body bm = (xm, ym) a bn = (xn, yn) lze pro
kótu Amn rozd́ılu x-ových souřadnic dostat podmı́nku

xn − xm = Amn.

Kóta rozd́ılu y-ových souřadnic: Pro body bm = (xm, ym) a bn = (xn, yn) lze pro kótu
Bmn rozd́ılu y-ových souřadnic dostat podmı́nku

yn − ym = Bmn.

Kóta vzdálenosti dvou bod̊u: Kóta vzdálenosti Cmn bod̊u bm a bn odpov́ıdá podmı́nce

(xm − xn)2 + (ym − yn)2 = C2
mn.
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Kóta úhlu dvou př́ımek: Označme ~pmn = (xn − xm, yn − ym) vektor určený body bn a
bm. Kóta úhlu Dijkq, který sv́ıraj́ı vektory ~pij a ~pkq, odpov́ıdá vztahu, vycházej́ıćımu
ze skalárńıho součinu těchto vektor̊u, tzn.

cosDijkq =
~pij · ~pkq

|~pij||~pkq|
.

Kóta pr̊uměru kružnice: Tato podmı́nka je totožná s jednou podmı́nkou typu vzdálenosti
dvou bod̊u.

Mezi složené podmı́nky potom patř́ı:

Kóta poloměru: Podmı́nka poloměru kružnice nebo kruhového oblouku je totožná se
dvěma podmı́nkami typu vzdálenosti dvou bod̊u.

Kóta vzdálenosti dvou rovnoběžných př́ımek: Jestliže Eijkq je vzdálenost dvou rov-
noběžných př́ımek určených body bibj , resp. bkbq, potom př́ıslušné podmı́nky lze za-
psat ve tvaru:

• podmı́nka rovnoběžnosti: ~pij · ~nkq = 0,
kde ~nkq je vektor normály př́ımky bkbq.

• vztah pro vzdálenost Eijkq: ~pik · ~nij = Eijkq|~pij|.
Jde tedy o pr̊umět vektoru ~pik do směru vektoru normály k př́ımce bibj .

b
1
 b

2
 

b
3
 

Dále je potřeba vysvětlit pojmy zobecněné lomené čáry a
množiny opěrných bod̊u. Nebudou zde uváděny přesné defi-
nice, pouze bude na př́ıkladě pro představu ukázáno, jak vy-
padá konkrétńı zápis zobecněné lomené čáry a odpov́ıdaj́ıćı
množiny opěrných bod̊u. Objektu na obrázku odpov́ıdá zo-
becněná lomená čára

z = (b1, b2, (+, b1), b3, b1).

Z obrázku je patrné, jakou část objektu představuje př́ıslušná část zobecněné lomené čáry.
Jen pro upřesněńı, (+, b1) znamená oblouk v kladném směru (proti směru hodinových
ručiček) se středem v bodě b1. Množina opěrných bod̊u potom tedy je

o(z) = {b1, b2, b3}.

K určeńı zobecněné lomené čáry z obrázku je třeba určit souřadnice tř́ı bod̊u, tzn. je nutné
mı́t 6 rovnic. Umı́stěńı objektu v prostoru a jeho natočeńı představuje tři rovnice, zbývá
tedy zadat tři rovnice (např. tři jednoduché podmı́nky). Ze zadáńı těchto podmı́nek ještě
ale neplyne existence objektu.
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Definice 6.4.1 Necht’ z je zobecněná lomená čára a o(z) = {o1, . . . , on} je množina opěrných
bod̊u. Potom objekt je dimenzován, jestlǐze je dáno i jednoduchých podmı́nek a j složených
podmı́nek a plat́ı

i+ 2j + 3 = 2n.

Tato vlastnost se týká počtu podmı́nek potřebných k určeńı objektu. Neř́ıká však nic
o existenci geometrické interpretace tohoto objektu. Proto je nutné zavést pojem dobře
dimenzovaného objektu. Nejdř́ıve však ještě jedna definice.

Definice 6.4.2 Necht’ je dána množina bod̊u B = {b1, . . . , bn} a m > 0 podmı́nek rozd́ılu
x-ových nebo y-ových souřadnic fi(bi1 , . . . , bim) = 0 pro tyto body. Potom body bk a bq jsou
relativně zadanými body, jestlǐze existuje posloupnost bod̊u bk = bj0 , . . . , bjr−1, bjr

= bq v B
taková, že

fjs
(bjs

, bjs+1) = 0, s = 0, . . . , r − 1,

kde fjs
je podmı́nka rozd́ılu x-ových souřadnic a existuje posloupnost bod̊u bk = bi0 , . . . , biu−1 , biu =

bq v B taková, že
fis(bis, bis+1) = 0, s = 0, . . . , u− 1,

kde fis je podmı́nka rozd́ılu y-ových souřadnic.

Definice 6.4.3 Necht’ zobecněná lomená čára z je dimenzována. Označme množinu opěrných
bod̊u o(z) = {p1, . . . , pn} a necht’ pV = (xV , yV ). Necht’ je dáno i jednoduchých podmı́nek
fk(z) = 0, k = 1, . . . , i a j složených podmı́nek frk(z) = 0, r = 1, 2, k = 1, . . . , j. Ne-
cht’ alespoň tři z proměnných xi0, yi0, xi1, yi1 jsou neznámými alespoň v jedné z rovnic
fk(z) = 0 nebo frk(z) = 0 a body pi0, pi1 nejsou zadány relativně.

Potom zobecněná lomená čára z je dobře dimenzována, jestlǐze alespoň jedna ze soustav

fk(z) = 0, k = 1, . . . , i,
frk(z) = 0, r = 1, 2 a k = 1, . . . , j,

xi0 = 0,
yi0 = 0,
xi1 = 0

(6.18)

nebo
fk(z) = 0, k = 1, . . . , i,
frk(z) = 0, r = 1, 2 a k = 1, . . . , j,

xi0 = 0,
yi0 = 0,
yi1 = 0

(6.19)

má konečnou a neprázdnou množinu řešeńı.

Definice je skutečně korektńı, jelikož se dá ukázat (viz [10]), že pro každou dimenzova-
nou zobecněnou lomenou čáru z a j́ı př́ıslušnou množinu opěrných bod̊u o(z) existuj́ı body
pi0 a pi1, které nejsou zadány relativně.
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Je zřejmé, že soustavy (6.18) a (6.19) jsou soustavy 2n nelineárńıch algebraických rov-
nic. Řešeńı těchto soustav můžeme provést pomoćı algoritmu hledáńı redukované Gröbne-
rovy báze ideálu. Stač́ı uvažovat ideál generovaný levými stranami rovnic soustav (6.18)
nebo (6.19) a chápat je jako polynomy z R[x1, y1, . . . , xn, yn]. Speciálńım př́ıpadem je ob-
jekt, který je popsán pouze kótami rozd́ılu x-ových nebo y-ových souřadnic. Objekt je
pak popsán soustavou lineárńıch rovnic, která je snadno řešitelná i vylepšeným Buchberge-
rovým algoritmem. Takovou soustavu lze ale samozřejmě řešit mnohem jednodušeji např.
Gaussovou eliminaćı. Uved’me si nyńı př́ıklad.

Př́ıklad 6.16 Uvažujme zobecněnou lomenou čáru podle obr. 6.7. Snadno lze spoč́ıtat,
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Obrázek 6.7: Objekt popsaný soustavou lineárńıch rovnic

že objekt je popsán 12 kótami, které odpov́ıdaj́ı 12 jednoduchým podmı́nkám. Počet
podmı́nek je tedy př́ılǐs vysoký, jelikož muśı platit

i+ 2j + 3 = 2n,

kde n = 7 je počet opěrných bod̊u a j = 0. Je nutné tedy odebrat některou z kót G, B, C,
D, E. Vynecháńı kóty G vede k soustavě rovnic

x2 − x1 = −A y5 − y1 = I
y2 − y1 = H x6 − x5 = E
x3 − x2 = B y6 − y1 = H
y3 − y1 = I x7 − x6 = −F
x4 − x3 = C x1 = 0
y4 − y1 = H y1 = 0
x5 − x4 = D y7 = 0,

(6.20)
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které odpov́ıdá redukovaná Gröbnerova báze

x1 = 0 y1 = 0
x2 + A = 0 y2 −H = 0

x3 + A−B = 0 y3 − I = 0
x4 − A− B − C = 0 y4 −H = 0

x5 + A−B − C −D = 0 y5 − I = 0
x6 + A−B − C −D − E = 0 y6 −H = 0

x7 + A− B − C −D − E + F = 0 y7 = 0.

(6.21)

Odtud jsou již vidět souřadnice opěrných bod̊u b1, . . . , b7. Soustavu 6.20 je samozřejmě
možné řešit také pomoćı Gaussovy eliminace.

Z obr. 6.7 je zřejmé, že nelze vynechat ani kótu I ani H , protože by tak byly odebrány
dvě, resp. tři jednoduché podmı́nky mı́sto jedné. Zbývá vyzkoušet, co se stane, odebere-li
se některá z kót A, F mı́sto výše uvedených. Soustava bude mı́t správný počet rovnic a
objekt tedy bude dimenzován. Nicméně z obr. 6.7 je zřejmé, že nebude určen dostatečně a
neměl by být dobře dimenzován. Záměna rovnice x7−x6 = −F za rovnici x6−x2 = G vede
k soustavě rovnic, jej́ıž redukovaná Gröbnerova báze je {1} a Gröbnerova báze obsahuje
prvek G−B−C−D−E = 0, tzn. pro obecné parametry soustava nemá řešeńı. Pokud je ale
rovnost splněna, soustava má nekonečně mnoho řešeńı, jelikož zcela chyb́ı informace o x-ové
souřadnici bodu b7 a je možné ji tedy volit libovolně. Objekt tedy neńı dobře dimenzován.
Obdobná situace nastává v př́ıpadě vynecháńı kóty A. Pokud plat́ı G−B−C−D−E = 0,
pak má soustava nekonečně mnoho řešeńı, jinak řešeńı nemá. V každém př́ıpadě objekt ani
v tomto př́ıpadě neńı dobře dimenzován. �

Toto je samozřejmě nejjednodušš́ı př́ıpad okótováńı objektu a vzniklou soustavu rovnic
je možné řešit jinými metodami (např. Gaussovou eliminaćı). Nyńı se pod́ıváme na př́ıklad
objektu, který už je popsán soustavou nelineárńıch algebraických rovnic.

Př́ıklad 6.17 Uvažujme zobecněnou lomenou čáru podle obr. 6.8. Objekt je popsán 9
jednoduchými, 2 složenými podmı́nkami a obsahuje 8 opěrných bod̊u, tzn. plat́ı

i+ 2j + 3 = 2n.

Objekt je tedy dimenzován a zbývá zjistit, zda je dobře dimenzován. K tomu je třeba řešit
soustavu rovnic

x2 − x1 = A x5 − x1 = B
x5 − x4 = A x5 − x6 = A
x8 − x1 = A y6 − y1 = C
y8 − y1 = C y4 − y1 = −C
y2 − y1 = −C (x6 − x7)

2 + (y6 − y7)
2 = R2

2

x1 = 0 (x8 − x7)
2 + (y8 − y7)

2 = R2
2

y1 = 0 (x2 − x3)
2 + (y2 − y3)

2 = R2
1

y5 = 0 (x4 − x3)
2 + (y4 − y3)

2 = R2
1.

(6.22)
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Obrázek 6.8: Objekt popsaný soustavou nelineárńıch algebraických rovnic

Redukovaná Gröbnerova báze pro ideál generovaný rovnicemi soustavy je

x1 = 0 y1 = 0
x2 − A = 0 y2 + C = 0

x3 − B/2 = 0 y2
3 + 2Cy3 −R2

1 + 1/4B2 − BA+ C2 + A2 = 0
x4 + A− B = 0 y4 + C = 0

x5 − B = 0 y5 = 0
x6 −B + A = 0 y6 − C = 0
x7 − B/2 = 0 y2

7 − 2Cy7 −R2
2 + 1/4B2 − BA+ A2 + C2 = 0

x8 − A = 0 y8 − C = 0.

(6.23)

Je vidět, že nová soustava rovnic může mı́t až čtyři řešeńı v závislosti na tom, kolik reálných
kořen̊u maj́ı kvadratické rovnice pro souřadnice y3 a y7. Lze tedy ř́ıci, že pro dostatečně
velká R1 a R2 je objekt dobře dimenzován.

Pokud je R1 < (B − 2A)/2, potom má rovnice pro y3 pouze komplexńı kořeny (dva
komplexně sdružené) a objekt neńı možné sestrojit, jelikož poloměr je př́ılǐs malý a neńı
možné spojit opěrné body b2 a b4 kruhovým obloukem. Pro R1 = (B−2A)/2 existuje jeden
dvojnásobný kořen a plat́ı y3 = C, pro R1 > (B − 2A)/2 existuj́ı dva r̊uzné reálné kořeny.

Důvodem, proč pro dostatečně velké R1 existuj́ı dva r̊uzné reálné kořeny, je volba ori-
entace kruhového oblouku. Kruhový oblouk mezi opěrnými body b2 a b4 lze orientovat v
kladném smyslu (proti směru hodinových ručiček) nebo v záporném smyslu (po směru hodi-
nových ručiček). Podle orientace kruhového oblouku se vybere př́ıslušný kořen kvadratické
rovnice.

Zcela obdobnou úvahu lze provést pro hodnoty souřadnice y7 a poloměr R2 druhého
kruhového oblouku. �
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Obrázek 6.9: Objekt, jehož popis obsahuje kótu vzdálenosti rovnoběžných př́ımek

Tato část bude uzavřena př́ıkladem objektu, který obsahuje kótu vzdálenosti rov-
noběžných př́ımek. Tato kóta je nepř́ıjemná, jelikož generuje poměrně složité rovnice o
velkém počtu člen̊u, a proto značně komplikuje výpočet. To je také d̊uvodem, proč je volen
velmi jednoduchý objekt s malým počtem opěrných bod̊u.

Př́ıklad 6.18 Uvažujme zobecněnou lomenou čáru podle obr. 6.9. Nejprve je nutné ověřit,
zda je objekt dimenzován. Z obr. 6.9 lze snadno zjistit, že je n = 5, i = 3 a j = 2 a plat́ı
tedy rovnost

i+ 2j + 3 = 2n.

Objekt tedy je dimenzován. To ale nestač́ı a je nutné ověřit, že je dobře dimenzován. To
znamená řešit soustavu rovnic

x1 = 0
y1 = 0
y2 = 0

x2 − x1 = B
x5 − x1 = C
x3 − x2 = C

(x3 − x4)
2 + (y3 − y4)

2 = R2

(x5 − x4)
2 + (y5 − y4)

2 = R2

(x2 − x1)(y3 − y5)− (y2 − y1)(x3 − x5) = 0
[

(x2 − x1)(y5 − y1)− (y2 − y1)(x5 − x1)
]2

= A2
[

(x2 − x1)
2 + (y2 − y1)

2
]

.

(6.24)

Redukovaná Gröbnerova báze vzhledem k lex uspořádáńı pro ideál generovaný rovnicemi
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soustavy (6.24) v R(A,B,C,R)[x1, y1, . . . , x5, y5] je

x1 = 0 y1 = 0
x2 −B = 0 y2 = 0

x3 − B − C = 0 y3 − y5 = 0
x4 − B/2− C = 0 y2

4 − 2y5y4 −R2 − B2/4 + A2 = 0
x5 − C = 0 y2

5 − A2 = 0.

