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Kapitola 1

Abstraktni algebraické struktury

1.1 Relace, ekvivalence, usporadani

Pojmy tykajici se teorie mnozin, jako je identické zobrazeni, prosté zobrazeni, vzajemné
jednoznacné zobrazeni, inverzni zobrazeni atd. jsou dostatecné dobfe znamy, proto se jimi
v tomto textu nebudeme zabyvat. Zatneme pojmem binarni relace.

Definice 1.1.1 Necht M je mnoZina, M X M je mnoZina viech usporddanych dvojic (a,b),
kde a,b € M. Necht R je libovolnd podmnoZina M x M. Potom R definuje na mnoziné
M binarni relaci takto: jsou-li a,b € M, tikame, Ze prvek a je v relact R s prvkem b a
zapisujeme aRb nebo (a,b) € R.

Studium binarnich relaci na mnoziné M se tedy nelisi od studia podmnozin mnoziny
M x M. Lze tedy mluvit o priniku a sjednoceni binarnich relaci, komplementu R k binarni
relaci R (R = (M x M)\ R), sou¢inu bindrnich relaci R a S (a(RS)b <= Jc € M :
aRc A ¢Sb) apod. Nésobeni binarnich relaci je asociativni, tzn.

(RS)T = R(ST);

obecné ale neni komutativni.
Jednotkovd relace E: aEb <= a = b (jinak Teceno, relace E je ddna mnozinou vsech
dvojic (a,a), kde a € M). Ztejmé E~' = E a pro libovolnou relaci R je

ER=RE = R.

Prdzdna relace O: definovana prazdnou podmnozinou mnoziny M x M. Ziejmé pro
libovolnou binarni relaci R na M plati

OCR a RO=0OR=0.
Vlastnosti bindrnich relaci:

1. reflexivita: aRa,Va € M (jinak feceno E C R),
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2. tranzitivita: je-li aRb a bRe, potom aRc (jinak feceno RR C R),
3. symetrie: je-li aRb, potom bRa (jinak feceno R™! = R),
4. antisymetrie: je-li aRb A bRa, potom a = b (jinak fe¢eno RN R~ C E).
Ma4-li bindrni relace R libovolnou z téchto vlastnosti, mé inverzi relace R~! tutéz vlastnost.
Pojem binarni relace je mozné zobecnit. Vezméme n-tou mocninu M™ mnoziny M, tj.

mnozinu vSech usporadanych n-tic (aq, as, ..., a,) prvka mnoziny M. Kazdd podmnozina
R mnoziny M" definuje n-arni relaci (napi. ternarni relaci).

Definice 1.1.2 Bindrni relace, které jsou reflexivoni, tranzitioni a symetrické se nazyvaji
ekvivalence (napr. rovnost zlomku, kongruence celych ¢isel podle urcitého modulu). Ekvi-
valence obvykle znacime ~ nebo =.

Ekvivalence definované na mnoziné M velmi tzce souviseji s rozkladem mmnoZiny M na
disjunktni tridy. Rozkladem mnoziny rozumime soustavu podmnozin M vybranych tak,
aby kazdy prvek M patiil do pravé jedné z téchto podmnozin.

Veéta 1.1.1 Kazdy rozklad I1 mnozZiny M definuje na M ekvivalenci.

Diikaz: (ndznak) Jsou-li a,b € M a polozime-li a ~ b <= a i b patii do téze tiidy rozkladu
I1, dostaneme na M binarni relaci, ktera zirejmé vyhovuje viem pozadavkum uvedenym v
definici ekvivalence. OJ

Véta 1.1.2 Kazdd ekvivalence R na mnozZiné M definuje rozklad této mnozZiny.

Diikaz: Necht K, (tiida prvku a) je mnozina vsech x € M, pro které aRx. Z vlastnosti
ekvivalence vyplyva:

e reflexivita: a € K,, tj. mnozina tiid K,, a € M pokryva celou mnozinu M.
e symetrie: jestlize b € K,, potom a € K.

e tranzitivita: je-li b € K, A ¢ € K, potom ¢ € K,, tj. K, C K,. Odtud plyne, ze je-li
b e K,, pak K, = K,, tj. tfida je definovana libovolnym prvkem.

Jsou-li K, a K, dvé libovolné tiidy s neprazdnym prunikem obsahujicim napi. prvek c,
potom K, = K. i K, = K., tj. K, = K. O

= mezi ekvivalencemi na mnoziné M a rozklady mnozZiny M na disjunktni tridy exis-
tuje tedy vzdajemné jednoznacné zobrazeni.

Definice 1.1.3 Mnozinu trid rozkladu, odpovidajici dané ekvivalenci R na mnozZiné M,
budeme oznacovat M /R a nazgvat faktorovd mnozina mnoziny M podle ekvivalence R.
Zobrazeni mnoziny M na faktorovou mnoZinu M/R, v némz obrazem kazdého prvku a € M
je trida rozkladu, do niZ prvek a patii, nazveme piirozené zobrazeni M na M/R.
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Definice 1.1.4 Bindrni relace, kterd je reflexivni, tranzitivni a antisymetrickd, se nazyvd
usporadani. Obvykle se znaci <, je-li a,b € M a a < b, Tikame, Ze a je mensi nebo rovno
nez b, a je pred b.

Je-lia < baa#b, pisSeme a < b a tikdme, Ze a je mensi nez b. Binarni relace < uz
nent reflexivnd.

Je-li na mnoziné M definovdno usporadani, tikame, ze prvky a, b této mnoziny jsou
srovnatelné, je-li a < b nebo b < a. Libovolné dva prvky mnoziny M vSak nemuseji byt
vubec srovnatelné — hovoiime pak o édstecném usporddani. Napr. polozime-li a < b &
a = b, dostavame trividlni usporadani mnoziny M, v némz ruzné prvky nejsou srovnatelné.

Uspotradand mnozina, jejiz kazdé dva prvky jsou srovnatelné, se nazyva uplné usporadand
mnozina nebo retézec.

Priklady uplné uspotfadanych mnozin:

e mnozina prirozenych ¢isel s prirozenym uspoiadanim,

e mnozina bodu piimky (mnozina redlnych ¢isel) s prirozenym uspoiradanim.
Priklady c¢astecné usporadanych mnozin:

e mnozina vSech podmnozin néjaké mnoziny M s uspoirdadanim definovanym mnozinovou
inkluzi C,

e mnozina vSech spojitych redlnych funkei definovanych na (0,1), jestlize f < g <
v € (0,1) : f(z) < g(z),

e mnozina vSech prirozenych ¢isel, jestlize a < b < aLb.

Véta 1.1.3 Kazdé usporddani dané mnoZiny M lze rozsirit na uplné uspordddni této
mnoziny, tj. lze najit iplné uspordddni, v némz je dané uspordaddni obsazeno (ve smyslu
inkluze bindrnich relact).

Definice 1.1.5 Necht f : M — M’ je vzdjemné jednoznacné zobrazeni dvou usporddanijch
mnoZin, tzn. pro a € M, d' € M' je f(a) = d'. Jestlize za < b, a,b € M VZDY plyne
f(a) < f(b) a obrdcené, nazyvd se f izomorfismem mnozin M a M’ a o mnozZindch M a
M’ 7ikame, Ze jsou to izomorfni usporddané mnoziny.

V piipadech, kdy studujeme jen uspoiradani a povaha prvku, z nichz se obé zkoumané
mnoziny sklddaji, nas nezajima, lze zfejmé izomorfni mnoziny ztotoznit.

Definice 1.1.6 Prvek a usporadané mnoziny M nazveme minimalnim prvkem této mnoziny,
neni-li v M ani jeden prvek x, pro ktery x < a.

Mnozina M muze ziejmé obsahovat mnoho ruznych minimélnich prvku, nemusi vsak
obsahovat ani jeden takovy prvek. Napt. mnozina vSech podmnozin mnoziny M obsahuje
jediny minimalni prvek — prazdnou mnozinu. V mnoziné vSech neprazdnych podmnozin



mnoziny M jsou minimélnimi prvky vSechny podmnoziny obsahujici jediny prvek. Je-li M
nekonecna mnozina, nema mnozina vsech nekoneénych podmnozin zadny minimélni prvek.

Pojem minimélniho prvku lze vyuzit k zavedeni specialni tiidy usporadanych mnozin.
Tato tiida je bohatsi nez tfida konecnych usporddanych mnozin a plati v ni néasledujici
veta:

Veéta 1.1.4 Nasledugici tri podminky jsou ekvivalentni:

1. Minimélni podminka: KaZdd neprazdna podmnozina N usporadané mnoZiny M ob-
sahuge alesponi jeden (v N ) minimdlni prvek.

2. Podminka konecnosti klesajicich fetézcu: KazZdy klesajici tetézec prvku usporddané
mnoziny M
ap>ay > ...>0n > ...

mda jen konecny pocet prvkiu. Jinak teceno, pro kazdy nerostouct retézec

&12&22...20%2...

existuje index n tak, Ze
Ap = Qp+1 = ...

3. Indukéni podminka: Vsechny proky usporddané mnoziny M maji vlastnost €, maji-
li tuto vlastnost vsechny minimdlni proky mnozZiny M (pokud existuji) a je-li mozno
dokdzat, Ze prvek a ma vlastnost € z predpokladu, Ze tuto vliastnost maji vsechny proky
mensi nez a.

Diukaz: Minimélni podminka = indukéni podminka = podminka konecnosti klesajicich
fetézcu = minimdalni podminka. Podrobnéji viz [14], str. 20-21. O

Definice 1.1.7 Upiné uspordadand mnoZina, v niz plati minimalni podminka a ovsem téz
obé ekvivalentni podminky, se nazijvd dobfe usporadana mnozina.

Piikladem dobie uspordadané mnoziny je mnozina vSech pfirozenych cisel s pfirozenym
uspoiadanim.

Kazda podmnozina dobte uspoiddané mnoziny je dobie usporadanou mnozinou. 7 de-
finice dobte uspotfadané mnoziny plyne, ze obsahuje jediny minimalni prvek.

Ke kazdému prvku a dobte usporadané mnoziny M existuje ndsledovnik, tj. prvek, ktery
za a bezprostiedné nasleduje. K prvku a vSak nemusi existovat bezprostifedné predchazejici
prvek — prvek a pak nazveme limitnim prvkem.

Veéta 1.1.5 V usporadané mnoziné plati minimdalni podminka prdvé tehdy, kdyzZ vSechny
retézce (tj. uplné uspordadané mnoziny) jsou dobre uspordddny.



Duikaz: Plati-li v usporadané mnoziné M minimélni podminka, platii v kazdé jeji podmnoziné
a specialné v kazdém ftetézci. Obracené tvrzeni plyne z toho, Ze pfi formulaci podminky
konec¢nosti klesajicich fetézcu, ktera je s minimélni podminkou ekvivalentni, se mluvi jen
o fetézcich mnoziny M. 0

V uspotradané mnoziné M lze prejit k inverznimu usporadani. Minimalni prvky tohoto
inverzniho usporadani jsou potom mazimdlnimi prvky mnoziny M v puvodnim usporadani.
Podobneé klesajici fetézec v inverznim usporadani nazyvame v puvodnim usporadani ros-
touct Tetézec. Obecné lze takto z kazdého pojmu (nebo tvrzeni) souvisejictho s usporadanim
odvodit dudlni pojem (tvrzeni).

Jestlize v usporadané mnoziné M plati minimalni podminka a vezmeme-li v M inverzni
usporadani, dostaneme uspotfadanou mnozinu, v niz plati maximalni podminka. Pro tyto
mnoziny zustanou spravnd vSechna tvrzeni dokdzana o mnozinédch, v nichz plati minimalni
podminka, zaménime-li ovSem relaci < za > a obracené.

1.2 Grupoid, pologrupa, grupa

Zékladem vsech pojmu, které studujeme v ruznych partiich algebry, je pojem algebraické

vvvvv

to zakon, ktery nékterym usporddanym dvojicim prvku dané mnoziny M pfifazuje jeden
nebo nékolik prvku mnoziny M. Nazveme-li tuto operaci ndsobeni a uzijeme-li obvykly
multiplikativni zapis, vyjadiuje rovnost

ab = c,

ze pro dvojici prvki a,b € M je soucin definovan a ze jednou z hodnot tohoto soucinu
je c. Pojem binarni algebraické operace je, v tomto Sirokém slova smyslu, ekvivalentni s
pojmem ternarni relace na mnoziné M.

Binarni algebraickou operaci bézné chapeme v uzsim slova smyslu — nasobeni musi byt
definovano pro kazdou usporadanou dvojici prvku z M a musi byt jednoznacné.

Definice 1.2.1 KaZdd mnoZina, v niZ je dana bindarni algebraickd operace uvedeného typu,
se nazyvd grupoid.

Tento pojem je stale prilis siroky. UzZSi je jiz pojem pologrupy, ktery jiz mé ruzné
aplikace.
Definice 1.2.2 Grupoid, v némz plati asociativni zdkon, se nazjvd pologrupa.
V pologrupé tedy pro libovolné prvky a, b, ¢ plati
(ab)ec = a(bc).

Odtud plyne, ze souc¢in abc tii libovolnych prvka pologrupy je urcen jednoznacné. Z toho
ihned plyne, ze pro vSechna ptirozena n je soucin a;-as - - - a, libovolnych n prvka pologrupy
(v uvedeném poradi) také jednoznacné urcenym prvkem pologrupy.
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Definice 1.2.3 Pologrupa, v niz existuji inverzni operace, tj. v niz pro libovolné prvky a,b
ma kazdd z rovnic
axr =b,ya=1> (1.1)

jednoznacné resent, se nazyvd grupa.
Protoze rovnice (1.1) maji jednoznaéné reseni, lze v grupé krdtit zleva nebo zprava. Je-li
ab; = aby mnebo bia = bsa,

je bl = bg.
Reseni = a y rovnic (1.1) nemusi byt v libovolné grupé identickd. O uvazované operaci
totiz nepredpokladdame, ze je komutativni, takze souCin muze zaviset na poradi faktoru.

Definice 1.2.4 Grupa (pologrupa, grupoid), pro jejiz kazdé dva prvky a,b plati komutationi
zakon

ab = ba,
se nazyvd Abelova nebo komutativni.
Veéta 1.2.1 V kazdé grupé G existuje prdvé jeden prvek e tak, Ze
ae =ea=a

pro vsechna a € G. Prvek e se nazyvd jednotkovy prvek grupy G a obuvykle se oznacuje
symbolem 1.

Dukaz: 7 definice grupy plyne, ze pro kazdy prvek a € G existuje v G pravé jeden prvek
el tak, ze ae!, = a. Je-li b libovolny jiny prvek grupy G a y feseni rovnice ya = b, plyne z
asociativniho zdkona

be, = (ya)e, = y(ae,) = ya = b,

takze e; = el. Prvek e/, tedy nezavisi na volbé prvku a a muzeme ho oznacit €’. Je tudiz
a¢’ =a pro véechna a € G. (1.2)
Analogicky dokazeme existenci a jednoznacnost takového prvku e”, ze
¢"a=a pro vsechna a€G. (1.3)

Aplikujeme-li identity (1.2) a (1.3) na soucin e”¢’, dostaneme e”’¢’ = €” i e"¢’ = €, z ¢ehoz
plyne ¢ = ¢’. Tim je véta dokazana. O

Lemma 1.2.2 Ke kazdému proku a grupy G existuje prdvé jeden prvek a=' tak, Ze

Prvek a=' se nazyjvd inverzni prvek k prvku a.



Diikaz: 7 definice grupy plyne, zZe existuji jednoznacné definované prvky o’ a a” tak, ze

ad =1, a"a=1.

Uzitim asociativniho zdkona dostaneme
a//aa/

CL,(CLCL,) —d' 1= CL”,
a'aa / /

/
(a"a)a !

1-d =d,

takze @’ =d'. [ ]

Ovéreni, ze dana pologrupa je grupou, casto usnadinuje nasledujici véta.

Véta 1.2.3 Pologrupa G je grupou pravé tehdy, kdyz v G existuje alespon jeden pravy
jednotkovy prvek e tak, Ze

ae =a pro vsechna a € G,

pricemz e lze vybrat tak, Ze ke kaZdému a € G existuje alespon jeden pravy inverzni prvek

a~t, pro ktery

aa”t = e.

Diikaz: Viz [14], str. 28-29. O

Poznamka 1.2.4 Nekdy, zvlasté pri studiu Abelovijch grup, uZivime aditioni zdapis misto
multiplikativniho. Grupové operaci pak Tikdme sCitani a soucet zapisujeme a + b, jednot-
kovému prvku grupy rikdme nulovy prvek a oznacujeme jej symbolem 0. Misto o inverznim
prvku mluvime o opacném prvku a znacime jej —a. Inverzni operace se v aditivnim zdpise
Abelovych grup nazyvd odecitani.

Priklady:

1. celd ¢isla s operaci séitani — Abelova grupa,

2. raciondlni ¢isla s operaci séitani — Abelova grupa,

3. redlnd (komplexni) ¢isla s operaci séitdni — Abelova grupa,
4. prirozend ¢isla s operaci s¢itani — pologrupa (nelze odecitat),

5. multiplikativni grupy c¢isel — nutno vynechat 0, protoze nulou nelze délit, napr.
nenulova raciondlni ¢isla, kladna racionalni ¢isla — Abelova grupa,

6. mnozina vSech celych ¢isel s operaci nasobeni, mnozina vSech celych nezapornych
¢isel s operaci nasobeni, prirozend ¢isla s operaci nasobeni — pologrupy.

Priklady nekomutativnich grup a pologrup:

1. regularni ¢tvercové matice n-tého stupné (n > 2) s readlnymi prvky vzhledem k operaci
nasobeni matic — nekomutativni grupa.



1.3 Okruh, téleso

VVVVVV

Definice 1.3.1 Okruhem nazyvdme mnoZinu R, v niZ jsou definovdny dvé bindrni alge-
braické operace — scitdni a ndsobent, pricemz vzhledem ke scitani je R Abelovou grupou
— je to tzv. aditivnd grupa okruhu R, a vzhledem k nasobeni je R grupoidem — je to tzv.
multiplikationi grupoid okruhu R. Ndsobeni souvisi se sc¢itanim distributivnimi zdkony

a(b+c)=ab+ac, (b+c)a=ba+ ca.

Je-li nasobeni v okruhu R asociationi, hovorime o asociativnim okruhu a jeho multipli-
kativni pologrupé.

Je-li ndsobeni v okruhu R asociationi i komutativni, rikdame, Ze okruh je asociativni a
komutativni.

V kazdém okruhu plati distributivni zakony i pro rozdil, tj. plati
a(b—c)=ab—ac, (b—c)a=ba— ca.

Piiklady okruhu:

1. cela cisla — asociativni a komutativni okruh,

2. ¢tvercové matice n-tého stupné (n > 2) s redlnymi prvky — asociativni okruh, ne
komutativni,

3. vektory v Ej s operacemi sklddani vektoru a vektorovy souc¢in — neasociativni a
nekomutativni okruh.

Definice 1.3.2 Nenulové prvky a, b, jejichz soucin je roven nulovému prvku, tzn.
ab =0,

se nazyvaji délitelé nuly.

Nékteré okruhy obsahuji délitele nuly, jsou to napi. okruhy matic. Je-li R libovolny
okruh, lze obecné studovat vSechny mozné ¢tvercové matice n-tého stupné s prvky z okruhu
R. Definujeme-li obvyklym zptisobem sc¢itani a ndsobeni matic, dostaneme okruh, ktery je
asociativni, pokud je asociativni okruh R. Nulovym prvkem je nulova matice sestavend z
nulovych prvku. Tento okruh se nazyva wuplnyg okruh matic n-tého stupné nad okruhem R
a oznacCujeme ho R,.

Lemma 1.3.1 Je-li n > 2 a okruh R neobsahuje pouze nulovy prvek, existuji v uplném
okruhu matic R, délitelé nuly.
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Dukaz: Je-li totiz a nenulovy prvek z okruhu R, nerovna se zadnd z matic

a 0 ... 0 00 ...0
00 ...0 00 ...0
00 ...0 00 ... a
nulové matici, ale jejich sou¢in je nulovou matici. [ |

Dalsim ptikladem okruhu obsahujicich délitele nuly jsou uplné okruhy funkci. Méjme
libovolnou mnozinu M a libovolny okruh R. Utvoime mnozinu vSech moznych funkei na
M, jejichz hodnoty jsou v R, tj. vSech moznych zobrazeni f mnoziny M do okruhu R.
Definujeme-li nasobeni a sc¢itani funkei jako obvykle vzorci

(f+9)x) = f(z)+g(x),
(fo)(x) = f(x)g(z),

stane se tato mmnozina funkci okruhem, ktery je asociativni nebo komutativni, pokud je
vychozi okruh R asociativni nebo komutativni. Tento okruh se nazyva uplny okruh funkci
nad M s hodnotami v okruhu R. Je-li M mnozina bodu ¢iselné osy a R mnozina vsech
realnych cisel, je nas okruh oby¢ejnym okruhem vsech realnych funkci redlné proménné.

Lemma 1.3.2 KaZdy iplny okruh funkci s hodnotami v okruhu R nad mnozZinou M ob-
sahugici alesponi dva prvky, ma délitele nuly, jestlize R obsahuje alespon jeden nenulovy
proek.

Dukaz: Nulovym prvkem je v tomto okruhu nulova funkce, identicky rovna nulova nulovému
prvku ve vSech bodech M. Rozlozime-li mnozinu M na dvé neprazdné disjunktni mnoziny
A a B, existuji ziejmé dvé takové nenulové funkce f a g, ze f je rovna nulové funkci na A
a g na B. Soucin fg je potom zfejmé nulovou funkci. |

Definice 1.3.3 Asociativni a komutationi okruh, ktery neobsahuje délitele nuly, se nazyvad
obor integrity.

Mezi obory integrity patii specialné vsechny ¢iselné okruhy.
Je-li R libovolny asociativni a komutativni okruh, je mozné studovat vSechny polynomy

ap + a1x + a4+ - apx™, n >0

proménné z s koeficienty ag, aq,...,a, € R,a, # 0, n je stupen polynomu. Definujeme-li
scitani a nasobeni standardné, dostaneme okruh, ktery se nazyvéa okruh polynomi R[z].
Tento okruh je asociativni a komutativni.

Analogicky definujeme okruh R|xy,...,z,] libovolného konetného poctu proménnych.
Je to vlastné okruh polynomu proménné x, nad okruhem R[zy,..., 2, 1].

Lze mluvit i o okruhu polynomu libovolné nekoneéné mnoziny proménnych nad R,
predpokladéame-li, Zze kazdy konkrétni polynom zavisi jen na koneéné mmnoha z téchto
proménnych.
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Veéta 1.3.3 Je-li R oborem integrity, je kazdy okruh polynomi nad R také oborem integrity.

Dukaz: Tvrzeni plyne z toho, ze jsou-li f a g nenulové polynomy nad okruhem R, ktery
nema deélitele nuly, je stupen soucinu fg roven souctu stupnu obou faktoru, takze soucin
nemuze byt nulovym polynomem. K okruhum polynomu libovolného koneéného poctu
proménnych ptejdeme jednoduse indukei a u okruhu polynomu s nekoneénou mnozinou
proménnych staci uvazit, ze kazdy polynom je polynomem jen v kone¢né mnoho proménnych.

O

Definice 1.3.4 Okruh, jehoZ nenulové prvky tvori grupu vzhledem k ndsobent, je nutné
asociativni a nazyvd se téleso.

Grupa jeho nenulovijch prvki je multiplikativni grupou tohoto télesa.

Teleso s komutativnim ndsobenim se nazyvd komutativni téleso, téleso s nekomuta-
tivnim ndsobenim se nazyvda nekomutativni téleso.

Priklady téles: téleso raciondlnich ¢éisel, redlnych ¢isel, komplexnich ¢éisel.

7. definice télesa piimo plyne, ze téleso neobsahuje délitele nuly. V kazdém télese je
jednotkovy prvek, nebot jednotkovy prvek multiplikativni grupy je jednotkovym prvkem
télesa.

Konecné v kazdém télese mé kazda z rovnic

ar =b, ya =10, kde a # 0

pravé jedno tesSeni.

1.4 Idealy v okruhu

Definice 1.4.1 Neprdzdnd podmnozina I okruhu R je idedlem, jestlize:
1. Ya,b € I plati, Zea —b € I,
2. je-sliael ar € R, potom ar € I.

Idedly kazdého okruhu jsou: sém okruh R a nulovy ideal O, obsahujici jen nulovy prvek.
Okruh, ktery nema jiné idedly, se nazyva jednoduchy. Piiklady jednoduchych okruhu jsou:

1. kazdé téleso,
2. okruh s délenim (muze obsahovat délitele nuly),
3. uplny okruh matic R,, libovolného stupné n nad kazdym okruhem s délenim R.

Nevyzadujeme-li v definici idedlu, aby pro kazdé a € I a kazdé r € R patfily do I oba
soucinu ar i ra, ale pozadujeme-li jen, aby do I patiil bud soucin ar nebo ra, dojdeme k
pojmu jednostranného idedlu, konkrétné k pravému idedlu, kdyz ra € I, a k levému idedlu,
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kdyz ar € I. V komutativnich okruzich je ale kazdy jednostranny idedl idedlem (nebo, jak
se také nekdy k4, oboustrannym idedlem).

Piiklady idealu:
1. nasobky celého cisla: (2), (7), (9),
2. néasobky daného polynomu: (z + 1).
Definice 1.4.2 Necht R je obor integrity s jednotkovym prvkem. Je-li a € R, je mnoZina
(a) = {ar;r € R},

tj. mnozina proki tvaru ar,r € R, idedlem okruhu R a nazyvd se hlavni idedl generovany
prokem a.

Definice 1.4.3 Jsou-li vSechny idedly okruhu R hlavni, tj. kaZdy z nich je generovany
nékterym prokem, rikdme, Ze R je okruhem hlavnich idedlu.

Definice 1.4.4 Rekneme, Ze obor integrity R s jednotkovym prokem je Eukleidovym okru-
hem, lze-li kaZdému nenulovému proku a € R pritadit nezaporné celé ¢islo n(a) a kromé
toho k libovolnym prvkum a,b € R, b # 0 lze v okruhu R najit prvky q a r tak, Ze

a=bq+r,
pricemz bud r = 0, nebo n(r) < n(b).
Piikladem Eukleidova okruhu je napt. R[z], Z.

Véta 1.4.1 Kazdy Fukleidiv okruh je okruhem hlavnich idedli.

Dukaz: Zvolme v R idedl I. Je-li [ = O, je I = (0). Je-li I # O, oznac¢me ay jeden z téch
nenulovych prvku z I, jemuz je piifazeno n(ag) tak, ze n(ag) < n(a) pro vsechny nenulové
prvky z I. Podle predpokladu lze pro kazdé a € I najit v R takové prvky q a r, ze

a=apq+r.
Je-li r # 0, je n(r) < n(ap), ale
r=a—apq € I,

coz je ve sporu s tim, jak jsme vybrali prvek ay. Proto je r = 0, takze a = agq a I je hlavni
ideal generovany prvkem aqg. O

Eukleidovym okruhem je tedy okruh celych ¢isel Z, ilohu n(a) v ném hraje absolutni
hodnota |a| ¢isla a, a také okruh polynomu P[z]| nad télesem P, ve kterém hraje tilohu n(a)
stupen polynomu. Okruhy Z a P[z] jsou tedy okruhy hlavnich idedlu. V kazdém Eukleidove
okruhu je mozné najit nejvétsiho spole¢ného délitele dvou prvku znamym Eukleidovym
algoritmem.
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Definice 1.4.5 Idedl I je koneéné generovany, jestliZe existuji ay,...,a; € I takové, Ze

t
I:<a1,...,&t>: {Zhiai:hl,...,htER}.
i=1

Definice 1.4.6 Soucinem IJ idedlu I,J C R nazveme idedl generovany vsemi moznymi
souciny tvaru ab, kde a € I a b € J.

Poznamenejme, ze samotné souciny netvoii vysledny ideal, jsou pouze generatory vysledného
idealu, ktery tvori soué¢in téchto idedalu.

Lemma 1.4.2 Necht I = {ay,...,a;) aJ = (by,...,b,). Potom I.J je generovdno mnozinou
vech soucini generdtori idedlu I a J, tj.

Dukaz: Ziejmé. |

Jednou z moznych aplikaci soucinu idedlu je, pokud se omezime na polynomidlni idedly,
uzkd souvislost mezi soucinem ideédlu a sjednocenim afinnich variet (pojem afinni variety,
viz ¢4st vénovand afinnim varietdam).

Definice 1.4.7 Idedl L je prvoidedlem prave tehdy, kdyz pro libovolné idedly I, J z inkluze
IJ C L plyne bud’ I C L nebo J C L. Jinak veceno, jestlize a-b € L, potoma € L V b € L.

Pro ptiklad muzeme opét uvést vztah k afinnim varietdm. Prvoideal v tomto ptipadé
odpovida ireducibilni varieté V' (vyjadiime-li ireducibilni varietu V' ve tvaruV = V; U Vs,
kde V; a V4 jsou opét afinni variety, potom V; = V nebo V, = V). Podobnym piikladem pr-
voidealu, uvazujeme-li tentokrat idealy nad ¢iselnymi okruhy, mohou byt idealy generované
prvocisly.

Definice 1.4.8 Maximalnim idedlem [ je vlastni idedl v okruhu R (tj. idedl rizny od R),
ktery pridanim libovolného proku z R\ I prejde na celyj okruh R.

Maximalni ideal I je tedy nejvétsim moznym vlastnim idealem v okruhu R. Piikladem
maximalniho idedlu, polozime-li R = k[z1,...,x,] a k je téleso, je idedl

I={(x1—ay,...,x, — ay,),
kde aq,...,a, € k.

Veéta 1.4.3 KazZdy maximalni idedl je prvoidedlem.

Dukaz: Predpokladejme, ze I je vlastni idedl, ktery neni prvoidedlem a ze ab € I, piicemz
a ¢ Iab¢ Il Uvazujme idedl (a) + I. Potom I G (a) + I, protoze a ¢ I. Navic, jestlize
by platilo, ze (a) + I = R, potom 1 = ca + h pro néjaké ¢ € R a h € I. Vyndsobenim
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b dostaneme b = ¢fb+ hb € I, coz je ve sporu s volbou b. Tedy, I + (a) je vlastni idedl
obsahujici I a tedy I neni maximalni. O

V okruhu hlavnich idedlu jsou prvoidedly pravé ty idedly, které maji tvar (p), kde p je
prvocinitel.

V dalsim stru¢éné zminime rozkladové véty pro idealy, které popisuji strukturu idealu.

Definice 1.4.9 Primérni idedl je takovy idedl, ve kterém plati:
a-belNhag¢l=Fpo:b%€l.

Je ztejmé, ze prvoidedly jsou také primarnimi idedly, naopak to ale samoziejmé neplati.

Definice 1.4.10 Prvoidedl asociovany k primarnimu idedlu je definovan vztahem
I={a€eR:30:a%€ I}

Definice 1.4.11 Deélitel idedlu A je ,nadmnoZina“, kterd je idedlem, tj. B O A. Pravym
délitelem idedlu A je potom idedl B takovy, Ze B D A.
Napi. (2) | (4), (z + 1) | (2® — 1).
Definice 1.4.12 Ireducibilni idedl je idedl, ktery nelze vyjadrit jako prunik pravych déliteli.
Napf. idedl (x? — 1) = (x — 1) N (z + 1) nenf ireducibilnim idedlem, zatimco idealy (z — 1)
a (x + 1) jsou ireducibilni idedly.
Véta 1.4.4 (1. rozkladova) Kazdy idedl lze vyjadrit jako prunik konecného poctu iredu-
cibilnich idedli.
Véta 1.4.5 Kazdy ireducibilni idedl je primdrni.

Pozor, obecné neplati opak! Napi. ideal (22, zy,y*) je reducibilnf a primarn{ idedl, coz
vyplyva z toho, ze prvky idedlu nemaji absolutni cleny a z toho, ze lze tento idedl prepsat
do tvaru

(0%, 2y, y*) = (2%, y) O (2, 9").

Poznamka 1.4.6 Rozklad lze ,optimalizovat “ eliminaci skupin primdrnich idedlu se stejnym
pridruZenym prvoidedlem, tzn. rozklady nejsou jednoznacné.

Véta 1.4.7 (2. rozkladova) Kazdy idedl ize vyjadrit jako prinik mazimdlnich primdrnich
idedli, tzn. I = (N P;, kde P; jsou maximdlni primdrni idedly.

Véta 1.4.8 (O jednoznacnosti) Méjme dva rozklady [Py, ..., P, a [Q1,...,Qm] téhoZ
idedlu mazimdlnimi primdrnimi idedly. Potom m = n a existuje oindezovdni (usporddant)
takové, zZe P, = Q;, tj. splyvaji asociované prvoidedly.
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Kapitola 2

Voroného diagramy

2.1 Uvod

Ptredpokladejme, ze mate naplanovat umisténi nového supermarketu. Musite zjistit, pro
kolik zakaznikt bude supermarket atraktivni, aby se dalo odhadnout, zda bude supermarket
vydélavat. Pro toto rozhodnuti je nezbytné modelovat chovani lidi, potencidlnich zakazniku:
jak se tedy chovaji, kde budou nakupovat?

Obecnéji se samoziejmé nemusi jednat jen o supermarkety, ale i o jind mista (stfediska),
poskytujici razné sluzby ¢i zbozi, pricemz chceme zjistit mnozstvi lidi, ktefi budou toto
stredisko vyuzivat. Ve vypoctové geometrii se tato stiediska tradi¢né reprezentuji postovnimi
urady, proto se tento problém typicky oznacuje jako postovni problém.

V dalsim budeme uvazovat nasledujici zjednodusujici predpoklady:

1. Cena sluzby nebo zbozi je stejna ve vsech stiediscich.

2. Néklady na ziskani zbozi nebo sluzby = cena zbozi ¢ sluzby + cena dopravy do
strediska.

3. Cena dopravy do strediska = Eukleidovska vzdalenost do strediska X pevna cena za
jednotku vzdalenosti.

4. Zdakaznici se snazi minimalizovat naklady na ziskédni zbozi nebo sluzby.

Obvykle samoziejmé nejsou vsechny tyto predpoklady splnény. Pozdéji si ukazeme, jak
néktera tato zjednoduseni odstranit a priblizit se vice realné situaci. Je zfejmé, ze zbozi
muze byt v nékterych stiediscich levnéjsi a cena dopravy ve mésté nemusi rust linedrné s
Eukleidovskou vzdélenosti. Nicméné tento model muze poskytnout alespon hrubou apro-
ximaci oblasti prislusnych k danym strediskum.

Nyni si uvedeme je geometrickou interpretaci predchoziho modelu. Z predpokladu vyplyva,

ze model indukuje rozdéleni roviny na urcité podoblasti (regiony) takové, ze lidé bydlici
v této oblasti budou nakupovat zbozi, piip. vyuzivat sluzeb stiediska umisténého v této
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podoblasti. Z predpokladu potom déle vyplyva, ze lidé nakupuji ve stiediscich, ktera maji
nejblize, a proto kazda podoblast daného stiediska obsahuje vSechny body, ze kterych je k
tomuto stredisku blize nez k jakémukoliv jinému stredisku.

Toto rozdéleni, indukované danym modelem, se nazyva Voroného diagram dané mnoziny
stredisek. Z Voroného diagramu se daji odvodit ruzné informace o oblastech piislusnych
k danym stfediskim a o vztazich mezi nimi, napt. jestlize oblasti dvou stiredisek maji
okolo) této hranice.

Voroného diagramy maji ruzné aplikace v mnoha ruznorodych oblastech, napi. ve fy-
zice, astronomii, robotice a dalsich. Jsou také tizce svazany s dalsi dilezitou geometrickou
strukturou, tzv. Delaunayho triangulacs.

2.2 Definice a zakladni vlastnosti

Definice 2.2.1 Eukleidovska vzdalenost mezi dvéma body P = [p,,p,] a Q = [qz, q,] je
definovana vztahem

PQ| = dist(P,Q) = /(s — 4:)* + (b, — 4,

Definice 2.2.2 NechtP = {P,..., P,} je mnoZinan riznijch bodi v roviné, které nazjvdme
generujici body. Voroného diagram mmnoZziny bodu P je rozdéleni roviny na n bunék prislusnijch
k jednotlivim bodum P; takovych, Ze libovolny bod ) lezi v burnice prislusné k bodu P; prdvé
tehdy, kdyz

QR <|QF| VP ePj#i
Voroného diagram mnoziny P oznacime Vor(P). Busniku Vor(P), patrici k bodu P;, oznacime

v(P;) a nazveme ji Voroného buikou bodu P;.

Nyni se budeme podrobnéji zabyvat strukturou Voroného bunky. Pro dva body P, @
v roviné definujeme osu P, () jako osu usecky PQ). Tato osa déli rovinu na 2 poloroviny.
Oznaceni (viz obr. 2.1(a)):

h(P,Q) ... oteviend polorovina obsahujici bod P,

h(Q, P) ... oteviend polorovina obsahujici bod Q.
Poznamka 2.2.1 R € h(P,Q) <= |RP| < |RQ)|.

Poznamka 2.2.2

v(P) = () h(P,F)),
1<j<n
JFi
tedy Voroného bunka v(P;) je priunikem n — 1 polorovin a je to tedy oteviend konverni
polygonalni oblast, ohranicend nejugse n — 1 body (vrcholy) a nejvyse n— 1 hranami (mize
byt i neohranicend).

17



(a) Voroného diagram pro dva body, (b) Voroného diagram pro tii body.

ukdzka otevienych polorovin h(P,Q) a
hMQ, P).

(¢) Voroného diagram pro ¢tyfi body. (d) Voroného diagram pro pét bodu.

Obrazek 2.1: Piiklady Voroného diagrami.
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(a) Voroného diagram pro body lezici na (b) Voroného diagram pro piipad, kdy ale-
primce. spon jeden bod nelezi na piimce.

Obrazek 2.2: Piiklady Voroného diagramu.

Voroného diagram je tedy rozdéleni roviny, jehoz hrany jsou tusecky, polopiimky a ve
specialnim ptipadé i piimky. Pokud lezi vSechny generujici body na jedné piimce, potom
v8echny hrany Voroného diagramu jsou rovnobézné piimky (viz obr. 2.2(a)). V opatném
pripadé Voroného diagram neobsahuje zddnou pfimku, pouze tsecky a polopiimky (viz
obr. 2.2(b)).

Véta 2.2.3 Necht P je mnoZina n generujicich bodi v roviné. Jestlize vsechny generujici
body jsou kolinedrnt, potom Vor(P) obsahuje n — 1 rovnobézngch primek. Jinak, Vor(P) je
souvisly a jeho hrany jsou usecky nebo poloprimky.

Dukaz: Prvni ¢ast je zfejma, zamérime se proto pouze na
druhou ¢ést. Predpokladejme tedy, ze vSechny generujici N
body nejsou kolinearni. Nejprve ukazeme, ze hrany Vor(IP) N
jsou tusecky nebo polopiimky. Vime, ze hrany Vor(PP) jsou N
¢asti os mezi dvojicemi generujicich bodu. Nyni predpokladejme N
pro spor, ze existuje hrana e Voroného diagramu Vor(PP),
kterd je pifmkou. Necht e je na hranici bun¢ék v(P;) a \
v(P;). Necht P, € P je bod, ktery nenf kolinedrni s body % G N
P; a P;. Osa P;, P, neni rovnobézna s e a tedy protind e. N
Ale potom tedy cast e, ktera lezi uvniti h(Fy, P;) nemuze N
byt na hranici v(P;), protoze body této ¢asti jsou blize k
Py, nez k P;, coz vede ke sporu s piedpokladem.

Zbyva ukazat, ze Vor(P) je souvisly. Pokud by to tak nebylo, potom by existovala
Voroného bunka v(F;), kterd rozdéluje rovinu na dvé ¢asti. Protoze jsou Voroného bunky
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konvexni, v(FP;) by se sklddalo z pruhu, ohrani¢eného dvéma rovnobéznymi piimkami. Ale
pravé jsme dokazali, ze hrany Voroného diagramu nemohou byt piimky = SPOR. [ ]

Nyni se budeme zabyvat celkovym poctem vrcholi a hran Voroného diagramu, odtud
potom plynou vztahy pro ocekdvanou slozitost algoritmu sestaveni Voroného diagramu.
Jelikoz méame n generujicich bodu a kazda Voroného bunka méa nejvyse n — 1 vrcholu a
hran, slozitost nalezeni Voroného diagramu Vor(PP) je nejvyse kvadraticka.

Véta 2.2.4 Necht n > 3. Potom pocet vrcholii Voroného diagramu mnoZiny n generujicich
bodu, v roviné je nejuyse 2n — 5 a pocet hran je nejvyse 3n — 6.

Diikaz: Jsou-li vSechny generujici body kolinearni, potom diukaz vyplyva z predchozi véty.
Pokud ne, pouzije se k dukazu Eulerova véta, ktera iika, ze vztah

V-E+F=2

plati pro libovolny souvisly rovinny graf s V' vrcholy, £ hranami a F' sténami. Eulerovu
vétu nelze pouzit piimo, protoze Vor(P) muze obsahovat hrany tvorené polopiimkami a
tedy neni grafem. Proto ptidame nevlastni vrchol v, v ,,nekoneé¢nu“ do mnoziny vrcholu a
vSechny tyto poloptimky ve Vor(P) spojime s timto bodem v,. Nyni jiz muzeme aplikovat
Eulerovu vétu. Necht:

e ny ... pocet vrcholu Vor(P),
e ng ... pocet hran Vor(P),

e n ... pocet generujici bodu a jelikoz kazdy generujici bod lezi uvniti jedné stény,
odpovida také poctu stén grafu.

Potom
(nv+1)—nE—|—n:2

Necht dale d; je stupen i-tého vrcholu Vor(P). JelikoZ kazd4 hrana daného grafu m4 pravée
dva vrcholy, plati

i

Protoze kazdy vrchol (véetné vrcholu v, ) mé stupen nejméné 3, plati

Potom
(ny+1) = ng—n+2 ng = (ny+1)+n—2
2ng > 3(ny +1) = 3(ng—n+2) 2np = 2(ny+1)+2n—4
2ng > 3(ng—n+2) 2ny +1)+2n—4 > 3(ny +1)
3n—6 > ng 2n—=5 > ny
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Nyni tedy vime, ze hrany jsou ¢asti os dvojic generujicich bodu a vrcholy jsou pruseciky
téchto os. Pocet os odpovida kvadratu poctu generujicich bodu, ale slozitost Vor(PP) je
linedrni. Ziejmé tedy, ne vSechny osy definuji hrany Vor(P) a ne vSechny pruseciky jsou
vrcholy Vor(PP). Abychom charakterizovali, které osy a které pruseciky budou hranami a
vrcholy Vor(P), je tfeba uvést nasledujici definici.

Definice 2.2.3 Necht Q je bod v roviné. Nejvétsi prazdnou kruznici bodu @ vzhledem k
P je nejvétsi kruznice se stredem v bodé (), kterd neobsahuje uvniti Zadny bod z P. Tuto
kruznici oznacime Cp(Q).

Nasledujici véta potom charakterizuje vrcholy a hrany Voroného diagramu.

Véta 2.2.5 Pro Voroného diagram Vor(P) mnoziny bodu P plati:

1. Bod @ je vrcholem Vor(P) prdvé tehdy, kdyz kruznice Cp(Q) obsahuje tii nebo vice
bodu z mnoziny P na své hranici.

2. Osa generugicich bodu P; a P; definuje hranu Vor(P) prdvé tehdy, kdyz existuje bod
Q) na ose P;, P; takovy, Ze generujici body P;, P; lezi na hranici kruznice Cp(Q) a
zZadny dalsi generujici bod na ni nelezi.

Dukaz:

1. Predpoklddejme, ze @ je stfed kruznice, na které lezi alespon 3 generujici body.
Oznacme tyto body P;, P;, Pj. Vnitfek kruznice je prazdny a tedy ) musi leZet na
hranici bunék v(B5), v(F;), v(P), protoze @ je stejné vzdéleny k bodu P, i k Pj, z
¢ehoz vyplyva, ze lezi na hranici bunék v(P;) a v(P;) (podobné pro P;, Py a P;, Py).
Odtud potom plyne, ze ) musi byt vrchol.

Obrécené: @ je vrchol = @ je prusecikem alespon tii hran = (Q nalezi alespon tifem
bunkam v(P;), v(P;), v(FP;) Voroného diagramu. Plati

QB[ = [QP;| = QP

protoze @) lezi v pruseciku os usecek P;P;, PPy, PjP; a je tedy stfedem kruznice
opsané trojuhelniku AP, P;Py. Z4dny dalsi bod nemuze byt bliz k bodu @ nez body
P, P;, Py, protoze jinak by @ nelezelo v pruseciku os usecek P;P;, PPy, P;P; a
odpovidajici Voroného buiiky v(P;), v(F;), v(Px) by se v tomto bodé nesetkaly =
kruznice je prazdna.

2. Predpokladejme, Ze existuje bod @) na ose usecky P;P; takovy, ze body F;, P; lezi na
hranici kruznice Cp(Q) a zadny jiny bod P uvnitt této kruznice, tedy plati

QP = |QF;| <|QF| VE:1<k<nk#1ij
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Obrazek 2.3: Voroného diagramy pro mnoziny bodt, obsahujici alespon ¢tyti body lezici
na kruznici.

Odtud vyplyvd, ze @ lezi na hrané Vor(P) (nemuze lezet ve vrcholu, body jsou jen
dva).

Obracené: necht osa tsecky P,P; definuje Voroného hranu. Potom nejvétsi prazdnd
kruznice pro libovolny bod z wvnitfku hrany musi na hranici obsahovat body F;, P;
a zadné dalsi body (musi obsahovat oba body, protoze pro libovolny bod hrany je
|QP;| = |QPF;| a bude obsahovat pouze tyto dva body, protoze jinak by se jednalo o
vrchol, ktery jsme ale zde vyloucily). [

Véta 2.2.6 Voroného burika v(P;) je neohranicend prdvé tehdy, kdyz bod P; patii hrané
konvexniho obalu mnoziny P.

V pripadé, ze mnozina bodu P obsahuje ¢tyii nebo vice bodu, které lezi na jedné
kruznici, prestane platit, ze vrchol Voroného diagramu je tvoren prusec¢ikem tii os, resp.
Voroného hran (viz obr. 2.3(a)). V takovém piipadé se hovoii o Voroného diagramu jako
o degenerovaném a existuje vrchol Voroného diagramu Vor(P) tvoreny prusecikem tolika
Voroného hran, kolik bodu lezi na odpovidajici kruznici.

2.3 Algoritmy konstrukce Voroného diagrami

Existuje nékolik moznosti, jak zkonstruovat Voroného diagram, které se lisi slozitosti a efek-
tivnosti vypoctu. Obecné lze ukazat, ze sestrojeni Voroného diagramu pro n bodu zabere
cas nejméné O(nlogn), jelikoz je to uloha ekvivalentni s tfidénim. To tedy znamend, ze
kazdy algoritmus s touto slozitosti je optimalni. Klasické algoritmy pro sestrojeni Voroného
diagramu jsou nasledujici:
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1. naivni algoritmus,

2. inkrementélni algoritmus,

3. algoritmus ,,rozdél a panuj*,

4. zametaci ,,Fortuneho“ algoritmus,
5. metoda zdvihu.

Nyni se budeme vénovat kazdému z téchto algoritmu podrobnéji.

2.3.1 Naivni algoritmus

Nejjednodussi a nejpiiméjsi algoritmus, zalozeny na piimé aplikaci definice Voroného di-
agramu, kdy kazdd oblast v(P;) Voroného diagramu je ziskdna jako prunik polorovin
h(P;, P;), Vj # i. Slozitost tohoto algoritmu neni zdaleka optimélni, protoze je O(n?logn).

2.3.2 Inkrementalni algoritmus

Jeden z klasickych piistupt pouzivanych ve vypoctové geometrii — inkrementdlni algorit-
mus — lze pouzit i v pripadé Voroného diagramu. Nejprve provedeme vypocet Voroného
diagramu pro jednoduchy a snadno zvladnutelny piipad, napi. ndhodné vybereme dva
nebo tii z mnoziny generujicich bodu a najdeme pro né Voroného diagram. Poté postupné
pridavame po jednom zbylé body z generujici mnoziny a vzdy modifikujeme stavajici struk-
turu (Voroného diagram pro do té doby pouzité body).

Postup modifikace stavajici struktury pii pridani (¢ 4+ 1)-niho bodu je nasledujici (viz
obr. 2.4(a)):

1. Lokalizace — v prvnim kroku urc¢ime, v jaké Voroného bunce stavajictho Voroného
diagramu se nové ptridavany bod P,,; nachazi. Generujici bod Voroného bunky, ve
které se bod P, nachazi, oznac¢ime F;,.

2. Najdeme osu tsecky P11 F;,.

3. Najdeme pruseciky osy usecky P;1F;, s hranici Voroného bunky, ve které se bod
Py 1 nachazi.

4. Vybereme si jeden z pruseciku, ¢imz urc¢ime Voroného bunku, do které budeme po-
kracovat v dalsim kroku algoritmu. Ozna¢me generujici bod této bunky P, .

5. Najdeme osu tsecky P;11P;, a jeji pruseciky s hranici bunky, ve které se nachazi
bod P;,. Vybereme prusecik, ktery nelezi na spoletné hrané Voroného bunék v(F;,)
a v(P,,) a pokracujeme déle.

6. Opakujeme krok 5, dokud se nedostaneme do druhého pruseciku osy usecky P11 P,
s hranici Voroného bunky v(P;,).
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(a) Inkrementdln{ algoritmus. (b) Algoritmus ,,rozdél a panuj“.

Obrazek 2.4: Algoritmy nalezeni Voroného diagramu.

Na konci je nezbytné provést tzv. ,zacisténi“ — tzn. vyrusit hrany uvniti nové vzniklé
Voroného bunky.

SloZitost inkrementdlntho algoritmu je obecné O(n?), ve specidlnich piipadech ale muze
byt i O(n).

2.3.3 Algoritmus ,,rozdél a panuj“

Dalsi z klasickych pristupu pouzivanych ve vypoctové geometrii, ktery lze i v tomto pripadé
aplikovat na nalezeni Voroného diagramu dané mnoziny bodu.

Algoritmus funguje nasledovné: zadanou generujici mnozinu bodu délime rekurzivné na
dveé ¢asti az do té urovné, dokud nedostaneme mnozinu pouze tii bodu, pro které uz lze
sestrojit Voroného diagram jednoduse. Nésleduje ,,zpétny chod“, pii kterém jsou jednotlivé
¢asti — Voroného diagramy pro t¥i body — opét postupné spojovany do jednoho Voroného
diagramu, coz je nejslozitéjsi ¢ast tohoto algoritmu.

Nevyhodou tohoto algoritmu je nachylnost na numerické chyby a z toho plynouci nu-
mericka nestabilita. Vyhodou potom je to, ze algoritmus dosahuje optimélni slozitosti
O(nlogn).

2.3.4 Zametaci ,,Fortuneho* algoritmus

I v tomto ptipadé se v principu jedna o klasicky pristup pouzivany ve vypoctové geometrii
— pouziti zametaci pfimky. Nicméné pro nalezeni Voroného diagramu je nezbytné klasicky
algoritmus mirné modifikovat.
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Zéakladem je tzv. zametaci pifimka — horizont, ktery se postupné pohybuje od shora dolu
a béhem pohybu jsou uchovavany vSechny informace potiebné pro vypocet a vytvarena
hledana struktura, v tomto piipadé Voroného diagram. Klasickym piistupem by bylo zkou-
mat pruseciky zametaci pfimky s Voroného diagramem. To ale bohuzel neni mozné, jelikoz
Voroného diagram nad zametaci piimkou [ zavisi nejen na bodech nad ptimkou [, ale také
na bodech pod ni. Jinak fe¢eno, pokud se zametaci pitimkou [ dojdeme do nejvyssitho bodu
Voroného bunky v(P;), bod P; jesté stale neni mezi zpracovavanymi body, protoze je pod

vsechny pottebné informace.

Proto je nutné modifikovat tento klasicky pristup néasledujicim
zpusobem — misto udrzovani informaci o prusecicich Vo-
roného diagramu se zametaci primkou [ budeme uchovavat
informace o té ¢asti Voroného diagramu nad [, ktera jiz
nemuze byt zménéna, resp. ktera jiz nemuze byt ovlivnéna
body pod zametaci ptimkou /.

Oznacme uzavienou polorovinu nad zametaci pifimkou
[ symbolem [*. Nyni nds tedy zajimad, kterd ¢ast Voroného
diagramu Vor(P) jiz nemuze byt modifikovana, neboli pro
které body @ € [T jiz vime, ktery generujici bod je k
nim nejblize? Je ziejmé, ze vzdalenost libovolného bodu
Q@ € I* k libovolnému generujicimu bodu pod zametaci prtimkou [ je vétsi nez vzddlenost
Q od piimky [ a tedy nejblizsi generujici bod k bodu @ € [T nemuze lezet pod zametaci
piimkou [, jestlize existuje generujici bod P; € It takovy, ze |QP;| < |Ql|.

Déle vime, ze mnozina vSech bodu v rovingé, které maji
stejnou vzdalenost od pevné daného bodu a od pevné
dané piimky tvori parabolu. Proto mnozina bodu, které NN ,
jsou blize k danému generujicimu bodu P; € [T nez k >
zametaci primce [ je ohranicena pravé parabolou. To sa-
moziejmé plati pro libovolny generujici bod nad piimkou
[, a proto mnozina vsech bodu @ € [, které maji blize k nékterému z generujicich bodu
lezicich v [T je ohranic¢ena parabolickymi oblouky. Tato posloupnost parabolickych oblouku
se nazyva beach line.

Poznamka 2.3.1 Beach line je x-monotonni, tzn. Ze kaZdd vertikdlni primka protind beach
line prdavé v jednom bode.

Ztejmé jedna parabola muze do beach line prispét nékolikrat ruznymi ¢dstmi (viz napf.
obr. 2.5(c)). Pruseciky parabolickych oblouki, které lezi na beach line, lezi na hrandch Vo-
roného diagramu a s pohybem zametaci primky [ tyto pruseciky vytvareji hrany Voroného
diagramu Vor(IP) pro danou mnozinu generujicich bodu P.

vvvvvv

e site event — na beach line se objevi novy generujici bod, je nutné ho pfidat do
struktury,
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(a) Prvni krok — jsou uvazovény jen dva body nad (b) Druhy krok — piimka narazi na dalsi gene-
ptimkou [, o bodu pod [ algoritmus ,,nevi‘. rujici bod, dojde k vytvofeni nové degenerované
paraboly nulové siiky.

(¢) Treti krok — s posunem piimky [ dojde k (d) Pokud stdle posouvdme s piimkou I, nové
rozsifeni paraboly. vznikla parabola se stéle rozsifuje.

Obrazek 2.5: Prubéh jedné ze zékladnich udélosti, nastavajicich v prubéhu zametaciho
,Fortuneho* algoritmu — site event.
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e circle event — dojde k zaniku jednoho z parabolickych oblouk.

Site event (viz obr. 2.5) tedy nastava v pripadé, ze se na beach line objevi novy, dosud
nepouzity generujici bod. Tim zaroven vznika novy parabolicky oblouk, na pocatku ve své
degenerované formeé jako parabola nulové sitky. Jelikoz pruseciky parabol, tvoticich beach
line, sleduji hrany Voroného diagramu, pridanim nového bodu do stavajici struktury dojde
ke vzniku dvou novych pruseciku (na pocdtku totoznych), které se s pohybem beach line
od sebe vzdaluji a vytvareji novou hranu Voroného diagramu. Zpocatku tato hrana neni
napojena na zbytek Voroného diagramu, pozdéji ale k tomu napojeni dojde v néjakém
vrcholu. Beach line se tedy skldda nejvyse z 2n — 1 parabolickych oblouku, protoze kazdy
generujici bod predstavuje vznik jedné paraboly a rozdéleni nejvyse jednoho parabolického
oblouku na dvé casti.

Circle event (viz obr. 2.6) nastava v piipadé, ze dochédzi k zéniku nékterého parabo-
lického oblouku. Oblouk paraboly vymizi v pripadé, ze tii paraboly piislusné tifem gene-
rujicim bodum P;, P;, P;, prochazeji spolecnym bodem @), pro ktery tedy plati

QP = |QF;] = |QF:| = |Q1].

cvvs

bod préve na l. Zadny dalsi generujici bod nemuze lezet uvniti této kruznice, protoze v
takovém piipadé by vzdalenost od bodu @ k tomuto bodu byla mensi nez vzdalenost @)
od zametaci piimky [, coz je ale ve sporu s tim, ze bod () lezi na beach line. Odtud potom
vyplyvé, ze bod @ musi byt vrcholem Voroného diagramu. Shrnuto — zanikem nékterého
z oblouku beach line vznikéd vrchol Voroného diagramu Vor(P).

Slozitost je stejné jako v ptipadé algoritmu ,rozdél a panuj“ i u tohoto algoritmu op-
timalni, tedy O(nlogn).

2.3.5 Metoda zdvihu

Uvazujme transformaci, kterd libovolnému bodu P = [p,, p,] € E? prifadi rovinu
h(p) : z=2p,x + 2pyy — (p5 + p2) € B,

Geometricky, h(P) je tecné rovina k paraboloidu z = 22 4 y* v bodé P = [p,., py, p2 + p2],
tzn. v bodé odpovidajicim kolmému primétu bodu P na paraboloid z = 22 + 2.

Necht P = {P;, : 1 < ¢ < n} je mnozina generujicich bodu Voroného diagramu a
necht H(P) je mnozina teénych rovin h(P;), Vi. Prunikem vsech kladnych poloprostort,
definovanych rovinami z H(PP), vznikne konvexni mnohostén P, tedy

P= () h(P)"

h(P;)eH (P)

kde h(P;)™ oznacuje poloprostor nad h(P;). Pokud provedeme projekci hran a vrcholu
tohoto vzniklého mnohosténu zpét do roviny xy, dostaneme Voroného diagram mnoziny P.
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(b) Druhy krok — dochézi k zéniku jednoho z
oblouk, resp. prestane tento oblouk pfispivat do
beach line, vznika vrchol Voroného diagramu.

(a) Prvni krok — beach line slozena ze tii ob-
louk, priseciky obloukt vytvaii hrany Voroného
diagramu, zametaci piimka se pohybuje smérem
dolu.

(c) Tteti krok — beach line uz ma jen dva ob-
louky, ze vzniklého vrcholu pokracuje dale hrana
Voroného diagramu.

Obréazek 2.6: Prubéh dalsi ze zakladnich udalosti, nastavajicich v prubéhu zametaciho
,Fortuneho® algoritmu — circle event.
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(a) Triangulace, kterd neni Delaunayova. (b) Triangulace, kterd je Delaunayova.

Obrazek 2.7: Triangulace na ctytech bodech.

2.4 Delaunayho triangulace

Duélni strukturou k Voroného diagramu je Delaunayho triangulace (triangulace = pokryti
nepiekryvajicimi se trojihelniky). Tedy, pro dany Voroného diagram Vor(P) dostaneme
Delaunayho triangulaci bodi mnoziny P tak, Ze hrana P;F; je v Delaunayho triangulaci
prave tehdy, kdyz Voroného buiiky v(F;) a v(P;) sousedi, tzn. maji spole¢nou hranu.

Pokud je mnozina bodu P degenerovand, tzn. obsahuje ¢tyfi a vice bodu, které lezi na
jedné kruznici, potom dualizaci nemusi vzniknout triangulace, ale muze se objevit polygon
o vice hranach. Nicméné i tento polygon je mozné dodatecné rozdélit na trojihelniky
pridanim hran.

Existuje vzajemneé jednoznacné zobrazeni mezi Voroného body (body generujici mnoziny)
a Delaunayho polygony, podobné existuje také vzajemné jednoznacné zobrazeni mezi Vo-
roného hranami a Delaunayho hranami — dvojice odpovidajicich hran je tvofena vzajemné
kolmymi hranami. Navic vime, Zze Delaunayho polygon je konvexni obalka generujicich
bod, jejichz Voroného bunky inciduji s danym Voroného vrcholem.

Dilezitou vlastnosti Delaunayho triangulace v E? je, ze poskytuje optimdini triangulaci
v tom smyslu, ze maximalizuje minimalni hel v trojuhelniku.

Véta 2.4.1 (Kritérium prazdného kruhu) Triangulace mnoziny bodu P je Delaunay-
ova prave tehdy, kdyzZ opsand kruznice kazZdého trojuhelnika, tvoriciho Delaunayho trian-
gulaci, neobsahuje Zadny dalsi bod z mnoZiny P.
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Véta 2.4.2 (Max-min lokalni kritérium) Delaunayho triangulace mazimalizuje lokdlné
mainimdlni ihel.

Na vétach 2.4.1 a 2.4.2 je zalozen tzv. preklapéci algoritmus, ktery z libovolné trian-
gulace, ktera neni Delaunayova, dokaze vytvofit Delaunayho triangulaci preklapénim hran
ve smyslu obr. 2.7. Stac¢i tedy postupné brat c¢tyfihelniky a zkoumat, jestli je splnéno
kritérium prazdného kruhu. Pokud neni, zaméni se tihlopiicka uvniti tohoto ¢tytihelnika.

Vlivem vlastnosti uvedené ve vété 2.4.2 Delaunayho triangulace neobsahuje (pokud
to jde) protahlé trojuhelniky, resp. dava nejlepsi mozné vysledky v tomto sméru, coz je
dulezité zejména v aplikacich, jako je MKP, interpolace apod.

Existuje samoziejmé celd fada jinych typu triangulaci, resp. algoritmu pro nalezeni
triangulace dané mnoziny bodu, jako je napf. zrava triangulace, nejkratsi triangulace,
triangulace, kterd spliiuje min-max kritérium (minimalizuje maximéalni tihel, coz obecné
neddva stejné triangulace jako Delaunayho triangulace).

2.5 Zobecnéni Voroného diagramu

Zobecnéni je mozné provést v zasadé nékolika zpusoby:
e zménou dimenze,
e zménou metriky,

e piidanim vahy generujicim bodum.

2.5.1 Zména dimenze

Piedpoklddejme, Ze mdme mnoZinu generujicich bodi P = {P, ..., P,} C E Pro kazdé
P; potom zcela analogicky definujeme Voroného bunky vztahem

v(P) ={Q €E": ||Q - Bl <||Q — Fjl| Vj # i},

kde ||Q — P|| je Eukleidovska vzddlenost bodi P a Q. Tedy, v(P;) obsahuje body Q € E¢,
které jsou blize k P; nez k libovolnému jinému bodu P; € P. Opét analogicky, v(P;) je
prunikem vSech poloprostort ohrani¢enych nadrovinami ||Q) — P|| = ||Q — F;||, tedy plati

v(P)=({QeE": ||Q Rl <[|Q - P}

J#i
Odtud plyne, ze Voroného buiika (oblast) je konvexni polyhedron (mnohostén). Rozdéleni
prostoru E? na buiiky v(P),...,v(P,) predstavuje Voroného diagram pro danou mnozinu
bodu P.

Obecné Voroného vrchol inciduje s d+1 Voroného oblastmi. Degenerovanost se objevi v
piipadé, ze d + 2 nebo vice generujicich bodu lezi na kouli dimenze d — 1 a zadné generujici
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body nelezi uvnitt této koule. Potom Voroného oblasti téchto kosférickych generujicich
bodu inciduji se spoletnym Voroného vrcholem.

Souvislost mezi Voroného vrcholy a Delaunayho polygony je mozné také zobecnit do
prostoru vyssi dimenze. Pro kazdy Voroného vrchol se konvexni obal generujicich bodu,
jejichz Voroného oblasti inciduji s Voroného vrcholem, nazyva Delaunayho mnohostén.
Delaunayho mnohostény odpovidajici véem Voroného vrcholum dévaji rozdéleni konvexniho
obalu mnoziny generujicich bodu. Pro kazdy Delaunayho mnohostén déle plati, ze vSechny
jeho vrcholy lezi na kouli dimenze d — 1 a uvniti této koule neni zadny jiny generujici bod.
Jestlize mnozina generujicich bodu P neni degenerovand, Delaunayho mmnohostén je d-
dimensionalnim simplexem. V takovém piipadé se pro Delaunayho diagram pouziva nazev
Delaunayho triangulace (v E? se pouziva termin Delaunayho tetrahedronizace).