(6.25)

Je vidět, že soustava může mı́t až 4 reálná řešeńı a objekt je tedy dobře dimenzován.
Ze soustavy (6.25) je vidět, že souřadnice y5 může nabývat hodnot±A. Hodnota y5 = A,

resp. y5 = −A potom určuje, zda bude objekt umı́stěn nad osou x, resp. pod osou x,
procházej́ıćı opěrnými body b1 a b2. Každé hodnotě souřadnice y5 potom odpov́ıdaj́ı až
dva reálné kořeny kvadratické rovnice pro hodnoty souřadnice y4 z d̊uvod̊u probraných
podrobněji v př́ıkladě 6.17. �

6.5 Robotika

Pr̊umyslové roboty se v praxi už́ıvaj́ı již od šedesátých let 20. stolet́ı, a to většinou jako
mechanické manipulátory. V posledńı době nacházej́ı mnoho jiných uplatněńı, např. jako
letové simulátory, svařovaćı automaty, už́ıvaj́ı se v lékařstv́ı, v kosmonautice, v televizńı
technice i jinde. Robotika jako vědńı obor je velmi mladou discipĺınou, která zasahuje
do mnoha vědńıch obor̊u. Jedńım z nich je i matematika, resp. geometrie, jej́ımž úkolem
v robotice je popis pohybu robota a jeho interakce s vněǰśım prostřed́ım (lokalizace překážek
včetně vlastńıch část́ı robota). V současné době lze roboty rozdělit na:

1. Roboty sériové, u kterých se pohyb skládá z na sebe navazuj́ıćıch pohyb̊u, přičemž
jednotlivé části se mohou pohybovat nezávisle na sobě.

2. Paralelńı roboty (manipulátory), kde jednotlivé části robota jsou zařazeny vedle sebe
a výsledný pohyb vzniká součinnost́ı všech část́ı, pohyb jedné části ovlivňuje polohu
všech ostatńıch.

3. Kombinované roboty, které vznikaj́ı r̊uznými kombinacemi sériových a paralelńıch
struktur, např. chod́ıćı stroje, mechanické ruky.

Z kinematického hlediska se robot skládá ze dvou mechanických soustav, pevné a
hybné. Pevná soustava se nazývá báze a je pevně spojena s prostorem, ve kterém se po-
hyb odehrává. Hybná soustava je pevně spojena s nástrojem, př́ıpadně s členem, pomoćı
kterého robot vykonává výsledný pohyb. Popis pohybu nástroje zprostředkovaného robo-
tem je aplikaćı kinematiky a geometrie v robotice. Základńı úlohy, které budou probrány
podrobněji, jsou:

1. Př́ımá úloha - ze známé vzájemné polohy člen̊u robota se hledá poloha nástroje
robota nebo koncového členu (efektoru).
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Obrázek 6.10: Klikový mechanismus

2. Obrácená úloha (Inverzńı kinematika) - ze zadané polohy nástroje nebo koncového
členu se hledá odpov́ıdaj́ıćı

”
nastaveńı“ člen̊u robota.

Závěr této části bude věnován př́ıklad̊um užit́ı Gröbnerovy báze ideálu pro řešeńı př́ımé
i obrácené úlohy pro rovinné roboty.

Př́ıklad 6.19 Řešeńı př́ımé úlohy bude provedeno pro př́ıpad klikového mechanismu, který
je zobrazen na obr. 6.10. Klikový mechanismus lze popsat soustavou rovnic

(x1 − xA)2 + (y1 − yA)2 = l22,
(x2 − x1)

2 + (y2 − y1)
2 = l23,

(x2 − xB)2 + (y2 − yB)2 = l24.
(6.26)

Bez újmy na obecnosti lze zvolit xA = 0, yA = 0 a yB = 0, což dosazeńım do (6.26) vede k
soustavě

x2
1 + y2

1 = l22,
(x2 − x1)

2 + (y2 − y1)
2 = l23,

(x2 − xB)2 + y2
2 = l24.

(6.27)

Rovnice soustavy (6.27) lze chápat jako polynomy z Q(xB , l2, l3, l4)[x1, y1, x2, y2]. V takovém
př́ıpadě ale hledáńı redukované Gröbnerovy báze pro ideál

I = 〈x2
1 + y2

1 − l22, (x2 − x1)
2 + (y2 − y1)

2 − l23, (x2 − xB)2 + y2
2 − l24〉

nedává dobré výsledky, jelikož soustava je tvořena 3 rovnicemi pro 4 neznámé x1, y1,
x2, y2 a nedojde k očekávané eliminaci proměnných x1, y1. Proto je výhodněǰśı zvolit
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jednu z proměnných jako parametr (např. x2) a rovnice soustavy chápat jako polynomy
z Q(xB, l2, l3, l4, x2)[x1, y1, y2]. Redukovaná Gröbnerova báze pro ideál I vzhledem k lex
uspořádáńı potom je

y2
2 + (xB − x2)

2 − l24 = 0,
y2

1 + f1y1y2 + f2 = 0,
x1 + 1

x2
y1y2 + f3 = 0,

(6.28)

kde f1, f2, f3 jsou složitěǰśı funkce parametr̊u xB, l2, l3, l4, x2. V závislosti na daných
hodnotách parametr̊u xB, l2, l3, l4, x2 lze ze soustavy (6.28) určit odpov́ıdaj́ıćı hodnoty
proměnných x1, y1, y2 a naj́ıt tak jednu z možných poloh klikového mechanismu.

Ze soustavy (6.28) dále plyne, že muśı být x2 6= 0, resp. x2 6= x2
B
−l24

2xB
. Tyto př́ıpady je

třeba řešit samostatně.
Pro x2 = 0 lze soustavu (6.27) přepsat do tvaru

x2
1 + y2

1 = l22,
x2

1 + (y2 − y1)
2 = l23,

x2
B + y2

2 = l24.
(6.29)

Redukovaná Gröbnerova báze ideálu J = 〈x2
1 + y2

1 − l22, x2
1 + (y2 − y1)

2 − l23, x2
B + y2

2 − l24〉
potom je

y2
2 − l24 + x2

B = 0,
2y1 − (l22 − x2

B + l24 − l23)/(l24 − x2
B) = 0,

4x2
1 + [(l3 + l2)

2 − l24 + x2
B][(l3 − l2)2 − l24 + x2

B]/(l24 − x2
B) = 0.

(6.30)

Ze soustavy (6.30) je zřejmé, že muśı být l4 6= ±xB. Př́ıpad l4 = ±xB je třeba opět řešit
samostatně. Soustavu (6.29) lze potom přepsat do tvaru

x2
1 + y2

1 = l22,
x2

1 + (y2 − y1)
2 = l23,
y2

2 = 0,
(6.31)

a tedy pro l2 = l3 má nekonečně mnoho řešeńı, pro l2 6= l3 nemá řešeńı.

Pro x2 =
x2

B
−l24

2xB
přejde soustava (6.27) do tvaru

x2
1 + y2

1 = l22,
(x2

B − l24 − 2xBx1)
2 + (y2 − y1)

2 = l23,
(xB + l24)

2 + y2
2 = l24.

(6.32)

Redukované Gröbnerova báze ideálu

J = 〈x2
1 + y2

1 − l22, (x2
B − l24 − 2xBx1)

2 + (y2 − y1)
2 − l23, (xB + l24)

2 + y2
2 − l24〉

potom je
y2

2 + g1 = 0,
y1 + g2y2 = 0,
x1 + g3 = 0,

(6.33)
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Obrázek 6.11: Rovinný manipulátor

kde g1, g2 a g3 jsou složitěǰśı funkce parametr̊u xB, l2, l3, l4. Z g3 pak plyne, že nesmı́ být
l2 = l3 a xB = l4. Pro l2 = l3 6= 0 ale soustava (6.32) nemá řešeńı, pro l2 = l3 = 0 má jedno
řešeńı. Pokud je xB = l4, potom má soustava (6.32) pro l2 = l3 nekonečně mnoho řešeńı,
jinak řešeńı nemá.

Řešeńı soustavy (6.28) pro x2 6= 0 a x2 6= (x2
B − l24)/2xB, soustavy (6.30) pro x2 = 0

a soustavy (6.33) pro x2 = (x2
B − l24)/2xB představuj́ı kompletńı řešeńı př́ımé úlohy pro

klikový mechanismus.
Např́ıklad pro l2 = 6, l3 = 9, l4 = 7.5, xB = 6 a x2 = 11 je určitě x2 6= (x2

B − l24)/2xB i
x2 6= 0. Řešeńı př́ımé úlohy

y21 = 7.2284 y22 = −7.2284,
y11 = 5.9312 y12 = −1.5009,
x11 = −0.906 x12 = 5.8092

lze tedy naj́ıt řešeńım soustavy (6.28) a pro dané parametry představuje dvě možné polohy
klikového mechanismu. �

Př́ıklad 6.20 Řešeńı problému inverzńı kinematiky bude provedeno pro př́ıpad jedno-
duchého rovinného manipulátoru, zobrazeného na obr. 6.11. Tento rovinný manipulátor
lze popsat soustavou rovnic

h2 + x2 = x2
A + y2

A,
(xB − xA)2 + (yB − yA)2 = l2,

yB−yA

xB−xA
= tanψ = k,

(6.34)
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kde jsou zadány souřadnice bodu B, tzn. xB a yB, a úhel ψ, resp. směrnice k. Rovnice
soustavy (6.34) lze potom chápat jako polynomy z Q(xB , yB, k, h, l)[x, xA, yA]. Redukovaná
Gröbnerova báze pro ideál

I = 〈h2 + x2 − x2
A − y2

A, (xB − xA)2 + (yB − yA)2 − l2, yB − yA − k(xB − xA)〉,

generovaný rovnicemi soustavy (6.34), potom je

y2
A − 2yByA + y2

B − l2k2

1+k2 = 0,

xA − 1
k
yA + yB−kxB

k
= 0,

x2 − 2(xB+kyB)
k

yA +
h2k+2xByB−kx2

B
+ky2

B
−kl2

k
= 0.

(6.35)

Problémy při výpočtu xA, yA, x nastanou, jestliže k = 0. Tento př́ıpad je nutné řešit
samostatně. Dosazeńı k = 0 do (6.34) vede k soustavě rovnic, jej́ıž redukovaná Gröbnerova
báze je

yA − yB = 0,
x2

A − 2xBxA + x2
B − l2 = 0,

x2 − 2xBxA + x2
B − l2 + h2 − y2

B = 0.
(6.36)

Řešeńı soustavy (6.35) pro k 6= 0 a soustavy (6.36) pro k = 0 dávaj́ı kompletńı řešeńı
problému inverzńı kinematiky pro daný rovinný manipulátor.

Např́ıklad pro parametry l = 5, h = 3 a xB = 9, yB = 10, ψ = π/3 lze řešeńım soustavy
(6.35) dostat hodnoty

yA1 = 14.3301 yA2 = 5.6699,
xA1 = 11.5 xA2 = 6.5,
x1 = 18.1274 x2 = 8.0869.

Existuj́ı tedy dvě možná nastaveńı parametr̊u daného rovinného manipulátoru pro zadanou
polohu efektoru. �
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Kapitola 7

Rezultanty

Na rozd́ıl od teorie Gröbnerových báźı, existuje pouze velmi málo literatury, která je uce-
leně a přehledně věnována rezultant̊um pro soustavy polynomiálńıch rovnic. Obvykle je
věnována pouze jedna kapitola knihy rezultant̊um pro polynomy v jedné proměnné, resp.
eliminaci jedné proměnné ze soustavy nelineárńıch algebraických rovnic, jako je tomu např.
v [3], [29], [32]. Tato kapitola tedy bude věnována zpracováńı přehledu základńıch typ̊u re-
zultant̊u, a to jak pro polynomy v jedné proměnné (Sylvester̊uv, Bézout̊uv rezultant), tak
ve v́ıce proměnných (rezultanty Sylvesterova typu, Macaulayho, Dixon̊uv, Dixon̊uv dialy-
tický rezultant). Podrobnosti o daľśıch typech rezultant̊u je možné naj́ıt např. v [24] nebo
[9].

7.1 Rezultanty pro polynomy v jedné proměnné

Začněme tedy s rezultanty pro polynomy v jedné proměnné, později provedeme jejich
zobecněńı pro př́ıpad v́ıce proměnných. Pojem

”
rezultantu“ se obvykle zavád́ı v souvislosti

s hledáńım podmı́nky pro existenci společného řešeńı výchoźı soustavy polynomiálńıch
rovnic.

Necht’ f, g ∈ k[x] jsou polynomy takové, že

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, an 6= 0,

g = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0, bm 6= 0.

Pro tyto polynomy budeme cht́ıt naj́ıt podmı́nku na koeficienty ai, bj , i = 0, . . . , n, j =
0, . . . , m, která zaruč́ı existenci společného řešeńı polynomů f , g, nebo ekvivalentně řečeno
podmı́nku existence společného faktoru polynomů f , g. Jinak řečeno, chceme vědět, kdy
maj́ı f = 0, g = 0 společný kořen.

Lemma 7.1.1 Necht’ f, g ∈ k[x] jsou polynomy v jedné proměnné a deg(f) = n >
0, deg(g) = m > 0. Potom f a g maj́ı společný faktor právě tehdy, když existuj́ı polynomy
A,B ∈ k[x] takové, že plat́ı:

1. A, B nejsou oba současně nulovými polynomy,
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2. deg(A) ≤ m− 1, deg(B) ≤ n− 1,

3. Af +Bg = 0.

D̊ukaz: Viz [3]. �

Použijeme-li Lemma 7.1.1, můžeme odvodit metodu pro výpočet rezultantu pro dva
polynomy v jedné proměnné. Předpokládejme, že

A = sm−1x
m−1 + sm−2x

m−2 + · · ·+ s1x+ s0,

B = tn−1x
n−1 + tn−2x

n−2 + · · ·+ t1x+ t0.

Dosazeńım do Af +Bg = 0 dostaneme polynom v proměnné x stupně m+ n, který muśı
být nulový, aby polynomy f , g měly společný kořen (faktor). To znamená, že koeficienty u
všech mocnin xmuśı být nulové, což vede na řešeńı soustavy lineárńıch algebraických rovnic
pro neznámé s0, . . . , sm−1, t0, . . . , tn−1. Matice soustavy záviśı na koeficientech vstupńıch
polynomů a0, . . . , an, b0, . . . , bm. Soustavu rovnic je možné zapsat ve tvaru:

s0a0 + t0b0 = 0,

s1a0 + s0a1 + t1b0 + t0b1 = 0,
... (7.1)

sm−1an−1 + sm−2an + tn−1bm−1 + tn−2bm = 0,

sm−1an + tn−1bm = 0,

resp. v maticovém tvaru




















a0

a1 a0

a2 a1
. . .

...
... a0

...
... a1

an

...
...

an

...
. . .

...
an

︸ ︷︷ ︸

m

b0
b1 b0

b2 b1
. . .

...
... b0

...
... b1

bm
...

...

bm
...

. . .
...
bm





















︸ ︷︷ ︸

n

·




















s0

s1
...
sm−2

sm−1

t0
t1
...
tn−2

tn−1




















= O.

Soustava rovnic (7.1) je homogenńı soustavou, která má netriviálńı řešeńı tehdy a jen
tehdy, když determinant matice soustavy je nulový. Odtud potom plyne, že determinant
matice soustavy (7.1) představuje hledanou podmı́nku na koeficienty ai, bj , i = 0, . . . , n, j =
0, . . . , m, za které má soustava polynomiálńıch rovnic f = 0, g = 0 společné řešeńı. Obecně
se tato podmı́nka nazývá rezultant pro soustavu polynomiálńıch rovnic. Matice soustavy
(7.1) je řádu n +m a obvykle se nazývá Sylvesterovou matićı a determinant Sylvesterovy
matice se nazývá Sylvesterovým rezultantem.
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Definice 7.1.1 Necht’ f, g ∈ k[x] jsou polynomy v jedné proměnné. Rezultant Res(f, g) je
polynom v koeficientech polynom̊u f a g, který nabývá nulové hodnoty tehdy a jen tehdy,
když f a g maj́ı společný faktor.

Poznamenejme, že stupeň rezultantu v koeficientech ai polynomu f je roven m, tzn.
degf(Res(f, g)) = m, podobně potom degg(Res(f, g)) = n. Celkový stupeň rezultantu
tedy je n +m.

7.1.1 Sylvester̊uv rezultant, dialytická methoda

Sylvester̊uv rezultant pro polynomy v jedné proměnné patř́ı mezi základńı a velmi dobře
známé rezultanty. Většina CAS (Computer Algebra System) softwar̊u obsahuje funkce pro
výpočet právě Sylvesterova rezultantu. Jiným zp̊usobem pro sestaveńı Sylvesterovy matice,
než jsme ukázali v předchoźı části, je tzv. dialytická metoda.

Uvažujme dvě množiny monomů

X = {xm−1, xm−2, . . . , x, 1}, Y = {xn−1, xn−2, . . . , x, 1}.

Vynásobeńım polynomu f prvky množiny X a polynomu g prvky množiny Y dostaneme
odpov́ıdaj́ıćı polynomiálńı množiny Xf a Yg, které obsahuj́ı dohromady n+m polynomů
a je možné je vyjádřit maticově následuj́ıćım zp̊usobem
















xm−1f
...
xf
f
xn−1g
...
xg
g
















=
















an an−1 . . . a1 a0

an an−1 . . . a1 a0

. . .
. . .

an . . . . . . a0

bm bm−1 . . . b1 b0
bm bm−1 . . . b1 b0

. . .
. . .

bm . . . . . . b0
















︸ ︷︷ ︸

Syl(f,g)










xn+m−1

xn+m−2

...
x
1










, (7.2)

kde matice koeficient̊u je opět Sylvesterovou matićı. Monomiálńı množiny X a Y se ob-
vykle nazývaj́ı množinami násobitel̊u, matice rezultant̊u zkonstruované pomoćı množin
násobitel̊u se nazývaj́ı dialytické matice a metoda sestaveńı matice rezultantu pomoćı
množin násobitel̊u se nazývá dialytická metoda.

Pro polynomy z k[x1, . . . , xn], n > 1, existuje několik metod, které se lǐśı právě volbou
množin násobitel̊u (zobecněńı Sylvesterova rezultantu pro tři polynomy ve dvou proměnných,
Macaulayho rezultant, ř́ıdký rezultant, Dixon̊uv dialytický rezultant). Každá z těchto me-
tod potom dává kvalitativně odlǐsné výsledky – lǐśı se velikost odpov́ıdaj́ıćıch matic rezul-
tantu, počet extra faktor̊u, které obsahuje determinant matice rezultantu apod. Některé
z těchto rezultant̊u pro polynomy ve v́ıce proměnných budou podrobněji popsány v části
7.2.
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Př́ıklad 7.1 Mějme dva polynomy f = x2y − 1 a g = x2 + y2 + xy − 4 a berme je jako
polynomy v proměnné x s koeficienty, které záviśı na proměnné y. Potom Sylvesterovu
matici pro dané polynomy f a g je možné naj́ıt pomoćı vztahu (7.2). Plat́ı tedy







xf
f
xg
g







=







y 0 −1 0
0 y 0 −1
1 y y2 − 4 0
0 1 y y2 − 4







︸ ︷︷ ︸

Syl(f,g)







x3

x2

x
1







a Sylvester̊uv rezultant je det(Syl(f, g)) = y6−8y4 +y3 +16y2−8y+1. Na tomto př́ıkladě
je možné demonstrovat vztah mezi rezultanty a Gröbnerovými bázemi. Jestliže najdeme
Gröbnerovu bázi pro ideal I = 〈f, g〉 vzhledem k lex uspořádáńı pro x > y, dostaneme

I = 〈x− 4y5 − y4 + 32y3 + 4y2 − 64y + 16, y6 − 8y4 + y3 + 16y2 − 8y + 1〉.

Generátorem prvńıho eliminačńıho ideálu I1 = I ∩C[y] je tedy přesně polynom y6− 8y4 +
y3+16y2−8y+1, který jsme źıskali jako rezultant pro polynomiálńı soustavu f = 0, g = 0.
�

7.1.2 Bézout̊uv rezultant

Naprosto odlǐsný zp̊usob sestaveńı matice rezultantu pro polynomy v jedné proměnné
představil v roce 1779 Bézout. Později jeho metodu přepracoval Cayley a zavedl jiný zp̊usob
sestaveńı Bézoutovy matice, který bude uveden v následuj́ıćıch odstavćıch.

Zat́ımco prvky Sylvesterovy matice jsou př́ımo koeficienty výchoźıch polynomů, prvky
Bézoutovy matice jsou polynomy v koeficientech výchoźıch polynomů. Bez újmy na obec-
nosti, necht’ f, g ∈ k[x] jsou polynomy

f = ant
n + an−1t

n−1 + · · ·+ a1t+ a0, an 6= 0,

g = bmt
m + bm−1t

m−1 + · · ·+ b1t+ b0, bm 6= 0,

a m = deg(g) ≤ deg(f) = n.
Necht’ s je nově přidaná proměnná. Uvažujme funkci polynomů f a g ve tvaru

∆(t, s) =

∣
∣
∣
∣

f(t) f(s)
g(t) g(s)

∣
∣
∣
∣

s− t . (7.3)

Je zřejmé, že ∆(t, s) je polynom stupně n−1 v proměnné s, kde koeficienty jsou polynomy
stupně n− 1 v proměnné t.

Děleńı v rovnici (7.3) je možné provést pomoćı následuj́ıćıho obecněǰśıho postupu.
Potřebujeme vydělit polynom f(x, y), který nabývá nulové hodnoty pro x = y, polynomem
x − y. Na polynom f(x, y) je možné nahĺıžet jako na polynom v jedné proměnné x, kde

111



koeficienty jsou polynomy v proměnné y. Dále se využije vyjádřeńı pod́ılu 1/(x − y) ve
tvaru mocniné řady, tj.

1

x− y =

∞∑

u=1

x−uyu−1.

Potom

n∑

i=0

ai(y)x
i

x− y =
n∑

i=0

ai(y)x
i

∞∑

u=1

x−uyu−1 =
n∑

i=0

ai(y)x
i

(
i∑

u=1

x−uyu−1 +
∞∑

u=i+1

x−uyu−1

)

.

Jelikož druhá suma na pravé straně obsahuje záporné mocniny x, výsledek děleńı je poly-
nomem pouze v př́ıpadě, že je tato suma nulová. Tedy

n∑

i=0

ai(y)x
i

x− y =

n∑

i=1

ai(y)x
i

i∑

k=0

xkyi−1−k. (7.4)

Nyńı je možné použ́ıt vztah (7.4) a přepsat (7.3) do tvaru

∆(t, s) = f(t)
g(t)− g(s)
t− s − g(t)f(t)− f(s)

t− s = (7.5)

=
m−1∑

k=0

(

f(t)
m∑

i=k+1

bit
i−k−1 − g(t)

n∑

i=k+1

ait
i−k−1

)

sk −
n−1∑

k=m

(

g(t)
n∑

i=k+1

ait
i−k−1

)

sk.

Samozřejmě je možné zapsat vztah (7.3) také v maticové formě

∆(t, s) = [1 s . . . sn−1] ·D ·








1
t
...
tn−1







. (7.6)

Potom srovnáńım vztah̊u (7.5) a (7.6) je zřejmé, že koeficienty u mocnin si, i = 0, . . . , n−1,
ve vztahu (7.5) je možné vyjádřit opět maticově


















f
m∑

i=1

bit
i−1 − g

n∑

i=1

ait
i−1

...

fbm − g
n∑

i=m

ait
i−m

−g
n∑

i=m+1

ait
i−m−1

...
−gan


















=






c00 . . . c0,n−1
...

. . .
...

cn−1,0 . . . cn−1,n−1






︸ ︷︷ ︸

D








1
t
...

tn−1







, (7.7)
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kde
cij =

∑

k≤min(i,j),

k+h=i+j+1

(akbh − ahbk) (7.8)

a bm+1 = . . . = bn = 0. Matice D je řádu n, nazývá se Bézoutovou matićı a obvykle
se znač́ı Bez(f, g). Determinant Bézoutovy matice vždy obsahuje rezultant jako jeden ze
svých faktor̊u.

Je zřejmé, že konstrukce Bézoutovy matice je složitěǰśı a tedy časově náročněǰśı než
konstrukce Sylvesterovy matice, jelikož prvky Bézoutovy matice nejsou př́ımo koeficienty
vstupńıch polynomů ale opět polynomy v koeficientech vstupńıch polynomů (v podstatě
se jedná opět o determinanty určitých matic). Na druhou stranu, Bézoutova matice je
výrazně menš́ı než Sylvesterova matice – pro n = m je Bézoutova matice rozměru n ×
n a Sylvesterova matice rozměru 2n × 2n. Výpočet determinantu Bézoutovy matice (a
samotného rezultantu) může být tedy výrazně rychleǰśı.

Pod́ıvejme se nyńı podrobněji na odvozeńı vztahu (7.8) pro prvky Bézoutovy matice.
Toto odvozeńı je založeno na sestaveńı speciálńı transformačńı matice R, která transfor-
muje Sylvesterovu matici na Bézoutovu matici. Vyjděme opět ze vztahu (7.5), který je
možné přepsat maticově do tvaru

∆(t, s) = [f tf . . . tm−1f g tg . . . tn−1g]


















b1 b2 . . . bm

b2
...

... bm
bm
−a1 −a2 . . . −an

−a2
...

... −an

−an


















︸ ︷︷ ︸

R








1
s
...

sn−1








=

= [1 t . . . tn+m−1] ·













a0 b0

a1
. . . b1

. . .
... a0

... b0
an a1 bm b1

. . .
...

. . .
...

an bm













︸ ︷︷ ︸

Syl(f,g)

·R ·








1
s
...

sn−1







.

(7.9)
Dále je nutné upravit vztah (7.6) tak, abychom jej mohli jednoduše srovnat se vztahem
(7.9) – rozš́ı̌ŕıme tedy vektor [1, t, . . . , tn] až do mocniny n + m − 1 a současně uprav́ıme
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Bézoutovu matici přidáńım nulových řádk̊u. Tedy (7.6) přeṕı̌seme do tvaru

∆(t, s) = [1 . . . tn−1 tn . . . tn+m−1]

[
Bez(f, g)

Om×n

]






1
...

sn−1




 . (7.10)

Ze srovnáńı (7.9) a (7.10) už poté př́ımo plyne, že

[
Bez(f, g)

Om×n

]

= Syl(f, g) ·R. (7.11)

Z (7.11) př́ımo plyne vztah (7.8) pro prvky Bézoutovy matice a také poskytuje jednu z
možnost́ı jak zkonstruovat Bézoutovu matici pomoćı maticového násobeńı.

Př́ıklad 7.2 Uvažujme polynomy f = x2y − 1 a g = x2 + y2 + xy − 4 jako polynomy v
proměnné x s koeficienty, které záviśı na proměnné y. Z rovnice (7.7), resp. z (7.11), potom
plyne

Bez(f, g) =

[
−y −y3 + 4y − 1

−y3 + 4y − 1 −y2

]

,

resp.

[
Bez(f, g)

O2×2

]

=







−1 0 y2 − 4 0
0 −1 y y2 − 4
y 0 1 y
0 y 0 1













y 1
1 0
0 −y
−y 0







=

=







−y −y3 + 4y − 1
−y3 + 4y − 1 −y2

0 0
0 0






,

a tedy det(Bez(f, g)) = −y6 + 8y4 − y3 − 16y2 + 8y − 1. Dostáváme tedy stejný výsledek
jako v př́ıpadě Sylvesterova rezultantu (až na násobeńı č́ıslem -1). �

7.2 Rezultanty pro polynomy ve v́ıce proměnných

Stejně jako v př́ıpadě rezultant̊u pro polynomy v jedné proměnné i rezultanty pro poly-
nomy ve v́ıce proměnných poskytuj́ı podmı́nku pro existenci společného řešeńı soustavy
polynomiálńıch rovnic f1 = 0, . . . , fn = 0 ve tvaru polynomu v koeficientech vstupńıch
polynomů.

Velkou výhodou rezultant̊u pro polynomy ve v́ıce proměnných ve srovnáńı s metodou
Gröbnerových báźı je, že eliminuj́ı n proměnných z n + 1 rovnic současně, a ne postupně
jednu po druhé jako Gröbnerovy báze. Proto jsou rezultanty obvykle výpočetně rychleǰśı,
alespoň pokud použ́ıváme klasické algoritmy pro obě metody. Avšak moderńı algoritmy
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pro výpočet Gröbnerových báźı se snaž́ı poměrně úspěšně eliminovat tuto nevýhodu (viz
např. [28],[5]).

Na druhé straně i rezultanty maj́ı své nevýhody. Jednou z nich je, že obecně všechny
formulace rezultant̊u pro polynomy ve v́ıce proměnných produkuj́ı tzv. extra factory. To
znamená, že determinant matice rezultantu neńı obecně př́ımo rezultant, ale tzv. projekčńı
operátor, který se skládá z rezultantu a daľśıch faktor̊u (extra faktor̊u), které do rezultantu
nepatř́ı a nesouviśı s ńım. Je tedy ještě nutné eliminovat tyto extra faktory, což pochopitelně
stoj́ı daľśı výpočetńı čas.

Tato část je věnována několika formulaćım rezultant̊u pro polynomy ve v́ıce proměnných.
Nejprve provedeme zobecněńı Sylvesterovy (dialytické) matice pro tři polynomy ve dvou
proměnných – zobecněńı pro v́ıce než dvě proměnné se obvykle neprovád́ı. Jako alternativa
slouž́ı tzv. Macaulayho matice, které je jednou z matic Sylvesterova typu (tzn. že prvky v
matici jsou př́ımo koeficienty vstupńıch polynomů), konstruuje se pro obecný př́ıpad n+1
polynomů v n proměnných také s využit́ım dialytické metody. Dále bude uvedeno zobecněńı
Bézoutovy matice pro polynomy v jedné proměnné, tzv. Dixonova matice pro polynomy
ve v́ıce proměnných – nejprve pro speciálńı př́ıpad tř́ı polynomů ve dvou proměnných z
d̊uvodu zaj́ımavého vztahu k Sylvesterově matici, a poté pro obecný př́ıpad n+1 polynomů
v n proměnných. Na závěr bude uvedena jedna z nových formulaćı matice rezultantu, tzv.
Dixonova dialytická matice. Jak název napov́ıdá, jedná se o kombinaci obou zmı́něnných
př́ıstup̊u, jak dialytické, tak Bézoutovy (Dixonovy) metody. Nejprve se ale pod́ıváme po-
drobněji na vztah

”
rezultantu“ a

”
projekčńıho operátoru“.

7.2.1 Rezultant a projekčńı operátor

Netriviálńı násobek rezultantu, který obvykle źıskáme jako determinant matice rezultantu,
se nazývá projekčńı operátor.

Necht’ F = {f1, . . . , fn} ⊂ k[x1, . . . , xn], kde fi =
∑

α∈A

ci,αx
α1
1 · · ·xαn

n =
∑

α∈A

ci,αx
α je n-

tice polynomů představuj́ıćı soustavu polynomiálńıch rovnic. Při použit́ı libovolné z metod
konstrukce matice rezultantu na polynomiálńı soustavu F v podstatě sestroj́ıme jinou
soustavu polynomiálńıch rovnic, kterou můžeme zapsat ve tvaru F ′ = MF ′ ·X = 0, kde
X obsahuje všechny monomy vyskytuj́ıćı se v polynomech F ′. Dostáváme tak homogenńı
soustavu lineárńıch rovnic, která může mı́t netriviálńı řešeńı pouze v př́ıpadě, že hodnost
matice MF ′ je menš́ı než počet sloupc̊u matice MF ′. Jelikož předpokládáme, že koeficienty
ci,α jsou obecně symbolické, chceme naj́ıt podmı́nku na tyto symbolické koeficienty, jej́ıž
splněńı zaručuje existenci řešeńı soustavy F . V př́ıpadě, že je hodnost MF ′ rovna počtu
sloupc̊u MF ′, determinant MF ′ poskytuje právě tuto podmı́nku.