Do vyssi dimenze lze také zobecnit metodu zdvihu. Necht P = {P,,...,P,} C E%.
Definujme mnozinu P* = { P, ..., P’} tak, ze bod P; dostaneme vytazenim P; ve sméru
nové piidané proménné x4, na plochu

2 2 2

Potom kolméd projekce (d+1)-dimensionalniho konvexniho obalu mnoziny P* ddvé Delauna-
yvho triangulaci.

2.5.2 7Zmeéna metriky

Voroného diagram je rozdéleni prostoru vzhledem k vzdalenostem definovanym metrikou.
Doposud jsme pouzivali klasickou Eukleidovskou vzdélenost (metriku). Nicméné pojem
vzdalenosti (metriky) lze samoziejmé chépat obecnéji a i v ptipadé Voroného diagramu
muzeme nahradit Eukleidovskou vzdélenost libovolnou jinou metrikou. Tim dostavame
tzv. zobecnéné Voroného diagramy, kde pro kazdou Voroného bunku plati

v(P) = {Q € E: dist(Q, P,) < dist(Q, P;)}
J#
a tedy misto Eukleidovské vzdélenosti je pouzita libovolna metrika dist.

Standardnim piikladem jinych metrik, které je mozné pouzit, jsou tzv. L,-metriky (mezi
které patii i Eukleidovska metrika jako Lo-metrika):

Li-metrika ... definovdna vztahem

d
dist, (P, Q) = [|PQl[ = ) |Pr, = Qu,
i=1

VSechny hrany v této metrice jsou slozeny z horizontalnich, vertikalnich nebo dia-
gondlnich (pod thlem 7/4) usecek.
D

L,-metrika ... definovana vztahem

o

d
dist,, (P, Q) = |[PQ|], = <Z | Pe; — Qa,
i=1

31



L., — metrika ... definovana vztahem

diStOO(P, Q) = ||PQ||OO = max{|Px1 - QI1|’ S |de - Qxd|}

V jistém smyslu podobné Li-metrice — Voroného diagramy vzhledem k L..-metrice
jsou opét slozeny pouze z tisecek.

2.5.3 Pridani vahy

Dalsi moznosti jak zobecnit Voroného diagramy je pridat vahy jednotlivym generujicim
bodum, coz muze odpovidat napf. ruznym cendch v supermarketech, kdy nizsi cena je
zohlednéna vyssi vahou generujicich bodu, protoze lidé budou vice chodit do tohoto super-
marketu. Potom dostavame tzv. vdzené Voroného diagramy, které muzeme rozdélit jesté
na dvé podskupiny:

Aditivni vazené Voroného diagramy — necht bodu P; pifslusi vdha w; € R. Potom
muzeme definovat metriku vztahem

dist, (P, Q) = dist(P, Q) — w;,

kde dist je opét libovolnd metrika. Pokud zvysujeme vahu daného bodu, piislusnéa
Voroného bunka (oblast) se zvétsuje (vyplyvéa piimo z definované metriky). Jestlize
dist(P, Q) je Eukleidovskd vzdélenost, potom dist, (P, ;) lze interpretovat jako Eu-
kleidovskou vzdalenost bodu P od kruznice se sttedem v P; a polomérem w; —
mnozina bodu, které maji stejnou vzdalenost od dvou kruznic tvoti hyperbolu a tedy
Voroného hrany jsou v tomto piipadé ¢asti hyperbol.

Multiplikativni vazené Voroného diagramy — podobné muzeme definovat metriku
vztahem

dist, (P, Q) %dist(P, Q).

Mnozina bodu, pro néz je pomér Eukleidovskych vzdalenosti ke dvéma bodum P; a
P; konstantni, tvoii kruznici, kterd se nazyva Apolloniova kruznice. Tedy Voroného
hrany multiplikativniho vazeného Voroného diagramu jsou kruhové oblouky.

2.6 Aplikace

Na zaver této kapitoly si uvedeme nékolik moznych aplikaci Voroného diagramu, a to jak
klasickych, tak zobecnénych i vazenych:

e dopravni problém — v podstaté ptimo vyplyva z postovniho problému, zminéného
na zacatku kapitoly. Piikladem muze byt napt. urceni spadovych oblasti Zachranné
sluzby, piip. urc¢eni nejblizsi nemocnice, do které mé sanitka jet.
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osa objektu — mnozina P bude tvofena body na hranici daného objektu, které musi
byt rozmistény dostatecné husté. Poté se sestavi Voroného diagram a spojnice Vo-
roného vrcholt odpovida ose objektu.

ekvidistanty — pouziti napt. pti planovani cesty frézy pti obrabéni.

interpolace.
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Kapitola 3

Afinni variety a idealy

Tato kapitola bude vénovana seznameni se zakladnimi pojmy, se kterymi se bude déle
pracovat. Pujde zejména o afinni variety, coz jsou objekty definované polynomidlnimi rov-
nicemi. S pojmem afinni variety izce souvisi pojem idedlu v okruhu polynomu k[z1, . .., ;).
Formalni aparat popsany v této kapitole muze mit mnoho aplikaci vsude, kde se pracuje
s objekty a déji popsatelnymi polynomy, resp. systémy polynomidlnich rovnic. Jedna se
napiiklad o:

e hleddni extrému na plose,
e analyzu pohybu soucdsti néjakého stroje,

e hledéni prislusnosti bodu k néjakému télesu.

3.1 Polynomy a afinni prostor

Tato ¢ast bude vénovana studiu polynomu nad jistym ¢iselnym télesem. Téleso je mnozina,
kde jsou definovany operace s¢itani, odcitani, nasobeni a déleni s obvyklymi vlastnostmi
(viz kapitola 1). Typickym piikladem jsou redlnd ¢isla R (naproti tomu mnozina celych
¢isel Z neni télesem).

Definice 3.1.1 Monomem v promeénnych x1,...,x, se nazyjvd vyraz tvaru

xin . 1’32 .. ‘xgn’
kde o; € N. Celkovy stupen monomu je soucet oy + ag + ... + a,.

Zapis monomu lze zjednodusit pomoci pojmu multiindexru, kde pro kazdou n-tici o =
(aq,...,q,) polozime z® = z{* - 25?2 - - - 2. Celkovy stupen je potom |a| = ay + - - - + au,.

Definice 3.1.2 Polynomem v promeénnijch x1,...,x, s koeficienty z télesa k je konecnd
linedrni kombinace monomai, kterd se zapisuje ve tvaru

f= Zaamo‘, aq € k,
o
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kde se scitd pres konecny pocet n-tic « = (ay, ..., ay). MnoZina vsech polynomi s koefici-
enty v k se znaci k[zy, ..., x,].

Piikladem polynomu z Q[z,y, z] je f = 22°y*z + 2y*2% — 3zyz + y? (je to polynom tif

proménnych x, y, z s koeficienty z télesa racionalnich ¢isel Q).

Véta 3.1.1 Mnozina klxy, ..., x,| vSech polynomi v proménnych xq,...,x, s koeficienty

z télesa k tvori komutativni okrubh.

Diikaz: Viz [14]. O
Jelikoz z vety 3.1.1 vyplyva, ze k[xy, ..., z,] tvoil komutativni okruh, nazyva se okru-

hem polynomai.

Definice 3.1.3 Je ddno téleso k a kladné celé ¢islo n. Afinnim prostorem nad télesem k

se rozumi mnozina
k" ={(a1,...,a,) :a1,...,a, € k}.

Ukazme, jaka je souvislost mezi polynomy a afinnim prostorem. Klicem je myslenka, ze
polynom f =" a,z® lze chapat jako zobrazeni

f k" —k
definované nésledujicim zpusobem: pro dané (aq,...,a,) € k™ se ve vyjadieni f nahradi
vSechna z; hodnotami a;. Protoze koeficienty také lezi v k, je f(aq,...,a,) € k.

Véta 3.1.2 Necht k je nekonecéné téleso a necht f € klxy,...,x,]. Potom f =0 tehdy a

jen tehdy, kdyz f : k™ — k je nulové zobrazent, tzn. pro libovolnou n-tici (ai, ..., a,) € k"
je flay,...,a,) =0.
Diikaz: Indukei podle n. Podrobné viz [27], str. 2. O

Pozadavek nekonecného télesa je v tomto piipadé dulezity, protoze napi. pro k = Z, a
f=x*>—=zje f(x) =x(x — 1) = 0 pro kazdé = € Z,, ale f neni nulovy polynom.

Dusledek 3.1.3 Necht k je nekonecéné téleso a necht f,g € klxy,...,x,]. Potom f =g
v klxy, ..., 2z, tehdy a jen tehdy, kdyz f : k"™ — k a g : k" — k jsou stejnd zobrazend, tzn.
pro libovolnou n-tici (ay,...,a,) € k" je f(ay,...,a,) = glay,...,a,).

3.2 Afinni variety

Definice 3.2.1 Nechf k je téleso a necht fi, ..., fs jsou polynomy z k[x1, ..., z,]. Potom
mnozina

V(fis.o oo fs) ={(a1,...,a,) € k" : filar,...,a,) =0 pro viechna 1 <i<s }

se nazyvd afinni varieta urcend polynomy fi, ..., fs.
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Afinni varieta V(f1,..., fs) C k™ je tedy mnozina vSech feSeni soustavy nelinedrnich
algebraickych rovnic fi(z1,...,2,) = ... = fs(x1,...,2,) = 0. Afinnimi varietami jsou
tedy grafy vsech funkci danych polynomy nebo raciondlnimi funkcemi, naptiklad kruznice
V(2?2 + y* — 1) je varietou v R?, paraboloid V(z — 22 — 4?) je varietou v R3.

Jedna rovnice v R? obvykle uréuje kiivku. Podobné jedna rovnice v R3 obvykle d4vé
plochu, ktera ma dimenzi 2, dimenze se tedy opét sniZila o jedna. Dvé rovnice v R? obvykle
urcuji kiivku. Intuitivné se zdd, ze kazda rovnice snizi dimenzi o jedna. Bohuzel to ale
neplati vzdy, napt. V(zz,yz) odpovida varieté ve tvaru sjednoceni roviny xy s osou z.

Zbyva uvést nekolik piikladi variet ve vyssich dimenzich. Redeni soustavy m linedrnich
rovnic pro n neznamych zq, ..., z,

a11T1 + ... T+ apr, = bl
(3.1)

am11 + ... + QupTn, = bm

s koeficienty v k tvori afinni varietu v k", ktera se nazyva linedrni varieta. Z linedrni algebry
je zndma metoda pro feseni takové soustavy rovnic (Gaussova eliminace). V kapitole 4 bude
uvedeno zobecnéni tohoto algoritmu pro feseni obecné soustavy polynomialnich rovnic.
Dimenze linedrni variety je rovna n — r, kde r je hodnost matice (a;;). Tedy dimenze je
dana poc¢tem nezavislych rovnic.

Dalsim piikladem afinni variety je Lagrangeova tloha, tzn. tloha hleddni minima nebo
maxima funkce (v tomto piipadé pouze funkce dané polynomem) na dané oblasti, které
je také urcena polynomialnimi podminkami. Naptiklad pro nalezeni minima nebo maxima
funkce f(z,y,2) = 23 + 2zyz — 2% na oblasti dané vztahem g(x,y,2) =22 +y? + 22 =1 je
tfeba Tesit soustavu rovnic

322 +2yz = 2a,
2xz 2y,
2zy — 2z 22\,

22 FyP 422 = 1,

(3.2)

ktera definuje afinni varietu v R*.

Dalsi mozné aplikace afinnich variet 1ze nalézt v robotice. Vétsinu sériovych robotu i
manipuldtoru lze popsat pomoci soustavy polynomidalnich rovnic. Pro nalezeni feseni piimé
i obracené tlohy je potom nutné fesit tuto soustavu rovnic. Podrobnéji se této problematice
vénuje ¢ast 6.5.

Lemma 3.2.1 Necht V., W C k" jsou afinni variety. Potom také VUW a V NW jsou
afinnd variety a plati

VﬂW = V(-fl""7f87gl7"'7gt)7
VUW = V(fig;) prol1<i<s,1<j<t.

Dikaz: Je ziejmy, podrobné viz [3], str. 11. O
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Z lemmatu 3.2.1 pro vyse uvedeny ptiklad vyplyva, ze
V(zz,zy) = V(2) UV (z,y).

Obecné lze Tici, ze prunik koneéného poctu afinnich variet, resp. sjednoceni konecéného
poctu afinnich variet je opét afinni varietou.

3.3 Parametrizace afinnich variet

Tato ¢ast bude vénovana problému popisu bodu afinni variety. Pokud existuje nekonec¢né
mnoho TeSeni soustavy obecné nelinearnich algebraickych rovnic f; = ... = f; = 0, potom
je nutné danou afinni varietu parametrizovat.
Jednoduchym piikladem z linedrni algebry muze byt soustava dvou linearnich rovnic
pro tfi neznamé
r+y+z = 1,
r+2y—2z = 3.

Geometricky je feseni této soustavy reprezentovano piimkou v R? danou jako prinik rovin
r+y+z=1ax+2y—2z=3. Soustava ma nekoneéné mnoho feSeni a ze zakladnich kurzu
matematiky je zfejmé, ze prislusna parametrizace bude

r = —1-—3t,
y = 242t
z = t.

Definice 3.3.1 Nechf k je téleso. Raciondlni funkci v proménnijch t1, ..., t,, s koeficienty
v k se rozumi podil f/g dvou polynomu f,g € k[t1,...,ty], kde g neni nulovy polynom.
Navic dvé raciondlni funkce f/g a h/k jsou si rovny, jestlize kf = gh v k[t1,... tn].

Mnozina vsech raciondlnich funkci v proménngych ti,...,t, s koeficienty v k se znaci
k(ty, ... tn).
Snadno se definuji operace séitani a ndsobeni, existuje inverzni prvek a tedy k(ty, ..., t,)
je téleso.
Raciondlni parametrickou reprezentaci variety V.= V(f1,..., fs) C k™ se rozumi ra-
ciondlni funkce rq,...,r, € k(t1,...,t,) takové, ze body dané vztahy
ry = Tl(tl, e ,tm),
Tpn = /rn(tb BRI >tm)

lezi na V. Pozaduje se také, aby V' byla ,,nejmensi“ varieta obsahujici tyto body.

Casto je varieta V parametrizovdna polynomy misto raciondlnimi funkcemi, coz se
nazyva polynomaidlni parametrickd reprezentace variety V.

Naproti tomu ptuvodni soustava rovnic f; = --- = f; = 0, urcujici varietu V', se nazyva
implicitni reprezentace.
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Casto je vyhodné mit k dispozici jak parametrické tak implicitni vyjadfeni variety.
Zatimco napt. pro zobrazeni variety pomoci pocitace je vyhodné parametrické vyjadieni
(a implicitni je naprosto nevhodné), pro zjisténi, zda dany bod lezi na varieté, je vyhodné
implicitni vyjadieni (do kterého se pouze dosadi piislusné souradnice a okamzité je vidét
vysledek) a parametrické je zde nevhodné, jelikoz vede na feseni soustavy rovnic pro para-
metry variety. Potteba mit k dispozici parametrické i implicitni vyjadieni vede k nasledujicim
otazkam:

e Existuje racionalni parametrické reprezentace pro kazdou afinni varietu a lze ji nalézt?
e Existuje k parametricky zadané varieté implicitni popis a lze ho nalézt?

Obecnd odpovéd na prvni otdzku je zdporna. V podstaté lze Fici, Ze vétsinu afinnich variet
parametrizovat nelze. Ty, u kterych se to podafi, nazyvame neiraciondlni. Obecné je obtizné
iici, zda je varieta neiracionalni nebo ne. Naproti tomu odpovéd na druhou otdzku je
kladna. Existuje algoritmus, kterym k dané parametrizaci lze vzdy nalézt implicitni popis.
Tento algoritmus bude popsan v ¢asti 6.2.

3.4 Idealy

Tato ¢ast bude vénovana seznameni s pojmem idealu a naznaceni souvislosti mezi idealy a
afinnimi varietami. Dulezitost idealu je dana tim, ze umoznuji provadét vypocty na afinnich
varietach.

Definice 3.4.1 Mnozina I C klxy,...,x,]| se nazyjvd idedl v k[xy, ..., x,)], jestliZe plati:
1.0el,
2. jestlize f,g € I, potom f+ g€ I,
3. jestlize f € I a h € k[xq,...,x,|, potom hf € I.

Prvnim piikladem idedlu v okruhu polynomu je ideal generovany koneénym poctem

polynomu. Pro libovolnou s-tici polynomu fi,..., fs € k[xy, ..., z,] ozna¢me
<f1, ceey fs> = {Z hzfz . hl, ceey hs € k’[l’l, e ,l’n]} (33)
i=1
Jak se ukdze v nésledujicim lemmatu, mnozina (f1,. .., fs) je ideal.
Lemma 3.4.1 Jestlize fi,..., fs € klx1,...,x,], potom (fi,..., fs) je idedl na mnoZiné
klxy, ..., z,).
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Diikaz: 0 € (fi,..., fs), protoze 0 =>7 0. f;. Ddle necht f =" pifiag=> ., ¢f:
anecht h € k[zy,...,x,|. Potom

f+g = X wi+a)fi
hf = Zle(hpi)fi,

¢imz je dukaz proveden. O

Definice 3.4.2 Necht fi,...,fs € klxy,...,x,]. Idedl {fi,...,[fs), definovany vztahem
(8.3), se nazgvd ideél generovany polynomy fi,..., fs.

Idedl I C k[xq,...,x,] je konecné generovany, jestlize existuji fi,..., fs € k[z1, ..., x,]
takové, ze [ = (f1,..., fs) a f1,..., fs tvori bazi I. Takovych bazi je pro kazdy ideal mnoho.
V ¢asti 4.5 bude ukazéno, ze kazdy idedl v k[zq, ..., x,] je koneéné generovany (Hilbertova

véta o bazi) a ze existuje jedna specidlni a uzitetnd baze, kterd se nazyva Grobnerova baze.

Véta 3.4.2 (Souvislost idedlu a afinnich variet) Jestlize fi,..., fs a g1,...,q; gene-
ruji stejny idedl v k[xy, ..., x,), tedy (fi,..., fs) = {g1,...,gt), potom se rovnaji prislusné
afinni variety, tj. plati

V(fi,ooifs) =V(g,-- )

Diikaz: Uvazujme libovolny (aq,...,a,) € V(f1,..., fs). Pro néj plati, ze
filar,...,;a,) =0 proi=1,2,...,s.

Protoze ¢i1,...,9: € (f1,..., fs), existuji né¢jaké polynomy hy1,...,h; s v n proménnych
tak, ze

9i = hji-fi  proj=12. .t
i=1
Odtud plyne, ze g;(a1,...,a,) =0pro j =1,2,...,t. Mame tedy
V(fi,- -, fs) SV(g1,---,9)-
Opacna inkluze se dokéaze zcela analogicky. 0
Priklad 3.1 Uvazujme afinn{ varietu V(222 + 3y — 11,22 — y* — 3). Jelikoz plati

22 43y — 11 = 2
2?2 —y?-3 =1

Ize psat, ze (22 + 3y* — 11,22 — y? — 3) = (2% — 4,9y* — 1) a tedy podle véty 3.4.2 plati
V(222 +3y° — 11,2 —y* = 3) = V(2® —4,y* — 1) = {(£2,£1)}.

Zménou béze idedlu je tedy mozné snéze urcit, jak dana varieta vypada. ]
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Véta 3.4.2 ve spojeni s tzv. Grobnerovou bézi idedlu dava mocny néastroj pro hledani
presného feseni soustav rovnic definujicich afinni variety.

Pro libovolnou afinni varietu V' C k™ oznac¢me
I(V)={f € klxy,...,2z,): f(a1,...,a,) =0 pro vSechna (ay,...,a,) € V}. (3.4)

Tato mnozina zahrnuje vSechny polynomy, které nabyvaji nulové hodnoty ve vSech bodech
afinni variety, napt. pro varietu V(y — 2%, z — 2®) patif do I(V) také polynomy z — zy a
y? — xz. To lze snadno ovéiit, protoZe parametrizace FeSeni afinnf variety muze byt napi.
r=ty=1t%z=1t.
Lemma 3.4.3 Jestlize V C k" je afinni varieta, potom I(V') C k[xy, ..., x,] je idedl.
Diikaz: Je ziejmé, ze 0 € I(V). Necht f,g € (V) a h € k[z1,...,2,]. Necht (ay,...,a,) je
libovolny bod z V. Potom

flay,...;a) +9g(ar,...,an) =0 a h(ay,...,a,)f(ay,...,a,) =0.
Odtud potom plyne, ze I(V) je idedl. O
Definice 3.4.3 Necht V C k" je afinni varieta. Idedl I(V), definovany vztahem (3.4), se
nazyvad ideal variety V.

Piikladem muze byt napt. idedl variety I((O, 0,..., O)) = (x1,...,2,), tzn. v pocatku
se nuluji vsechny polynomy, pattici do ideédlu (xy, ..., z,). Dalsim piikladem je I(k") =0
pro libovolné nekonecéné téleso k, tzn. jediny polynom, ktery nabyva nuly ve vSech bodech
daného prostoru je nulovy polynom.

Lemma 3.4.4 Jestlize f1,..., fs € k[z1,...,x,] aV =V (f1,..., fs), potomje (fi,..., fs) C
I(V), pricemz rovnost nemusi nastat.

Diikaz: Uvazujme libovolny f € (f1,..., fs). Ten lze psat jako
f= Zhif,- pro néjakd hy, ..., hs € klxy, ..., z,).
i=1

Pro (ai,...,a,) € V je tedy f(ai,...,a,) = 0. Proto plati (f,..., fs) C I(V). D4 se ale
ukézat, Ze nemusf nastat rovnost. Napiiklad varieta V (22, y?) m4 jediny bod (0, 0). Potom
je ale I(V)) = (z,y) a je ziejmé, ze (2°,y°) G (z,y) (z ¢ (2°,y7)). B

Ackoliv pro obecné téleso se I(V(f1,. .., fs)) nemusi rovnat (f1,..., fs), idedl variety
vzdy obsahuje dostatek informaci pro jednoznacné urceni variety.

Véta 3.4.5 Jsou-li V a W afinni variety v k", plati:
1. V.C W prdave tehdy, kdyz I(V)) D I(W),
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2. V=W prdvé tehdy, kdyz I(V) = I(W).
Diikaz: Viz [3], str. 34. O

Zakladni otazky tykajici se idedlu v k[xq, . . ., z,] lze formulovat nésledujicim zpusobem:

o Lze kazdy idedl I C k[xy,...,x,] napsat jako I = (fi,..., fs) pro n&jaké polynomy
fl,...,fs € k’[l’l,...,l'n]?

e M¢jme dany polynomy fi, ..., fs € k[z1,. .., x,]. Existuje algoritmus, pomoci kterého
1ze rozhodnout, zda dané f € k[xy,. .., x,] ndlezi idedlu (fi,..., fs)?
Reseni téchto otdzek pro polynomy z k[x1,...,z,] bude provedeno v kapitole 4, pro specidlni

piipad polynomu z k[x] v ¢éasti 3.5.

3.5 Polynomy v jedné proménné

Tato ¢ast je vénovana polynomum v jedné proménné a zndmému algoritmu déleni po-
lynomu. Tento jednoduchy algoritmus méa nékteré prekvapivé hluboké dusledky. Lze jej
pouzit napi. k urceni struktury idedlu z k[x] a k vysvétleni myslenky nejvétsiho spoletného
délitele.

Definice 3.5.1 Méjme ddn nenulovy polynom f € k[z]. Necht
f=agx™ +az™ "+ + ay,

kde a; € k a ag # 0 (tedy m = deg(f)). Potom agz™ je hlavni ¢len f a znaci se LT(f) =

aoflfm.

Napifklad pro polynom f = 223 — 4z + 3 je hlavni ¢len LT(f) = 223. Jestlize f a g jsou
nenulové polynomy, potom

deg(f) < deg(g) < LT(f) deli LT(g).

Véta 3.5.1 (Algoritmus déleni polynomu) Necht k je téleso a necht g je nenulovy
polynom v k[z]. Potom kazdé f € k(x| lze zapsat ve tvaru

f=qg+r,

kde q,r € k[z] a bud r = 0 nebo deg(r) < deg(g). Navic q a r jsou jednoznacéné uréeny a
existuje algoritmus pro jejich nalezend.

Diikaz: Je konstrukéni, z dukazu plyne algoritmus pro nalezeni ¢ a r. Podrobné viz [3], str.
38. O

Dusledek 3.5.2 Jestlize k je téleso a f € k[z| je nenulovy polynom, potom f md nejuijse
deg(f) koreni v k.
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Disledek 3.5.3 Jestlize k je téleso, potom kazdy idedl z k[x] je mozné napsat ve tvaru
(f) pro néjaké f € kl[z]. Navic f je jednoznacné uréeno vzhledem k ndsobeni nenulovou
konstantou z k.

Generator idedlu je nenulovy polynom minimélniho stupné obsazeny v idedlu. Tento
popis ale neni vhodny k praktickému urcéeni generatoru idedlu, jelikoz by bylo nutné testovat
stupné v8ech polynomu v idealu, kterych je ale nekonetné mnoho. Existuje ale lepsi cesta,
jak najit generdtor idedlu. Nastrojem potiebnym k feseni tohoto problému je nejvétsi
spolecny délitel.

Definice 3.5.2 Nejvétsim spolecnym délitelem polynomi f, g € klz| je takovy polynom h,
pro ktery plati:

1. hdeli f, g,
2. jestlize p je jiny polynom, ktery déli f a g, potom p déli h.
Pokud h spliiuje obé tyto vlastnosti, lze psat h = GCD(f, g).
Véta 3.5.4 (Vlastnosti nejvétsiho spolecného délitele) Necht f,g € k[x]. Potom:
1. GCD(f, g) existuje a je jediny vzhledem k ndsobeni nenulovou konstantou z k,
2. GCD(f, g) je generdtor idedlu (f,g),
3. existuge algoritmus pro nalezeni GCD(f, g).

Diikaz: Podrobné viz [3], str. 41. Algoritmus pro nalezeni nejvétsiho spoletného délitele je
zalozen na myslence popsané v poznamce 3.5.5 a nazyva se Eukliduv algoritmus. O

Poznamka 3.5.5 PouzZije-li se zdapis f = qg + r, potom plati
GCD(f,9) = GCD(f — gy, 9) = GCD(r, 9),

protoze idedly (f,g) a (f —qg, g) jsou stejné. Jestlize v # 0, je mozné proces opakovat. Lze
psdt, Ze g = ¢'r +1', a podobnou ivahou se dostane, Ze

GCD(g,r) = GCD(r,r"),
kde deg(r) > deg(r’) nebo r' = 0. Opakovdnim tohoto procesu se dospéje k zdpisu
GCD(f,g) = GCD(g,7) = GCD(r, ") = GCD(r',r") = - -,

kde stupné polynomi g,r',r", ... postupné klesaji nebo proces konéi, kdyz néktery polynom
ror' r” L je nulovy.
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Priklad 3.2 Eukliduv algoritmus demonstrujme na ptikladé stanoveni nejvétsiho spoleéného
délitele polynomt 2% — 1 a 2° — 1. Pomoci algoritmu déleni polynomt se dostane

=1 = 0-(2°-1)+2* -1,
-1 = 22(z*—1)+2%2 -1,
=1 = (22 +1)(z*-1)+0,

coz odpovida zapisu

GCD(z* — 1,2 — 1) = GCD(2% — 1,2* — 1) = GCD(z* — 1,2* — 1) =
— GCD(2% —1,0) = 2% — 1.

Poznamenejme, ze vypocet GCD ddva odpovéd na otézku, jak najit generdtor pro ideal
(x* — 1,25 —1). Vzhledem k vlastnostem GCD a tomu, ze GCD(x* — 1,2% — 1) = 2% — 1 lze
psat

(x* —1,2° — 1) = (2* - 1).
Tim byl nalezen generator uvedeného idealu. ]

Nyni je prirozené se ptat, co se stane, bude-li idedl generovany tiemi nebo vice poly-
nomy. Odpovéd dava rozsifeni definice pojmu GCD pro vice nez dva polynomy.

Definice 3.5.3 Nejvétsi spolecny délitel polynomi fi,. .., fs € klz] je takovy polynom h,
pro ktery plati:

1. hdéeli fy,..., [,
2. jestlize p je jiny polynom, ktery déli fi, ..., fs, potom p déli h.
Pokud ma h tyto vlastnosti, lze psit h = GCD(f1, ..., fs).

Véta 3.5.6 (Vlastnosti nejvétsiho spolecného délitele) Necht fi, ..., fs jsou poly-
nomy z klx] a s > 2. Potom:

1. GCD(f1,..., fs) existuje a je jeding vzhledem k ndsobeni nenulovou konstantou z k,
2. GCD(f1,..., fs) je generdtor idedlu (f1,..., fs),

3. jestlize s > 3, potom GCD(f1,..., fs) = GCD(f1, GCD(fs, ..., fs)),

4. existuje algoritmus nalezeni GCD(f1,. .., fs).

Diikaz: Viz [3], str. 43. O

Poznamka 3.5.7 K urceni nejvétsiho spolecného délitele vice polynomai lze pouZit opako-
vané Buklidiuv algoritmus.
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Priklad 3.3 Uvazujme idedl (z* — 3z + 2,2* — 1,25 — 1) C k[z]. Z véty 3.5.6 vime, ze
GCD(x® — 3z + 2,2* — 1,25 — 1) je generator idedlu. D4 se ukdzat, ze plati

GCD(z* — 3z +2,2* — 1,2° — 1) = GCD(2® — 32 4+ 2,GCD(z* — 1,2° — 1)) =

=GCD(2* — 32+ 2,2° — 1) =2 — 1.
Odtud potom plyne, ze

(* —3r+2,2" —1,2° 1) = (x — 1).

Tim byl nalezen generator uvedeného idealu. ]

Zaver této casti bude vénovan feSeni problému prislusnosti k idedlu, tzn. nalezeni al-
goritmu pro ovéfeni, zda polynom f € k[z] nalezi idedlu (f1,..., fs). Prvnim krokem al-
goritmu je nalezeni generdtoru h idedlu (fi, ..., fs) pomoci nejvétsiho spoletného délitele
a tloha f € (f1,..., fs) je potom ekvivalentni s tlohou f € (h). Uzitim algoritmu délen{
polynomu lze f vyjadiit ve tvaru f = gh + r, kde deg(r) < deg(h). Je ziejmé, ze f nalezi
idedlu prave tehdy, kdyz r = 0.
Priklad 3.4 Chtéjme urcit, zda

2? + 42 +3r —7€ (2 —3r+ 2,27 —1,2° - 1).
Z prikladu 3.3 plyne, Ze generator uvedeného idealu je x — 1 a zbyva tedy urcit, zda
2} + 42’ +3r - 7€ (xz—1).

Pomoci algoritmu déleni lze 2% + 42% + 3z — 7 zapsat ve tvaru

2? + 42+ 3 —T= (2 +50+8)(x — 1) + 1

a tedy z3 + 42% + 3z — 7 nendlezi idedlu (z® — 3z + 2,2 — 1,2° — 1). |
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Kapitola 4

Grobnerovy baze

4.1 Uvod

Tato kapitola je vénovana Grobnerovym bazim, které umoznuji feSit problémy spojené
s polynomialnimi idedly. V kapitole 3 bylo nastinéno nékolik problému, které budou nyni
probrany podrobnéji.

Problémy:

1. Problém popisu idedlu: Je kazdy idedl I C k[xq, ..., z,] generovany konetnou mnozinou
polynomu? Neboli lze psét I = (f1,..., fs) pro néjaka f; € klxy, ..., z,]?

2. Problém piislusnosti k idedlu: Méjme dan polynom f € klxy,...,z,] a idedl [ =
(f1,..., fs) a chtéjme védet, jestli f € I. Geometricky tento problém tzce souvisi
s problémem urceni, zda V(fi,..., fs) lezi na varieté V(f).

3. Problém teseni soustav nelinearnich algebraickych rovnic: Chtéjme najit v " vSechna
feSeni soustavy nelinearnich algebraickych rovnic

fl(xly"'vxn) == fs(xla"'yxn) = 0.
Tento problém je shodny s hledanim bodu afinni variety V(fi,..., fs).

4. Problém pievodu parametrického vyjadieni na implicitni: Necht V je podmnozZina
k™ dana parametricky vztahy

ry = gl(tl, P ,tm),

Ty = gnlti, ... tm).

Jestlize jsou g; polynomy (nebo racionalni funkce) v proménnych ¢;, potom V' bude
afinni varieta nebo jeji ¢ast. Chtéjme najit soustavu nelinedrnich algebraickych rovnic
(v proménnych x;), které definuji tuto varietu.
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Pro nalezeni odpovédi na otédzku (1) lze fici, ze pro kazdy idedl definovany na mnoziné
polynomu v kone¢né mnoha proménnych existuje kone¢na generujici mnozina. Pouze v piipadé
polynomi v nekoneéné mnoha proménnych je odpovéd zdporna. Dale je ziejmé, Ze problémy
(3) a (4) jsou vlastné vzajemné inverzni. V problému (3) se hledd feseni dané soustavy ne-
linedrnich algebraickych rovnic. Naopak v problému (4) jsou déna feseni a tkolem je najit
soustavu rovnic, ktera ma tato reseni.

Piiklad 4.1 Uvazujme afinn{ linedrni podprostor V C k* definovany vztahy

xrT = tl + tg + 1,
To = tl - t2 + 3,
I3 = 2t1 — 2,

Ty = tl + 2t2 -3

a hledejme soustavu linearnich rovnic, jejimz feSenim jsou body V. Odec¢tenim x; od obou
stran i-té rovnice lze rozsifenou matici soustavy zapsat ve tvaru

1 1 -1 0 0 0 -1
1 -1 0 -1 0 0 =3
2 0 0 0 -1 0 2]
r 2 0 0 0 -1 3

kde prvni dva sloupce odpovidaji ¢;, dalsi x; a posledni sloupec je prava strana. Matici 1ze
prevést na trojihelnikovy tvar

100 0 —1/2 0 1
0100 1/4 —1/2 1
0010 —1/4 —1/2 3
0001 =3/4 1/2 3
Posledni dva tadky této matice predstavuji rovnice
1 1
$1—ZI3—§I4—3:0,
262—11’34‘55(74—3:0,
které uz neobsahuji ¢; a definuj{ varietu V' v k*. |

Zbyvajici ¢ast této kapitoly bude vénovana rozsiteni metody uzité v predchozim prikladé
pro soustavy nelinearnich algebraickych rovnic libovolného stupné a libovolného poctu
proménnych. K tomu je tieba zavést usporadani monomu.
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4.2 Usporadani monomu v kfzy, ..., T,

Podrobnym studiem algoritmu déleni polynomu v k[z] a algoritmu Gaussovy eliminace pro
soustavy linedrnich rovnic lze dojit k zavéru, ze v obou téchto algoritmech hraje dulezitou
roli uspotradani ¢lenu v polynomech. V algoritmu déleni polynomt v jedné proménné jsou
jednotlivé ¢leny fazeny sestupné podle jejich stupné, tzn.

> s s o> s e > 1

Funkénost algoritmu zavisi na tom, zda jsou systematicky brany vzdy hlavni ¢leny poly-
nomu f a g.

Podobné pti Gaussové eliminaci se pracuje v fadce vzdy postupné s cleny zleva. Uspotadani
proménnych x1,...,x, je tedy nasledujici:

X1 > Tg > > Ty

Odtud lze usoudit, ze dulezitou soucasti jakéhokoliv zobecnéni algoritmu déleni pro
polynomy ve vice proménnych bude opét uspofadani ¢lenu v polynomech z klxy, ..., z,].
Tato ¢ast bude vénovana studiu vlastnosti, které musi usporadani mit a piikladum nékolika
usporadani, které tyto vlastnosti maji.

Nejdiive pfipomenme, Ze existuje vzajemné jednoznacné piitazeni mezi monomy z% =
aftexlr € klxy, ...,z an-ticemi a = (aq,...,q,) € Z%,. Navic kazdé uspofadani >
vytvofené na prostoru Z=Z, davéa uspofddani monomii: jestlize a > 3 vzhledem k tomuto
uspoiddani, potom lze fici, ze z* > xP.

Jelikoz polynom je suma monomi, je nutné usporadat ¢leny polynomu v sestupném
(resp. vzestupném) poradi. K tomu je tfeba porovnat kazdé dva monomy a stanovit jejich
vzajemnou pozici. Proto je nezbytné pozadovat, aby nase usporadani bylo linedrni neboli
iplné, tzn. ze pro kazdou dvojici monomu z® a z? plati pravé jeden ze vztahi

a

> P 2 =28, ¥ > 2

Kazdé uspoiadani ¢lenit musi mit také nasledujici vlastnost: jestlize 2@ > 2% a 27 je
libovolny monom, potom z%2Y > 2°z7. Pro odpovidajici vektory exponentii a operace nad
nimi to znamena, ze jestlize a > 3 v usporddani na ZZ,, potom pro vsechna vy € Z%, je
a+y>pB+17.

Definice 4.2.1 Usporadani monomu na k[zy,...,x,] je libovolnd relace > na Z%, nebo
ekvivalentné libovolnd relace na mnoziné monomi x®, o € Z2,, kterd splnuge:

1. > je 1iplné (neboli linedrni) uspordddni na 7%,
2. jestlize a > 3 ay € 2%, potom a+~v > B+,
3. > je dobré uspordddni na Z%,. To znamend, Ze v kazZdé neprdzdné podmnozine B C

7% existuje prvek m € B takovy, Ze pro kazdé o € B plati o > m.
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Lemma 4.2.1 Relace usporddani > na Z%, je dobré uspordddni pravé tehdy, kdyz kazdd
ostre klesagici posloupnost v 2%,

a(l) > a(2) > a(3) > ---

je konecnd.

Diikaz: Viz [3], str. 54. O
Dulezitost tohoto lemmatu se ukaze az dale. Néekteré algoritmy musi skoné¢it po uréité dobeé
pravé proto, ze cleny ostie klesaji (vzhledem k danému usporddani monomt) v kazdém
kroku algoritmu.

Nyni bude uvedeno nékolik moznych zpusobu usporadani monomu, které budou déle
pouzivany.

Definice 4.2.2 (Lexikografické uspotfadéani) Necht o, 3 € Z%,. Potom a >, 3, jestlize
ve vektoru o — 3 € Z™ je pruni nenulovd slozka vektoru kladnd a lze psdt, e £& >y 2°.

Uved'me nékolik pifkladii:
e (3,2,3) >, (1,3,6), jelikoz a — B = (2, -1, —3),
o (1,4,3) > (1,4,2), jelikoz o — 5 = (0,0, 1),
e proménné 1y, ..., T, jsou usporadany obvyklym zpusobem piilexikografickém usporadani:
(1,0,...,0) >0 (0,1,...,0) >e0 -+ >1e0 (0,...,0,1)
a tedy o1 >jep Ta >iex *** >lex Tn-

Existuje mnoho lex usporadani pro dany polynom, vzdy zalezi na tom, jak jsou sefazeny
proménné, napt. pro x >y > z je lex uspotadéani jiné nez pro z > y > x. To znamen4, ze
pro n proménnych existuje n! ruznych lex usporadani.

Pri lexikografickém usporadani hraje rozhodujici roli usporadani proménnych bez ohledu
na celkovy stupeni monomu. To znamend, Ze napf. pro uspoidddni > y > 2 je & >, y°25.
Pro nékteré tcely je ale tieba vzit v tivahu i celkovy stupen monomu a usporadani monomu
provést podle vyssiho stupné monomu. Jednou z moznych cest je stuprniované lexikografické
usporadanti.

Definice 4.2.3 (Stupnované lexikografické uspofadani) Necht a, € Z2,. Oznacme
|O“ :Zaiv ‘6|:Zﬂz
i=1 =1

Potom o > e B, jestlize plati

lal > 18] neboal =|B] A a > B,
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Je vidét, ze pti tomto uspotradani se nejdiive uvazuje celkovy stupen monomu a az nasledné
pro stejny stupen monomu lexikografické uspotradani, napt.

o (1,2,3) >4ex (3,2,0), jelikoz |(1,2,3)] =6 > [(3,2,0)| = 5,
o (1,2,4) >4, (1,1,5), jelikoz [(1,2,4)| = |(1,1,5)] a (1,2,4) >, (1,1,5),
e proménné jsou uspoiaddny podle lexikografického uspotaddni x1 > grier =+ > griex Tn-

Podobné jako u lex uspotradéni existuje n! ruznych grlex uspotradani na n proménnych,
zavisejicich na setfazeni danych proménnych.
Dalsim ptikladem uspoiradani monomu je stupriované inverzni lexikografické usporadani.

Definice 4.2.4 (Stupnované inverzni lexikografické usporadani) Necht «, (3

€ Z%,. Oznacme
- n n
ol =D o, 18l=)_ 6
i=1 i=1

Potom o > greics 3, jestlize plati
af >[5

nebo |a| = |G| a v rozdilu o — 3 € Z™ je posledni nenulovd slozka vektoru zdpornd.

Jednoduché priklady:
o (4,7,1) >previen (4,2,3), jelikoz |(4,7,1)| =12 > [(4,2,3)| =9,
o (1,5,2) >grepienr (4,1,3), jelikoz |(1,5,2)] = |(4,1,3)|aa — = (—3,4, —1),

e proménné jsou uspoiddany standardnim zpusobem, tzn. £1 > grevicx T2 >grevier = * >greviea
T,

Rozdily mezi grlex a grevlex uspoirddanim nastanou v piipadé rovnosti celkovych
stupnu monomu. Uspotradéani grlex pouziva v takovém pripadé lex usporadani a upfednostnuje
vyssi mocninu nejvétsi proménné. Naproti tomu usporadéani grevlex davéa prednost nizsi
mocniné nejmensi proménné.

Jestlize f = > a,xz® je polynom v k[xy,...,x,]|, potom kazdé uspordadani monomu
(0%
jednoznac¢né urcuje poradi monomu.

Priklad 4.2 Vezméme polynom f = 4zy?z + 422 — 523 + Tx?2% € k[, v, z]. Potom
e pro lex uspotfddani dostaneme f = —5x3 + Ta22% + day?z + 422
e pro grlex uspoiaddni dostaneme f = Tx22% + day?z — 53 + 422

e pro grevlex uspoifaddni dostaneme f = 4xy?z + Tx22% — 523 + 422 |
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V nasledujici definici zavedeme néktera oznaceni, kterd budou pouzivdna v dalsich
castech textu.

Definice 4.2.5 Necht f = > a,x® je nenulovy polynom v klxy,...,x,] a necht > je
uspordddni monomi. Potom: *

1. Maximdlni stupenn polynomu f je multideg(f) = max(a € Z%; : a, # 0).

2. Hlavni koeficient polynomu f je LC(f) = Gmuitideg(s) € k-

3. Hlavni monom polynomu f je LM(f) = pmultides(f),

4. Hlavni ¢len polynomu f je LT(f) = LC(f) - LM(f).

Napiiklad pro f = 4xy?z +42% — 523 + Tw22% s uvazovanim lexikografického uspofadani
je multideg(f) = (3,0,0), LC(f) = =5, LM(f) = 23, LT(f) = —bz>.

4.3 Algoritmus déleni v k[zq,...,x,]

V této casti bude uvedeno rozsifeni klasického algoritmu déleni v k[z] pro polynomy
v klzy,...,z,]. V obecném piipadé je cilem vydéleni polynomu f € k[xq,...,z,] s-tici
polynomu fi,..., fs € k[z1,...,x,].

Zékladni myslenka algoritmu je stejné jako v pripadé jedné proménné: je nutné anulovat
hlavni ¢len f (s ohledem na usporddani monomu) vyndsobenim nékterého f; vhodnym
monomem a odectenim. Potom tento monom odpovida a;. Nejdiive bude uveden priklad.

Priklad 4.3 V tomto ptikladé budou demonstrovany problémy, které mohou vznikat pouze
v souvislosti s délenfm polynomil ve vice nez jedné proménné. Ukolem je vydélit f =
2%y + zy? +y? polynomy f; = xy — 1 a fo = y?> — 1 s pouzitim lexikografického uspotradan{
s « > y. Prvni dva kroky algoritmu jsou standardni, pficemz dostaneme

i a;
zy — 1 T+
2*y + xy? + y? { gy_l = Y
Yy
2y — «x
P + T + P
zy? — y
r + Yty

Je vidét, ze ani LT(f1) = zy ani LT(fs) = y? nedéli LT(z +y*+vy) = x. Ale x + y* + y neni
zbytek po déleni, protoze LT(fs) déli y2. Proto se x piesune do zbytku a déleni pokracuje
dale. Pro zbytek r je vytvoten zvlastni sloupec, kam budou zarazovany cleny pattici do
zbytku.

Obecnéji lze ici, ze pokud nelze délit ani LT(f;) ani LT(f2), pfesune se hlavni ¢len do
zbytku a déleni pokracuje dale. Celé déleni lze zapsat ve tvaru:
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2 2 2 . ry—1 x4y

-y + Ty + Y : { y2 -1 - 1

2’y — «x

TP + o +y?

ry’ — y

r + vt 4y

v+ oy — T

y> — 1

y + 1

T — T4y

0 — r+y+1
Lze tedy psat 2’y +ay? +y>=(x+vy) - (zy—1)+1-(y* —1)+z+y+1. [
Véta 4.3.1 (Algoritmus déleni v k[xy,...,Xy,]) Necht > je uspordddni monomii na Z=,
a necht F = (f1,..., fs) je usporddand s-tice polynomai z k[x1, ..., x,]. Potom kaZdy poly-
nom f € klxy,...,z,| je moiné vyjadrit ve tvaru

f:a'lfl+"'+asfs+r>

kde a;,r € klxy,...,z,] a bud r =0 nebo r je linedrni kombinace monomi s koeficienty z
k, z nichz Zadny neni délitelny LT(f1),...,LT(fs). Clen r se nazjvd zbytek f po déleni F.
Navic jestlize a;f; # 0, potom plati multideg(f) > multideg(a; f;).

Dukaz: Existence koeficientu a; a zbytku r se dokéze sestrojenim algoritmu pro jejich
nalezeni. Algoritmus pro déleni polynomu ve vice proménnych ma nasledujici podobu:

INPUT: f1,..., fs, f

OUTPUT: aq,...,a,,T

a;:=0;...;a, :=0;7r:=0

p=f

WHILE p #0 DO
1:=1

PROVEDENO DELENI := FALSE
WHILE i < s AND PROVEDENO DELENI = FALSE DO
IF LT(f;) pELT LT(p) THEN
a; := a; + LT(p) /LT(f;)
pi=p— (LTO/LT())
PROVEDENO DELENI := TRUE
ELSE
ti=1+1
IF PROVEDENO DELENf = FALSE THEN
r:=r+LT(p)
p=p—LT(p)
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Pii kazdém pruchodu vnéjsim cyklem se provede prave jeden z piikazu p := p — LT(p),
pi=p-— (LT(p)/LT(fi))fi a tedy stupen p klesne. Proto algoritmus skonéi.

Plati invariant f = ayf; + -+ + p + r, a pfitom kazdy clen kazdého a; je podilem
LT(p)/LT(f;) z néjakého okamziku. Proto stupen téchto ¢lenu je mensi nez stupen p
v daném okamziku a ten je nejvyse roven stupni f. Dohromady stupen kazdého a;f; je
mensi nebo roven stupni f. 0J

Tato ¢ast bude uzaviena posouzenim vlastnosti algoritmu déleni polynomu ve vice
proménnych. Dulezitou vlastnosti algoritmu déleni v k[x] je jednozna¢né urceni zbytku.
Z piikladu 4.4 ale vyplyva, ze to uz neplati pro algoritmus déleni ve vice proménnych.
Nejlépe uvedeny algoritmus funguje ve spojeni s tzv. Grobnerovou bazi.

Piiklad 4.4 Polynom f = z%y-+xy?+y? md byt vydélen polynomy f; = y>—1a fo = zy—1
s pouzitim lexikografického uspotradéani s x > y. Jedna se tedy o obdobu ptikladu 4.3, pouze
je zaménéno poradi délitelu. Provedeni déleni podle uvedeného algoritmu vede k zapisu

fi a T
2
'y +xy” +y {xy—l =
¥y —
ry? + x +y°
xy? — o
2z + y?
y? — 2z
y? — 1
L
0 — 20 +1
Potom tedy
Pyt +yt=(+1) P - +z (zy—1)+2z+ 1.
Srovnanim s piikladem 4.3 je ziejmé, ze zbytek je pti zaméné potadi délitelu jiny. ]

Zbytek r tedy neni jednoznacné urceny vzhledem k pozadavku, aby zadny z ¢lenu
r nebyl délitelny LT(f1),...,LT(fs). Priklady 4.3 a 4.4 ukazuji, ze a; ..., as v zavisi na
usporadani s-tice polynomu (fi,..., fs).

Algoritmus déleni polynomu ve vice proménnych tizce souvisi s feSeni problému prislusnosti
k idedlu. Jestlize po déleni polynomu f s-tici F' = (f1,..., fs) je zbytek r = 0, potom

f=afi+ - +afs

afe(fi,. .., fs). Jetedy vidét, ze r = 0 je postacujici podminkou pro piislusnost k idedlu.
Nésledujici priklad demonstruje, ze to ale neni podminka nutnd.
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Priklad 4.5 Nechf f; = zy + 1, fo = 42 — 1 € k[z] s lex uspofadénim. Ukolem je vydélit
polynom f = zy*—z dvojici polynomu F' = (f}, f2). Provedenim algoritmu délenf je mozné
f vyjadrit ve tvaru

vy’ —w =y (2y+1)+0-(y* = 1) + (-z —y).
Déleni dvojici polynomu F' = (fs, f1) vede k zapisu
vy’ —z=z-(y*—1)+0- (zy+1)+0.

Odtud je videét, ze f € (f1, f2), a presto pii déleni F' = (fi, f2) je zbytek nenulovy. |

Dalsi c¢asti budou vénovany hledani vhodné generujici mnoziny, pro kterou dava al-
goritmus déleni polynomu ve vice proménnych jednoznacné vysledky. Ukaze se, ze touto
vhodnou generujici mnozinou idealu je tzv. Grobnerova baze daného idedlu.

4.4 Monomické idealy a Dicksonovo lemma
Tato ¢ast se bude zabyvat specialnim pripadem idealu, tzv. monomickymi idedly.

Definice 4.4.1 Idedl] C k[zy,...,x,] se nazgvd monomicky idedl, jestlize existuje podmnozina
A C Z%, (i nekonecnd) takovd, Ze I obsahuje vsechny polynomy ve tvaru konecné sumy
> hex®, kde hy, € klxy,...,x,]. Potom I = (x%: o € A).

acA

Prikladem monomického ideélu je idedl I = (xly?, 23y*, x*y®) C k[z,y]. Naopak pifkladem
idealu, ktery neni monomicky, je ideal J = (xy? — y3, 2%y + zyt).

Lemma 4.4.1 Necht I = (2® : o € A) je monomicky idedl. Potom monom x° ndlezi I
pravé tehdy, kdyz x° je délitelné x® pro néjaké o € A.

Diikaz: Je technicky, podrobné viz [3], str. 69. O

Lemma 4.4.2 Necht I je monomicky idedl a necht f € k[xy, ..., x,]. Potom jsou ndsledujici
turzeni ekvivalentni:

1. fel,
2. kazdy clen f leziv I,
3. f je linedrni kombinaci monomu z I s koeficienty z k.

Dikaz: Tmplikace 3 = 2 = 1 jsou trividlni. Zbyvéa tedy ukazat, ze 1 = 3. Plati, ze
f =2 qa.2% € I, kde a, € k. Z predpokladu vyplyva, ze lze vyjadiit f = > 5.4 hga?,
kde hg € k[zy, ..., x,]. Kazdy clen a,z® se musi rovnat nékterému ¢clenu z druhé rovnosti,
tedy existuji takova d € k, § € Z2, tak, 7ze a,a® = da’*°. Proto 2 € I a tedy plati 3. O
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Dusledek 4.4.3 Dva monomické idedly splyjvaji pravé tehdy, kdyzZ obsahuji stejné mo-
nomy.

Hlavnim vysledkem této ¢ésti je tvrzeni, ze kazdy monomicky ideél z k[xq, ..., z,] je
konecné generovany.

Véta 4.4.4 (Dicksonovo lemma) Kazdy monomickyidedl I = (x: o € A) C k[x,. .., 2y)
lze napsat ve tvaru
I = (zoW . 20®),

kde a(1),...,a(s) € A. Idedl I md koneénou bazi.
Diikaz: Provadi se indukei podle po¢tu proménnych, podrobné viz [3], str. 70. O
Disledek 4.4.5 Necht > je relace na Z%, spliujici:

1. > je dplné uspordddani na Z%,

2. jestlize > [ ay € Z%, potom o+~ > 3+ . Potom > je dobré uspordddni prdvé
tehdy, kdyz a > 0 Va € Z%,,.

Uzitim dusledku 4.4.5 lze zjednodusit definici 4.2.1. Podminky 1 a 2 zustanou beze
zmén, pouze podminka 3 se nahradi jednodussi podminkou a > 0 Va € Z%,. Ovéreni této
podminky (a tedy zjisténi, zda uspofadani je uspofdddnim monomu) je mnohem snazsi.

4.5 Veéta o Hilbertové bazi a Grobnerovy baze

V této ¢asti bude provedeno kompletni feseni problému popisu idedlu, pricemz bude zamérena
na baze idedlu, které maji jisté dobré vlastnosti vzhledem k algoritmu déleni popsanému
v 4.3. Klicem je myslenka, ze pro dané usporadani monomu odpovida kazdému polynomu
f € k[z1, ..., x,] jednoznaéné urceny hlavni ¢len LT(f).

Definice 4.5.1 Necht I C k[xy,...,x,] je idedl rizny od {0}, tzn. obsahuje alespori jeden
polynom rizny od nuly.

1. Oznacme LT(I) mnoZinu hlavnich ¢lent proka I. Tedy

LT(I) = {cx® : ewistuje f € I takové, Ze LT(f) = ca“}.

2. Oznac¢me (LT(I)) idedl generovany prvky LT(I).

Hlavni ¢leny hraly dulezitou roli v algoritmu déleni popsanému v 4.3. Pro danou
konecnou generujici mnozinu idedlu I = (fy, ..., fs), mohou byt (LT(I)) a (LT(f1),...,LT(fs))
ruzné idedly. Je pravda, ze LT(f;) € LT(I) C (LT(!)), z ¢ehoz plyne (LT(f1),...,LT(fs)) C
(LT(I)). Avsak (LT(I)) muze byt i ostie vétsi. To bude ukdzéno v nasledujicim piikladeé.
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Priklad 4.6 Necht I = (fy, f»), kde f1 = 2° — 2zy a f, = 2%y — 2y* + 2 a pouZijme grlex
uspofadani monomu v kfz, y]. Potom

v (2hy — 2% + 1) —y - (2% — 22y) = 2°

a tedy 2 € I. Tudiz 2? = LT(2?) € (LT(I)). Ale z* neni délitelné LT(f;) = z* nebo
LT(f2) = 2%y a tedy 2* ¢ (LT(f1),LT(f2)). u
Véta 4.5.1 Necht I C k[xzy,...,x,] je idedl. Potom

1. (LT(I)) je monomicky idedl,

2. existuje g1, ..., g1 € I takové, Ze (LT(I)) = (LT(q1),...,LT(g:)).
Diikaz: Podrobné viz [3], str. 75. O

Jelikoz je (LT(I)) monomicky idedl , je mozné aplikovat poznatky z casti 4.4, zejména
Dicksonovo lemma k dukazu druhé ¢asti véty 4.5.1. Tato véta muze byt potom spolecné s
algoritmem déleni polynomu pouzita k dukazu existence koneéné generujici mnoziny pro
kazdy polynomidlni ideal.

Véta 4.5.2 (Hilbertova véta o bazi) Kazdy idedl I C klxy,...,x,] md konecnou ge-

nerujici mnozZinu. Proto I = (g1,...,9:) pro néjaké g1,...,9; € I.

Diikaz: Pokud by I = {0}, za generujici mnozinu lze vzit {0}, ktera je jisté koneéné. Pokud
I obsahuje néjaky nenulovy polynom, potom podle predchozi véty (a podle Dicksonova
lemmatu) existuji gy, ..., g; takové, ze (LT(I)) = (LT(g1),...,LT(g:)). Predpokldadejme, ze

I={g1, .- q0)
Je ziejmé, ze (g1,...,9:) C I, protoze kazdé g; € I. Vezméme nyni libovolny polynom
f € I a vydélme ho polynomy ¢y, ..., g;. Potom lze psét

f=ag+ - +ag+r,
kde zadny clen r neni délitelny LT(gy),...,LT(g:). Je vidét, ze
r=f—agr—-—ag €1

Pokud by r # 0, potom nutné LT(r) € (LT(I)) = (LT(g1),...,LT(g¢)), a protoze je (LT(I))
monomialni, musi byt LT (r) délitelny nékterym z jeho generatoru LT(g;). To je ale ve sporu
s tim, ze r je zbytek po déleni. Proto r = 0. Potom

f=agi+- - +ag+0€(g,...,9)
Odtud plyne, ze I C (g1, ..., g:), ¢imz je dikaz ukoncen. O

Véta 4.5.2 ddva odpovéd na problém popisu idedlu. Navic specidlni vlastnosti baze
popsané ve vété 4.5.2 je, ze

(LT(1)) = (LT(g1), ..., LT(g¢))-

Takova baze bude specialné oznacena.
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Definice 4.5.2 Zvolme uspordddni monomii. Rekneme, e koneénd mnozina G = {g1, ..., g:}
idedlu I je Grobnerovou bazi (mebo standardni bazi), jestlize

(LT(g1), -, LT(gr)) = (LT(])).

Ekvivalentné lze fici, ze mnozina {gy,...,9:} C I je Grobnerovou bézi I pravé tehdy,
kdyz hlavni ¢len libovolného prvku I je délitelny LT(g;) pro néjaké i.

SN

Dusledek 4.5.3 Zvolme uspordddni monomai. Potom kazdy idedl I S kl[zy,...,x,] m
Grébnerovu bdzi. Naopak kaZdd mnoZina polynomi gy, . .., g, € I, pro kterou plati (LT (1))
(LT(g1),...,LT(g:)), je Grébnerovou bazi idedlu I.

Naptiklad pro bazi {fi, fo} = {2® — 22y, 2%y — 2y? + v} z piikladu 4.6 je vidét, ze
vzhledem ke grlex uspotfdddni neni Grobnerovou bézi, jelikoz 2 € (LT(I)), ale 2* ¢
(LT(f1),LT(f2)). Podrobnéji bude problematika urcovani, zda je dana baze Grébnerovou
bézi, zminéna pozdéji.

Tato cast bude zakoncena dvéma aplikacemi Hilbertovy véty o bazi. Prvni je tvrzeni
o idedlech v k[xq, ..., x,]. Vzestupnd rada idedlu je posloupnost

]1C]2C[3C"'.
Napiiklad posloupnost (x1) C (x1,29) C -+ C (x1,...,2,) tvoil konetnou vzestupnou
radu idealu.
Véta 4.5.4 (Podminka vzestupné fady) Necht I} C I, C I3 C -+ tvord vzestupnou
fadu idedli v k[xq, ..., z,]. Potom ezxistuje N > 1 takové, Ze
In =Iny1 = Ing2 ="

Dikaz: Oznacme I = |J;2, I;. Ztejme I je idedl. Podle Hilbertovy véty existuji fi, ..., f;
tak, ze I = (fi1,..., fs). Ale kazdy generator je obsazen v néjakém I;, tedy f; € I, pro
néjaké j;. Vezméme N jako maximum z téchto j;. Potom tedy f; € Iny pro vSechna i. Lze
tedy psat

I={(fi,....fyCINCIy C---CI

a vSechny tyto idealy jsou si rovny. 0

Tvrzeni, ze kazda vzestupna tada idedlu v k[xy, . . ., z,,] se stabilizuje, se zkracené nazyva
ACC (Ascending Chain Condition) a je ekvivalentni dusledku Hilbertovy véty o bézi.

Druhy dusledek Hilbertovy véty o bazi je geometricky. Afinni variety byly dosud uvazovany
jako mnoziny feseni kone¢né soustavy polynomialnich rovnic

V(fi,....fs) ={(ar,...,a,) €E": fi(ay,...,a,) =0 Vi}.

Hilbertova véta o bazi ukazuje, ze ma také smysl hovotit o afinnich varietach definovanych
idedlem I C k[xy,...,z,].
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Definice 4.5.3 Necht I C k[z1,...,x,] je idedl. Oznacme V (I) mnoZinu
V(I) = {(al,...,an) € k™ f(al,...,an) :OVf € I}

Prestoze nenulovy ideal I vzdy obsahuje nekonetné mnoho ruznych polynomu, mnozinu
V(1) lze vzdy definovat pomoci konecné soustavy polynomiélnich rovnic.

Véta 4.5.5 Jestlize I = (f1,..., fs), potom V(I) = V(f1,..., fs) a tedy V(1) je afinni

varieta.

vvvvvv

4.6 Vlastnosti Grobnerovych bazi

Tato ¢ast bude vénovéana vlastnostem Grobnerovych bazi a moznostem urceni, zda dana
béaze idealu je Grobnerovou bazi.

Véta 4.6.1 Necht G = {gi,...,9:} je Grobnerova bdze idedlu I C kl[zy,...,z,] a f €
klxy,...,x,). Potom ezistuje jediné r € klxy, ..., x,] s ndsledujicimi vlastnostmi:

1. zZadny ¢len r neni délitelny Zadngm z hlavnich clend LT (g1), ..., LT(g:),
2. existuje g € I takové, Ze f =g+ .
Diikaz: Viz [27], str. 17. O

Ackoliv zbytek r je uréeny jednoznacné, koeficienty a; ziskané algoritmem déleni (do-
staneme f = ajg; + -+ - + a9, + ) se mohou ménit v zdvislosti na potradi g1, ..., g

Dusledek 4.6.2 Necht f € klxy,...,z,] a necht G = {g1,...,9:} je Grobnerova bdze pro
idedl I C klxy,...,x,|. Potom f € I prdvé tehdy, kdyz zbytek po déleni f prvky bdze G je
nula.

Tato vlastnost se také nékdy bere jako definice Grobnerovy béaze, protoze je ekvivalentni
s podminkou (LT(gy),...,LT(g:)) = (LT(I)). Uziti dusledku 4.6.2 vede k algoritmu pro
feSeni prislusnosti k idedlu. Za predpokladu, ze je znama Grobnerova baze G idealu, je
potfeba pouze spocitat zbytek po déleni f prvky baze G.

Zbyvé ukazat, jak lze najit Grobnerovu bazi. K tomu je nutné zavést nejprve nékteré
dalsi pojmy a oznaceni.

Definice 4.6.1 Oznacime f¥' zbytek po déleni f usporddanou s-tici F = (f1,..., fs).

Definice 4.6.2 Necht f,g € k[x1,...,x,] jsou nenulové polynomy.
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1. Necht multideg(f) = «, multideg(g) = 3 a necht v = (71, ..., V), kde v; = max(ay, 3;)
pro kazdé i. Monom x7 se nazijvd nejmensi spolecny nasobek LM(f) a LM(g) a znaci
se 7 = LCM(LM(f),LM(g)).

2. S-polynom polynomu f a g je kombinace

S(f.0) = e f =
LT(f) LT(g)

Napiiklad necht f = 2%y*> — 2%® + 2z a ¢ = 32'y + v v Rz, y] a uvazujme grlex
usporadani. Potom v = (4,2) a

l’4y2 l’4y2 1 1
s _ o o= f— ty-0 = —PuB 2 — 2B
(f,9) 3, f Suty 9 f=gy 9=—'y +a" — 3y
t
Lemma 4.6.3 Mé¢jme soucet tvaru . c;x®Dg;, kde cy,...,c; jsou konstanty a o(i) +

i=1
multideg(g;) = 6 € ZZ, pro ¢; # 0. Jestlize

t
multideg (Z c,-a:a(i)gi> < 4,
=1

potom existuji konstanty c;, takové, Ze

t

Yo caWgi= " cuna® i S(g5, ),

i=1 jk

kde 27 = LCM(LM(g;), LM(g)). Navic kazdé x°~7*S(g;, gx) md mazimdlni stuperi mensi
nez o.