Avšak v obecném př́ıpadě nemuśı být matice (a velice často také neńı) čtvercovou matićı
nebo je determinant matice rezultantu identicky roven nule, ačkoliv matice rezultantu záviśı
na parametrech. V takovém př́ıpadě je výhodné použ́ıt tzv. metodu RSC pro extrakci
projekčńıho operátoru z matice rezultantu. O této metodě hovoř́ı následuj́ıćı věta.

Věta 7.2.1 (RSC, Rank Submatrix Construction) Necht’ F je soustava polynomiálńıch
rovnic s parametry a necht’ MF ′ je matice rezultantu rozměru m×n. Jestlǐze Ci je lineárně
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nezávislý sloupec matice MF ′, odpov́ıdaj́ıćı monomu xα, a Q je libovolný maximálńı minor
matice MF ′, potom det(Q) je nějaký násobek rezultantu, který představuje podmı́nku pro
existenci řešeńı ε soustavy F splňuj́ıćı podmı́nku εα 6= 0.

D̊ukaz: See [9]. �
Jak vyplývá z Věty 7.2.1, projekčńı operátor je možné źıskat jako determinant libo-
volného maximálńıho minoru matice rezultantu. Je také dobré se uvědomit, že Věta 7.2.1
nepředpokládá žádnou speciálńı formulaci matice rezultantu a je tedy možné ji použ́ıt pro
výpočet projekčńıho operátoru z libovolné matice rezultantu.

Pokud najdeme projekčńı operátor, daľśım krokem je nalezeńı rezultantu, resp. iden-
tifikace extra faktor̊u, v tomto projekčńım operátoru. Prvńım krokem tedy obvykle bývá
faktorizace projekčńıho operátoru. Poté je nutné pro každý faktor rozhodnout, zda patř́ı do
rezultantu nebo nikoliv na základě určité speciálńı podmı́nky, která vyplývá z dané řešené
úlohy. Např́ıklad, pokud hledáme implicitńı vyjádřeńı plochy zadané racionálńı parametri-
zaćı, je možné použ́ıt rezultanty pro eliminaci parametr̊u z dané parametrizace. Nicméně,
často dostaneme v́ıce než jen implicitńı vyjádřeńı. Proto provedeme faktorizaci źıskaného
projekčńıho operátoru a do každého faktoru dosad́ıme danou parametrizaci plochy. Faktory,
které se po dosazeńı vynuluj́ı, tvoř́ı implicitńı vyjádřeńı dané plochy.

7.2.2 Sylvester̊uv rezultant pro polynomy ve dvou proměnných

Sylvesterovu matici pro tři polynomy ve dvou proměnných je možné źıskat př́ımým zo-
becněńım metody konstrukce Sylvesterovy matice pro dva polynomy v jedné proměnné.
Necht’

f(s, t) =

m∑

i=0

n∑

j=0

ai,js
itj , g(s, t) =

m∑

i=0

n∑

j=0

bi,js
itj , h(s, t) =

m∑

i=0

n∑

j=0

ci,js
itj (7.12)

jsou tři polynomy v proměnných s a t. Analogicky jako v př́ıpadě jedné proměnné je možné
zavést množinu polynomů

{sσtτf, sσtτg, sσtτh|σ = 0, . . . , 2m− 1, τ = 0, . . . , n− 1} . (7.13)

Potom Sylvesterova matice opět obsahuje pouze koeficienty vstupńıch polynomů f , g a h
a lze ji zapsat ve tvaru

[f g h t(f g h) . . . tn−1(f g h) s(f g h) st(f g h) . . . stn−1(f g h) . . .
. . . s2m−1(f g h) s2m−1t(f g h) . . . s2m−1tn−1(f g h)] =

= [1 t . . . t2n−1 s st . . . st2n−1 . . . s3m−1 s3m−1t . . . s3m−1t2n−1] · Syl(f, g, h),
(7.14)

kde je použito lexikografické uspořádáńı monomů pro s > t, tj. 1, t, . . . , t2n−1, . . . , sk,
. . . , skt2n−1, . . . , s3m−1, . . . , s3m−1t2n−1. Matice Syl(f, g, h) je řádu 6mn a determinant Syl-
vesterovy matice je Sylvester̊uv rezultant.

Na rozd́ıl od Sylvesterovy matice pro polynomy v jedné proměnné je zde použito jiné
uspořádáńı polynomů f , g a h a jejich násobk̊u na levé straně (7.14). Důvodem je, že
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při použit́ı tohoto uspořádáńı má Sylvesterova matice speciálńı, blokově diagonálńı struk-
turu, která může být výhodná při výpočtu determinantu matice. Pokud bychom zachovali
uspořádáńı jako v př́ıpadě jedné proměnné, byla by Sylvesterova matice pouze ř́ıdkou
matićı bez daľśı speciálńı vnitřńı struktury. Samozřejmě je možné stejným zp̊usobem mo-
difikovat i definici Sylvesterovy matice pro polynomy v jedné proměnné a obě definice jsou
ekvivalentńı.

Sestaveńı Sylvesterovy matice pro polynomy ve dvou proměnných se tedy mı́rně lǐśı
od zp̊usobu uvedeného pro Sylvesterovu matici pro polynomy v jedné proměnné. Každý
sloupec opět obsahuje koeficienty polynomů f , g, h nebo jejich násobk̊u z množiny (7.13).
Pokud je polynom f (nebo g nebo h) vynásoben t, koeficienty f se posunou o jeden řádek
dol̊u v př́ıslušném sloupci (stejně jako v př́ıpadě jedné proměnné). Pokud je polynom f
(nebo g nebo h) vynásoben s, koeficienty f se posunou o 2n řádk̊u dol̊u v př́ıslušném
sloupci. To nám dává zmı́něnou blokovou strukturu Sylvesterovy matice. Necht’

fi(t) =
n∑

j=0

ai,jt
j, gi(t) =

n∑

j=0

bi,jt
j , hi(t) =

n∑

j=0

ci,jt
j (7.15)

a necht’ Si je matice rozměru 2n× 3n daná vztahem

[fi gi hi t(fi gi hi) . . . t
n−1(fi gi hi)] = [1 . . . t2n−1]Si, (7.16)

kde

Si =














ai,0 bi,0 ci,0
...

...
...

. . .

ai,n−1 bi,n−1 ci,n−1
. . . ai,0 bi,0 ci,0

ai,n bi,n ci,n
. . . ai,1 bi,1 ci,1
. . .

...
...

...
ai,n bi,n ci,n














.

Srovnáńım (7.14) a (7.16) dostáváme blokovou strukturu Sylvesterovy matice ve tvaru

Syl(f, g, h) =



















S0
...

. . .

Sm−1 S0

Sm S1 S0

. . .
...

...
. . .

Sm Sm−1 S0

Sm S1

. . .
...

Sm



















.

Na závěr této části si předvedeme sestaveńı Sylvesterovy matice na jednoduchém př́ıkladě.
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Př́ıklad 7.3 Necht’ plocha S he dána parametrizaćı

x(s, t) =
st+ 1

s+ t+ 1
, y(s, t) =

s

s+ t+ 1
, z(s, t) =

t

s+ t+ 1
. (7.17)

Odstraněńım jmenovatel̊u a při použit́ı lexikografického uspořádáńı monomů pro s > t >
x > y > z dostáváme soustavu polynomiálńıch rovnic

−st+ xs+ xt+ x− 1 = 0,
(y − 1)s+ yt+ y = 0,
zs + (z − 1)t+ z = 0.

(7.18)

Polynomy (7.18) jsou stupně 1 v obou proměnných s a t. Množina monomů (7.13) je tedy
v tomto př́ıpadě {sσtτf, sσtτg, sσtτh|σ = 0, 1, τ = 0}. Z (7.14) potom plyne

[f g h sf sg sh] = [1 t s st s2 s2t] ·











x− 1 y z 0 0 0
x y z − 1 0 0 0
x y − 1 z x− 1 y z
−1 0 0 x y z − 1
0 0 0 x y − 1 z
0 0 0 −1 0 0











︸ ︷︷ ︸

Syl(f,g,h)

a
det(Syl(f, g, h)) = xy + xz − x+ y2 + 3yz − 2y + z2 − 2z + 1

je implicitńım vyjádřeńım plochy dané parametrizaćı (7.17).
Pro ověřeńı, že źıskaný výsledek je skutečně rezultantem a tedy i implicitńım vyjádřeńım

dané plochy je možné využ́ıt Gröbnerovy báze. Redukovaná Gröbnerova báze pro ideál
generovaný polynomy (7.18) vzhledem k lexikografickému uspořádáńı pro s > t > x > y >
z je

〈xy + xz − x+ y2 + 3yz − 2y + z2 − 2z + 1,
tz − t+ x+ y + 2z − 1,
ty − x− y − z + 1,
sz − x− y − z + 1,
sy − s + x+ 2y + z − 1,
st− sx− tx− x+ 1〉.

Je zřejmé, že generátor druhého eliminačńıho ideálu I2 = I ∩ C[x, y, z] je stejný jako
vypočtený det(Syl(f, g, h)). �

7.2.3 Dixon̊uv rezultant pro polynomy ve dvou proměnných

Konstrukce Bézoutovy matice pro dva polynomy v jedné proměnné je možné zobecnit pro
tři polynomy ve dvou proměnných. Jako prvńı toto zobecněńı provedl Dixon v roce 1908.
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Opět analogicky jako v př́ıpadě polynomů v jedné proměnné, pro polynomy f , g a h
(definované v (7.12)) je možné zavést funkci

∆(s, t, s̄, t̄) =

∣
∣
∣
∣
∣
∣

f(s, t) g(s, t) h(s, t)
f(s̄, t) g(s̄, t) h(s̄, t)
f(s̄, t̄) g(s̄, t̄) h(s̄, t̄)

∣
∣
∣
∣
∣
∣

(s̄− s)(t̄− t) . (7.19)

Je zřejmé, že čitatel ∆(s, t, s̄, t̄) nabývá nulové hodnoty pro s = s̄ a t = t̄. Odtud př́ımo
plyne, že čitatel ∆(s, t, s̄, t̄) je beze zbytku dělitelný polynomem (s − s̄)(t − t̄) a tedy
že ∆(s, t, s̄, t̄) je polynom v proměnných s, s̄, t, t̄. Polynom ∆(s, t, s̄, t̄) se nazývá Dixon̊uv
polynom a je možné jej přepsat do tvaru

∆(s, t, s̄, t̄) = [1 . . . t2n−1 s . . . st2n−1 . . . sm−1 . . . sm−1t2n−1]·Dix(f, g, h)·















1
...

t̄n−1

...
s̄2m−1

...
s̄2m−1t̄n−1















,

(7.20)
kde Dix(f, g, h) je čtvercová matice řádu 2mn, která se nazývá Dixonova matice a jej́ı
determinant se nazývá Dixon̊uv rezultant.

Podobně jako v př́ıpadě polynomů v jedné proměnné je možné odvodit transformačńı
vztah, který převede Sylvesterovu matici pro polynomy ve dvou proměnných na Dixonovu
matici pouze násobeńım speciálńı transformačńı matićı (v́ıce viz [8]). Vztah (7.19) je možné
přepsat do tvaru

∆(s, t, s̄, t̄) =

m∑

i=0

m∑

j=0

(
i+j−1
∑

u=0

si+j−1−u · s̄u · f(s, t) · gi(t)hj(t̄)− gi(t̄)hj(t)

t̄− t +

+

i+j−1
∑

u=0

si+j−1−u · s̄u · g(s, t) · hi(t)fj(t̄)− hi(t̄)fj(t)

t̄− t + (7.21)

+

i+j−1
∑

u=0

si+j−1−u · s̄u · h(s, t) · fi(t)gj(t̄)− fi(t̄)gj(t)

t̄− t

)

.

Polynom ∆(s, t, s̄, t̄) je možné chápat jako polynom v proměnných s̄, t̄ s koeficienty, které
záviśı na s, t. Označ́ıme-li tyto koeficienty pu,0, . . . , pu,n−1, u = 0, . . . , 2m− 1, potom plat́ı

∆(s, t, s̄, t̄) =
2m−1∑

u=0

n−1∑

j=0

pu,j s̄
ut̄j . (7.22)
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Ze vztahu (7.21) potom plyne, že polynomy pu,0, . . . , pu,n−1, jsou dány lineárńı kombinaćı
polynomů sitjf, sitjg, sitjh, 0 ≤ i ≤ 2m−1, 0 ≤ j ≤ n−1 a tedy existuje matice F rozměru
6mn× 2mn taková, že

[(f g h) . . . s2m−1tn−1(f g h)] · F = [p0,0 . . . p0,n−1 . . . p2m−1,0 . . . p2m−1,n−1]. (7.23)

Jelikož prvńı matice na levé straně (7.23) odpov́ıdá levé straně (7.14) a pravá strana (7.23)
odpov́ıdá prvńım dvěma člen̊um pravé strany (7.20), je možné přepsat (7.23) do tvaru

[1 . . . t2n−1 . . . s3m−1 . . . s3m−1t2n−1] · Syl(f, g, h) · F =
= [1 . . . t2n−1 . . . sm−1 . . . sm−1t2n−1] ·Dix(f, g, h).

(7.24)

Přidáńım 4mn nulových řádk̊u k Dixonově matici a rozš́ı̌reńım vektoru na pravé straně
dostáváme

[1 . . . t2n−1 . . . s3m−1 . . . s3m−1t2n−1] · Syl(f, g, h) · F =

= [1 . . . t2n−1 . . . s3m−1 . . . s3m−1t2n−1] ·
[

Dix(f, g, h)
O4mn×2mn

]

. (7.25)

Zmı́něný transformačńı vztah mezi Sylvesterovou a Dixonovou matićı tedy je

Syl(f, g, h) · F =

[
Dix(f, g, h)
O4mn×2mn

]

. (7.26)

Nicméně stále nev́ıme nic bližš́ıho o struktuře matice F. Matice F je rozměru 6mn×2mn
a lze ji zapsat blokově ve tvaru






F0,0 . . . F0,2m−1
...

...
F2m−1,0 . . . F2m−1,2m−1




 ,

kde každý blok má rozměr 3n× n. Vztah (7.23) můžeme přepsat následovně

[f g h . . . s2m−1tn−1(f g h)] ·






F0,u

...
F2m−1,u




 = [pu,0 . . . pu,n−1].

Z rovnic (7.21) a (7.22) vyplývá, že prvky matic Fσ,u, 0 ≤ σ ≤ 2m − 1, jsou generovány
koeficienty výraz̊u

∑

i+j=σ+u+1

gi(t)hj(t̄)− gi(t̄)hj(t)

t̄− t ,

∑

i+j=σ+u+1

hi(t)fj(t̄)− hi(t̄)fj(t)

t̄− t , (7.27)
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∑

i+j=σ+u+1

fi(t)gj(t̄)− fi(t̄)gj(t)

t̄− t .

Každý člen v těchto třech součtech je Bézoutovým polynomem pro dva polynomy v jedné
proměnné a tedy každý tento člen generuje Bézoutovu matici. Proto každý blok Fσ,u ob-
sahuje tři sumy Bézoutových matic, které se po řádćıch proĺınaj́ı (necht’ Bj

i , i = 1, 2, 3, je
j-tý řádek i-té matice; potom Fσ,u = [B1

1 ;B
1
2 ;B

1
3 ;B

2
1 ;B

2
2 ;B

2
3 ; . . .]). Tedy,

Fσ,u = proĺınáńı po řádćıch tř́ı matic
∑

i+j=σ+u+1

Bez(gi, hj),
∑

i+j=σ+u+1

Bez(hi, fj),
∑

i+j=σ+u+1

Bez(fi, gj).(7.28)

Nav́ıc, bloky Fσ,u maj́ı následuj́ıćı vlastnosti:

• Fσ,u = Fσ′,u′, pokud σ + u = σ′ + u′;

• Fσ,u = O3n×n, pokud σ + u > 2m− 1.