Diikaz: Podrobné viz [3], str.83. O

Pomoci S-polynomu a lemmatu 4.6.3 1ze formulovat nasledujici kritérium, ze kterého
vyplyva algoritmus pro ovéreni, kdy je baze idealu Grobnerovou bazi.

Véta 4.6.4 (Nutnd a postacujici podminka Grobnerovy baze) Necht I je polynomidini
idedl. Potom bdze G = {g1,...,q:} je Grébnerovou bazi pro idedl I prdvé tehdy, kdyz pro
vSechny dvojice 1,j,1 # j je zbytek po déleni S(g;,g;) proky bdze G (sefazené v jistém
poradi) roven nule.

Diikaz: Viz [27], str. 19. O
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Priklad 4.7 Uvazujme idedl I = (y — 2,2 — 23) a ukazme, 7e G = {y — 2%,z — 23} je
Grobnerova baze vzhledem k lex uspotradéani pro y > z > x. K dukazu lze uzit vétu 4.6.4.
Béze G ma pouze dva ¢leny a tedy staci ovéfit, ze zbytek po déleni S-polynomu
Sly—a?z—a") = T(y—a?) - T(z =) = ya® - za?
Yy z

prvky béaze G je nula. Provedenim algoritmu déleni lze dostat

yr’ —zxt =2 (y —2%) + (=2%) - (2 —2%) + 0

atedy S(y — 22,z — 23) = 0. Podle piedchozi véty je tedy G Grobnerovou bazi. Podobné
by bylo mozné ovérit, ze G neni Grobnerovou bazi vzhledem k lex usporadani pro x > y >
zZ. ]

4.7 Buchbergeruv algoritmus

Tato ¢ast bude vénovana zejména algoritmu nalezeni Grobnerovy béaze pro idedl I C
klxy, ..., xz,).

Priklad 4.8 Uvazujme k[z,y] s grlex uspoifdddnim a necht I = (f, fo) = (2* —2zy, 2%y —
2y? + x). Podle véty 4.6.4 lze snadno ovéfit, ze {fi, fo} neni Grébnerovou bazi idedlu I,
jelikoz LT(S(f1, f2)) = —2* ¢ (LT(f1), LT(f2)).

Prvni pfirozenou myslenkou, jak vytvorit Grobnerovu bazi, je rozsitit puvodni gene-
rujici mnozinu na Groébnerovu béazi pridanim polynomu do generujici mnoziny idealu I.
V jistém smyslu to nepfindsi nic nového a pouze to vnasi redundanci do baze I. Avsak
dalsi informace, které lze ziskat z Grobnerovy baze, to vynahradi.

Které dalsi generdtory je nutné ptidat? Pro S-polynom S(fy, fo) = —2% € I je zbytek
po déleni F' = {fi, fo} roven —2?, je tedy nenulovy a mél by byt pfidén do generujic
mnoziny jako novy generator f3 = —x?. Potom F = {fi, f2, f3} a pomoci véty 4.6.4 lze
ovérit, zda je to Grobnerova béaze. Tedy

S(f1, f2) = f3 tedy S(f1>f2)i=0>
S(fi, fs) = (27 = 22y) — (=x)(=2%) = =22y ale  S(fi,f3) =—2xy#0.
Do generujici mnoziny se tedy piida fy = —2zy. Potom F = {f1, fo, f3, f4} & lze psét
S f) = S(hi fa) =0,

S(fiofo) = —20y? =yfs  tedy S(fi.f) =0,
S(for f3) = —20% + @ ale  S(fo, f3) = 202+ 2 #£0.

Rozsifenim generujici mnoziny o fs = —2y*+x je F = {f1, fo, f3, f1, f5}. Snadno lze ovérit,
ze plati

- F

S(fi,f;) =0 provsechna 1 <i < j<5.
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Z véty 4.6.4 potom plyne, ze

{fla f2> .f3a f4a f5} = {xi’) - 2[L’y, 1’2y - 2y2 + xz, —1'2, _21"3/7 _2y2 + [L’}
je Grobnerovou bazi pro ideal I. [ |

Postup, predvedeny v prikladé 4.8, Ize zapsat jako algoritmus pro sestrojeni Grobnerovy
béze. Verze, ktera zde bude uvedena, je pouze zakladni. V 70. a 80. letech 20. stoleti
byla provedena mnohd vylepseni tohoto algoritmu vedouci ke zvyseni efektivity vypoctu.
Neéktera z téchto vylepseni budou uvedena v ¢asti 4.8.

Véta 4.7.1 (Buchbergeruv algoritmus) Necht I = (fy,..., fs) # {0} je polynomidini
idedl. Potom lze Grobnerovu bdzi sestrojit konecnym poctem kroku nasledugjiciho algoritmu:

INPUT: F = (f1,..., fs)

OuTPUT: GROBNEROVA BAZE G = (g1,...,¢9;) PRO IDEAL I, F C G
G =F
REPEAT
G =G
FOR kazpou pvoJict {p,q}, p# q v G' DO
S = 5(p,q)
IF S # 0 THEN G := G U {S}
UNTIL G =G

Duikaz: Nejdrive se ukaze, ze G - I plati v kazdé fazi algoritmu. Kdykoliv dojde k rozsiteni
G, pridé se zbytek S = S(p,q) pro p,q € G. A tedy, jestlize G C I, potom i p, q a také
S(p,q) jsou v I, a protoze se délilo prvky G’ C I, je GU S C I. G také obsahuje danou
bazi F a tedy G je baze I.

Algoritmus konéi, kdyz G = G’, coz znamend, ze S(p, q)G = 0 pro v8echna p,q € G.
Proto podle véty 4.6.4 je G Grobnerovou bazi 1.

Zbyva ukazat, ze algoritmus skonci. K tomu je nutné podrobnéji zkoumat, co se stane
po kazdém pruchodu hlavnim cyklem algoritmu. Mnozina G se sklddd z G’ (G z minulého
pruchodu cyklem) a z nenulovych zbytku S-polynomu prvku mnoziny G’. Potom tedy

(LT(G")) c (LT(G)),

protoze G' C G. Navic je-li G’ # G, predpokldda se, ze (LT(G")) je ostfe mensi nez (LT(G)).
Pro dukaz predpokladejme, ze do G’ byl pridan nenulovy zbytek r po déleni S-polynomu
prvky baze. Jelikoz r je zbytek po déleni prvky G’, LT(r) neni délitelny zadnym z hlavnich
c¢lenu prvku G'; a tedy LT(r) ¢ (LT(G")). Ale LT(r) € (LT(G)), coz dokazuje predpoklad.
Z ptredchoziho je vidét, ze idedly (LT(G’)) tvoii vzestupnou fadu idedlu v k[z1, ..., x,].
Z ACC potom plyne, Ze po koneéném poctu iteraci se fada stabilizuje a bude (LT(G")) =
(LT(G)). Z ptredchoziho odstavce potom plyne, ze G’ = G a algoritmus skon¢i po kone¢ném
poctu kroku. O
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Ihned je nutné upozornit, ze algoritmus uvedeny ve vété 4.7.1 byl vybran hlavné pro
svoji nazornost. Neni to prilis vhodné cesta, jak opravdu realizovat vypocet, jelikoz se prlmo

nabizi zfejmé vylepseni tohoto algoritmu. Pokud je jednou vypocten zbytek S (p, ) =0,
potom bude tento zbytek stale nula i po pridani ¢lenu na konec usporadané generujici
mnoziny G’. Neni tedy nutné tento zbytek znovu pocitat. Ve skutecnostl je po pridani

nového generdtoru f; nezbytné spocitat pouze zbytky S(fi, f;) f]) kde i < 7 — 1. Dalsi
mozna vylepseni algoritmu budou uvedena v ¢asti 4.8.

Grobnerova baze vypoctend uvedenym algoritmem je casto vétsi nez je nezbytné. Ne-
potiebné generatory lze eliminovat uzitim nasledujictho faktu.

Lemma 4.7.2 Necht G je Grobnerova bdze pro polynomidlni idedl I. Necht p € G je
takovy polynom, Ze LT (p) € (LT(G —{p})). Potom G — {p} je také Grébnerova baze idedlu
I.

Dikaz: Vime, ze (LT(G)) = (LT(1)). Je-li LT(p) € (LT(G — p)), potom (LT(G — p)) =
(LT(G)). Odtud jiz podle definice plyne, ze G — p je také Grobnerova béze I. O

Definice 4.7.1 Minimalni Grébnerova baze pro polynomidlni idedl I je Grobnerova bdze
G takovd, Ze:

1. LC(p) = 1 pro vsechny p € G,
2. pro vSechny p € G je LT(p) ¢ (LT(G — {p})).

Minimalni Grobnerovu béazi pro dany nenulovy idedl lze sestrojit uzitim algoritmu uve-
deném ve vété 4.7.1 a nasledné lemmatu 4.7.2.

Priklad 4.9 V prikladé 4.8 byla vzhledem ke grlex usporadani vypoctena Grébnerova
béze
{fla f2a f3> .f4a f5} = {x3 - 21’?},1’2'3/ - 2y2 +, _1,2’ _21"3/7 _2y2 + ZE'}

Jelikoz jsou nékteré hlavni koeficienty ruzné od 1, nejdiive se vynasobi generatory vhodnymi
konstantami, aby byly vSechny hlavni koeficienty 1. Vzhledem k lemmatu 4.7.2 se nezairadi
f1 do minimalni Grobnerovy bdze, jelikoz plati LT(f;) = 2® = —x - LT(f3). Podobné, je-

likoz LT(f2) = 2y = —3xLT(fs1), je mozné eliminovat fo. Déle jiz nelze nalézt zadny dalsf
piipad, kdy hlavni ¢len generatoru déli hlavni ¢len jiného generatoru a tedy
1

f3:$2, f4:$y, f~5:y2_§x

je minimalni Grobnerova baze idealu 1. |

Bohuzel ideal uvedeny v piikladé 4.9 muze mit vice minimalnich Groébnerovych bézi,
jelikoz také

. o A 1
f3 = 2* + axy, fa =y, f5=y2—§$
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je minimdlni Grébnerova béze pro a € k (libovolnd konstanta). Pro k nekoneéné tedy
existuje nekonecné mnoho miniméalnich Grébnerovych bazi. Nastésti lze vybrat minimalni
Grobnerovu bazi, kterd je v jistém smyslu lepsi nez ostatni.

Definice 4.7.2 Redukovand Grobnerova baze pro polynomidlni idedl I je Grébnerova bdze
G pro idedl I takovd, Ze:

1. LC(p) =1 pro vSechna p € G,
2. pro vsechna p € G Zddny monom p nendlezi (LT(G — {p})).

Véta 4.7.3 Necht I # {0} je polynomiding idedl. Potom pro dané uspordddni monomai
ma I jedinou redukovanou Grébnerovu bdzi.

Diikaz: Predpokladejme, ze G je minimalni Grébnerova baze I. Algoritmus minimalizace
je ztejmy, staci testovat pouze délitelnost hlavnich ¢lent.

Necht g € G nenf redukovany, tzn. obsahuje monom, ktery nalezi v (LT(G — {g})). Pfi
déleni g/(G — g) se tedy LT(g) nutné dostane do zbytku, protoze nemd ¢im byt délitelny
(baze je minimdln{). Tedy LT(g%~9) = LT(g), protoZe nic jiného uz nemiize byt vedoucim
¢lenem zbytku. Oznac¢me

J=37 a G=(G-g)uyg.

G’ je opét minimalni Grobnerovou bdazi idedlu I, protoze (LT(G')) = (LT(G)), tj. také
plati (LT(G")) = (LT(I)). Polynom ¢’ je zfejmé redukovany pro G’ diky vlastnostem algo-
ritmu déleni. Byl-li néjaky h # g redukovany pro G, zustava podle predchoziho lemmatu
redukovany i pro G'. Tim je dan algoritmus pro redukci Grobnerovy béze.

Zbyvé dokdzat jednoznacnost. Predpoklédejme dvé redukované Grobnerovy béze G, G
nenulového idedlu I. Plati tedy (LT(G)) = (LT(I)) = (LT(G)). Protoze tento idedl je
monomialni, 1ze pro néj aplikovat Dicksonovo lemma. S odvoldanim na konstrukci baze
v jeho dikazu (podrobné viz [3], str. 70) lze tvrdit, Ze existuje pravé jedna monomidlni
baze monomidlniho idedlu tak, ze koeficienty jejich ¢lenu jsou rovny jedné a zadny z ¢lenu
této baze nedeéli jiny.

Podle definice minimality musf byt LT(G) i LT(G) prave takovou bézi. Tedy LT(G) =
LT(G). Ke kazdému g € G tedy existuje prave jedno § € G takové, ze LT(g) = LT(§).

Plat{ g — § € I. Protoze G je Grobnerova baze, plati g — 5 = 0. Cleny LT(g),LT(g) se
odectou uz v g — g. Protoze obé baze jsou redukované, nemuze byt zadny ze zbyvajicich

¢lenu g — g délitelny kterymkoliv z LT(G) = LT(G) a musi se tedy dostat do zbytku. Plati
tedy

=G

g-9=9—g =0.
Tim je jednoznacnost dokazana. 0J
Diusledkem véty 4.7.3 je algoritmus pro ovéreni, zda mnoziny polynomu {fi,..., fs}
a {g1,...,q:} generuji stejny idedl: pro dané usporddani monomu se najdou redukované
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Grobnerovy baze pro (fi,..., fs) a (g1,...,q;) a idedly jsou si rovny pravé tehdy, kdyz
jejich redukované Grébnerovy béaze jsou stejné.

Zaver této casti bude vénovan prikladu, ktery demonstruje souvislost Buchbergerova
algoritmu a Gaussovy eliminace.

Priklad 4.10 Uvazujme soustavu linedrnich rovnic

v — 6y — 2z =0
2 — 4y + 4w = 0
r -2y —z —w = 0.

Uzitim Gaussovy eliminaci na matici koeficientii soustavy lze puvodni matici prevést do
tvaru

1 -2 -1 -1
0o 0 1 3]. (4.1)
0 0 0 0

Pro ziskani redukované matice musi byt kazda hlavni 1 jedinou nenulovou hodnotou v
daném sloupci, tedy

(4.2)

o O =
o O
O = O
S W N

Necht I je idedl
I=38x—06y—2z2r—4y+4w,x—2y — z —w) C klz,y, z, w]

odpovidajici puvodni soustaveé rovnic. Minimalni Grébnerova baze vzhledem k lex usporadani
prox >y >z >wje
I={(x—-2y—2z—w,z+ 3w),

coz odpovidé linedrni formé dané matici (4.1). Redukovand Grébnerova baze pro idedl I je
I =(z—2y+2w,z+ 3w),
coz odpovida matici (4.2). [

Na zéakladé prikladu 4.10 Ize Tici, ze Gaussova eliminace je specialnim pripadem obecného
Buchbergerova algoritmu pro soustavu linearnich rovnic.

4.8 VylepSeni Buchbergerova algoritmu
Zékladni Buchbergeruv algoritmus je znac¢né vypocetné narocny. Nejnarocnéjsi ¢asti algo-
ritmu je vypocet S-polynomu a zejména nédsledné déleni, pii kterém se zjistuje zbytek po

déleni prvky baze. Proto bude tato ¢ast vénovana jednomu z moznych zpusobu, jak vy-
lepsit algoritmus uvedeny ve vété 4.7.1 a podstatné tak zkratit vypocetni dobu. Zejména
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v posledni dobé se objevuji zcela nové pristupy, jak najit Grobnerovu bazi. Nejedna se uz

ale jen o vylepseni uvedeného algoritmu a jejich rozbor presahuje moznosti tohoto textu.
Snahou je najit takové S-polynomy, které neni tieba pii déleni uvazovat. K tomu

potiebujeme obecnéjsi ndhled na pojem nulového zbytku, uvedeny v nésledujici definici.

Definice 4.8.1 Zvolme uspordddni monomi. Necht G = {q1,...,9:} C klz1,...,x,]. Pro
libovolné [ € klzy, ..., x,] lze Fici, Ze f se redukuje na nulu modulo G a oznacit f —¢ 0,
jestlize existuji ay, ..., a; € klxy,...,x,] takovd, Ze lze psdt

f=aig1+ -+ ag
a je-li a;g; # 0, pak multideg(f) > multideg(a;g;).

Vztah mezi redukci na nulu modulo G a algoritmem déleni mnozinou polynomu G
popisuje nasledujici lemma.

Lemma 4.8.1 Necht G ={g1,...,9:} a f € k[z1,...,x,]. Potom plati implikace
ff=0 = f—qo.
Obrdcené tvrzeni obecné neplati.

Duikaz: Prvni ¢ast plyne ihned z algoritmu déleni. Zbyva ukazat, ze obracené tvrzeni nemusi
platit, coz lze predvést na pifkladé. Vezméme f = xy?> —x a G = {zy + 1,3* — 1}. Pomoc{
algoritmu délenf l1ze f vyjadiit ve tvaru xy? —x = y- (zy+1)+0-(y*— 1)+ (—x —y). Lze ale
také psat zy?—z = 0-(zy+1)+z-(y?—1) a jelikoz multideg(zy?—z) > multideg(x-(y*—1)),
je f e 0. O]

Véta 4.8.2 Bdze G = {g1,...,q:} proidedl I je Grébnerovou bazi pravé tehdy, kdyz plati
S(9i,9;) —c 0 pro vSechna i # j.

Diikaz: Plyne okamzité z dukazu véty 4.6.4, podrobné viz [3], str. 103. O

Z lemmatu 4.8.1 vyplyva, ze véta 4.6.4 je specidlnim ptipadem véty 4.8.2. Postacujici
podminka redukce S-polynomu na nulu je formulovana v nasledujici véte.

Véta 4.8.3 Méjme konecnou mnozinu G C k[xy,...,x,]| a predpoklidejme, Ze existuji
f,g € G takové, Ze
LCM(LM(f),LM(g)) = LM(f) - LM(g).

Potom S(f,g) —¢ 0.
Diikaz: Viz [3], str. 103. O

Piiklad 4.11 Uvazujme G = (yz +y, 23 +y, 2?) s grlex uspoifdddnim na k[x, y, z]. Potom

S(:L'3+y,z4) el 0
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podle véty 4.8.3. Algoritmem déleni se ale dostane
S’ +y, )=yt = (2" =2+ - Dyz+y) +y

a tedy S(z3 + vy, z4)G =y #0. [ |

Véta 4.8.3 ve spojeni s vétou 4.8.2 umoznuje vyrazné zefektivnit algoritmus pro vypocet
Grobnerovy béze. Staci ovérit podminku S(gi, g;) —¢ 0 pro ¢ < j takova, ze LM(g;) a
LM(g;) nespliiuji podminku z véty 4.8.3.

K zavedeni dalstho mozného vylepseni véty 4.8.2 je nutné nejdiive definovat nékteré
nové pojmy.

Definice 4.8.2 Necht F = {fi,...,fs}. Syzygy! hlavnich éleni LT(f1),...,LT(fs) se
nazyvd s-tice polynomi S = (hy, ..., hs) takovd, Ze

s

Z h - LT(fz‘) =0.

Mnozina S(F') obsahuje vSechny syzygy hlavnich ¢lent F.

Naptiklad pro F = (z, 22 + 2,y + 2) definuje trojice S = (—x + vy, 1, —z) jedno mozné
syzygy z S(F), jelikoz plati

(—z+y) LT(z) +1-LT(z* +2) + (—z) - LT(y + 2) = 0.

Necht e; = (0,...,0,1,0,...,0) jsou vektory s jednickou na i-tém misté. Potom syzygy
S € S(F) lze napsat ve tvaru S = Y > h;e;. Jako piiklad je mozné uvazovat syzygy pro
S-polynomy. Pro kazdy par {f;, f;} C F, kde i < j a 27 je nejmensi spoleény ndsobek
hlavnich ¢lent polynomu f; a f;, oznac¢me

x x7

KT AR AN

(4.3)

Potom S;; patif do S(F'). Jelikoz S(F) ma kone¢nou bazi, kazdé S € S(F') lze vyjadrit
jako linearni kombinaci bazovych syzygy s polynomialnimi koeficienty.

Definice 4.8.3 Syzygy S € S(F') je homogenni stupné a € Z%, jestlize
S = (cyz®W, . ey,
kde ¢; € k a «; + multideg(f;) = « pro i takovd, Ze ¢; # 0.

Lemma 4.8.4 Kazdé syzyqy S € S(F) lze vyjadrit jednoznacné jako soucet homogennich
SYZYgy.

lzesky ,,sprazeni*

65



Diikaz: Podrobné viz [3], str. 105. O

Véta 4.8.5 Necht F = (f1,..., [fs). Potom kazdé syzygy S € S(F) lze vyjddrit ve tvaru

S = Z uijSij,

i<j
kde u;; € k[z1,...,2,] a syzygy Si; je definovdano vztahem (4.3).

Diikaz: Je zalozen na lemmatu 4.8.4 a vyuziva definice 4.8.3. Podrobnéji viz [3], str. 105.
0J

Z véty 4.8.5 vyplyva, ze syzygy S;; definované vztahem (4.3) tvoif bazi vSech syzygy
hlavnich ¢lenu. Néasledujici priklad ale ukazuje, ze pro bézi S(F') neni zapotiebi vzdy vsech

Si;.

Priklad 4.12 Pro F = (2%y?+ 2z, vy* —y, 2>y +y2) vzhledem k lex usporadani s x > y > 2
je
512 = (17_:1:70)7
513 = (1, 0, —y), (44)
523 = (07$7 _y)
Z (4.4) plyne, ze Sp3 = Si3 — Si2. Syzygy Sas je tedy nadbytecné, jelikoz ho lze ziskat
jako linedrni kombinaci Sy a Si3. Bazi syzygy tedy tvoii {S12, S13}. Pozdéji bude ukdzéna
metoda pro nalezeni mensi baze S(F). [

Véta 4.8.6 Bdze G = {g1,...,9:} pro idedl I je Grobnerovou bdzi prdvé tehdy, kdyz pro
kazdé syzygy S = (hq,...,h) v homogenni bdzi S(G) plati

t
S-G =Y higi—a0.
i=1

Diikaz: Je analogicky s dukazem véty 4.6.4. Podrobné viz [3], str. 106-107. O

Véta 4.6.4 je opét specidlnim pifpadem této véty. Vezme-li se {S;;} za bézi viech syzygy
S(G), potom polynomy S;; - G jsou pravé S-polynomy S(g;,g;). K zuzitkovani sily veéty
4.8.6 je nutné najit zpusob, jak zmensit bazi S(G). Néasledujici véta hovoii o tom, jak pro
bézi {S;; : i < j} urcit, které prvky mohou byt vynechédny.

Véta 4.8.7 Necht G ={g1,...,9:} anecht S C {S;;:1<i<j <t} jebdzi S(G). Navic
predpoklddejme, Ze existuji navzdjem rizné polynomy g;, g;, g € G takové, Ze plati

LT(gx) deli LCM(LT(g;),LT(g;))-

Potom jestlize Sy, Sjr, € S, pak S — {S;;} je také bdze S(G).
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Diikaz: Pro zjednodusen{ se bude predpoklddat, ze plati i < j < k. Necht 27% = LCM(LM(g;), LM(g;)),
podobné jsou definovany také z%+ a x7i*. Z predpokladu potom plyne, ze i+ i xY* déli
2% . Snadno lze potom ovérit, ze plati

i AL

Sij = Sik —

o Tk

Sir.

xVik
A tedy S;; je v bazi zbytecny, protoze ho lze vyjadrit jako linedrni kombinaci S, a Sji. O

Nyni je mozné formulovat vylepseny Buchbergeruv algoritmus, ktery zahrnuje poznatky
z vet 4.8.3 a 4.8.7. Pro uplnost je ale nutné zavést jesté jedno oznaceni. V algoritmu bude

pouzivana uspotrddand dvojice (i,7). Pro dand i, j, ¢ # j nebude ale vzdy jasné, které z
nich je vétsi. Proto bude pouzivano oznaceni

-4 | (4,5) proi<yj,
[Z’j]_{ (j,i) proi > j.

Véta 4.8.8 Necht I = (f1,..., fa) je polynomidini idedl. Potom Grébnerovu bdzi pro idedl
I lze sestrojit konecngm poctem kroku nasledujiciho algoritmu:

INPUT: F = (f1,..., fs)

OuTPUT: GROBNEROVA BAZE G = (g1,...,9;) PRO IDEAL [
B:={(i,j)1 <i<j<s}

G =Fr

t:=s

WHILE B # () DO
VYBER (i,j) € B
IF LCM(LT(f;)LT(f;)) # LT(fi)LT(f;) AND NOT Test(f;, f;, B) THEN
-
S = 5(fi, f;)
IF S # 0 THEN
t:=t+1; f:=89

G:=GU{f}
B:=BU{(i,t))1<i<t—1}
B =B —{(i,j)},

kde Test(f;, f;, B) nabyvd hodnoty true prdvé tehdy, kdyZ existuje k ¢ {i,j} takové, Ze
dvogice [i, k| a [j, k] nejsou v B a soucasné LT(f;) déli LCM(LT(f;),LT(f;)).

Duiikaz: Je zalozen na vétach uvedenych v této ¢asti textu. To, ze algoritmus skonéi, vyplyva
z podminky ACC (véta 4.5.4). Podrobnéji viz [3], str. 108-109. O

Ptestoze je tento algoritmus podstatné lepsi nez zédkladni verze Buchbergerova algo-
ritmu, stale neni optimalni. Provadéné testy jsou mnohem méné pracné a umozni vynechat
v nékterych piipadech velké mnozstvi vypoctu S-polynomu a naslednych déleni, kterd jsou
nejpracnéjsi ¢asti algoritmu. Presto je vypocetni doba v nékterych piipadech stale znacna.
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Jak bylo feceno, nejpracnéjsi casti algoritmu je provadéni déleni S-polynomu prvky
baze G. Jednim z moznych zpusobu urychleni déleni S-polynomu prvky baze G, které ma
implementa¢ni charakter, je usporadani prvku baze f; ve vzestupném potadi vzhledem k
hlavnim ¢lenum s ohledem na pouzivané usporadani monomu.
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Kapitola 5

Teorie eliminaci

Tato kapitola bude vénovana metodé eliminace proménnych ze soustavy polynomialnich
rovnic a zejména jeji souvislosti s Grobnerovou béazi. Zékladni principy teorie eliminaci bu-
dou dany vétou o eliminaci a vétou o rozsiteni. Zminéna bude také geometricka interpretace
uvedenych vét.

5.1 Zakladni véty teorie eliminaci
Nejdifve bude naznaceno, jak eliminace proménnych funguje. Resme soustavu rovnic

?H+y+z = 1,
r+yi+z = 1, (5.1)
rty+2? =

Proidedl I = (x> +y+z—1,2+y*+2z—1,2+y+ 22— 1) je redukovand Grobnerova baze
vzhledem k lexikografickému uspotradani pro x > y > z

g = wHy+2' -1,

2 2
92 = Y —y—z+z
5.2
g5 = yz2—|—%z4—%z2, (5.2)
gy = 28 —42t +423 - 22

Z véty 3.4.2 je ziejmé, ze soustavy (5.1) a (5.2) maji stejnd feseni. Posledni rovnice je jen
v proménné z a lze ji prepsat do tvaru

ga=2% —42* +42° - 22 =22 - 132 +22 - 1).

Koieny g4 tedy jsou 0, 1 a —1 + /2. Zpétnym dosazenim lze najit pifslusnd feseni y a z.
Timto postupem lze nalézt vsechna feseni soustavy (5.1).

Reseni soustavy rovnic bylo mozné provést popsanym zpusobem ze dvou duvodi:
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e Eliminace — Grobnerova baze obsahuje rovnici g4, kterd je pouze v proménné z, tzn.
byly eliminovany proménné x a y z posledni rovnice.

e Rozsiteni — vyfeSenim rovnice g, = 0 1ze z ostatnich rovnic dopocitat odpovidajici
x a y a dostat tak feseni puvodni soustavy.

Zakladni myslenkou teorie eliminaci je, ze eliminaci lze provadét zcela obecné, pro libovol-
nou soustavu polynomialnich rovnic a libovolny pocet proménnych.

Definice 5.1.1 Nechtf I C k[zy,...,x,]. k-tym eliminacnim idedlem I se nazyvd idedl z
klxgy1, ..., x,] definovany vztahem

]k =1InN ]ﬁ?[l’]ﬁ_l, N ,LL’n].

Intuitivné se zda, ze I, obsahuje vSechny prvky Groébnerovy baze, které obsahuji jen
proménné Tj.iq,...,T,. Eliminace proménnych tedy znamend najit nenulové polynomy,
které definuji eliminacni idedl I;.

Véta 5.1.1 (O eliminaci) Necht I C k[xy,...,x,)] je idedl a necht G je Grobnerova bdze
pro ideal I vzhledem k lex usporddant pro x1 > xo > ... > x,. Potom pro kazdé 0 < k <n
Je

Gk =GN k’[l’k_H, c. ,:L'n]

Grobnerovou bazi k-tého eliminacniho idealu Ij,.

Diikaz: Zvolme k mezi 0 a n a predpokladejme, ze G = {g1, ..., gm }. Bez ijmy na obecnosti
je mozné predpoklddat, ze Gy = {g1, ..., g, }, tzn. prvnich r prvka G lezi v k[zgyq, ..., x,]
(pokud by to nebyla pravda, provede se preznaceni).

Nejdiive se ukdze, ze Gy je béazi Iy. Jelikoz urcité Gy C I, potom také (gi,...,g,)
C I, protoze Iy je ideal. Zbyva tedy ukézat, ze kazdy prvek I, lze napsat ve tvaru f =
higi+---+h.g,. To je mozné ukazat pomoci algoritmu déleni. Provede se déleni polynomu
f polynomy g, ..., g, vzhledem k lex uspotadéani. Je nutné si uvédomit nasledujici dve
veéci:

e jelikoz G = {g1,...,gm} je Grobnerova baze I a f € I, plati f¢ =0,

o jelikoz je pouzito lexikografické usporadani, musi hlavni ¢leny g,.1, ..., g, obsahovat
nékterou z proménnych x4, ..., x;. Proto pokud se pouzije algoritmus déleni, neobjevi
se ¢leny s gri1, .-, Gm-

Odtud potom
.f:hlgl‘l'"'+hrgr+0'gr+l+"'+0'gm+0>
z ¢ehoz plyne, ze f € (¢1,...,gr). Tim je dokdzéno, ze Gy, je bazi Ij.
Zbyvéa ukézat, ze Gy je Grobnerovou bazi. Podle véty 4.6.4 k tomu staci, aby pro
vechna 1 < i < j < r byl zbytek po déleni S-polynomu S(g;,g;) prvky baze Gy roven
nule. Ale vSechny S-polynomy lezi v Ij, jelikoz tam lezi i g; a g;. Odtud ale plyne, ze zbytek
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je roven nule. Tim je dukaz proveden. U

Jako piiklad lze pouzit opét soustavu (5.1) a ji piislusnou Grobnerovu bazi (5.2). Z
véty 5.1.1 plyne, ze

(Y2 —y— 22+ 2z, yzt 4 327 — 322,20 — 42t + 423 — 22),

I, = INCly,z]=
= (20 — 424 4+ 423 — 2%).

Je zitejmé, ze Grobnerova baze ve spojeni s lexikografickym usporadanim eliminuje
nejen prvni proménnou, ale také prvni dvé, prvni tii proménné atd. Zélezi jen na poctu
proménnych v dané soustavé rovnic a také na poctu rovnic soustavy. Nevyhodou tohoto
postupu je znacné ¢asova naro¢nost vypoctu Grobnerovy béze vzhledem k lex usporadani.

Druhym krokem potiebnym pro feseni soustavy rovnic je rozsiteni na uplné feseni. Jak
bylo uvedeno v kapitole 4, idedlu I C k[x, ..., z,] odpovidd afinni varieta

V([):{(al,...,an) Gk":f(al,...,an):()VfG[}.

K popisu bodu afinni variety je nutné nejdiive najit feSeni rovnice v jedné proménné,
ziskané eliminaci ostatnich proménnych. Poté se feSeni postupné rozsifuje pridavanim
dalsich proménnych.

Danému k mezi 0 a n odpovida eliminacni idedl [ a feseni (agi1,...,a,) € V(Ix) se
nazyvaji parcidlni reseni puvodni soustavy rovnic. K rozsiteni (ag 1, . . ., a,) na iplné resentd
z V(I) je nutné nejprve piidat proménnou z a dopocitat odpovidajici (ax, agyi1, - .-, a,).
Hledd se tedy ay takové, ze (ag,agi1,--.,a,) lezi na varieté V(Iy_1). Konkrétné je tieba
najit xp = a, které je fesenim soustavy rovnic

gl(xk7ak+17 L 7an> == gT(Ik7ak+17 .. '7an> = O

Jelikoz se pracuje s polynomy v jedné proménné, vsechna mozné feSeni aj soustavy jsou
rovna korenum nejvétsiho spoleéného délitele polynomu gy, ..., g,.

Problémy nastanou v ptipadé, ze polynomy g1, ..., g, nemaji spole¢ny kofen, tzn. exis-
tuji parcialni teseni, ktera nelze rozsitit na uplna teseni. Jako piiklad uvazujme soustavu
rovnic

vy = 1,

rz = 1. (5-3)

Proidedl I = (xy—1,xz—1) je Grobnerova baze G = (y—z,xz—1). Z prvniho elimina¢niho
idedlu I1 = (y — z) plynou parcidlni feseni ve tvaru (a, a), kterd lze rozsitit na Gplnd feseni
(1/a,a,a) s vyjimkou bodu (0,0). Geometricky vyjadfuje rovnice y = z rovinu ve FEj.
Varieta (5.3) potom vyjadiuje hyperbolu lezici v roviné y = z. Je tedy zfejmé, ze bodu
(0,0) opravdu neodpovida zddné uplné Feseni (viz obr. 5.1).

Nésledujici véta fika, kterd parcidlni feseni (ag,...,a,) € V(I;) je mozné rozsifit na
uplnd feseni (aq,...,a,) € V(I). Pro zjednoduseni bude véta omezena pouze pro piipad,
kdy byla eliminovéna jen proménné x;.
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Véta 5.1.2 (O rozsiteni) Necht I = (f,...,fs) C Clzy,...,z,] a necht I, je proni
eliminacni ideal pro I. Pro kazdé 1 <1 < s lze f; napsat ve tvaru

fi = gi(za, ... ,xn)xiv + cleny, ve kterych je x; stupné < Nj,

kde N; > 0 a g; € Clxa, ..., x,] jsou nenulovd. Predpoklddejme, Ze existuje parcidlni feseni
(ag,...,an) € V(I,). Jestlize (ag,...,a,) € V(g1,...,9n), potom ezistuje a; € C takové,
ze (ay, ag, ..., a,) € V(I).

Diikaz: Je pomérné narocny, podrobné viz [3], str.163-164. O

Jak je vidét, véta je formulovana pro k = C. Proc je to dulezité, lze ukazat na ptikladeé.

Priklad 5.1 Uvazujme k& = R a soustavu rovnic

2 _
T _y7
2

= z.
Eliminace x vede k rovnici y = z a tedy parcidlni feSeni jsou (a,a) pro vSechny a € R.
Pro k = C lze z rovnic 22 —y = 0 a 2> — z = 0 bez problému dopocitat uplna feseni
soustavy rovnic. Véta 5.1.2 zarucuje, ze vSechna teseni (a,a) lze rozsifit na uplnd reseni.
Nad R je ale situace jina. Jelikoz 22> = a nem4 redlné feseni pro a < 0, lze na iplnd feseni
rozsitit pouze ta Castecna TeSeni, pro kterd je a > 0. Odtud je vidét, ze véta 5.1.2 neplati
pro k =R. [

Ackoliv véta 5.1.2 o rozsiteni je formulovéana jen pro piipad, kdy byla ze soustavy rovnic
eliminovana pouze prvni proménnd 1, je mozné ji pouzit pro eliminaci libovolného poctu
proménnych.

Piiklad 5.2 Méjme soustavu rovnic

2 4+ y? + 22 1,
ryz = 1. (5:4)

Grobnerova baze pro idedl I = (2?2 + y? + 2% — 1, 2yz — 1) vzhledem k lex uspoiadani je

g = iyt — 22 41,
g = x+yz+yd—yz.

Z véty 5.1.1 o eliminaci potom vyplyva, ze

L = INCly,z] = (q1),
L = InCl2 = {0}.

Jelikoz I, = {0}, je V(I3) = C a tedy kazdé ¢ € C je parcidlnim FeSenim. K rozsifeni na

uplnd teseni (a,b,c) € V(I) se pouzije véta 5.1.2. Nejdiive se piejde od I, k I} = (g1).
Koeficient u y* v polynomu g, je 2? a tedy feseni lze rozsiiit na (b, ¢) pro libovolné ¢ # 0. To
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je ale rozumné, protoze g; nema pro ¢ = 0 feSeni. Zbyva prejit od I; k I, coz znamena najit
takové a, aby (a,b,c) € V(I). Dosazeni (y, z) = (b,c¢) do (5.4) vede ke dvéma rovnicim v
proménné z, ze kterych neni na prvni pohled ziejmé, jestli maji néjaké spoleéné feSeni. Zde
se ukaze sila véty 5.1.2 o rozsiteni. Hlavni koeficienty u mocnin x jsou 1, resp. yz, a jelikoz
1 je vzdy ruzna od nuly, véta 5.1.2 o rozsiteni zarucuje existenci a € C. Tim je dokazano,
ze vSechna parcidlni feseni ¢ # 0 lze rozsitit na uplnd feseni (a,b,c) € V(I). |

Uziti véty 5.1.2 o rozsiteni je zvlasté jednoduché, pokud je koeficient u hlavniho ¢lenu
nékteré z rovnic soustavy roven nenulové konstanté. Tento piipad je casto uziteény, a proto
bude formulovan jako dusledek véty 5.1.2 o rozsiteni.

Dusledek 5.1.3 Necht I = (f1,...,fs) C Clzy,...,x,] a predpoklddejme, Ze pro néjaké i
ma f; tvar

fi = cal¥ + ¢leny, ve kterjch je x; stupné < N,
kde ¢ € C je nenulové a N > 0. Je-li I} proni eliminacni idedl I a (ag,...,a,) € V(I1),
potom existuje a; € C takové, Ze (aq,as,. .., a,) € V(I).

Diikaz: Plyne okamzité z véty 5.1.2 o rozsifeni. Jelikoz g; = ¢ # 0, je V(g1,...,95) =0

a
tedy urcité (ag,...,a,) ¢ V(g1,...,9s) pro viechna parcidlni Feseni. O

Na zaveér této ¢asti uvedeme nékolik piikladi.

Priklad 5.3 Chtéjme najit vSechna feSeni soustavy rovnic

22 +29% = 3,

2 +ay+y? = 3. (5:5)

Redukovand Grobnerova baze pro ideal I = (22 + 2y — 3,22 + zy + y? — 3) vzhledem k
lex usporadani pro x > y je
g = y3 - Y,
g2 = xYy -9y, (5.6)
g3 = %4+ 2y*—3.

Prvnf eliminaé¢n{ ideél je tedy I = I Nk[y] = (91) = (y*> — y). Kofeny g; potom jsou

g=v"—-y=yly—-Dy+1)=0 = y; =0, yp=-1, y3=1.

Postupnym dosazovanim ziskanych kotenu do soustavy (5.5) se ziskaji odpovidajici hod-
noty z; a tedy feseni puvodni soustavy rovnic. Tedy

2 _ =
y1=0: EQ _ g _ 8 } = kofeny x4 = +/3 = feseni [—+/3,0],
[v/3,0]
22 —1=
Yo = —1: 2 r_9—0 = spolecny kofen x; = —1 = feseni [—1, —1]
—1: vol= = spoletny koten 7y =1 = Feenf [1, 1]
ys=1: Phr—2—0 spolecny kofen x; = feseni [1,
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Stejna teseni lze dostat i v ptipadé, ze se koreny y; dosadi do go, g3. Dulezité je nevybrat
si napf. jen go a hledat tiplné Teseni soustavy jen z jedné rovnice. Mezi feSeni by tak byly
zahrnuty 1 dvojice, které nejsou fesenim puvodni soustavy rovnic.

Uvedenym postupem byla ziskdna ¢tyfi presnd reseni soustavy (5.5). Toto je ale idedlni
stav, ktery nemusi nastat vzdy, jak se ukaze v nasledujicim prikladé. |

Priklad 5.4 Chtéjme najit vSechna feSeni soustavy rovnic

vy = 4,
y2 — LL’?’ —1. (57)
Redukovand Grobnerova béze pro idedl I = (xy —4,y*— 23 +1) vzhledem k lex uspoiddéani
je

g o= Yty —64,

g2 = 16z —y'—y% 58)

Bohuzel polynom ¢; nelze rozlozit na soucin jako v predchozim piikladé. Jeho kofeny jsou
Y1 = 2.2136, yo3 = 0.6804 = 2.2697¢, ys5 = —1.7872 £ 1.39844

a musi se nalézt nékterou z numerickych metod pro hledani kofenu polynomu v jedné
proménné. Nalezené koieny se dosadi do g, = 162 — y* — y2, odkud potom plynou fesen{
puvodni soustavy. Hledanim kotent numerickou metodou se ale bohuzel ¢astecné ztraci
presnost nalezenych Teseni a ziskand feSeni jsou pouze numerickymi aproximacemi feseni
soustavy (5.7). [

5.2 Geometricka interpretace eliminace proménnych

V této céasti uvedeme geometrickou interpretaci vét uvedenych v 5.1. Zakladni myslenkou
je, ze eliminace odpovida projekci variety na podprostor nizsi dimenze. Bude také uvedena
véta o uzaveru, kterd popisuje vztah mezi parcialnimi fesenimi a eliminac¢nimi idealy. Pro
jednoduchost bude uvazovano k = C.

Necht je ddno V = V(fy,..., fs) C C". Projekéni zobrazeni

7, C — CF
prevede (aq, . ..,a,) na (ags1, .. ., a,) azajisti tak eliminaci prvnich k& proménnych z1, .. ., zy.
Plisobi-li m, na V- C C", je mp(V) C C"*. O vztahu mezi m,(V) a k-tym eliminaénim

idealem vypovida nasledujici lemma.

Lemma 5.2.1 Pouzigme vyse uwvedené oznaceni. Necht I, = (f1, ..., fs) NClxps1, .. ., Tn)
je k-t eliminacni idedl. Potom v C"™% plat{
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Dukaz: Zvolme polynom f € I. Jestlize (a4, ...,a,) € V, potom f(ay,...,a,) = 0, protoze
fe{fi,..., fs). Ale f obsahuje jen proménné xy,1,...,z, a tedy lze psat

flagst,- -y an) = f(mi(ay, ... a,)) =0.
Odtud jiz plyne, ze f = 0 pro vSechny body (V). O

Stejné jako v 5.1, body variety V(Ij) se nazyvaji parcidlni feseni. S vyuzitim lemmatu
5.2.1 1ze (V') vyjadiit nasledujicim zpusobem

(V) = {(aks1,...,a,) € V(L) : Jay, ..., a; € C,
pro které (ay,...,ax, agi1,...,a,) € V}.

Tedy 7 (V') obsahuje ptesné ta parcidlni feseni, ktera lze rozsitit na tiplnd feseni. Napiiklad
pro soustavu rovnic (5.3) z ¢asti 5.1

ry = 1,

e — (5.9)

zobrazuje obr. 5.1 vztah mezi Gplnymi feSenimi soustavy rovnic (5.9) a jejimi parcidlnimi
feSenimi.

o « rovinay =1z
z
« reseni
¢« Castecna
reseni
. Sipky znadi T, l
projekci m;

Obrazek 5.1: Parcidlni a uplnd feseni soustavy rovnic (5.9)

V éésti 5.1 jiz bylo ukézano, ze V(I;) je piimka y = z v roviné yz a tedy

(V) = {(a,a) € C*:a # 0}.
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Jelikoz m1 (V') neobsahuje (0,0), neni to afinni varieta.

Zékladem pro porozumeéni existenci takovych chybéjicich bodu je véta 5.1.2 o rozsiteni
z casti 5.1. Ta je sice formulovana jen pro 7, tzn. jen pro eliminaci prvni proménné zq,
ale pfesto dava dobry néhled na to, co se v takovém piipadé déje. Geometricky je mozné
vétu o rozsiteni formulovat nésledovne:

Véta 5.2.2 (Geometricka véta o rozsiteni) Necht V =V (fi,...,fs) CC" a necht g;
je definovdno jako ve vété 5.1.2 o rozsiveni v ¢dsti 5.1. Jestlize I je pruni eliminacni idedl
pro (f1,..., fs), potom v C"1 plati

V(Il) = 7T1(V) U (V(gl, Ce ,gs) N V(Il)),
kde m : C* — C"~! je projekce na poslednich n — 1 soufadnic.
Duiikaz: Véta plyne rovnou z lemmatu 5.2.1 a z véty 5.1.2. 0J

Véta 5.2.2 tikd, ze m (V) zcela vyplije afinni varietu V (1), s vyjimkou ¢ésti lezici na
V(gi1,...,9s). Neni ale ziejmé, jak velkd ¢ast to je. Napfiklad soustava rovnic

(y—2)2*+zy = 1,

(y—2)+zz = 1 (5.10)

generuje stejny idedl jako soustava (5.9). Jelikoz g1 = g2 = y — z generuje prvni elimina¢ni
idedl, geometrickd véta o rozsiteni ndm v tomto piipadé nic nefika o velikosti (V).
Nicméné i presto je mozné formulovat nasledujici vétu o vztahu mezi m, (V') a V(Iy).

Véta 5.2.3 (O uzavéru) Necht V = V(f1,...,fs) C C" a necht Iy je k-ty eliminacni
idedl pro (f1,..., fs). Potom:

1. V(1) je nejmensi afinng varieta obsahugjici (V) C C*7*, tan.

o (V) C V(Iy),
e je-li Z jind afinni varieta v C"=* obsahujici m,(V'), potom V(I},) C Z.

2. Jestlize V. # 0, potom existuje afinni varieta W G V(I}.) takovd, Ze V(I;) — W C

Diikaz: Je narocny, podrobné viz [3], str. 123-124. O

Je mozné formulovat také geometrickou verzi dusledku 5.1.3, ktery tika, kdy je mozné
vSechna parcialni feSeni rozsitit na iplna reseni.

Dusledek 5.2.4 Necht V =V (fi,...,fs) C C" a predpoklddejme, Ze pro néjaké i lze f;
vyjadrit ve tvaru

fi = cal¥ + ¢leny, ve kterijch je v, stupné < N,

76



kde ¢ € C je nenulovd konstanta a N > 0. Jestlize I je proni eliminacni idedl, potom v
C* ! plati
m (V) =V(h),

kde m je projekce na poslednich n — 1 souradnic.

Na zaveér je tfeba zminit, pro ktera télesa uvedend tvrzeni plati. Véta o rozsiteni i
véta o uzaveru (a jejich dusledky) jsou formulovény pro téleso komplexnich éisel C. D4 se
ukazat (neni to ale trividlni), ze jak véta o rozsiteni, tak véta o uzavéru plati pro libovolné
algebraicky uzavrené téleso k.
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Kapitola 6

Aplikace metody Grobnerovych bazi

Tato kapitola bude vénovana aplikacim teorie Grobnerovych bézi. Konkrétné pujde o
priklady z oblasti geometrie, automatického dokazovani, pocitacové grafiky a robotiky.
Nejprve je ale tfeba se zabyvat fesSitelnosti soustav polynomialnich rovnic a jeji souvislosti
s teorii Grobnerovych bazi. 7 této casti vyplynou nékteré dulezité poznatky uzitecné v celé
kapitole.

6.1 Resitelnost soustavy polynomidlnich rovnic

Hledéni redukované Grobnerovy béaze tizce souvisi s hleddnim ptesného feseni soustavy po-
lynomialnich rovnic. Pokud soustava polynomialnich rovnic ma feseni, potom dojde k eli-
minaci proménnych z rovnic soustavy a puvodni soustava je prevedena na snaze feSitelnou
soustavu rovnic, jak bylo pfedvedeno v ¢asti 5.1. Jak se projevi, ze soustava polynomialnich
rovnic nema feSeni, o tom hovofi nasledujici véta.

Véta 6.1.1 (Resitelnost soustavy rovnic) Soustava rovnic

fi=0,...,fs =0,
kde fi,..., fs € klz1,...,x,] a k je algebraicky uzaviené téleso, nemd teseni prdvé tehdy,
kdyz redukovand Grébnerova bdze idedlu I = (fy,..., fs) je {1}.
Diikaz: Viz [27], str. 38. O

Jelikoz je véta formulovana pouze pro algebraicky uzaviend télesa, coz je napft. téleso
komplexnich ¢isel C, je mozné v praxi pouze rozhodnout, zda soustava polynomialnich
rovnic nem4 zadné obecné komplexni Feseni. Casto je ale tfeba hledat redlna feseni soustavy
rovnic. Bohuzel téleso realnych ¢isel R neni algebraicky uzaviené, a proto véta 6.1.1 pro
R neplati. Snadno lze najit soustavu polynomidlnich rovnic, kde koeficienty budou realna
¢isla a soustava ma pouze komplexni Teseni.

Je tfeba si uvédomit, co znamend, ze redukovand Grébnerova béaze idedlu je {1} a
pro¢ v takovém piipadé soustava polynomialnich rovnic nemé feseni. Jelikoz koeficienty
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polynomu jsou z Ciselného télesa k, ziejmé se v Grobnerové bazi objevi bazovy prvek a,
kde a € k,a # 0. To ale samozirejmé vede k rovnici a = 0, kterd nema feSeni. Proto soustava
rovnic nema feSeni. Tento prvek potom zpusobi, ze pti vypoctu miniméalni Grobnerovy béze
jsou vylouceny vsSechny ostatni bazové prvky.

Platnost véty 6.1.1 lze predvést na nékolika piikladech. Soustavy rovnic budou voleny
tak, aby meély snadnou geometrickou interpretaci a bylo snadné urcit, zda ma soustava
realné feseni. Takova soustava rovnic muze mit komplexni feSeni, ktera nejsou z geometrické
interpretace zpravidla na prvni pohled vidét.

Priklad 6.1 Soustava rovnic
224+t —z = 0,
?+yP+(z-4)?-1 = 0, (6.1)
P+ 4+ (z—602—-7 = 0

predstavuje hledani pruniku rotacniho paraboloidu a dvou kulovych ploch. Grébnerova
béze pro idedl I = (22 + 3> — z, 22 + y* + (2 — 4)* = 1, 2* + y* + (2 — 6)? — §) vzhledem k
lex usporadani pro x >y > z je

1065/256 =

—4z +75/4 =
2?4yt 22— 1224+ 135/4 =
22 +y2 422 -82+15 = 0,
4yt —2 = 0.

Y

o O OO

Ptislusnd redukovana Grobnerova baze je vzhledem k prvnimu prvku Grébnerovy baze
samoziejmé {1}. Jelikoz prvni rovnice nemuze byt nikdy splnéna, soustava nemd FeSeni
nad C. |

Poznamka 6.1.2 Pri vijpoctu redukované Griobnerovy bdze mize byt viyhodnéjsi pouzit
grlex uspordddni. Vipocet je casto rychlejsi nez pri pouZiti lex usporadani a véta 6.1.1
plati nezavisle na zvoleném usporaddni. Na druhou stranu pri pouZiti grlex usporddani
nemust vZdy dojit k dplné eliminaci proménnijch, coZ muze bijt nevijhodné z hlediska dalsiho
resent soustavy polynomidlnich rovnic.

Priklad 6.2 Soustava rovnic
224+t —z = 0,
4+ +(z-4)?%*—-1 = 0, (6.2)
4 (y—4)P2+22-1 = 0

predstavuje opét hledani pruniku rota¢niho paraboloidu a dvou kulovych ploch, pouze
poloha jedné kulové plochy byla zménéna. Pro idedl I = (2% +y? — z, 2% + y* + (z — 4)* —
1,22 + (y — 4)? + 22 — 1) je redukovand Grobnerova bdze vzhledem k lex uspofdddni s
T>Yy>z
22—T2+15 = 0,
v +yz+2y+52—-11/2 = 0,
r+y—2—2 = 0.
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Kofeny polynomu 2% — 7z 4+ 15 = 0 jsou komplexn{ (konkrétné z; = 3.5 + 1.6583i) a tedy
neexistuje zadné redlné reseni. Nicméné soustava ma feseni v oboru komplexnich ¢isel. W

Pokud koeficienty polynomu fi,..., fs, které definuji soustavu rovnic, nejsou jen z
¢iselného télesa, ale obsahuji parametry, je mozné provést upravu. Pokud fi,..., fs jsou
polynomy v proménnych zi,...,z; s koeficienty, které zavisi na parametrech u, ..., u;,
potom lze psét, ze fi,..., fs € k(uy,...,u;)[x1,...,2;]. O této situaci jiz piimo véta 6.1.1
nehovoii. Redukovand Grébnerova baze {1} v tomto piipadé znamend, ze dand soustava
rovnic nema feSeni pro nékteré hodnoty parametri. Nemusi to ale znamenat, ze nema
feSeni pro vsechny hodnoty parametru uq, ..., u;. Pro podrobnéjsi analyzu je tieba zkou-
mat primo Grobnerovu bézi. Grobnerova baze muze obsahovat prvek a € k,a # 0, ale
také muze obsahovat néjakou funkci g parametru wuq,...,u;. Pokud baze obsahuje prvek
a € k,a # 0, 1ze pouzit vétu 6.1.1 a Tici, ze soustava rovnic nema teseni pro libovolné hod-
noty parametru uq, ..., u;. V piipadé, ze Grobnerova baze obsahuje funkei g(uq, ..., u;), je
situace slozitéjsi. Pro hodnoty parametru ug, . .., u;, pro které plati g(uq,...,u;) = 0, totiz
soustava rovnic muZe mit feSeni. Pokud existuji takové hodnoty parametru, je tieba dotesit
soustavu rovnic z nalezené Grobnerovy béaze (pokud je to mozné), pripadné provést feseni
puvodni soustavy rovnic s témito parametry opét pomoci algoritmu hledéani redukované
Grobnerovy baze. Jak to lze konkrétné provést, je uvedeno v nasledujicim piikladeé.

Priklad 6.3 Uvazujme soustavu rovnic

22+y?+22—-1 = 0,
?+y*+(z—a)P—-1 = 0, (6.3)
2+ +(z-0%*—1 = 0,

kde a, b jsou parametry. Tato soustava ziejmé pro jisté hodnoty parametru neméd zadné
realné a dokonce ani komplexni feSeni. Existuji ale i hodnoty parametru a,b, pro které
soustava ma dokonce nekoneéné mnoho realnych teseni. Grébnerova baze pro idedl gene-
rovany rovnicemi soustavy (6.3) je

(ab® —a’b)/(a—b) =

(2a — Qb)z + (b* — a?)
2+ + 22— 202+ (0 — 1)
)
-1

(6.4)

|
coooo

2?2+ + 22— 2az—|—(a —1
2+ y* + 22

a redukovand Grobnerova baze je {1}. Odtud plyne, ze je tieba podrobnéji rozebrat piipady
a=0,b=0aa=>b Proa =0 plyne z druhé rovnice (6.4) z = b/2 a po dosazeni do
libovolné zbyvajici rovnice
4 — b

4

Pro |b] < 2 tedy existuje nekoneéné mnoho redlnych teseni, kterd lezi na kruznici se
sttedem v bodé (0,0, b/2) a polomérem /4 — b?/2. Pro b = 2 existuje jediné feseni (0,0, 1).

= 0.

+yt -
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V ostatnich piipadech existuji pouze komplexni feseni soustavy rovnic (6.3). Zcela obdobny
ptipad nastava pro b = 0.

Reseni lze s vyhodou provést opakovanym pouzitim algoritmu hleddni redukované
Grobnerovy béze. Po dosazeni a = 0 do puvodni soustavy rovnic (6.3) je pro idedl I =
(2 4+y?+ 22— 1,22+ + 22 — 1,22 + y? + (2 — b)? — 1) redukovand Grobnerova baze
vzhledem k lex uspotadani pro z >y > z

z—0/2 = 0,
2 +y*—(4-0?)/4 = 0.

Resen{ je tedy naprosto shodné jako v predchozim pifpadé. Zcela obdobnd situace opét
nastava i pro b = 0.

Pokud je a = b, nelze soustavu dofesit piimo z Grobnerovy baze. Problémy pusobi
prvni a druhd rovnice soustavy (6.4), kde by dochézelo k déleni nulou. Nicméné lze vyuzit
opakované metodu hledani redukované Grobnerovy béaze. Po dosazeni a = b do soustavy
(6.3) je redukovand Grobnerova béaze pro idedl I = (22 +y? + 22 — 1,22 +y* + (2 — b)? —
1,22 4+ y* + (2 — b)? — 1) vzhledem k lex uspoiddani pro z >y > z

z—0/2 = 0,
2+ y?—(4-0¥)/4 = 0

a je tedy naprosto stejna jako v piipadé a = 0. Soustava rovnic (6.3) tedy ma feseni pouze
proa=0,b=0aa=0. [

6.2 Prevod parametrického vyjadreni afinni variety
na implicitni

Tato ¢ast bude vénovana podrobnému studiu prevodu parametrického vyjadieni afinnich
variet na implicitni vyjadieni, coz lze zkrédcené nazyvat implicitizace. Problém implicitizace
lze s vyhodou tesit uzitim Grobnerovy baze idealu ve spojeni s lex usporadanim a je tzce
spjat s teorii eliminaci proménnych popsanou v kapitole 5. Problému implicitizace bude
dale vénovana kapitola 8, kde budou uvedeny dalsi mozné metody a pristupy k feSeni
tohoto problému.
Prvnim ptipadem je parametrizace zadana pomoci polynomu. Polynomialni paramet-
rizaci lze vyjadrit ve tvaru
1 = filts, o tm),
: (6.5)

Tp = fn(tb cee atm)a

kde fi,..., fn jsou polynomy z k[t1,...,t,]. Geometricky predstavuje soustava (6.5) zob-
razeni F': k™ — k™ definované vztahem

F(tl,...,tm) = (fl(tl,...,tm),...,fn(tl,...,tm)).
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Potom F(k™) C k™ je podmnozina k™ parametrizovana rovnicemi (6.5). Jelikoz F'(k™) ne-
musi byt afinni varieta, feSenim problému pievodu parametrického vyjadieni na implicitni
je nalezeni nejmensi variety obsahujici F(k™).

Ukolem implicitizace tedy je vylouceni parametru z parametrického vyjadieni (6.5).
Vysledné rovnice pak obsahuji pouze proménné z, . . ., x,. Eliminaci proménnych Ize provést
pomoci vypoctu redukované Grobnerovy baze pro ideédl I = (z1 — f1, ..., 2, — fn). K tomu
staci pouze vhodnd volba uspotadani proménnych. Podrobné o tom hovoii nasledujici véta.

Véta 6.2.1 (Polynomialni implicitizace) Necht k je nekoneéné téleso a F : k™ —
k™ je zobrazeni definované polynomidlni parametrizaci (6.5). Necht I je idedl I = (x; —

fisoo oy @n—fn) CE[t1, ... tm, 21, ... 2] anecht I, = INk[zy, ..., x,] je m-t eliminacni
idedl. Potom V(I,;,) je nejmensi varieta v k™ obsahujici F(k™).
Diikaz: Viz [3], str. 128. O

Véta 6.2.1 dava algoritmus prevodu polynomialni parametrizace na implicitni vyjadieni.
Polynomialni parametrizace (6.5) odpovida idedlu I = (z1 — f1,..., 2z, — fn), pro ktery se
provede vypocet redukované Grobnerovy baze vzhledem k lex usporadani pro t; > --- >
tm > @1 > - -+ > x,,. Cleny béze, které neobsahuji zadné t;, predstavuji implicitni vyjadieni
dané afinni variety.

Priklad 6.4 Uvazujme kiivku zadanou parametrickymi
rovnicemi s

3

r =1, y:tz, z =13 "

Plochu tecen této kiivky potom lze vyjadrit ve tvaru

r=t4+u, y=t>+2u z=1=t+3t%. 2

Pouzitim algoritmu pfevodu polynomialni parametri-
zace na implicitni vyjadieni dostaneme redukovanou
Grobnerovu bézi o 7 prveich, z nichz pouze jeden neobsahuje zadny z parametru ¢, © a mé
tvar

3 3 1
iz — chzyz - izcyz +y°+ 122 =0,

coz je implicitni vyjadieni dané plochy. |

Dalsim ptipadem je tzv. racionalni implicitizace. Zde mohou nastat jisté potize, které
lze dokumentovat na jednoduchém piikladé. Pro raciondlni parametrizaci plochy (u, v jsou

parametry )
u? v
rT=—, y=—, z=u (6.6)
v u

Ize snadno ovéfit, ze libovolny bod (z, y, z) splitujici (6.6) lezi na plose 2%y = 23. Odstranéni
zlomku a provedeni algoritmu prevodu polynomidlni parametrizace na implicitni vyjadieni
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pro idedl I = (v —u? uy —v? z—u) C k[u,v,x,y, z] vede k druhému eliminaénimu idedlu
ve tvaru Iy = I Nk[z,y, 2] = (z(z%y — %)) a tedy

V(ly) = V(2*y — 2*) UV (2).

Odtud je ziejmé, ze do vysledku byla priddna celd rovina z = 0 a tedy V (/) neni nejmensi
varieta obsahujici danou parametrizaci. Problém je pravé v odstranéni zlomku, které se
musi provést ,lépe*, jelikoz je tieba zajistit nenulovost jmenovatelu. Idedl I je mozné
upravit pridanim jedné proménné a jedné rovnice, kterd zajisti nenulovost jmenovatelu u
a v. Ideal I lze nahradit idealem

2

J = (v — v uy —v* z —u,1 —w(uww)) C klw,u,v, 2,7y, 2],

kde rovnice 1 — wuv = 0 zajist{ nenulovost u a v ve vSech bodech V(J). Tteti eliminacéni
idedl potom je J3 = J Nk[z,y, 2] = (x?y — 23).

Raciondlni parametrizaci 1ze obecné vyjadrit ve tvaru

- filty, ... tw)
91(151, . ,tm)’
(6.7)
falts, . tm)
$n 7 1 \»
gn(tla N ,tm)
kde f1,91,. .., fn, gn jsou polynomy z k[ty, ..., t,]. Zobrazeni F' z k™ do k™ ale nelze defino-
vat na celém k™, jelikoz je nutné vyjmout takové body (t1, . .., t,), pro které g;(t1, ..., t,) =

0 pro néjaké i. Oznacime-li W = V(gy,...,g,) C k™, potom

B filty, . tm) oty o tm)
Ftr,.tm) = (gl(tl,...,tm)""’gn(tl,...,tm))

definuje zobrazeni F' : k™ — W — k™. Cilem je najit nejmensi varietu v k™ obsahujict
F(E™ —W).