Z toho dále plyne, že

Fσ,u =

{
F0,σ+u, σ + u ≤ 2m− 1,
O jinak

a plat́ı

F =






F0,0 . . . F0,2m−1
...

...
F2m−1,0 . . . F2m−1,2m−1




 =








F0,0 F0,1 . . . F0,2m−1

F0,1
...

F0,2m−1







.

Pro zjednodušeńı můžeme vypustit prvńı index u bloku a označit matice F0,j symbolem
Fj . Potom

F =






F0 . . . F2m−1
...

F2m−1




 . (7.29)

Na závěr si opět předvedeme sestaveńı Dixonovy matice a výpočet Dixonova rezultantu
na jednoduchém př́ıkladě.

Př́ıklad 7.4 Necht’ plocha S je dána stejnou parametrizaćı jako v Př́ıkladě 7.3. Dostáváme
tedy stejnou výchoźı soustavu polynomiálńıch rovnic

−st+ xs+ xt+ x− 1 = 0,
(y − 1)s+ yt+ y = 0,
zs + (z − 1)t+ z = 0.
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Pro nalezeńı Dixonovy matice je možné využ́ıt vztah (7.26), jelikož již známe Sylvesterovu
matici (viz Př́ıklad 7.3). Stač́ı tedy naj́ıt transformačńı matici F a vynásobit ji Sylvesterovu
matici. Dané polynomy jsou stupně 1 v obou proměnných s a t, tzn. m = 1, n = 1, a ze
vztahu (7.29) plyne

F =

[
F0 F1

F1 0

]

.

Matice F má rozměr 6×2 a každý blok Fi má rozměr 3×1. Z (7.28) vyplývá jak zkonstruovat
bloky F0 a F1. Nejprve je nezbytné naj́ıt polynomy fi, gi a hi, i = 0, 1, pomoćı (7.15)

f0 = a00 + a01t = x− 1 + xt f1 = a10 + a11t = x− t,
g0 = b00 + b01t = y + yt g1 = b10 + b11t = y − 1,
h0 = c00 + c01t = z + (z − 1)t h1 = c10 + c11t = z.

Potom muśıme vypoč́ıtat Bézoutovy rezultanty pro polynomy fi, gi, hi, abychom mohli
určit sumy uvedené v (7.28). Pro sestaveńı matice F0 bereme všechny sumy pro všechna
i, j taková, že i+ j = 1. Tedy

∑

i+j=1

Bez(gi, hj) = Bez(g0, h1) + Bez(g1, h0) = −yz + (y − 1)(z − 1) = −y − z + 1,

∑

i+j=1

Bez(hi, fj) = Bez(h0, f1) + Bez(h1, f0) = −z − x(z − 1) + xz = x− z,
∑

i+j=1

Bez(fi, gj) = Bez(f0, g1) + Bez(f1, g0) = −x(y − 1) + xy + y = x+ y.

Matici F0 dostáváme ve tvaru

F0 =





−y − z + 1
x− z
x+ y



 .

Podobně vypočteme prvky matice F1. Sumy bereme pro všechna i, j taková, že i+ j = 2.
Dostáváme

∑

i+j=2

Bez(gi, hi) = Bez(g1, h1) = 0,

∑

i+j=2

Bez(hi, fi) = Bez(h1, f1) = −z,
∑

i+j=2

Bez(fi, gi) = Bez(f1, g1) = y − 1

a tedy

F1 =





0
−z
y − 1



 .

122



Z blok̊u F0 a F1 již snadno sestav́ıme výslednou transformačńı matici F ve tvaru

F =











−y − z + 1 0
x− z −z
x+ y y − 1

0 0
−z 0
y − 1 0











.

Potom

[
Dix(f, g, h)

O4×2

]

=











x− 1 y z 0 0 0
x y z − 1 0 0 0
x y − 1 z x− 1 y z
−1 0 0 x y z − 1
0 0 0 x y − 1 z
0 0 0 −1 0 0











︸ ︷︷ ︸

Syl(f,g,h)











−y − z + 1 0
x− z −z
x+ y y − 1

0 0
−z 0
y − 1 0











︸ ︷︷ ︸

F

a po vynásobeńı dostaneme Dixonovu matici ve tvaru

Dix(f, g, h) =

[
x+ y + z − 1 −z

−y −y − z + 1

]

.

Determinant Dixonovy matice je

det(Dix(f, g, h)) = −xy − xz + x− y2 − 3yz + 2y − z2 + 2z − 1,

což je stejný výsledek jako jsme obdrželi ze Sylvesterovy matice (až na násobek č́ıslem -1)
v Př́ıkladě 7.3. �

Zbývaj́ıćı část této kapitoly bude věnována formulaćım matic rezultant̊u pro obecný
př́ıpad n+ 1 polynomů v n proměnných.

7.2.4 Matice Sylvesterova typu

Konstrukce matic rezultantu Sylvesterova typu je založena na podobné myšlence jako dia-
lytická metoda – pro danou soustavu polynomiálńıch rovnic F = {f0, . . . , fn} chceme naj́ıt
množinu monomů, tzv. množinu násobitel̊u, pomoćı které můžeme źıskat novou soustavu
polynomiálńıch rovnic F ′.

Definice 7.2.1 Necht’ f(x1, . . . , xn) je polynom a necht’ X je množina násobitel̊u. Potom

Xf = {xαf |xα ∈ X}

je množina polynom̊u źıskaná násobeńım polynomu f prvky množiny X.
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Poznamenejme, že je-li ε řešeńım f = 0, potom je také řešeńım Xf = 0. Na druhou
stranu, jestliže ε je řešeńım Xf = 0 a existuje monom xα ∈ X takový, že εα 6= 0, potom
ε je také řešeńım f = 0. Speciálně, pokud X obsahuje 1, potom množiny řešeńı f = 0 a
Xf = 0 jsou shodné.

Necht’ X0,X1, . . . ,Xn jsou množiny násobitel̊u pro polynomy f0, . . . , fn. Potom je možné
uvažovat novou soustavu rovnic

F ′ =







X0f0

X1f1
...
Xnfn

= MF ′ ·X,

kde xα ∈ X, pokud α = β + γ, xβ ∈ Xi a xγ ∈ fi pro nějaké 0 ≤ i ≤ n. Matice MF ′ je
potom matićı rezultantu Sylvesterova typu.

Definice 7.2.2 Matice rezultantu je matićı Sylvesterova typu, jestlǐze prvky v této matici
jsou bud’ nuly nebo koeficienty polynom̊u výchoźı soustavy polynomiálńıch rovnic.

Je zřejmé, že dialytická metoda vždy dává matici rezultantu Sylvesterova typu. Jiným
př́ıkladem matice rezultantu Sylvesterova typu je Macaulayho matice uvedená v následuj́ıćı
části.

7.2.5 Macaulayho matice

Macaulayho matice je matićı rezultantu Sylvesterova typu se speciálńı volbou množin
násobitel̊u pro dané polynomy výchoźı soustavy rovnic. Necht’ F = {f0, . . . , fn} je sou-
stava polynomiálńıch rovnic a necht’

N =
n∑

i=0

deg(fi)− n,

kde deg(fi) je celkový stupeň polynomu fi. Necht’

X = {xα1
1 x

α2
2 · · ·xαn

n |α1 + α2 + · · ·+ αn ≤ N}

je množina monomů takových, že |X| =
(
N + n
n

)

a necht’

X0 = {xα1
1 x

α2
2 · · ·xαn

n |α1 + α2 + · · ·+ αn ≤ N − deg(f0)} ,
X1 = {xα1

1 x
α2
2 · · ·xαn

n |α1 + α2 + · · ·+ αn ≤ N − deg(f1) ∧ α1 < deg(f0)} ,
X2 = {xα1

1 x
α2
2 · · ·xαn

n |α1 + α2 + · · ·+ αn ≤ N − deg(f2) ∧ α1 < deg(f0) ∧
∧ α2 < deg(f1)} ,

...

Xn = {xα1
1 x

α2
2 · · ·xαn

n |α1 + α2 + · · ·+ αn ≤ N − deg(fn) ∧
∧ αi+1 < deg(fi), ∀i : i ≤ n− 1} .
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Z konstrukce množin Xi vyplývá, že všechny monomy množiny polynomů Xifi lež́ı v
množině X. Nav́ıc,

n∑

i=0

|Xi| = |X|.

Potom soustava polynomiálńıch rovnic

F ′ =







X0f0

X1f1
...
Xnfn

= MF ′ ·X

má |X| rovnic a |X| monomů. Matice rezultantu źıskaná pomoćı množin násobitel̊u Xi je
tedy čtvercovou matićı a nazývá se Macaulayho matićı.

Macaulay také určil extra faktor, který je obsažen v projekčńım operátoru źıskaném
jako determinant Macaulayho matice. T́ımto extra faktorem je determinant jisté submatice
matice Mf ′ .

Definice 7.2.3 Monom xα ∈ X se nazývá redukovaný, jestlǐze x
deg(fi)
i děĺı xα pro právě

jedno i ∈ {0, . . . , n}.
Jestliže vypust́ıme všechny řádky a sloupce př́ıslušné redukovaným monomům xα, do-
staneme submatici MF ′, jej́ıž determinant je přesně extra faktorem (až na znaménko)
obsaženým v projekčńım operátoru.

7.2.6 Dixonova matice

V části 7.2.3 již byla zmı́něna konstrukce Dixonovy matice pro tři polynomy ve dvou
proměnných. Tato část bude věnována zobecněńı pro obecný př́ıpad n + 1 polynomů v n
proměnných.

Necht’ F = {f0, . . . , fn} ⊂ Z(a1, . . . , am)[x1, . . . , xn] je množina n + 1 polynomů v
n proměnných x1, . . . , xn s koeficienty z tělesa Z(a1, . . . , am). Analogicky jako v př́ıpadě
dvou proměnných nejprve zavedeme zobecněný Dixon̊uv polynom.

Definice 7.2.4 Necht’ F = {f0, . . . , fn} ⊂ Z(a1, . . . , am)[x1, . . . , xn] je soustava poly-
nomiálńıch rovnic a necht’

δ(x1, . . . , xn, x̄1, . . . , x̄n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f1(x1, x2, . . . , xn) . . . fn+1(x1, x2, . . . , xn)
f1(x̄1, x2, . . . , xn) . . . fn+1(x̄1, x2, . . . , xn)
f1(x̄1, x̄2, . . . , xn) . . . fn+1(x̄1, x̄2, . . . , xn)

...
...

f1(x̄1, x̄2, . . . , x̄n) . . . fn+1(x̄1, x̄2, . . . , x̄n)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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kde x̄i jsou nově přidané proměnné a fj(x̄1, . . . , x̄k, xk+1, . . . , xn) źıskáme substitućı nových
proměnných x̄i za xi, i = 0, . . . , k, v polynomu fj. Potom Dixon̊uv polynom je definován
vztahem

∆(f0, . . . , fn; x1, . . . , xn, x̄1, . . . , x̄n) =
δ(x1, . . . , xn, x̄1, . . . , x̄n)

(x1 − x̄1) · · · (xn − x̄n)
. (7.30)

Je zřejmé, že Dixon̊uv polynom je skutečně polynomem, a ne racionálńı funkci. Jelikož
determinant δ v čitateli vztahu (7.30) nabývá nulové hodnoty pro libovolné xi = x̄i, 0 ≤
i ≤ n, je dělitelný (xi − x̄i), ∀i. Dixon̊uv polynom je možné také přepsat do maticové
podoby – viz následuj́ıćı definice.

Definice 7.2.5 Dixon̊uv polynom ∆(f0, . . . , fn; x1, . . . , xn, x̄1, . . . , x̄n) je možné zapsat ve
tvaru

∆(f0, . . . , fn; x1, . . . , xn, x̄1, . . . , x̄n) = X ·Θ ·X,
kde X = (xα1 , . . . , xαl) je řádkový vektor obsahuj́ıćı uspořádanou množinu monom̊u v
proměnných x1, . . . , xn v ∆, a X = (x̄β1 , . . . , x̄βk) je sloupcový vektor obsahuj́ıćı uspořádanou
množinu monom̊u v proměnných x̄1, . . . , x̄n v ∆. Prvek v i-tém řádku a j-tém sloupci matice
Θ je koeficientem monomu xαi x̄βj v Dixonově polynomu ∆. Matice Θ se nazývá Dixonova
matice.

Podobně jako v př́ıpadě Bézoutovy matice je Dixonova matice hustou matićı, jelikož jej́ı
prvky nejsou př́ımo koeficienty polynomů výchoźı soustavy polynomiálńıch rovnic ale deter-
minanty matic těchto koeficient̊u. To představuje výhodu i nevýhodu oproti matićım Syl-
vesterova typu – Dixonova matice je výrazně menš́ı než r̊uzné matice Sylvesterova typu, ale
na druhou stranu je výpočetně náročněǰśı jej́ı sestaveńı. Výhoda źıskaná menš́ım rozměrem
matice však obvykle převažuje nad zmı́něnou nevýhodou – výpočet symbolického determi-
nantu je velmi citlivý na velikost matice a menš́ı matice rezultantu představuj́ı tedy velkou
výhodu při extrakci projekčńıho operátoru z matice rezultantu.

Řešeńı soustavy polynomiálńıch rovnic F = {f0, . . . , fn} je současně kořenem Dixonova
polynomu. Proto lineárńı soustava

X ·Θ = 0

muśı být řešitelná, pokud existuje řešeńı výchoźı soustavy polynomiálńıch rovnic. A tedy,
nulovost determinantu matice Θ je nutnou podmı́nkou pro existenci řešeńı soustavy poly-
nomiálńıch rovnic F .

V některých př́ıpadech nemuśı být Dixonova matice Θ čtvercová nebo může být jej́ı
hodnost menš́ı než počet řádk̊u a sloupc̊u. V takovém př́ıpadě je možné využ́ıt metodu
RSC pro źıskáńı projekčńıho operátoru z takové matice.

7.2.7 Dixonova dialytická matice

Posledńı formulaćı matice rezultantu zmı́něnou v této kapitole bude tzv. Dixonova dia-
lytická matice, která je matićı Sylvesterova typu a vycháźı z Dixonovy formulace matice
rezultantu.
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Pro se sestaveńı se použ́ıvá jeden volitelný parametr – libovolný polynom g. Odlǐsné
volby parametru g vedou k odlǐsným matićım rezultantu, s rozd́ılnými rozměry matic.
Nicméně existuj́ı odhady a podmı́nky pro optimálńı volbu g, které zaručuj́ı minimali-
zaci rozměru matice a t́ım i minimalizaci stupně extra faktoru obsaženého v projekčńım
operátoru.

Necht’ g ∈ C[x1, . . . , xn, a1, . . . , am] je libovolný polynom a necht’ F = {f0, . . . , fn} ⊂
C[x1, . . . , xn, a1, . . . , am] je soustava polynomiálńıch rovnic. Označme

∆i(g) = ∆(f0, . . . , fi−1, g, fi+1, . . . , fn; x1, . . . , xn, x̄1, . . . , x̄n),

Dixon̊uv polynom soustavy F , kde i-tý polynom byl nahrazen polynomem g.

Věta 7.2.2 Polynomiálńı násobek Dixonova polynomu soustavy polynomiálńıch rovnic F =
{f0, . . . , fn} je možné vyjádřit jako součet součin̊u zadaných polynom̊u fi a Dixonových po-
lynom̊u zbývaj́ıćıch polynom̊u a daného polynomiálńıho násobku, tj.

g∆(f0, . . . , fn; x1, . . . , xn, x̄1, . . . , x̄n) =
n∑

i=0

fi∆i(g), (7.31)

kde g je libovolný polynom.