Véta 6.2.2 (Raciondlni implicitizace) Necht k je nekonecné téleso a necht F : k™ —
W — k" je zobrazeni definované raciondlni parametrizaci (6.7). Necht J je idedl J =
(121 — f1, s G — fu, L—gy) Ckly,t1, ..ty @1, o, T, kde g = g1 - g2+ -+ gn a necht

Imr1 = JNk[xq, ..., z,] je (m+1)-ni eliminacéniidedl. Potom V (J,,11) je nejmensi varieta
v k" obsahugici F(k™ — W).
Dukaz: Obdobny jako dukaz véty 6.2.1. O

Véta 6.2.2 dava algoritmus prevodu raciondlné parametrizované afinni variety na impli-
citni vyjadreni. V dané parametrizaci se odstrani zlomky vynasobenim i-té rovnice funkci
g; a pridanim rovnice 1 —g; - - - g,y = 0 se zajisti nenulovost g1, ..., g, na dané varieté. Poté
se pro ideal J provede vypocet redukované Grobnerovy baze vzhledem k lex usporadéani
proy >t > - >ty >x; > --- > x,. Cleny Grobnerovy béze, které neobsahuji zddnou
z proménnych y, t;, definuji implicitni vyjadieni dané afinni variety.
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Piiklad 6.5 Parametrické vyjadieni Descartova listu lze za- .

psat ve tvaru
3at 3at?

iy YT ags
Algoritmus prevodu racionalni parametrizace na implicitni vyjadrer
vede k idedlu I = (x(1+t3)—3at, y(1+t3)—3at?, 1—w(1+t3)) C -
klw,t,z,y]. Redukovand Grobnerova baze idedlu I obsahuje 5
prvku, z nichz pravé jeden neobsahuje proménné w, ¢ a ma tvar

05

=

-15

2 — 3axy +y* =0,
coz je znamé implicitni vyjadieni Descartova listu. ]

Priklad 6.6 Jednu z moznych racionalnich parametrizaci koule lze vyjadrit ve tvaru

4ur? 4or? r(u® +v? — 4r?)
= —FF""""—FF "5 e S —— z =
2o+ 4t YT 2 4 u? + v? 4 412

V tomto pripadé staci pouzit algoritmus prevodu polynomialni parametrizace na implicitni
vyjadreni, jelikoz jmenovatele zlomku jsou vzdy ruzné od nuly (vzdy je r # 0). Reduko-
vana Grobnerova baze idedlu generovaného rovnicemi parametrického vyjadieni koule po
odstranéni zlomku obsahuje 5 prvku, z nichz pouze jeden neobsahuje parametry u, v a ma
tvar

Ay + 22— =0.

To je zndmé implicitni vyjadieni koule. |

Z véty 6.2.2 dale plyne, ze ke vSem NURBS objekttim lze najit jejich implicitni vyjadfeni.
Podrobnéjsi informace o problematice NURBS objektu lze najit napt. v [21].

Mohlo by se zdat, ze lze prevést parametrické vyjadieni afinni variety na implicitni
jen pro variety zadané polynomialni nebo racionalni parametrizaci. To by ale znamenalo
znacné omezeni, jelikoz mnoho afinnich variet (zejména kiivek a ploch) lze snadno para-
metrizovat pomoci goniometrickych funkei. V nékterych piipadech sice 1ze najit racionalni
parametrizace, byva to ale nesrovnatelné obtiznéjsi.

Nicméné po jistych upravéach lze uzit redukované Grobnerovy baze i pro nalezeni im-
plicitniho vyjadfeni nékterych afinnich variet parametrizovanych pomoci goniometrickych
funkei. Staci zavést oznaceni piislusnych funkei, napt. ¢; = cost, s, = sint (piipadné i pro
dalsi parametry), coz vede k polynomtum v proménnych ¢, s;. Déle je nutné pridat identitu

4 s? =1,
jinak by pocet rovnic byl prili§ maly a nebylo by mozné eliminovat vSechny parametry.
Dale uz se postupuje podle algoritmu prevodu polynomidlni nebo racionalni parametrizace

na implicitni vyjadreni.
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Piiklad 6.7 Parametrické vyjadieni Bernoulliho lemniskaty *
lze zapsat ve tvaru

acost acostsint
r=-—">5, Y= o,
1+ sin“t 1+ sin“t

Zavede se oznaceni ¢; = cost, s; = sint, coz vede k poly-
nomum v proménnych ¢, s;, T, y, 2z ve tvaru

2(1+8?) —ac, =0, y(1+ s7) — acis; = 0. (6.8)

Musi se jesté pridat identita
cos’t+sin*t=1 «— c+s—1=0. (6.9)
Nyni jiz staci pouzit algoritmus prevodu polynomidlni parametrizace na implicitni vyjadient,
jelikoz jmenovatel zlomku nemuze byt nikdy nulovy. Pro idedl generovany polynomy (6.8)

a (6.9) ma redukovand Grobnerova baze 5 prvki, z nichz pouze jeden neobsahuje zadnou
z proménnych ¢;, s; a ma tvar

ot + 227y — a*2? +yt 4+ a*y? = 0.
To lze jesté ptrepsat do tvaru
(2® +y%)° = a’(2® —y*) =0,
coz je hledané implicitni vyjadieni Bernoulliho lemniskaty. ]

Priklad 6.8 Parametrické vyjadieni anuloidu lze vyjadrit
ve tvaru :

xr = rcosucost+ Rcost, ,
y = rcosusint + Rsint,
z = rsinu. -

Zavede se oznacCeni
Cy = COSU, ¢ =cost, S,=-sinu, & =sint,

coz vede k polynomum v proménnych c,, S,, ¢, S, T, y, 2 ve tvaru

T —rcyc; — Rey = 0,
Yy —rcys; — Rsy = 0, (6.10)
z—rs, = 0
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Zbyva pridat identity
cos?u +sin*u=1 +— 2+ —1=0,

cos?t +sin’t =1 «—— +s2—1=0. (6.11)

Redukovand Grébnerova baze pro idedl generovany polynomy (6.10) a (6.11) obsahuje 9
prvku, z nichz pravé jeden neobsahuje zadnou z proménnych c¢,, ¢, S, S; a ma tvar

ot 4 20%y2 + 22727 — (2R% + 2rH)2? + yt + 29227 — (2R? + 2r%)yP+
+24 = (2r? = 2R*)22 + ' — 2r’R* + R* = 0.

To lze jesté prepsat do tvaru
(22 +y* + 22 —r? — R*)? =4R*(2* — r?),
coz je hledané implicitni vyjadieni anuloidu. ]

Piiklad 6.9 Parametrické vyjadieni Mobiova listu
lze zapsat ve tvaru

T = Ccosu -+ vsin %ucosu,
y = sinu -+ vsin %usinu,
_ 1
Z = UCOSHU.
Zavede se oznacCeni
. 1 1
€1 = Ccosu, S =sinu, co = Cos §u, So = sin §u.
To vede k polynomum
r = 1+ vSacy,
Yy = S1+ vSasq, (6.12)
Z = VCy,

coz jsou polynomy v proménnych cy, ¢, S1, S2, v, x, y, 2. Ukolem implicitizace je eliminovat
proménné cy, c, S1, S2, v. Je nutné jesté pridat identity

cos?u+sinu=1 «— 2+52-1=0,
1

cos Tu+sin*lu=1 «— &+s3-1=0.

(6.13)

To ale jesté nestaci. Parametrické vyjadieni (6.12) a identity (6.13) predstavuji pouze 5
rovnic a je tieba eliminovat 5 parametri. To je zfejmé malo, jelikoz musi byt alespon o
jednu rovnici vice, nez je pocet proménnych, které chceme eliminovat. Musi se tedy pridat
jesté dalsi vztahy

sinuzQsin%ucos%u —— 8§17 — 289c9 = 0,
cosuzcosQ%u—sirF%u — g —c+si=0.

(6.14)
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Redukovand Grobnerova béaze pro ideél generovany polynomy (6.12), (6.13) a (6.14) obsa-
huje 11 prvku, z nichz pouze jeden neobsahuje zadnou z proménnych ¢, ¢s, S1, S2, v a ma
tvar

vy — 2%z + 2wz + P — 22+ Yt —y = 0. (6.15)

Polynom (6.15) je implicitnim vyjadienim Mobiova listu. [

6.3 Automatické dokazovani v geometrii

Zakladnim principem automatického dokazovani geometrickych tvrzeni je, ze zavede-li se
kartézsky soutadnicovy systém do euklidovské roviny, mnoho predpokladu a zavéru geo-
metrickych tvrzeni lze vyjadrit ve tvaru polynomialnich rovnic soutadnic bodu v roviné.

D4 se ukazat, ze ve tvaru polynomidlnich rovnic lze zapsat napt. tato geometricka
vyjadrent:

e AB je rovnobézné se C'D.

e AB je kolmé na CD.

Body A, B, C' lezi na jedné primce.
Rovnost vzdalenosti dvou bodu: AB = CD.

C lezi na kruznici se sttedem A a polomérem AB.

C je stied tsecky AB.

Ostry thel £LABC' je roven ostrému thlu L DEF.
e BD puli tihel LABC.

Nasledujici véta hovoii o tom, jak lze poznat, ze dané tvrzeni vyplyva z formulovanych
predpokladu.

Véta 6.3.1 Necht jsou ddny predpoklady hy = 0,...,h; = 0 a s1 # 0,...,8; # 0 a
chtégme ukdzat, Ze tvrzeni g vyplyvd z platnosti uwvedenyjch predpokladu, pricemz hy, . .., h;,
S1y-+,85,9 € Qua, ..., ug, x1,...,2]. Necht ddle

Potom vyraz f je pravdivy nad algebraicky uzavienym télesem obsahujicim Q prdvé tehdy,
kdyz soustava rovnic

hl:0,...,}1,@':0,8121—1:0,...,8j2j—1:0,g2—1:0, (616)

kde z1, ..., z; jsou nové pridané proménné, nema Teseni nad timto algebraicky uzavrenym
télesem.
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Diikaz: Viz [30]. O

Misto podrobného dukazu se provede pouze tivaha, odkud plyne tvrzeni véty. Uvazujme
soustavu (6.16). Pokud plati prvni ¢ast vyroku f, tj.

h,l:O/\/\hZ:O/\Sl;éO/\/\SJ#O,
potom to znamena, ze rovnice
hi=0,...,hi =0,8121 —1=0,...,552, —1=0

jsou urcité splnény, jelikoz s; # 0 pro kazdé j, a tedy urcité lze nalézt takové z;, pro které
plati rovnice sjz; — 1 = 0. Pokud soustava neméd feseni, potom to znamend, Ze posledni
rovnice 1 — gz = 0 nemuze byt splnéna. Pokud by ¢ bylo rizné od nuly, potom lze jisté
nalézt takové z, aby rovnice splnéna byla. Odtud tedy plyne, ze musi byt g = 0.

Poznamka 6.3.2 Predpoklady s; # 0,...,s; # 0 casto vyjadiuji omezeni daného geome-
trického utvaru a vylucuji ruzné degenerované pripady daného objektu.

Ovéteni, zda soustava rovnic (6.16) ma feSeni, lze provést pomoci Grobnerovy béaze
idedlu a podrobnéji byla tato problematika probrana v casti 6.1. Staci tedy ukazat, ze
redukovand Grobnerova baze vzhledem k lex usporadani pro idedl generovany polynomy
urcujicimi soustavu rovnic (6.16) je {1}.

Pocet rovnic soustavy a pocet novych proménnych je mozné jesté zredukovat. Misto
soustavy rovnic (6.16) lze uvazovat soustavu

hy =0,...,h;=0,81---s;92 — 1 =0. (6.17)

Pokud soustava rovnic (6.17) nemd feSeni, potom vyraz f je pravdivy a tvrzeni g vyplyva
z ptedpokladi h; =0,...,h; =0 s omezenimi s; #0,...,s; # 0.

Existuje ale také dalsi moznost ovéreni, zda tvrzeni g vyplyva z predpokladu hq, . . ., h;,
aniz je nuné uvazovat omezeni si,...,s;. D4 se ukdzat, ze g vyplyva z hypotéz hy,... , h;
prave tehdy, kdyz {1} je redukovanou Grébnerovou bazi idedlu (hq, ..., h;, 1 — yg), kde
hi,.... hi,g € R(uy,...,ug)[z1, ..., 7). Volné proménné uy,...,u; se berou pouze jako
parametry a mohou se vyskytovat i ve jmenovatelich zlomku. V tomto ptipadé je ale
nutné zkoumat také piimo Grobnerovu bazi, kterd muze obsahovat polynom ve volnych
proménnych a ze kterého plynou degenerované piipady, tzn. omezeni sy, ..., s; za kterych
dané tvrzeni plati.

Jako vhodnéjsi z uvedenych metod se jevi metoda druha, kdy se volné proménné berou
jako parametry. Vhodnéjsi je zejména z casovych duvodu, jelikoz méné proménnych témeér
vzdy znamend také kratsi vypocet, a to casto velmi podstatné.

Pouziti obou moznych zpusobu bude predvedeno na nékolika piikladech.
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D [uz, u3] C [xl, xz]

A0, 0] Blu,, 0]

Obrézek 6.1: Rovnobéznik

Priklad 6.10 Dokazme tvrzeni, ze uhlopficky rovnobéznika se navzajem puli. Uvazujme
rovnobéznik se souradnicemi vrcholu podle obr. 6.1.

Vlastnosti rovnobéznika se neméni vzhledem k posunuti a rotaci, proto jej lze po-
sunout do pocatku soustavy soufadnic. Proménné wj,us, ug jsou volné (ale nesmi byt
u; = 0 ani uz = 0, jinak by rovnobéznik degeneroval na tsecku) a uréuji rovnobéznik.
Proménné xq, ..., x4 jsou na nich zdvislé (jsou jisté afinnim invariantem). Nejdtive zformu-
lujme predpoklady rovnobéznosti protilehlych stran, které zaruci, ze se jedna o rovnobéznik.
Plati: -

AB H CD : h1:x2—u320,
E || B—C : h2 == (Il —Ul)U3 — ToU9 = 0.

Déle je nutné pozadovat, aby trojice bodu A, N,C a B, N, D byly kolinearni, tzn. lezely
na jedné ptimce. Odtud plynou dalsi dva vztahy

A, N, C jsou kolinearni : hz = x4x1 — x3u3 =0,

B, N, D jsou kolinedrni : hy = x4(us — uy) — (3 — ug)ug = 0.
Zbyva vyjadrit tvrzeni, ze bod N puli obé thlopiicky. To lze zapsat také pomoci polynom,
a to ve tvaru

AN =NC : g =a+at=(v3—11)*+ (22 — 1),

BN =ND : go=(x3—uy)?+ 23 = (v3 — up)? + (z4 — u3)?,

resp. ekvivalentné napt. ve tvaru

AN = NC g1:$1—2$3:0,
BN =ND ggzul—u2—2(1’3—u2):0.

Je dobré si vSimnout, ze uvedené vztahy obsahuji ¢tyti zavislé proménné z; a pro dikaz
se vychézelo ze ¢tyr predpokladu. Vsechna spravné formulovand tvrzeni maji stejny pocet
predpokladu jako zavislych proménnych.
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K ovéfeni, ze tvrzeni gy, resp. go plyne z formulovanych predpokladu, je nutné zavést
omezeni

sp:up #0, sp:uz#0,

jelikoz v obou piipadech by rovnobéznik degeneroval na tisecku. Podle véty 6.3.1 a nasledujicich
odstavcu se pro dany piripad uvazuje idedl Iy = (hy,...,hy,1 — ujusgiz), resp. Iy =
(hi,...,h4, 1 — uguzgez). Redukovand Grobnerova béze pro idedl I, resp. I, vzhledem
k lex usporadani je skutecné {1}.

Dalsi moznosti je uvazovat idedl J; = (hq, ..., hy, 1—g12), resp. Jo = (hqy, ..., hy, 1—g22)
a volné proménné povazovat za parametry. I v tomto ptipadé je redukovand Grobnerova
baze pro idedl Ji, resp. Jo vzhledem k lex usporadani {1}. |

Priklad 6.11 (Apolloniova tloha) Necht AABC je pravouhly trojihelnik s pravym
thlem u bodu A. Dokazme, ze stiedy vSech stran trojuhelnika a pata vysky z bodu A na
stranu BC' lezi na jedné kruznici.

Soutadnice bodu oznacme podle obr. 6.2. Umisténi lze zvolit tak, aby bod A mél
soutadnice (0,0) a bod B mél soufadnice (u1,0). Potom bod C' ma soutadnice (0, us).
Déle je nutné sestrojit stiedy jednotlivych stran trojuhelnika M, M, a M;s. Pro zavislé
proménné x; plati

hl :2$1—U1:0,
h2:2x2—u2:0,
h3:2x3—u1 :0,
h4:2$4—UQ:0.

Dale je tieba sestrojit patu vysky, tzn. bod H = (x5, z6), pro ktery plati

AHL1BC h5 = TrU1 — TgUg = 0,
B, H,C jsou kolinedrni : hg = x5us + xguy — ujug = 0.

Zbyva jesté vyjadrit, ze body My, My, M3, H lezi na jedné kruznici. Obecné samoziejmeé
¢tyti body v roviné na jedné kruznici lezet nemusi. Ale tfi body, které nelezi na jedné
piimce, vzdy lezi na jedné kruznici. Jestlize body My, My, M3 nelezi na jedné piimce, lezi
na jedné kruznici. Tedy dokézeme, ze bod H lezi na kruznici prochazejici témito tfemi body.
Ozna¢me jesté soutadnice stfedu této kruznice O = (x7, ), coz vede k predpokladum

MlO = MQO : h7 = (ZL’l — LU7)2 +LE‘§ — :1,’% — (;US — ,r2)2 = 07
MlO = MgO . hg = (ZL’l — 1’7)2 + [L’% — (1'3 — 1'7)2 — (1'4 — 1’8)2 = O

Chtéjme dokazat, ze HO = M,0, coz znamena
g= (x5 — 27)* + (w6 — 28)* — (21 — 27)* — 2% =

Je vidét, ze pocet zavislych proménnych x; je opét stejny jako pocet predpokladii. Nejdiive
je mozné uvazovat volné proménné ui, us jako parametry, tzn. hq,..., hg,g jsou poly-
nomy z R(uq, ug)[z1,. .., xs]. Redukovand Grébnerova baze pro ideél (hy, ..., hs, 1 —yg) je
opravdu {1} a tvrzeni vyplyva z uvedenych predpokladu.
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C[o, u2]

H X, X
M, [0, x.]
202 M, x5 %]
A[0, Q] M, [x,, 0] B [u,, 0]
Obrazek 6.2: Apolloniova tloha
Dalsi moznosti je chapat hq, ..., hs,g jako polynomy z Rluy, us, x1,. .., zg]. Potom je
ale nutné vyloucit degenerované piipady u; = 0 a uy = 0, kdy trojuhelnik degeneruje na
usecku, prip. bod. Pro idedl (hq, ..., hg,1 — ujusyg) je redukovand Grébnerova baze opét

(1. O

Piiklad 6.12 Necht AABC je libovolny trojihelnik v roviné. Dokazme, Ze vSechny tii
jeho vysky se protinaji v jednom bodé (obr. 6.3).

Bez Ujmy na obecnosti 1ze trojuhelnik zvolit tak, aby bod A byl v poc¢atku a strana
AB splyvala s osou z. Bod B mé potom souiadnice (uj,0). Bod C' je jiz libovolny a mé
soutadnice (ug, uz). Déle zavedeme paty vysek Hy, Hy a Hs. Podle toho, kolik bod pridava
zavislych proménnych, tolik predpokladu se pro néj musi formulovat. Pro bod H; tedy
staci jedna podminka, a to

CHlJ_AB : hl = Ul(l’l - Ug) = 0.

Pro body Hs a Hj3 se musi formulovat po dvou podminkach. Prvni dva predpoklady jsou
podminky kolmosti

AHQJ_BC . hg = ZL’Q(UQ — Ul) + x3us = 0,
BHgJ_AC . hg = u2(1’4 — Ul) + UuszxTy = 0,

zbylé dva jsou podminky kolinearity

BH,C jsou kolinearni : hy = x3(us — uy) — ug(we — uq) =0,
AH3C jsou kolinearni : hs = x5us — ugxy = 0.

Déle se zvoli bod H = (x1,z6) na tseéce C'H; tak, aby body BH Hj byly kolinedrni. To
lze vyjadrit podminkou

BH Hj jsou kolinearni : hg = zg(xq — u1) — x5(x1 —uy) = 0.
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C [u2, us]

H2 [x2, x3]

H3 [x4, x5]

H [X1’ Xe]

A0, 0] H, [x,, 0] Blu,, 0]
Obréazek 6.3: Vsechny tii vysky trojuhelnika se protinaji v jednom bodé

Nyni jiz zbyva jen formulovat tvrzeni. Chtéjme dokézat, ze za uvedenych podminek jsou
také body AH H, kolinearni, tzn.

AH H, jsou kolinearni : g = wgxy — x311 = 0.

Nejdiive se uvazuji volné proménné wuq, us, us jako parametry, tzn. hy, ..., hg, g jsou
polynomy z R(uy,ug, ug)[zy, ..., x¢]. Pro idedl (hy,..., hs,1 — yg) je potom redukovand
Grobnerova baze {1} a tvrzeni vyplyva z uvedenych predpokladu.

Je také mozné chépat hy,..., hg, g jako polynomy z Ruy,us, us, x1,. .., xg|. Potom je
ale nutné vyloucit degenerované pripady u; = 0 a ug = 0, kdy se nevhodnou volbou volnych
proménnych u;, us, ug nedostane trojihelnik. Potom pro idedl (hq, ..., hg, 1 — ujusyg) je
redukovana Grébnerova béze {1}. |

Piiklad 6.13 Necht AABC je libovolny trojihelnik v roviné. Necht M, je stied BC, M,
stted AC a Ms stied AB. Dokazme, 7e téznice AM,, BM, a C'Ms se protinaji v jediném
bodé M (obr. 6.4).

Jako obvykle se umisténi trojihelnika zvoli tak, aby bod A byl v pocatku souradného
systému a tsecka AB splyvala s osou . Dostavame tedy soufadnice vrchold trojtihelnika

A= (0,0), B = (ul,()), C = (Ug,’dg).

Jelikoz soufadnice stfedu stran jsou jiz urCeny soutadnicemi vrcholi trojihelnika, lze je
vyjadrit pouze pomoci zavislych proménnych. To vede k 5 zavislym proménnym. Je tedy
nutné formulovat 5 podminek, popisujicich zavislé proménné x4, ..., z5. Kazdy z bodu M;
je sttedem prislusné strany, coz dava tii podminky ve tvaru

AMlzBMl : hl :2$1—U1:0,

CM2 = BM2 : hg = (UQ - 1’2)2 + (U3 - LL’3)2 - (u1 - 262)2 - LL’g = 0,

AMz = CMs3 : hy = (uy — 24)* + (u3 — x5)* — 25 — 22 = 0.
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A0, 0] M, [x, 0] Blu, 0]

Obrazek 6.4: Vsechny tii téznice trojihelnika se protinaji v jediném bodé

Zbyva zapsat dvé podminky. Body B, My, C, resp. A, M3, C' ziejmé musi lezet na jedné
piimce, coz vede ke zbyvajicim dvéma podminkam

B, My, C jsou kolinedrni : hg = x3(ug — uy) — ug(xe — uy) = 0,
A, Ms, C jsou kolinearni : hs = wsus — uszy = 0.

Bod M se zavede jako prusecik tsecek C'M; a AM,. Takovy bod jisté existuje (pro nede-
generované piipady trojihelnika, tzn. pro u; # 0 a ug # 0) a musi pro néj platit

C, M, M; jsou kolinedrni : hg = x7(uy — 1) — ug(weg — 1) =0,
A, M, M, jsou kolinearni : h; = x7x9 — w326 = 0.
Za uvedenych predpokladu chtéjme ukazat, ze také body B, M, M3 musi byt kolinearni,
tzn.
B, M, Mj jsou kolinearni : g = x7(xq —uy) — x5(xg — uy) = 0.
Redukovand Grobnerova baze v R(uq, ug, us)[x1,. .., 7, y| vzhledem k lex uspotrdadani
pro idedl (hq, ..., h7, 1—yg) je potom {1}. Tvrzeni tedy vyplyvé z uvedenych predpokladi.
Provede-li se vypocet redukované Grobnerovy béaze v Rluy, ug, ug, x1, . . ., 27, y|, je nutné
vylouéit degenerované ptipady trojuhelnika, tzn. vyloucit piipady u; = 0 a uz = 0. Potom
pro ideél (hy,..., h7, 1 —ujuszyg) je redukovand Grobnerova béze opét {1}. |

Piiklad 6.14 (Pappova véta) Méjme dvé kolinearni trojice bodu A, B, C'a A', B/, C".
Necht déle plati

P=AB'NA'B, Q=AC'NAC, R=BCNBC.

Potom také P, @, R jsou kolinedrni (obr. 6.5).
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(o3 [u7, X1]

A0, 0] B [u,, 0] Clu,, 0]

Obrazek 6.5: Pappova véta

Oznaceni bodu a jim pftislusnych souradnic provedeme podle obr. 6.5, odkud je vidét,
ze bod C’ nemuze byt volen zcela libovolné a jedna jeho soufadnice je zdvisla na volbé
soufadnic bodu A" a B’. To je zfejmé z toho, ze trojice bodu A’, B, C' musi byt ko-
linearni. Je vidét, ze dostaneme 7 volnych proménnych a 7 zavislych proménnych. Je nutné

tedy formulovat 7 podminek. Vzhledem k charakteru tlohy to budou vyhradné podminky
kolinearity. Plati:

A’ B, C" jsou kolinedrni : hy = (ug — uq)(ur — uz) — (x1 — ug)(us — usz) =0,
A’ P, B jsou kolinedrni : hy = w3(ug — uy) — ug(xe — uy) =0,

A’, @, C jsou kolinedrni : hg = w5(uz — ug) — ug(xy — ug) =0,

B', P, A jsou kolinearni : hy = usx3 — ugxs = 0,

B’, R, C jsou kolinedrni : hy = x7(us — uz) — ug(xs — ug) = 0,

C',@Q, A jsou kolinedrni : hg = x5ur — x124 = 0,

C', R, B jsou kolinearni : h; = x7(u; — uy) — x1(xg — ug) = 0.

Zbyva jesté zformulovat tvrzeni. Chtéjme dokazat, ze za uvedenych predpokladi musi byt
také body P, (), R kolinearni, tzn.

P,Q, R jsou kolinedrni : g = (x5 — x3)(xg — x2) — (w7 — z3) (24 — 72) = 0.

Redukovand Grobnerova baze v R(uy, ..., u7)[x1,. .., 27,y] vzhledem k lex uspotadani
pro ideél (hy,...,h7, 1 —yg) je {1}. Tvrzeni tedy vyplyva z uvedenych predpokladu.

Provede-li se vypocet redukované Grobnerovy baze v R[uy, . .., ur7, 21, . .., T7,y], je nutné
vyloucit degenerované piipady, které pro tuto ulohu jsou us = 0, ugs = 0 a u; = 0. Potom
pro idedl (hy, ..., hy,1 — uguquryg) je redukovand Grobnerova béaze opét {1}. |
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Obrézek 6.6: Eulerova véta

Piiklad 6.15 (Eulerova véta) Mé¢jme libovolny AABC v roviné. Dokazme, ze stied
kruznice opsané, prusecik vysek (ortocentrum) a prusecik téznic (téziste) trojihelnika ABC
lezi na jedné piimce (obr. 6.6).

Soutadnice bodu se pritadi podle obr. 6.6. Body Hi, Hs, H3 predstavuji paty vysek,
body My, My, M3 jsou stiedy stran. Je vidét, ze opét jsou tieba jen 3 volné proménné
Uy, Ug, uz, urcujici body A, B, C' a tim i umisténi trojuhelnika. S vyuzitim ptikladu 6.12 Ize
formulovat podminky pro bod H

CHlJ_AB : hl = Ul(l’g - Ug) = 0,

AHQJ_BC . hg = LL’g(Ug — Ul) + TigUusz = 0,

BHgJ_AC . hg = UQ(ZL'H — Ul) + U3T1p = 0,

BH,C jsou kolinedrni : hy = x19(ug — uy) — uz(rg —uy) =0,
AH3C jsou kolinearni : hs = x1ous — uzry = 0,

BHH3 jSOll kolinearni : hﬁ = 1’13(1’11 - U1> — 1’12(258 — Ul) =0.

.....

AMl :BMl : h7:2x1—u1 :0,

CM2 = BM2 . hg = (UQ — 1'2)2 + (Ug — 1’3)2 - (ul — 1’2)2 — l’g = 0,
AMg = CMg . hg = (u2 — 1’4)2 + (Ug - 1’5)2 — ZL’Z — l’g = 0,

B, Mg, C jSOll kolinearni : hl(] = l’g(Ug - U1> — U3(I2 - U1> = 0,

A, Mg, C jSOll kolinearni : hll = TyUg — U3y = 0,

C, M, M1 jSOll kolinearni : h12 = LU7(U2 — Il) — Ug(.ﬁ(]ﬁ — Il) = 0,
A, M, M, jsou kolinearni : hjz = x7x9 — w326 = 0.
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Stied kruznice opsané O dostaneme jako prusecik os stran. To vede k podminkam

OMQJ_BC :hiyy = (213'2 — 1’14)(”2 - U1> + U3<SL’3 - 3715) = 07
OM;1LAC : hyz = u2(3:4 — 1’14) + U3(5173 - 51715) = 0.

Jeste je tteba formulovat dokazované tvrzeni. Chtéjme dokazat, ze za uvedenych predpokladu
musi byt body H, M, O kolinearni, tzn.

H, M, O jsou kolinedrni : g = (x7 — x15)(xs — x14) — (213 — 215) (26 — x14) = 0.

Podminky hq, ..., his; a dokazované tvrzeni g je mozné chapat jako polynomy z okruhu
R(uy, ug, us)[z1, ..., x15]. Redukovand Grébnerova baze pro idedl (hi,...,his, 1 — yg) je
{1}. Tvrzeni tedy vyplyva ze zadanych predpokladu.

I v tomto piipadé je ale také mozné chapat podminky hq, ..., hys a tvrzeni g jako po-
lynomy z Rluy, ug, us, 1, . .., x15]. Je ale nutné vyloucit degenerované piipady trojihelnika
u; = 0 a ug = 0. Potom pro ideél (hq, ..., hi5, 1 — ujusyg) je redukovand Grobnerova béze

(1. n

6.4 Kotovani a variaéni geometrie

Koétovani objektu muze velice dobte slouzit k variantnimu navrhu tohoto objektu. Popis
objektu je v takovém piipadé dan okétovanim a kazda zmeéna nékteré z kot vede ke zméné
metrické informace v popisu objektu a nésledné také k novému vykresu, zobrazujicimu
dany objekt.

Nejdiive bude popsan potiebny aparat pro uziti két k variantnimu konstruovani. Kazda
kéta bude generovat jednu (jednoduché podminky) nebo dvé (slozené podminky) obecné
nelinearni algebraické rovnice, jejichz fesenim lze dostat souradnice opérnych bodu objektu.
Mezi jednoduché podminky patii:

Kéta rozdilu z-ovych soutradnic: Pro dva body b,, = (T, Ym) a b, = (2, yn) lze pro
kétu A,,, rozdilu z-ovych souradnic dostat podminku

Tn —Tm = Amn

Kéta rozdilu y-ovych soutradnic: Pro body b, = (T, Ym) a by = (Tn, Yn) 1ze pro kétu
B, rozdilu y-ovych souradnic dostat podminku

Yn — Ym = an'
Kota vzdalenosti dvou bodu: Koéta vzdalenosti C,,,, bodu b, a b, odpovida podmince

(Im - xn>2 + (ym - yn)2 = Crzrm‘
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Kéta thlu dvou pirimek: Oznacéme p, = (T, — T, Yn — Ym) vektor urceny body b, a
by,. Kéta thlu D, ktery sviraji vektory p;; a piq, odpovida vztahu, vychézejicimu
ze skalarniho soucinu téchto vektoru, tzn.

cos Dyjpy = i Pha

|93 | D

Koéta praméru kruznice: Tato podminka je totozna s jednou podminkou typu vzdélenosti
dvou bodu.

Mezi slozené podminky potom patii:

Kéta poloméru: Podminka poloméru kruznice nebo kruhového oblouku je totoznd se
dvéma podminkami typu vzdalenosti dvou bodu.

Koéta vzdalenosti dvou rovnobéznych pirimek: Jestlize £;j;, je vzdélenost dvou rov-
nobéznych piimek urc¢enych body b;b;, resp. byb,, potom piislusné podminky lze za-
psat ve tvaru:

e podminka rovnobéznosti: Dij - Tikg = 0,
kde 7ix, je vektor normdly piimky byb,,.
e vztah Pro vzdélenost Eijkq: ﬁ;k . ﬁij = ijkq‘ﬁ%j|-
Jde tedy o prumét vektoru pj; do sméru vektoru normély k piimce b;b;.