D̊ukaz: Viz [9]. �

Využijeme-li maticový zápis Dixonova polynomu, je možné přepsat polynom ∆i(g) do
tvaru

∆i(g) = XiΘi(g)Xi,

kde Θi(g) je Dixonova matice soustavy polynomiálńıch rovnic {f0, . . . , fi−1, g, fi, . . . , fn}.
Vynásob́ıme-li ∆i(g) polynomem fi, dostáváme

∆i(g)fi = (XiΘi(g)Xi)fi = (XiΘi(g)) · (Xifi).

Potom vektory Xi je možné použ́ıt jako množiny násobitel̊u pro př́ıslušné polynomy fi a
zkonstruovat dialytickou matici, tj.

F ′ =







X0f0

X1f1
...
Xnfn

= MF ′ ·Y.
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Následně, vyjdeme-li z (7.31), dostáváme

g∆(f0, . . . , fn; x1, . . . , xn, x̄1, . . . , x̄n) = XΘgX =

=

n∑

i=0

∆i(g)fi =

n∑

i=0

XiΘi(g)(Xifi) =

= Y[Θ0(g) : Θ1(g) : . . . : Θn(g)]








X0f0

X1f1
...
Xnfn








=

= Y(T ·MF ′)Y = YΘ′Y,

kde

Y =
n⋃

i=0

Xi a T = Θ0(g) : Θ1(g) : . . . : Θn(g) a Θ′ = T ·MF ′.

Odtud tedy plyne
XΘgX = YΘ′Y.

Důsledek 7.2.3 Pro danou soustavu polynomiálńıch rovnic F = {f0, . . . , fn} je možné
odpov́ıdaj́ıćı Dixonovu matici rozložit na součin dvou matic, z nichž jedna je dialytickou
matici, tj.

Θ = T ·MF ′ ,

kde MF ′ je Dixonova dialytická matice pro danou soustavu F .

Tento d̊usledek je v podstatě zobecněńım transformačńıho vztahu mezi Sylvesterovou a
Bézoutovou matićı v př́ıpadě polynomů v jedné proměnné a mezi Sylvesterovou a Dixo-
novou matićı pro tři polynomy ve dvou proměnných pro obecný př́ıpad polynomů v n
proměnných.
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Kapitola 8

Implicitizace křivek a ploch

Existuj́ı v zásadě dva standardńı zp̊usoby reprezentace algebraických variet – implicitńı
reprezentace a parametrická reprezentace. Podle toho, jaké operace potřebujeme provádět
s danou algebraickou varietou, může být výhodněǰśı implicitńı nebo parametrická repre-
zentace. Parametrické vyjádřeńı je výhodněǰśı pro generováńı bod̊u na varietě, např. pro
jej́ı vykresleńı. Implicitńı vyjádřeńı je lepš́ı v př́ıpadě, že potřebujeme zjistit, zda daný
bod lež́ı na dané varietě, př́ıp. uvnitř nebo vně dané variety. Daľśım př́ıkladem je hledáńı
pr̊unik dvou variet, kde je výhodné mı́t k dispozici implicitńı vyjádřeńı jedné variety a
parametrické vyjádřeńı druhé variety. Proto je d̊uležitá existence metod pro přechod od
jednoho vyjádřeńı ke druhému.

Typickými objekty geometrického modelováńı jsou racionálńı Bézierovy křivky a plochy
a NURBS (NeUniformńı Racionálńı B-Spline) křivky a plochy, které jsou reprezentovány
parametricky. Proto se v této kapitole zaměř́ıme na problém implicitizace, tzn. na nalezeńı
implicitńıho popisu parametricky zadané racionálńı algebraické variety.

V posledńıch letech jsou metody implicitizace algebraických variet intenzivně studovány.
Základńı př́ıstup spoč́ıvá v použit́ı metod eliminace proměnných, jako jsou rezultanty (viz
kap. 7 nebo také [9],[13],[17],[24]) nebo Gröbnerovy báze (viz kap. 3 nebo také [3], [2]).
Odstraněńım jmenovatel̊u je parametrizace převedena na soustavu polynomiálńıch rovnic,
z nichž jsou vyeliminovány parametry. Obecně ale nemuśı být źıskáno implicitńı vyjádřeńı
nejmenš́ı variety obsahuj́ıćı dané parametrické vyjádřeńı. Při použit́ı Gröbnerových báźı
spoč́ıvá možné řešeńı v přidáńı jedné rovnice, která zaruč́ı nenulovost jmenovatel̊u para-
metrizace (viz kap. 6). Odlǐsný zp̊usob řešeńı toho problému je prezentován v [1].

V př́ıpadě použit́ı rezultant̊u přidáńı rovnice, která zajist́ı nenulovost jmenovatel̊u pa-
rametrizace, nepomůže. Determinant matice rezultantu (resp. maximálńıho minoru) může
stále obsahovat extra faktory, které je nutné eliminovat ze źıskaného projekčńıho operátoru.

Obecně lze dále ř́ıci, že algoritmy implicitizace pomoćı Gröbnerových báźı a rezultant̊u
maj́ı

”
problémy“ s parametrizacemi, které obsahuj́ı tzv. base points1. V takovém př́ıpadě je

Dixon̊uv rezultant (a libovolný jiný rezultant źıskaný jako determinant matice rezultantu)

1Necht’ S(u, v) = (X(u, v), Y (u, v), Z(u, v), W (u, v)) je parametrizace plochy v projektivńım prostoru.
Base point je taková dvojice (u0, v0) ∈ C2, že plat́ı X(u0, v0) = 0 ∧ Y (u0, v0) = 0 ∧ Z(u0, v0) =
0 ∧ W (u0, v0) = 0.
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identicky roven nule. K extrakci nenulového projekčńıho operátoru z matice rezultantu je
možné použ́ıt metodu RSC (viz kap. 7 nebo také [9], [11], [12] a [24]). V př́ıpadě použit́ı
Gröbnerových báźı nedocháźı k úplné eliminaci proměnných (implicitńı vyjádřeńı neńı
obsaženo v ideálu generovaném parametrickými rovnicemi), což je možné řešit přidáńım
rovnice zajǐst’uj́ıćı nenulovost jmenovatel̊u parametrizace, jak bylo zmı́něno výše. Daľśım
možným řešeńım je perturbace vstupńıch polynomů pomoćı vhodně zvolených polynomů,
které nenabývaj́ı nulové hodnoty pro base points dané parametrizace (viz [16], [15]). Poté
eliminujeme parametry ze źıskané soustavy rovnic a implicitńı vyjádřeńı je obsaženo v
koeficientu u nejnižš́ı mocniny zvolené perturbačńı proměnné.

Daľśı metodou implicitzace algebraických variet je metoda moving curves a moving
surfaces (viz [25], [26]). Implicitńı vyjádřeńı je źıskáno opět jako determinant speciálně
vytvořené matice, která může být dokonce menš́ı než odpov́ıdaj́ıćı matice rezultantu.
Např́ıklad, pokud použijeme metody moving conics (quadrics) pro implicitizaci racionálńıch
křivek (ploch) bez base points, velikosti źıskané matice je čtvrtinou odpov́ıdaj́ıćı Dixonovy
matice. Jestliže existuj́ı base points pro danou křivku (plochu), metoda se v podstatě zjed-
noduš́ı – sńıž́ı se stupeň některých prvk̊u v matici nebo se dokonce zmenš́ı źıskaná matice.

S využit́ım znalost́ı metod moving lines a moving planes, články [6] a [7] prezentuj́ı
metodu pro implicitizaci racionálńıch křivek a ploch, kde implicitńı vyjádřeńı je źıskáno
jako determinant speciálńı matice Sylvesterova typu (ř́ıdká matice, jednoduché prvky) s
rozměrem Bézoutovy matice.

V posledńıch letech se objevil zaj́ımavý př́ıstup implicitizace křivek a ploch využ́ıvaj́ıćı
numerických metod – klasické polynomiálńı interpolace (viz [18], [19]). Po sestaveńı matice
rezultantu (články jsou založeny na použit́ı Macaulayho rezultantu, ale je možné využ́ıt li-
bovolné formulace matice rezultantu), je determinant interpolován pomoćı klasické Lagran-
geovy interpolačńı metody (pro implicitizaci křivek), př́ıp. se využije rozš́ı̌reńı pro př́ıpad
v́ıce proměnných (pro plochy).

Článek[31] uvád́ı velmi jednoduchou metodu implicitizace, která je založena na odhadu
stupně implicitńıho vyjádřeńı a hledá koeficienty obecného polynomu odhadnutého stupně
pomoćı řešeńı soustavy lineárńıch rovnic.

8.1 Implicitizace pomoćı Gröbnerových báźı a rezul-

tant̊u

Základńı metodou implicitizace algebraických variet je použit́ı metod eliminace proměnných
pro eliminace parametr̊u z parametrického vyjádřeńı algebraické variety. Necht’

C(t) =

(
X(t)

W (t)
,
Y (t)

W (t)

)

(8.1)

je racionálńı parametrizace rovinné křivky C. Potom odstraněńım jmenovatel̊u dostáváme
soustavu rovnic

x ·W (t)−X(t) = 0,
y ·W (t)− Y (t) = 0.

(8.2)
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Eliminaćı parametru t ze soustavy (8.2) pomoćı Gröbnerových báźı nebo rezultant̊u źıskáme
polynom F (x, y) pouze v proměnných x, y, který obsahuje implicitńı vyjádřeńı pro danou
křivku C. Výjimkou jsou parametrizace obsahuj́ıćı base points, kdy neńı možné elimino-
vat parametr pomoćı těchto metod př́ımo – touto situaćı se budeme podrobněji zabývat
později. Nicméně, i když parametrizace neobsahuje base points, F (x, y) může obsahovat
také extra faktory2. Neńı tedy garantováno, že F (x, y) představuje nejmenš́ı varietu, která
obsahuje křivku C danou parametrizaćı (8.1). To lze zajistit (při použit́ı Gröbnerových
báźı) přidáńım jedné proměnné a jedné rovnice

1− s ·W (t) = 0. (8.3)

Rovnice (8.3) zaruč́ı nenulovost jmenovatele parametrizace (8.1). Eliminaćı proměnných s,
t ze soustavy rovnic (8.2)+(8.3) dostáváme polynom R(x, y), který představuje nejmenš́ı
varietu obsahuj́ıćı křivku C (viz kap. 6). Polynom R(x, y) je tedy implicitńım vyjádřeńım
křivky C dané parametrizaćı (8.1). Při použit́ı rezultant̊u toto bohužel garantovat nelze,
ani po přidáńı rovnice (8.3) k soustavě (8.2).

Analogicky je možné naj́ıt implicitńı vyjádřeńı racionálně parametrizované plochy. Ne-
cht’

S(u, v) =

(
X(u, v)

W (u, v)
,
Y (u, v)

W (u, v)
,
Z(u, v)

W (u, v)

)

(8.4)

je racionálńı parametrizace plochy S. Odstraněńım jmenovatel̊u dostáváme soustavu rovnic

x ·W (u, v)−X(u, v) = 0,
y ·W (u, v)− Y (u, v) = 0,
z ·W (u, v)− Z(u, v) = 0.

(8.5)

Eliminaćı parametr̊u u, v (opět za předpokladu, že parametrizace (8.4) nemá base points)
źıskáme polynom F (x, y, z) pouze v proměnných x, y, z, který obsahuje implicitńı vyjádřeńı
dané plochy a obecně také extra faktory. Obdobně je tedy možné přidat rovnici

1− s ·W (u, v) = 0 (8.6)

pro zaručeńı nenulovosti jmenovatel̊u parametrizace (8.5). Potom eliminaćı proměnných s,
u, v pomoćı Gröbnerových báźı dostaneme polynom R(x, y, z), který reprezentuje nejmenš́ı
varietu obsahuj́ıćı danou plochu S a je tedy implicitńım vyjádřeńım plochy S.

Jak již bylo zmı́něno výše, base point je každé společné řešeńı (u0, v0) ∈ C2 soustavy
rovnic

X(u, v) = 0, Y (u, v) = 0, Z(u, v) = 0, W (u, v) = 0.

Jestliže parametrizace plochy obsahuje base point, obě metody selhávaj́ı při nalezeńı im-
plicitńıho vyjádřeńı plochy S. Nyńı si vysvětĺıme, co to zp̊usobuje.

2Extra faktory jsou faktory F (x, y), které nepatř́ı do implicitńıho vyjádřeńı křivky C. Přesněji, faktory

F (x, y), pro které F ( X(t)
W (t) ,

Y (t)
W (t) ) = 0 tvoř́ı implicitńı vyjádřeńı dané křivky C. Ostatńı faktory jsou extra

faktory.
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Použijeme-li rezultanty, projekčńı operátor źıskaný z matice rezultantu pro soustavu
(8.5) vzhledem k parametrizaci s base point(s) je identicky nulový. Jestliže (u0, v0) ∈ C2

je base point parametrizace S(u, v), potom substitućı do (8.5) dostáváme

x · 0− 0 = 0,
y · 0− 0 = 0,
z · 0− 0 = 0.

Soustava rovnic (8.5) má tedy netriviálńı řešeńı (u0, v0) nezávislé na x, y, z. Jelikož re-
zultant představuje nutnou a postačuj́ıćı podmı́nku existenci společného řešeńı výchoźı
soustavy rovnic, je rezultant v tomto př́ıpadě identicky nulový.

Použit́ı Gröbnerových báźı pro implicitizaci křivek a ploch je založena na faktu, že impli-
citni vyjádřeńı je obsaženo v ideálu I generovaném polynomy soustavy (8.5). Při vhodné
volbě uspořádáńı jsme toto implicitńı vyjádřeńı schopni źıskat z vypočtené Gröbnerovy
báze. Problémem parametrizaćı s base points je, že odpov́ıdaj́ıćı ideál I neobsahuje žádný
polynom nezávislý na u, v (kromě 0) a tedy ideál I v tomto př́ıpadě neobsahuje implicitńı
vyjádřeńı plochy S. Necht’

I = 〈x ·W (u, v)−X(u, v), y ·W (u, v)− Y (u, v), z ·W (u, v)− Z(u, v)〉 (8.7)

je ideál generovaný rovnicemi (8.5) a necht’ (u0, v0) je base point parametrizace (8.4).
Předpokládejme, že I obsahuje polynom F (x, y, z) nezávislý na u, v. Potom je možné
zapsat polynom F (x, y, z) ve tvaru

F (x, y, z) = A1(x, y, z, u, v)
(
x ·W (u, v)−X(u, v)

)
+

+ A2(x, y, z, u, v)
(
y ·W (u, v)− Y (u, v)

)
+

+ A3(x, y, z, u, v)
(
z ·W (u, v)− Z(u, v)

)
.

Jelikož toto muśı platit nezávisle na volbě (u, v), muśı tento vztah platit také pro (u0, v0).
Tedy,

F (x, y, z) = A1(x, y, z, u0, v0)
(
x ·W (u0, v0)−X(u0, v0)

)
+

+ A2(x, y, z, u0, v0)
(
y ·W (u0, v0)− Y (u0, v0)

)
+

+ A3(x, y, z, u0, v0)
(
z ·W (u0, v0)− Z(u0, v0)

)
=

= 0.

Odtud vyplývá, že jediným polynomem nezávislým na u, v v ideálu I je nulový polynom
a všechny ostatńı polynomy obsahuj́ı u nebo v.

Existuje několik možnost́ı jak problém s base points řešit:

• je možné přidat rovnici (8.6) pro zajǐstěńı nenulovosti jmenovatele W (u, v), což eli-
minuje base points,

• je možné použ́ıt metodu perturbaćı, tzn. modifikovat výchoźı soustavu rovnic (8.5)
pomoćı vhodně zvolených polynomů (viz [15], [16]),

• pokud použijeme rezultanty pro eliminaci parametr̊u, je možné využ́ıt metodu RSC
pro extrakci projekčńıho operátoru z matice rezultantu i v př́ıpadě, že determinant
matice rezultantu je nulový (viz [9], [24]).
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8.2 Implicitizace pomoćı moving curves a moving sur-

faces

Metody moving curves (pro křivky) a moving surfaces (pro plochy) spoč́ıvaj́ı v sestaveńı
speciálńı matice, jej́ıž determinant je implicitńım vyjádřeńım dané algebraické variety.
Podrobněǰśı popis metod je možné naj́ıt v [25], [26].

Necht’ Q(t) = (X(t), Y (t),W (t)) je racionálńı rovinná křivka stupně n v projektivńım
rozš́ı̌reńı E2. Moving curve stupně m je definována vztahem

C(X; t) =
m∑

j=0

fj(X)tj = 0,

kde X = (x, y, w) a fj(X) je polynom stupně d, a představuje množinu algebraických
křivek lǐśıćıch se v závislosti na t. Řekneme, že moving curve sleduje racionálńı křivku
Q(t), jestliže pro všechna t lež́ı bod Q(t) na moving curve, tj. plat́ı

C(Q(t); t) =

m∑

j=0

fj(X(t), Y (t),W (t))tj ≡ 0.

Nejčastěji se použ́ıvaj́ı dva typy moving curves – moving lines a moving conics. Moving
line stupně m− 1 je možné definovat ekvivalentně dvěma zp̊usoby:

Lm−1(x, y)t
m−1 + · · ·+ L1(x, y)t+ L0(x, y) = 0

nebo
A(t)x+B(t)y + C(t) = 0,

kde Li(x, y) jsou lineárńı polynomy v proměnných x, y a A(t), B(t), C(t) jsou polynomy
stupně m−1 v proměnné t (alespoň jeden z nich). Pro libovolné t0 moving line představuje
implicitńı rovnici př́ımky v rovině xy.

Moving line sleduje racionálńı křivku Q(t), jestliže plat́ı

A(t)
X(t)

W (t)
+B(t)

Y (t)

W (t)
+ C(t) ≡ 0

nebo ekvivalentně
A(t)X(t) +B(t)Y (t) + C(t)W (t) ≡ 0.

Geometricky to znamená, že implicitně zadaná př́ımka odpov́ıdaj́ıćı parametru t procháźı
bodem dané racionálńı křivky, který odpov́ıdá stejnému parametru t.

Pro danou racionálńı křivku Q(t) stupně m obvykle hledáme moving lines stupně m−1

Lm−1(x, y)t
m−1 + · · ·+ L1(x, y)t+ L0(x, y) = 0, (8.8)
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které sleduj́ı křivku Q(t). Jelikož každý polynom Li(x, y) je lineárńı v x, y, můžeme (8.8)
přepsat do tvaru

(Am−1x+Bm−1y + Cm−1)t
m−1 + · · ·+ (A1x+B1y + C1)t+ (A0x+B0y + C0) = 0. (8.9)

Dosad́ıme-li za x a y souřadnice racionálńı parametrizace křivky Q(t), tj. racionálńı funkce
X(t)/W (t) a Y (t)/W (t) a vynásob́ıme-li źıskaný vztah polynomem W (t), dostaneme po-
lynom stupně 2m− 1 v proměnné t

(Am−1X(t)+Bm−1Y (t)+Cm−1W (t))tm−1+ · · ·+(A0X(t)+B0Y (t)+C0W (t)) = 0. (8.10)

Pokud má moving line (8.9) sledovat křivku Q(t), potom muśı být polynom (8.10) identicky
nulový. To vede na řešeńı homogenńı soustavy 2m lineárńıch rovnic pro 3m neznámých
Ak, Bk, Ck. Maticově lze tuto soustavu zapsat ve tvaru

[X Y W . . . tm−1X tm−1Y tm−1W ] ·














A0

B0

C0
...
Am−1

Bm−1

Cm−1














= 0, (8.11)

kde řádky matice koeficient̊u odpov́ıdaj́ı mocninám t a sloupce koeficient̊um polynomů
tkX, tkY , tkW , k = 0, . . . , m− 1.

Homogenńı soustava 2m lineárńıch rovnic pro 3m neznámých má alespoň m lineárně
nezávislých řešeńı. Pokud

p1(t) = L1,m−1(x, y)t
m−1 + · · ·+ L1,1(x, y)t+ L1,0(x, y) = 0,

... (8.12)

pm(t) = Lm,m−1(x, y)t
m−1 + · · ·+ Lm,1(x, y)t+ Lm,0(x, y) = 0

jsou tato lineárně nezávislá řešeńı soustavy (8.11), potom

R(x, y) =

∣
∣
∣
∣
∣
∣
∣

L1,0 . . . L1,m−1
...

...
Lm,0 . . . Lm,m−1

∣
∣
∣
∣
∣
∣
∣

= 0

je implicitńım vyjádřeńım racionálńı křivky Q(t), za předpokladu, že křivka nemá base
points.

Věta 8.2.1 Metoda moving lines vždy generuje správné implicitńı vyjádřeńı racionálńı
křivky, pokud daná racionálńı křivka neobsahuje base points.
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D̊ukaz: Viz [26]. �

Pokud křivka obsahuje base points, potom muśı být metoda modifikována – racionálńı
křivka stupně m s r base points je reprezentována implicitně polynomem stupně m − r.
Detaily modifikace zmı́něné metody pro racionálńı křivky s base points je možné naj́ıt v
[26].

Metoda moving lines je velmi bĺızká metodě implicitizace založené na použit́ı Bézoutova
rezultantu. Obě metody produkuj́ı matice řádu m pro danou racionálńı křivku stupně m.
Nav́ıc, řádky Bézoutovy matice představuj́ı moving lines dané racionálńı křivky a je možné
dokázat, že řádky matice generovaná metodou moving lines jsou lineárńımi kombinacemi
řádek Bézoutovy matice.

Hlavńı výhoda metody moving curves pro implicitizaci křivek spoč́ıvá v použit́ı moving
curves s bázovými funkcemi vyšš́ıho stupně. Jak již bylo zmı́něno výše, použ́ıvaj́ı se zejména
moving conics. Moving conic stupně m− 1 je definována ekvivalentně dvěma zp̊usoby:

Cm−1(x, y)t
m−1 + · · ·+ C1(x, y)t+ C0(x, y) = 0 (8.13)

nebo
A(t)x2 +B(t)xy + C(t)y2 +D(t)x+ E(t)y + F (t) = 0, (8.14)

kde Cj(x, y) jsou polynomy stupně dva v proměnných x, y a A(t), B(t), C(t), D(t), E(t),
F (t) jsou polynomy stupně m− 1 v t.

Podobně jako v př́ıpadě moving lines, moving conic (8.14) sleduje racionálńı křivku
Q(t), jestliže nabývá nulové hodnoty na této křivce, tj.

A(t)X2(t) +B(t)X(t)Y (t) + C(t)Y 2(t)+

+D(t)X(t)W (t) + E(t)Y (t)W (t) + F (t)W 2(t) ≡ 0.

Geometricky to znamená, že implicitně zadaná kuželosečka odpov́ıdaj́ıćı parametru t procháźı
bodem racionálńı křivky, který odpov́ıdá stejnému parametru t.

Každý koeficient Cj(x, y) ve vztahu (8.13) je kvadratickým polynomem v proměnných
x, y. Vztah (8.13) je tedy možné přepsat do tvaru

(Am−1x
2 +Bm−1xy + Cm−1y

2 +Dm−1x+ Em−1y + Fm−1)t
m−1+

... (8.15)

+(A0x
2 +B0xy + C0y

2 +D0x+ E0y + F0) = 0.

Pro nalezeńı implicitńıho vyjádřeńı racionálńı křivky Q(t) stupně 2m hledáme moving
conics stupně m − 1, které sleduj́ı Q(t). Opět dosad́ıme parametrizaci křivky Q(t) repre-
zentovanou polynomy X(t)/W (t) a Y (t)/W (t) za x a y a vynásob́ıme celou rovnici W 2(t),
č́ımž dostaneme

(Am−1X(t)2 +Bm−1X(t)Y (t) + · · ·+ Em−1Y (t)W (t) + Fm−1W
2(t))tm−1+

... (8.16)

+(A0X(t)2 +B0X(t)Y (t) + C0Y (t)2 +D0X(t)W (t) + E0Y (t)W (t) + F0W
2(t)) = 0.
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Jelikož polynomy X(t), Y (t), W (t) jsou stupně 2m v proměnné t, levá strana (8.16) je
polynomem stupně 5m − 1 v proměnné t. Polynom (8.16) muśı být opět identicky nu-
lový, aby (8.16) sledovala racionálńı křivku Q(t). Koeficienty polynomu (8.16) tedy muśı
být identicky nulové, což vede na řešeńı homogenńı soustavy 5m lineárńı rovnic pro 6m
neznámých Ak, Bk, Ck, Dk, Ek, Fk, k = 0, . . . , m− 1

[X2 XY Y 2 XW YW W 2 . . . tm−1X2 tm−1XY tm−1Y 2 tm−1XW tm−1Y W tm−1W 2]·

·














A0

B0

C0
...
Dm−1

Em−1

Fm−1














= 0, (8.17)

kde řádky matice koeficient̊u odpov́ıdaj́ı mocninám t, sloupce odpov́ıdaj́ı koeficient̊um
polynomů tkX2, tkXY , tkY 2, tkXW , tkYW , tkW 2, k = 0, . . . , m− 1. Homogenńı soustava
(8.17) má alespoň m lineárně nezávislých řešeńı

q1(t) = C1,m−1(x, y)t
m−1 + · · ·+ C1,1(x, y)t+ C1,0(x, y) = 0,

... (8.18)

qm(t) = Cm,m−1(x, y)t
m−1 + · · ·+ Cm,1(x, y)t+ Cm,0(x, y) = 0.

Koeficienty moving conics (8.18) tvoř́ı matici C(x, y) = (Cij(x, y)) rozměru m×m. Deter-
minant této matice je dobrým kandidátem na implicitńı vyjádřeńı dané racionálńı křivky.
V některých př́ıpadech se ale může stát, že det(C(x, y)) je identicky roven nule, a to i
v př́ıpadě, že křivka neobsahuje base points. Následuj́ıćı věta uvád́ı nutnou a postačuj́ıćı
podmı́nku, za které metoda moving conics poskytuje implicitńı vyjádřeńı racionálńı křivky
sudého stupně.

Věta 8.2.2 Metoda moving conics poskytuje implicitńı vyjádřeńı racionálńı křivky stupně
2m bez base points právě tehdy, když neexistuje žádná moving line stupně m − 1, která
sleduje křivku. Nav́ıc, pokud existuje moving line stupněm−1, která sleduje křivku, libovolný
determinant źıskaný metodou moving conics je identicky nulový.

D̊ukaz: Viz [26]. �

Necht’ S(u, v) = (X(u, v), Y (u, v), Z(u, v),W (u, v)) je racionálńı parametrizace plochy
v projektivńım rozš́ı̌reńı E3 a

X(u, v) =

m∑

i=0

n∑

j=0

aiju
ivj , Y (u, v) =

m∑

i=0

n∑

j=0

biju
ivj,
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Z(u, v) =
m∑

i=0

n∑

j=0

ciju
ivj, W (u, v) =

m∑

i=0

n∑

j=0

diju
ivj.

Moving surface je definován vztahem

g(X; u, v) =
σ∑

i=1

hi(X)γi(u, v) = 0,

kde X = (x, y, z, w), hi(X) = 0, i = 1, . . . , σ jsou implicitně zadané plochy a γi(u, v), i =
1, . . . , σ jsou polynomy v proměnných u, v. Moving surface sleduje racionálńı plochu S(u, v),
jestliže pro všechna (u, v) lež́ı odpov́ıdaj́ıćı bod S(u, v) na daném moving surface, tj. plat́ı

g(S(u, v); u, v) =
σ∑

i=1

hi(X(u, v), Y (u, v), Z(u, v),W (u, v))γi(u, v) ≡ 0.

Obvykle se použ́ıvaj́ı pouze moving planes a moving quadrics. Moving plane stupně
(σ1, σ2) je dána vztahem

σ1∑

i=0

σ2∑

j=0

(Ai,jx+Bi,jy + Ci,jz +Di,jw) · uivj = 0. (8.19)

Pro pevně dané hodnoty u and v představuje vztah (8.19) implicitńı rovnici roviny. Moving
plane sleduje racionálńı plochu S(u, v), jestliže

σ1∑

i=0

σ2∑

j=0

(Ai,jX(u, v) +Bi,jY (u, v) + Ci,jZ(u, v) +Di,jW (u, v)) · uivj ≡ 0. (8.20)

Levá strana rovnice (8.20) je polynomem stupně m+ σ1 v proměnné u a stupně n + σ2 v
proměnné v. Polož́ıme-li koeficienty u monomů uivj, i = 0, . . . , m + σ1, j = 0, . . . , n + σ2

rovny nule, dostaneme homogenńı soustavu (m+ σ1 + 1)(n+ σ2 + 1) lineárńıch rovnic pro
4(σ1 + 1)(σ2 + 1) neznámých {Ai,j, Bi,j, Ci,j, Di,j}, i = 0, . . . , σ1, j = 0, . . . , σ2. Řešeńı této
soustavy dává systém moving planes, které sleduj́ı danou plochu S(u, v).

Pro moving planes se obvykle voĺı σ1 = 2m − 1, σ2 = n − 1. Dostáváme tedy homo-
genńı soustavu 6mn lineárńıch rovnic pro 8mn neznámých, která má alespoň 2mn lineárně
nezávislých řešeńı. Moving planes, které sleduj́ıćı zadanou plochu S(u, v), źıskáme z řešeńı
této soustavy ve tvaru

L1 ≡
2m−1∑

i=0

n−1∑

j=0

(A1
i,jx+B1

i,jy + C1
i,jz +D1

i,jw) · uivj = 0,

... (8.21)

L2mn ≡
2m−1∑

i=0

n−1∑

j=0

(A2mn
i,j x+B2mn

i,j y + C2mn
i,j z +D2mn

i,j w) · uivj = 0.
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Determinant matice koeficient̊u u monomů uivj v (8.21), tj.

∣
∣
∣
∣
∣
∣
∣

A1
0,0x+B1

0,0y + C1
0,0z +D1

0,0w · · · A1
2m−1,n−1x+ · · ·+D1

2m−1,n−1w
...

...
A2mn

0,0 x+B2mn
0,0 y + C2mn

0,0 z +D2mn
0,0 w · · · A2mn

2m−1,n−1x+ · · ·+D2mn
2m−1,n−1w

∣
∣
∣
∣
∣
∣
∣

nabývá nulové hodnoty, jestliže (x, y, z, w) lež́ı na ploše S(u, v). Odtud tedy vyplývá, že po-
kud tento determinant neńı identicky roven nule, potom je násobkem implicitńıho vyjádřeńı
plochy S(u, v). Metoda moving planes generuje matici stejného rozměru jako implicitizace
ploch za použit́ı Dixonova rezultantu a obě tyto metody jsou ekvivalentńı – každý řádek
Dixonovy matice představuje jednu moving plane sleduj́ıćı plochu S(u, v).

Zaj́ımavým zp̊usobem, jak zmenšit rozměr matice generované metodou, je použit́ı mo-
ving quadrics. Moving quadric stupně (σ1, σ2) je dána vztahem

σ1∑

i=0

σ2∑

j=0

(Ai,jx
2 +Bi,jy

2 + Ci,jz
2 +Di,jxy + Ei,jxz + Fi,jyz+

Gi,jxw +Hi,jyw + Ii,jzw + Ji,jw
2) · uivj = 0. (8.22)

Pro pevně dané hodnoty u and v představuje vztah (8.22) implicitńı rovnici kvadriky.
Moving quadric sleduje racionálńı plochu S(u, v), jestliže

σ1∑

i=0

σ2∑

j=0

(Ai,jX(u, v)2 +Bi,jY (u, v)2 + · · ·+

Ii,jZ(u, v)W (u, v) + Ji,jW (u, v)2) · uivj = 0. (8.23)

Levá strana rovnice (8.23) je polynomem stupně 2m+σ1 v proměnné u a stupně 2n+σ2 v
proměnné v. Polož́ıme-li koeficienty u monomů uivj, i = 0, . . . , 2m+ σ1, j = 0, . . . , 2n+ σ2

rovny nule, dostaneme homogenńı soustavu (2m+σ1 +1)(2n+σ2 +1) lineárńıch rovnic pro
10(σ1 + 1)(σ2 + 1) neznámých {Ai,j, Bi,j, . . . , Ii,j, Ji,j}, i = 0, . . . , σ1, j = 0, . . . , σ2. Řešeńı
této soustavy dává systém moving quadrics, které sleduj́ı danou plochu S(u, v).

Pro moving quadrics se obvykle voĺı σ1 = m− 1, σ2 = n− 1. Z (8.23) tedy dostáváme
homogenńı soustavu 9mn lineárńıch rovnic pro 10mn neznámých, která má alespoň mn
lineárně nezávislých řešeńı. Moving quadrics, které sleduj́ıćı zadanou plochu S(u, v), źıskáme
z řešeńı této soustavy ve tvaru

Q1 ≡
σ1∑

i=0

σ2∑

j=0

(A1
i,jx

2 +B1
i,jy

2 + · · ·+ I1
i,jzw + J1

i,jw
2) · uivj = 0,

... (8.24)

Qmn ≡
σ1∑

i=0

σ2∑

j=0

(Amn
i,j x

2 +Bmn
i,j y

2 + · · ·+ Imn
i,j zw + Jmn

i,j w
2) · uivj = 0.
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Determinant matice koeficient̊u u monomů uivj v (8.24), tj.
∣
∣
∣
∣
∣
∣
∣

A1
0,0x

2 +B1
0,0y

2 + · · ·+ J1
0,0w

2 · · · A1
m−1,n−1x

2 +B1
m−1,n−1y

2 + · · ·+ J1
m−1,n−1w

2

...
...

Amn
0,0 x

2 +Bmn
0,0 y

2 + · · ·+ Jmn
0,0 w

2 · · · Amn
m−1,n−1x

2 +Bmn
m−1,n−1y

2 + · · ·+ Jmn
m−1,n−1w

2

∣
∣
∣
∣
∣
∣
∣

nabývá nulové hodnoty, jestliže (x, y, z, w) lež́ı na ploše S(u, v). Odtud tedy vyplývá, že po-
kud tento determinant neńı identicky roven nule, potom je násobkem implicitńıho vyjádřeńı
plochy S(u, v). Je zřejmé, že při použit́ı moving quadrics je źıskaná matice výrazně menš́ı
– pouze rozměru mn ×mn, oproti matici rozměru 2mn × 2mn v př́ıpadě moving planes,
resp. Dixonova rezultantu.

8.3 Implicitizace pomoćı polynomiálńı interpolace

Tato metoda je založena na použit́ı Lagrangeovy interpolace ve dvou a v́ıce proměnných
pro nalezeńı rezultantu, a tedy i implicitńıho vyjádřeńı křivky nebo plochy dané racionálńı
parametrizaćı.

Necht’

C(t) =

(
X(t)

W (t)
,
Y (t)

W (t)

)

, GCD(X, Y,W ) = 1

je racionálńı parametrizace rovinné algebraické křivky C. Jelikož GCD je zde největš́ım spo-
lečným dělitelem daných polynomů, podmı́nka GCD(X, Y,W ) = 1 znamená, že polynomy
X, Y , W nemaj́ı žádný společný faktor. Pro takovou parametrizaci je implicitńı vyjádřeńı
F (x, y) dané křivky C obsaženo v rezultantu Res(xW (t) −X(t), yW (t)− Y (t)) (viz kap.
8.1). Podmı́nku GCD(X, Y,W ) = 1 je možné odebrat, ale pak zahrneme také parametrizace
s base points – matice rezultantu může být singulárńı a je nutné použ́ıt metodu RSC, tzn.
naj́ıt maximálńı minor.

Stěžejńım bodem metody je volba interpolačńıho prostoru, tzn. odhad maximálńıch
stupň̊u v proměnných x a y hledaného implicitńıho vyjádřeńı. Pro účely odhadu těchto
stupň̊u zkrát́ıme společné faktory (pokud existuj́ı) ve složkách parametrizace C(t), tzn.
obecně dostáváme parametrizace C(t) = (X1(t)/W1(t), Y (t)2/W2(t)), kde GCD(X1,W1) =
GCD(Y2,W2) = 1.

Věta 8.3.1 Necht’ C(t) = (X1(t)/W1(t), Y2(t)/W2(t)) je proper racionálńı parametrizace
ireducibilńı křivky C, pro kterou plat́ı GCD(X1,W1) = GCD(Y2,W2) = 1 a necht’ F (x, y)
je implicitńı vyjádřeńı křivky C. Potom

m = max{degt(X1), degt(W1)} = degy(F )

n = max{degt(Y2), degt(W2)} = degx(F ).

D̊ukaz: Viz [18]. �
Věta nám tedy ř́ıká, že polynom F (x, y) představuj́ıćı implicitńı vyjádřeńı křivky C patř́ı
do prostoru polynomů Πn,m(x, y).

139



Polynom F (x, y) je možné naj́ıt pomoćı klasické Lagrangeovy interpolace. Pro in-
terpolačńı uzly (xi, yj), i = 0, . . . , n, j = 0, . . . , m a interpolovaná data fij ∈ K, i =
0, . . . , n, j = 0, . . . , m chceme naj́ıt polynom

F (x, y) =
∑

(i,j)∈I

cijx
iyj ∈ Πn,m(x, y), I = {(i, j)|i = 0, . . . , n, j = 0, . . . , m}

takový, že
F (xi, yj) = fij , ∀(i, j) ∈ I. (8.25)

Interpolačńı podmı́nky (8.25) je možné zapsat jako soustavu lineárńıch rovnic

Ac = f , (8.26)

kde matice koeficient̊u A je dána Kroneckerovým součinem3 A = Vx ⊗ Vy, kde Vx, Vy

jsou Vandermondeovy matice

Vx =








1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1
...

...
...

. . .
...

1 xn x2
n . . . xn

n







,Vy =








1 y0 y2
0 . . . ym

0

1 y1 y2
1 . . . ym

1
...

...
...

. . .
...

1 ym y2
m . . . ym

m







,

c je sloupcový vektor neznámých koeficient̊u implicitńıho vyjádřeńı F (x, y) a f je sloupcový
vektor obsahuj́ıćı interpolovaná data.

Interpolačńı uzly (xi, yj) se obvykle voĺı xi = i, i = 0, . . . , n a yj = j, j = 0, . . . , m, což
také zaručuje regularitu matice A. Interpolovaná data fij odpov́ıdaj́ı hodnotám rezultantu
F (i, j) v daném interpolačńım uzlu (i, j). Pokud tedy je M(x, y) symbolická Bézoutova
matice rezultantu a Mij = M(i, j), potom fij = detMij .

Speciálńı strukturu matice A je možné využ́ıt k rychleǰśımu řešeńı soustavy (8.26).
Využijeme-li jednu z vlastnost́ı Kroneckerova součinu, uvedenou ve Větě 8.3.2, řešeńı sou-
stavy lineárńıch rovnic (8.26) s matićı koeficient̊u A = Vx ⊗Vy může být převedeno na
řešeńı n+ 1 soustav se stejnou matićı soustavy Vy s následným řešeńım m+ 1 soustav se
stejnou matićı soustavy Vx.

Definice 8.3.1 Operátor vec vytvář́ı sloupcový vektor z dané matice A skládáńım sloupc̊u
matice A = [a1 a2 . . . an] pod sebe, tj.

vec(A) =








a1

a2
...
an








3Kronecker̊uv součin B⊗D je definován pomoćı blok̊u, tzn. výsledná matice je složena z blok̊u (bklD),
kde B = (bkl).
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Věta 8.3.2
vec(AXB) = (BT ⊗A)vec(X). (8.27)

D̊ukaz: Necht’ B = [b1 b2 . . . bn] je matice rozměru m× n a X = [x1 x2 . . . xm]. Potom,
k-tý sloupec matice AXB je

(AXB):,k = AXbk = A
m∑

i=1

xibi,k = [b1,kA b2,kA . . . bm,kA]








x1

x2
...

xm








︸ ︷︷ ︸

vec(X)

=

= ([b1,k, b2,k, . . . , bm,k]
︸ ︷︷ ︸

bT
k

⊗A)vec(X).

Skládáńım sloupc̊u pod sebe dostáváme

vec(AXB) =








(AXB):,1

(AXB):,2
...

(AXB):,n








=








bT
1 ⊗A

bT
2 ⊗A

...
bT

n ⊗A








vec(X) = (BT ⊗A)vec(X).

�
Polož́ıme-li tedy A = Vy, B = VT

x , X = C, kde

C =





c00 . . . c0n

. . . . . .
cm0 . . . cmn



 , c = vec(C)

a podobně

F =





f00 . . . f0n

. . . . . .
fm0 . . . fmn



 , f = vec(F),

potom dosazeńım do (8.27) dostáváme

vec(VyCVT
x ) = (Vx ⊗Vy)

︸ ︷︷ ︸

A

c = f = vec(F).

Odtud vyplývá, že
vec(VyCVT

x ) = vec(F) =⇒ VyCVT
x = F.

Označ́ıme-li CVT
x = W, potom VyW = F. Shrnuto – mı́sto řešeńı soustavy rovnic (8.26)

s matićı soustavy rozměru (m+ 1)(n+ 1) je možné řešit n+ 1 soustav rovnic

VyW = F
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a následně m+ 1 soustav rovnic
VxC

T = WT .

Jelikož Vx a Vy jsou Vandermondeovy matice, je možné využ́ıt speciálńıch metod pro
řešeńı soustav lineárńıch rovnic s matićı soustavy tohoto typu. Podrobněji viz [18].

Metodu je možné poměrně př́ımo zobecnit pro racionálńı plochy. Necht’

S(u, v) =

(
X(u, v)

W (u, v)
,
Y (u, v)

W (u, v)
,
Z(u, v)

W (u, v)

)

je racionálńı parametrizace plochy S. Odstraněńım jmenovatel̊u ve složkách parametrizace
dostáváme polynomy

X(u, v)− xW (u, v), Y (u, v)− yW (u, v), Z(u, v)− zW (u, v) (8.28)

s celkovými stupni d0,d1, d2.
Prvńı krokem je opět určeńı interpolačńıho prostoru Πl,m,n(x, y, z) tak, že Macaulayho

rezultant R(x, y, z) pro polynomy (8.28) vzhledem k u, v je z Πl,m,n(x, y, z). Plat́ı (viz [19]),
že

l = degx(R(x, y, z)) ≤ d1d2,

m = degy(R(x, y, z)) ≤ d0d2,

n = degz(R(x, y, z)) ≤ d0d1.

Dále následuje opět standardńı interpolace pro interpolačńı uzly (xi, yj, zk), i = 0, . . . , l, j =
0, . . . , m, k = 0, . . . , n a interpolovaná data rijk, i = 0, . . . , l, j = 0, . . . , m, k = 0, . . . , n v
interpolačńım prostoru Πl,m,n(x, y, z) pro nalezeńı rezultantu R(x, y, z). To vede na řešeńı
soustavy lineárńıch rovnic

Ac = r, (8.29)

kde matice soustavy je dána Kroneckerovým součinem (Vx ⊗ Vy) ⊗ Vz a Vx, Vy, Vz

jsou Vandermondeovy matice, c je sloupcový vektor neznámých koeficient̊u implicitńıho
vyjádřeńı R(x, y, z) a r je sloupcový vektor obsahuj́ıćı interpolovaná data.

Interpolačńı uzly se obvykle voĺı jako mř́ıžkové body, tj. (xi, yj, zk) = (i, j, k), i =
0, . . . , l, j = 0, . . . , m, k = 0, . . . , n. Interpolovaná data rijk odpov́ıdaj́ı hodnotám im-
plicitńıho vyjádřeńı (rezultant) R(i, j, k) v mř́ıžkových bodech (i, j, k). Jestliže je tedy
M(x, y, z) symbolická Macaulayho matice (nebo libovolná jiná symbolická matice rezul-
tantu) źıskaná eliminaćı parametr̊u u, v z rovnic (8.28) a Mijk = M(i, j, k), potom rijk =
detMijk.

I v tomto př́ıpadě je možné využ́ıt speciálńı strukturu matice A pro rychleǰśı řešeńı
soustavy (8.29). Jelikož matice A je Kroneckerovým součinem matic Vx, Vy a Vz, řešeńı
soustavy lineárńıch rovnic s matićı soustavy A rozměru (l + 1)(m + 1)(n + 1) může být
převedeno na postupné řešeńı (n + 1) soustav rovnic s matićı soustavy Vz, následované
řešeńım (m + 1) soustav rovnic s matićı soustavy Vy a na závěr řešeńım (l + 1) soustav
rovnic s matićı soustavy Vx. V́ıce o této metodě je možné naj́ıt v [19].
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8.4 Př́ımá metoda implicitizace

Jednoduchá a př́ımočará metoda implicitizace křivek a ploch daných racionálńı paramet-
rizaćı byla prezentována nedávno v [31]. Metoda je založena na odhadu stupně hledaného
implicitńıho vyjádřeńı s následným řešeńım soustavy lineárńı rovnic pro neznámé koefici-
enty tohoto implicitńıho vyjádřeńı.

Metoda je zavedena pro racionálńı plochy, ale podobně funguje i pro racionálńı křivky.
Necht’

S(u, v) =

(
X(u, v)

W (u, v)
,
Y (u, v)

W (u, v)
,
Z(u, v)

W (u, v)

)

(8.30)

je racionálńı parametrizace plochy S. Hlavńım úkolem je nalezeńı polynomu F (x, y, z) tak,
že

F (x, y, z) = F

(
X(u, v)

W (u, v)
,
Y (u, v)

W (u, v)
,
Z(u, v)

W (u, v)

)

≡ 0.

Nejprve je tedy potřeba odhadnout stupeň hledaného polynomu F , a to pomoćı:

1. určeńı celkového stupně polynomu F , nebo

2. určeńı stupň̊u polynomu F v jednotlivých proměnných x, y, z.

V př́ıpadě, že je dán celkový stupeň polynomu F , můžeme F zapsat ve tvaru

F =
∑

i≥0,j≥0,k≥0
i+j+k≤n

aijkx
iyjzk,

∑

i≥0,j≥0,k≥0
i+j+k=n

a2
ijk > 0, (8.31)

kde koeficienty aijk jsou neznámé. Dosazeńım (8.30) do (8.31) dostáváme

∑

i≥0,j≥0,k≥0
i+j+k≤n

aijk

X iY jZk

W iW jW k
=
g

h
= 0. (8.32)

Jelikož g muśı být identicky rovno nule, koeficienty u všech monomů uαvβ v g se muśı
rovnat nule. Každý z těchto koeficient̊u je polynomem v proměnných aijk a představuje
jednu z rovnic soustavy lineárńıch rovnic, jej́ımž řešeńım najdeme neznámé koeficienty
implicitńıho vyjádřeńı F . Plocha (8.30) má implicitńı vyjádřeńı stupně ≤ n právě tehdy,
když tato lineárńı soustava má netriviálńı řešeńı āijk. Implicitńı vyjádřeńı racionálńı plochy
(8.30) potom dostaneme jako nekonstantńı faktor F |aijk=āijk

v proměnných x, y, z.
Pokud jsou dány stupně polynomu F v jednotlivých proměnných x, y, z (např. pomoćı

vztah̊u (8.29), můžeme F zapsat ve tvaru

F =
nx∑

i=0

ny∑

j=0

nz∑

k=0

aijkx
iyjzk. (8.33)

Dále metoda pokračuje analogicky jako v př́ıpadě použit́ı celkového stupně. Podrobněji viz
také [31].
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