Déle je potieba vysvétlit pojmy zobecnéné lomené ¢ary a
mnoziny opérnych bodu. Nebudou zde uvadény presné defi- b
nice, pouze bude na piikladé pro predstavu ukazano, jak vy-
pada konkrétni zapis zobecnéné lomené cary a odpovidajici
mnoziny opérnych bodi. Objektu na obrazku odpovida zo-
becnénd lomena cara

= (b17b27(+7b1>7b37b1)’ b b

1 2

Z obrazku je patrné, jakou cast objektu predstavuje piislusné c¢ast zobecnéné lomené cary.
Jen pro upfesnéni, (+,b;) znamena oblouk v kladném sméru (proti sméru hodinovych
rucicek) se stredem v bodé b;. Mnozina opérnych bodu potom tedy je

0(z) = {b1, by, b3}.

K uréeni zobecnéné lomené ¢ary z obrazku je tfeba urcit souradnice tii bodu, tzn. je nutné
mit 6 rovnic. Umisténi objektu v prostoru a jeho natoceni predstavuje tii rovnice, zbyva
tedy zadat tii rovnice (napf. tii jednoduché podminky). Ze zadéani téchto podminek jesté
ale neplyne existence objektu.
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Definice 6.4.1 Nechf z je zobecnénd lomend édra a o(z) = {o1,...,0,} je mnoZina opérnijch

bodu. Potom objekt je dimenzovan, jestlize je ddno i jednoduchych podminek a j sloZenych
podminek a plati
1425+ 3 =2n.

Tato vlastnost se tyka poctu podminek potiebnych k urceni objektu. Nefika vsak nic
o existenci geometrické interpretace tohoto objektu. Proto je nutné zavést pojem dobie
dimenzovaného objektu. Nejdiive vsak jesté jedna definice.

Definice 6.4.2 Necht je ddna mnoZina bodi B = {by,...,b,} a m > 0 podminek rozdilu
x-ovych nebo y-ovych souradnic fi(bi,, ..., b, ) =0 pro tyto body. Potom body by a b, jsou

relativné zadanymi body, jestlize existuje posloupnost bodi by, = bj,,..., b _,,b; =0b, v B
takovd, Ze

fjs(bjs’bjs+1):0’ SZO,...,’I"—]_,
kde f;, je podminka rozdilu z-ovijch souradnic a existuje posloupnost bodi by, = by, ..., b;, ,,

by v B takovd, Ze

fis(bis7bis+1)207 SIO,...,U—l,

kde f;, je podminka rozdilu y-ovych souradnic.

Ty

Definice 6.4.3 Necht zobecnénd lomend édra z je dimenzovdna. Oznacme mnoZinu opérnijch

bodii o(2) = {p1,...,pn} a necht py = (xv,yy). Necht je ddno i jednoduchijch podminek
fr(z) =0, k=1,...,i aj slozenych podminek f.x(z) =0, r=1,2, k =1,...,j. Ne-
cht alespon tri z proménnych Ty, Viy, Tiy, Yi, jS0u nezndmymi alespon v jedné z rovnic
fr(2) =0 nebo frrx(2) =0 a body pi,, piy, nejsou zaddny relativné.

Potom zobecnénd lomend cdra z je dobfe dimenzovana, jestliZe alespon jedna ze soustav

fi(z) =
fri(2)
L

Yip =
ZL’il =

k=1,...,1,
r=1,2ak=1,...,7,

(6.18)

0
0
0
0
0

nebo

fi(z) =
frk(z> =
iy =

yio ==

Yin = 0

md konecnou a neprdazdnou mnoZinu resent.

<
==
w-
S
?T‘\'@
Il

[u—

£

(6.19)

cooo

Y

Definice je skuteéné korektni, jelikoz se da ukdzat (viz [10]), ze pro kazdou dimenzova-
nou zobecnénou lomenou ¢éru z a ji prislusnou mnozinu opérnych bodu o(z) existuji body
Diy & Piy, které nejsou zadany relativné.
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Je ztejmé, Ze soustavy (6.18) a (6.19) jsou soustavy 2n nelinearnich algebraickych rov-
nic. Resen{ téchto soustav muzeme provést pomoci algoritmu hledéni redukované Grobne-
rovy béze idedlu. Staci uvazovat idedl generovany levymi stranami rovnic soustav (6.18)
nebo (6.19) a chépat je jako polynomy z R[z1,y1, ..., Zn, Yn]. Specidlnim piipadem je ob-
jekt, ktery je popsan pouze kétami rozdilu z-ovych nebo y-ovych soutadnic. Objekt je
pak popséan soustavou linedarnich rovnic, ktera je snadno fesitelna i vylepsenym Buchberge-
rovym algoritmem. Takovou soustavu lze ale samoziejmé tesit mnohem jednoduseji napf.
Gaussovou eliminaci. Uvedme si nyni piiklad.

Priklad 6.16 Uvazujme zobecnénou lomenou c¢aru podle obr. 6.7. Snadno lze spocitat,

Obrazek 6.7: Objekt popsany soustavou linearnich rovnic

ze objekt je popsan 12 koétami, které odpovidaji 12 jednoduchym podminkam. Pocet
podminek je tedy ptilis vysoky, jelikoz musi platit

1+ 275 4+ 3 = 2n,

kde n = 7 je pocet opérnych bodu a j = 0. Je nutné tedy odebrat nékterou z kot G, B, C,
D, E. Vynechani kéty G vede k soustavé rovnic

Tg—x1 = —A ys—1 = 1

Yyo—y1 = H T —15 = K

r3—19 = B ye—y1 = H

Ys — Y1 = I T7r —Tg = —F (620)
Ty — T3 = C ry = 0

ys—y1 = H y = 0

x5 —x4 = D yr = 0,
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které odpovida redukovana Grobnerova béze

ry = 0 Y1 = 0
T9 + A =0 Yo — H =0
T3 + A—-B = 0 Y3 — I =0
2~ A—B-C = 0 w—H = 0 (6.21)
xs+A—-B-C—-D = 0 ys—I1 = 0
6+ A—B-C—-D—-FE = 0 y—H = 0
mw+A—-B-C—-D—-FE+F = 0 yr = 0.
Odtud jsou jiz vidét soufadnice opérnych bodu by, ..., b;. Soustavu 6.20 je samoziejmé

mozné fesit také pomoci Gaussovy eliminace.

Z obr. 6.7 je ztejmé, ze nelze vynechat ani kétu [ ani H, protoze by tak byly odebrany
dveé, resp. tTi jednoduché podminky misto jedné. Zbyva vyzkouset, co se stane, odebere-li
se nékterd z két A, F misto vySe uvedenych. Soustava bude mit spravny pocet rovnic a
objekt tedy bude dimenzovan. Nicméné z obr. 6.7 je ziejmé, ze nebude uréen dostatecné a
nemeél by byt dobfe dimenzovan. Zaména rovnice x7 —xg = —F za rovnici g — o = G vede
k soustavé rovnic, jejiz redukovand Grobnerova baze je {1} a Grobnerova béze obsahuje
prvek G—B—C—D—FE = 0, tzn. pro obecné parametry soustava nema feseni. Pokud je ale
rovnost splnéna, soustava ma nekonecné mnoho teseni, jelikoz zcela chybi informace o x-ové
soutadnici bodu b7 a je mozné ji tedy volit libovolné. Objekt tedy neni dobfe dimenzovan.
Obdobna situace nastava v pripadé vynechani kéty A. Pokud plati G—B—-C—-D—FE =0,
pak ma soustava nekonecné mnoho feseni, jinak feSeni nema. V kazdém piipadé objekt ani
v tomto piipadé neni dobfe dimenzovan. |

Toto je samoziejmé nejjednodussi piipad okdétovani objektu a vzniklou soustavu rovnic
je mozné fesit jinymi metodami (napf. Gaussovou eliminaci). Nyni se podivame na piiklad
objektu, ktery uz je popsan soustavou nelinedrnich algebraickych rovnic.

Priklad 6.17 Uvazujme zobecnénou lomenou ¢aru podle obr. 6.8. Objekt je popsan 9
jednoduchymi, 2 slozenymi podminkami a obsahuje 8 opérnych bodu, tzn. plati

i+2j+3=2n.

Objekt je tedy dimenzovan a zbyva zjistit, zda je dobfe dimenzovan. K tomu je tfeba fesit
soustavu rovnic

To — X1 = A Ty — X1 — B

Ty — Xy A Ty — Xg — A

Ty — I A v —y1 = C

Ys — Y1 C yp—y = —C

y2—y1 = —C (6 —x7)*+ (y6 —y7)> = R3 (6:22)
r = 0 (xs — 27)* + (ys — y7)? R3
(0 0 (w2 — 23)° + (Y2 — y3)° R}
ys = 0 (x4 —x3)® + (ya —y3)* = R



by - R, by )
| |
| |
| | C
b
1
b5
| I C
| |
| Rl |
- - b
4
bz
b3
A A
B

Obrazek 6.8: Objekt popsany soustavou nelinedrnich algebraickych rovnic

Redukovana Grobnerova baze pro ideal generovany rovnicemi soustavy je

ry = 0 Y1 = 0
l’Q—A =0 y2+C’ 0
x3—B/2 = 0  y2+20y3; — R2+1/4B*> — BA + C? + A? 0
[L’4—|—A—B =0 y4+C’ 0
s —B = 0 Ys 0 (6.23)
xs—B+A = 0 ye — C 0
z;—B/2 = 0 y2—2Cy; — R3+1/4B* — BA+ A*+C?* = 0
w—A = 0 ys —C = 0.

Je vidét, ze nova soustava rovnic muze mit az ¢tyfi feseni v zavislosti na tom, kolik realnych
korenu maji kvadratické rovnice pro soutradnice y3 a y;. Lze tedy fici, ze pro dostatecné
velkd R, a Ry je objekt dobfe dimenzovan.

Pokud je Ry < (B — 2A)/2, potom mé rovnice pro ys pouze komplexni koteny (dva
komplexné sdruzené) a objekt neni mozné sestrojit, jelikoz polomeér je piilis maly a neni
mozné spojit opérné body bs a by kruhovym obloukem. Pro Ry = (B —2A)/2 existuje jeden
dvojnasobny koten a plati y3 = C, pro Ry > (B — 2A)/2 existuji dva ruzné redlné koreny.

Duvodem, pro¢ pro dostatecné velké R; existuji dva ruzné realné koreny, je volba ori-
entace kruhového oblouku. Kruhovy oblouk mezi opérnymi body by a b4 lze orientovat v
kladném smyslu (proti sméru hodinovych ruc¢icek) nebo v zéporném smyslu (po sméru hodi-
novych rucicek). Podle orientace kruhového oblouku se vybere piislusny kofen kvadratické
rovnice.

Zcela obdobnou uvahu lze provést pro hodnoty soutradnice y; a polomér Ry druhého
kruhového oblouku. u
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Obrazek 6.9: Objekt, jehoz popis obsahuje kétu vzdélenosti rovnobéznych piimek

Tato cast bude uzaviena prikladem objektu, ktery obsahuje kétu vzdalenosti rov-
nobéznych piimek. Tato koéta je nepiijemna, jelikoz generuje pomérné slozité rovnice o
velkém poctu ¢lent, a proto znaéné komplikuje vypocet. To je také duvodem, proc je volen
velmi jednoduchy objekt s malym poc¢tem opérnych bodu.

Priklad 6.18 Uvazujme zobecnénou lomenou ¢aru podle obr. 6.9. Nejprve je nutné ovérit,
zda je objekt dimenzovan. Z obr. 6.9 lze snadno zjistit, ze je n = 5,7 =3 a j = 2 a plati
tedy rovnost

1425+ 3 =2n.

Objekt tedy je dimenzovan. To ale nestaci a je nutné ovérit, ze je dobte dimenzovan. To
znamena fesit soustavu rovnic

ry = 0
y1 = 0
y2 = 0
To — 1 = B
r5s—11 = C
(x5 —x4)® + (ys —ya)* = R?
(x5 —x4)® + (ys —ya)* = R?
(w2 —21)(y3 — y5) — (2 — y1) (w3 — 5552 = 0
[(552 —21)(ys — y1) — (Y2 — y1) (@5 — xl)} = A? [@2 —21)? + (Y2 — y1)?|-

Redukovana Grobnerova baze vzhledem k lex uspotradani pro idedl generovany rovnicemi
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soustavy (6.24) v R(A, B, C, R)[z1,y1, - .., T5,Ys) je

rzy = 0 y1 = 0
LL’Q—B =0 Ya = 0

r3 — B-C =0 Ys —Ys = 0 (625)
ry—B/2-C = 0 y? —2ysys — R* — B%/4+ A* = 0
1’5—0 =0 yg—A2 = 0.

Je vidét, Ze soustava muze mit az 4 realnd feSeni a objekt je tedy dobfe dimenzovan.

Ze soustavy (6.25) je vidét, ze soutadnice y5 muze nabyvat hodnot +A. Hodnota y; = A,
resp. ys = —A potom urcuje, zda bude objekt umistén nad osou z, resp. pod osou =,
prochézejici opérnymi body b, a by. Kazdé hodnoté soutadnice ys; potom odpovidaji az
dva redlné koteny kvadratické rovnice pro hodnoty soufadnice y, z duvodu probranych
podrobnéji v prikladé 6.17. [ |

6.5 Robotika

es e

mechanické manipulatory. V posledni dobé nachézeji mnoho jinych uplatnéni, napt. jako
letové simulatory, svafovaci automaty, uzivaji se v lékaistvi, v kosmonautice, v televizni
technice i jinde. Robotika jako védni obor je velmi mladou disciplinou, kterda zasahuje
do mnoha védnich oborti. Jednim z nich je i matematika, resp. geometrie, jejimz ikolem
v robotice je popis pohybu robota a jeho interakce s vnéjsim prostiedim (lokalizace prekézek
véetné vlastnich ¢dsti robota). V soucasné dobé lze roboty rozdélit na:

1. Roboty sériové, u kterych se pohyb sklada z na sebe navazujicich pohybt, pticemz
jednotlivé ¢asti se mohou pohybovat nezavisle na sobé.

2. Paralelni roboty (manipuldtory), kde jednotlivé ¢ésti robota jsou zarazeny vedle sebe
a vysledny pohyb vznika souc¢innosti vSech c¢asti, pohyb jedné ¢asti ovliviiuje polohu
vsech ostatnich.

3. Kombinované roboty, které vznikaji riznymi kombinacemi sériovych a paralelnich
struktur, napt. chodici stroje, mechanické ruky.

Z kinematického hlediska se robot skladd ze dvou mechanickych soustav, pevné a
hybné. Pevna soustava se nazyva baze a je pevné spojena s prostorem, ve kterém se po-
hyb odehrava. Hybna soustava je pevné spojena s nastrojem, piipadné s ¢lenem, pomoci
kterého robot vykonava vysledny pohyb. Popis pohybu nastroje zprostfedkovaného robo-
tem je aplikaci kinematiky a geometrie v robotice. Zakladni tlohy, které budou probrany
podrobnéji, jsou:

1. Prima vloha - ze znamé vzajemné polohy ¢lenu robota se hledd poloha néastroje
robota nebo koncového ¢lenu (efektoru).
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Obrazek 6.10: Klikovy mechanismus

2. Obrdcend uloha (Inverzni kinematika) - ze zadané polohy nastroje nebo koncového
¢lenu se hledd odpovidajici ,,nastaveni® ¢lenu robota.

Zaver této casti bude vénovan prikladum uziti Grobnerovy béze idedlu pro feseni piimé
i obracené ulohy pro rovinné roboty.

Piiklad 6.19 Reseni pifmé tlohy bude provedeno pro piipad klikového mechanismu, ktery
je zobrazen na obr. 6.10. Klikovy mechanismus 1ze popsat soustavou rovnic

(xl - xA)2 + (yl — yA>2 = 3,
(w2 —21)* + (2 —n)* = 1, (6.26)
(xo —zp)? + (Y2 —yp)* = 1i.

Bez tjmy na obecnosti 1ze zvolit z4 = 0, y4 = 0 a yg = 0, coz dosazenim do (6.26) vede k
soustave

w4y = 0,
(2 —21)* + (2 —n)* = 13, (6.27)
(2 —ap)*+y; = 13

Rovnice soustavy (6.27) lze chépat jako polynomy z Q(xp, lo, I3, l4)[21, Y1, T2, Y] V takovém
piipadé ale hledani redukované Grobnerovy baze pro ideal

I=@ 4y =15, (e —21)* + (2 —y1)> — 13, (xa —2p)* + 5 — 13)

nedava dobré vysledky, jelikoz soustava je tvofena 3 rovnicemi pro 4 neznamé zi, vy,
To, Y2 a nedojde k ocekavané eliminaci proménnych x,, y;. Proto je vyhodnéjsi zvolit
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jednu z proménnych jako parametr (napf. z3) a rovnice soustavy chépat jako polynomy

z Q(zp,la, 3, ly, x2)[71, Y1, Y2]. Redukovand Grébnerova baze pro idedl I vzhledem k lex
usporadani potom je

ys+ (wp —w2)* = 1] =

yi + fiyiys + fo

a1+ oyt fz = 0,

kde fi, fo, f3 jsou slozitéjsi funkce parametru xpg, lo, I3, Iy, xo. V zavislosti na danych
hodnotéch parametru xp, lo, I3, ls, T2 lze ze soustavy (6.28) uréit odpovidajici hodnoty
proménnych x1, y1, y2 a najit tak jednu z moznych poloh klikového mechanismu.

0,
0,

(6.28)

Ze soustavy (6.28) déle plyne, ze musi byt zy # 0, resp. xo # % Tyto pripady je
treba Tesit samostatneé.
Pro x5 = 0 1ze soustavu (6.27) prepsat do tvaru

ity = 13,
22+ (yp—p)? = I (6.29)
w4y = 1.

Redukovand Grobnerova béze idedlu J = (2 +yf — 3,27 + (y2 — v1)? — 3, 2% + y3 — 13)
potom je

v —litah =0,
200 — (I3 — a3 +15 = 13)/(13 —2%) = 0, (6.30)
4% + (I3 + 1o)* — 13 + 2%])[(I3 — 1o)? — 13 + 2%] /(3 —2%) = 0.

Ze soustavy (6.30) je ziejmé, ze musi byt Iy # +xp. Piipad Iy = tap je tieba opét Tesit
samostatné. Soustavu (6.29) lze potom piepsat do tvaru

ity = b
2+ (=) = 13, (6.31)
y; = 0,

a tedy pro ls = I3 mé nekoneéné mnoho feseni, pro [y # [3 nemé feSeni.
22
Pro zy = "2 piejde soustava (6.27) do tvaru
B

ity = b,
(LU2B — li — 21’35(71)2 -+ (yg — y1)2 lg, (632)
(rp+13)*+ys = 0.

Redukované Grobnerova béze idedlu

J=(ai+vy; -1, (a5 — ] —22pm1)* + (2o —n)* — I3, (wp + 3)* + y5 — 1)

potom je
v+ = 0,
Y1+ g9y = 0, (6.33)
r1+g3 = 0,
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Obrazek 6.11: Rovinny manipulator

yyyyyy

lo =13 axp =14 Proly = I3 # 0 ale soustava (6.32) nem4 feseni, pro ls = I3 = 0 m4 jedno
feseni. Pokud je zp = l4, potom mé soustava (6.32) pro ly = I3 nekone¢né mnoho tesent,
jinak Teseni nema.

Regen{ soustavy (6.28) pro 3 # 0 a x5 # (2% — [2)/22p, soustavy (6.30) pro 25 = 0
a soustavy (6.33) pro zy = (2% — [3)/2xp predstavuji kompletn{ Fesen{ piimé ulohy pro
klikovy mechanismus.

Napifklad pro ls = 6, I3 =9, I, = 7.5, 153 = 6 a 2o = 11 je urcité zo # (% — 13)/22p i
x5 # 0. Resen{ pifmé tlohy

Yo, = T7.2284 Yy, = —7.2284,
y, = 59312 v, = —1.5000,
21, = —0.906 z1, = 5.8092

Ize tedy najit feSenim soustavy (6.28) a pro dané parametry predstavuje dvé mozné polohy
klikového mechanismu. |

Pi#iklad 6.20 Reseni problému inverzni kinematiky bude provedeno pro piipad jedno-
duchého rovinného manipulatoru, zobrazeného na obr. 6.11. Tento rovinny manipuldtor
lze popsat soustavou rovnic

R? 42?2 = 2% +u3,

(rp —xa)’ + (yp —ya)® = B, (6.34)
—gi:zi =tany = Kk,
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kde jsou zadany soutadnice bodu B, tzn. xp a ypg, a thel v, resp. smérnice k. Rovnice
soustavy (6.34) lze potom chapat jako polynomy z Q(z g, ys, k, h,l)[x, 4, ya]. Redukovana
Grobnerova béaze pro ideal

I=(*+a> =2 — v, (ep —2a)* + (s —ya)® — I, yp — ya — k(zp — z4)),
generovany rovnicemi soustavy (6.34), potom je

2 2 ?k2
Ya—2yYa+ Y —13= = O
1 —kx
TA— pya+ R
2 2(xp+kyp) h2k+2x3y3—kx23+ky%—klz _—
- K YAt 2 = Y

I
o

(6.35)

X

Problémy pfii vypoctu x4, ya,  nastanou, jestlize k = 0. Tento pfipad je nutné tesit
samostatné. Dosazeni k = 0 do (6.34) vede k soustavé rovnic, jejiz redukovand Grobnerova
béze je

Ya—Yp = Oa
74 —2zprat+ 2L —12 = 0, (6.36)
v —2zpra+ay—P+h—yy = 0.

Reseni soustavy (6.35) pro k # 0 a soustavy (6.36) pro k = 0 davaji kompletni fesenf
problému inverzni kinematiky pro dany rovinny manipulator.

Napiiklad pro parametry | =5, h =3 axg =9, yg = 10, v» = 7/3 lze feSenim soustavy
(6.35) dostat hodnoty

ya, = 14.3301 ya, = 5H.6699,
x4, = 115 24, = 6.5,
r = 18.1274 ro = 8.0869.

Existuji tedy dvé mozna nastaveni parametru daného rovinného manipuldtoru pro zadanou
polohu efektoru. [ |
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Kapitola 7

Rezultanty

Na rozdil od teorie Grobnerovych bazi, existuje pouze velmi malo literatury, ktera je uce-
lené a prehledné vénovana rezultantum pro soustavy polynomialnich rovnic. Obvykle je
vénovana pouze jedna kapitola knihy rezultantum pro polynomy v jedné proménné, resp.
eliminaci jedné proménné ze soustavy nelinedrnich algebraickych rovnic, jako je tomu napf.
v [3], [29], [32]. Tato kapitola tedy bude vénovana zpracovani piehledu zékladnich typu re-
zultantu, a to jak pro polynomy v jedné proménné (Sylvestertuv, Bézoutuv rezultant), tak
ve vice proménnych (rezultanty Sylvesterova typu, Macaulayho, Dixonuv, Dixonuv dialy-
ticky rezultant). Podrobnosti o dalsich typech rezultantu je mozné najit napi. v [24] nebo

9].

7.1 Rezultanty pro polynomy v jedné proménné

Zacnéme tedy s rezultanty pro polynomy v jedné proménné, pozdéji provedeme jejich
zobecnéni pro ptipad vice proménnych. Pojem ,rezultantu® se obvykle zavadi v souvislosti
s hleddnim podminky pro existenci spole¢ného feseni vychozi soustavy polynomialnich
rovnic.

Necht f, g € k[x] jsou polynomy takové, ze

f = apx"+ap 12" '+ -+ ax+ag, a,#0,

g = bpd™ + by 2™+ bz + by, by #0.
Pro tyto polynomy budeme chtit najit podminku na koeficienty a;,b;,¢ = 0,...,n,j =
0,...,m, kterd zaruci existenci spole¢ného feSeni polynomu f, g, nebo ekvivalentné feceno

podminku existence spoleéného faktoru polynomu f, ¢g. Jinak fe¢eno, chceme védét, kdy
maji f =0, g = 0 spole¢ny kofen.

Lemma 7.1.1 Necht f,g € k[z] jsou polynomy v jedné proménné a deg(f) = n >
0,deg(g) = m > 0. Potom f a g maji spolecny faktor pravé tehdy, kdyz existuji polynomy
A, B € k[x] takové, Ze plati:

1. A, B nejsou oba soucasnée nulovymi polynomy,
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2. deg(A) <m —1, deg(B) <n—1,

3. Af + Bg = 0.
Diikaz: Viz [3]. O

Pouzijeme-li Lemma 7.1.1, muzeme odvodit metodu pro vypocet rezultantu pro dva
polynomy v jedné proménné. Predpokladejme, ze
A = spax™ s 0x™ 24+ 4 512+ S,
B = tn_ll'n_l + tn_gl’n_2 + o4 tll’ + t().
Dosazenim do Af + Bg = 0 dostaneme polynom v proménné x stupné m + n, ktery musi
byt nulovy, aby polynomy f, g mély spoleény koten (faktor). To znamend, ze koeficienty u
vSech mocnin  musi byt nulové, coz vede na feSeni soustavy linearnich algebraickych rovnic
pro neznamé s, ..., Sm_1,to,--.,tn_1. Matice soustavy zavisi na koeficientech vstupnich
polynomu ay, . .., ay,, by, - .., by,. Soustavu rovnic je mozné zapsat ve tvaru:
SoGg + tobo = 0,
S1a9 + Sga1 + tlbo + tobl = 0,

(7.1)
Sm—10n-1 + Sm—20n + tn—lbm—l + tn—2bm 07
Sm—10n + lp_1by, = 07
resp. v maticovém tvaru
[ ao bo 1 so ]
ap Qo br bo S1
s aq . b2 bl
Qg bo Sm—2
ay bl . Srm-1 = 0.
. . . . tO
an : by : t
an, : by
tn—2
i a, b | L tna
m "

Soustava rovnic (7.1) je homogenni soustavou, kterd ma netrivialni feSeni tehdy a jen
tehdy, kdyz determinant matice soustavy je nulovy. Odtud potom plyne, Ze determinant
matice soustavy (7.1) pfedstavuje hledanou podminku na koeficienty a;, b;,i =0,...,n,j =
0,...,m, za které ma soustava polynomidlnich rovnic f = 0, g = 0 spolecné feseni. Obecné
se tato podminka nazyva rezultant pro soustavu polynomidlnich rovnic. Matice soustavy
(7.1) je taddu n + m a obvykle se nazyva Sylvesterovou matici a determinant Sylvesterovy
matice se nazyva Sylvesterovym rezultantem.
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Definice 7.1.1 Necht f, g € k[z] jsou polynomy v jedné proménné. Rezultant Res(f, g) je
polynom v koeficientech polynomu f a g, ktery nabyvd nulové hodnoty tehdy a jen tehdy,
kdyz f a g maji spolecny faktor.

Poznamenejme, ze stupen rezultantu v koeficientech a; polynomu f je roven m, tzn.
deg;(Res(f,g)) = m, podobné potom deg,(Res(f,g)) = n. Celkovy stupen rezultantu
tedy je n +m.

7.1.1 Sylvesteruv rezultant, dialyticka methoda

Sylvesteruv rezultant pro polynomy v jedné proménné patii mezi zakladni a velmi dobie
znamé rezultanty. Vétsina CAS (Computer Algebra System) softwaru obsahuje funkce pro
vypocet praveé Sylvesterova rezultantu. Jinym zpusobem pro sestaveni Sylvesterovy matice,
nez jsme ukazali v ptedchozi ¢asti, je tzv. dialytickd metoda.

Uvazujme dvé mnoziny monomu

X ={am™ g™ 2 2,1}, Y = {z" 2" 2 a1}

Vynasobenim polynomu f prvky mnoziny X a polynomu ¢ prvky mnoziny Y dostaneme
odpovidajici polynomialni mnoziny X f a Y g, které obsahuji dohromady n + m polynomu
a je mozné je vyjadrit maticové néasledujicim zpusobem

I [ a,, an_1 ...oa1 ap T
Qp, Ap—1 ... a1 Qo  mel
X

Zlff R . ntm=2

f _ ap ... - Qo : (7.2)

l’n_lg bm bm—l R bl b(] : ’ '

: bm bm_1 .. by b ‘f

xg ° . . * . . e -
L g ] L bm ce ce bo ]

SY1(£.9)

kde matice koeficientu je opét Sylvesterovou matici. Monomialni mnoziny X a Y se ob-
vykle nazyvaji mmnoZinami ndsobitelu, matice rezultantu zkonstruované pomoci mnozin
nasobitelu se nazyvaji dialytické matice a metoda sestaveni matice rezultantu pomoci
mnozin nasobitelu se nazyva dialytickd metoda.

Pro polynomy z k[xq,...,x,], n > 1, existuje nékolik metod, které se lisi pravé volbou
mnozin nasobitelu (zobecnéni Sylvesterova rezultantu pro tii polynomy ve dvou proménnych,
Macaulayho rezultant, ¥idky rezultant, Dixonuv dialyticky rezultant). Kazda z téchto me-
tod potom dava kvalitativné odlisné vysledky — lisi se velikost odpovidajicich matic rezul-
tantu, pocet extra faktoru, které obsahuje determinant matice rezultantu apod. Nékteré

z téchto rezultantu pro polynomy ve vice proménnych budou podrobnéji popsany v céasti
7.2.
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Piiklad 7.1 Méjme dva polynomy f = 2%y — 1 a g = 22 + y? + 2y — 4 a berme je jako
polynomy v proménné x s koeficienty, které zavisi na proménné y. Potom Sylvesterovu
matici pro dané polynomy f a g je mozné najit pomoci vztahu (7.2). Plati tedy

xf y 0 —1 0 3

f 1 _10wyoO —1 x?

xg | |1 y y2—4 0 x

g 01y y?—4 1
Syl}?‘,g)

a Sylvestertiv rezultant je det(Syl(f, g)) = y% — 8y* +y> + 169> — 8y + 1. Na tomto piikladé
je mozné demonstrovat vztah mezi rezultanty a Grobnerovymi bazemi. Jestlize najdeme
Grobnerovu bazi pro ideal I = (f, g) vzhledem k lex usporadéni pro x > y, dostaneme

I = (x — 4y —y* + 32y + 49% — 64y + 16, ¢° — Sy* +¢° + 16y* — Sy + 1).

Generdtorem prvniho elimina¢niho idealu I = I N C[y] je tedy piesné polynom y° — 8y* +
y3+16y> — 8y + 1, ktery jsme ziskali jako rezultant pro polynomialni soustavu f = 0, g = 0.
[

7.1.2 Bézoutuv rezultant

Naprosto odlisny zpusob sestaveni matice rezultantu pro polynomy v jedné proménné
predstavil v roce 1779 Bézout. Pozdéji jeho metodu prepracoval Cayley a zavedl jiny zpusob
sestaveni Bézoutovy matice, ktery bude uveden v nasledujicich odstavcich.

Zatimco prvky Sylvesterovy matice jsou ptimo koeficienty vychozich polynomu, prvky
Bézoutovy matice jsou polynomy v koeficientech vychozich polynomu. Bez Gjmy na obec-
nosti, necht f, g € k[z] jsou polynomy

f = apt"+an " P+ Fart+ag, a,#0,
g = bmtm"i_bm—ltm_1 +"'+b1t+b07 b, 7£07

am = deg(g) < deg(f) =n.
Necht s je nové piidand proménnd. Uvazujme funkci polynomu f a g ve tvaru

)

A
(, p—

(7.3)
Je ziejmé, ze A(t, s) je polynom stupné n — 1 v proménné s, kde koeficienty jsou polynomy
stupné n — 1 v proménné ¢.

Déleni v rovnici (7.3) je mozné provést pomoci nasledujictho obecnéjsiho postupu.
Pottebujeme vydélit polynom f(x,y), ktery nabyva nulové hodnoty pro z = y, polynomem
x —y. Na polynom f(z,y) je mozné nahlizet jako na polynom v jedné proménné z, kde
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koeficienty jsou polynomy v proménné y. Déle se vyuzije vyjadieni podilu 1/(z — y) ve
tvaru mocniné tady, tj.
1 o
_ Z x—uyu—l.
u=1

I—y_

R e A .
e DU DL e DL (Z AR y) .
u=1 u—l

=0 =0 u=1+1

Jelikoz druhd suma na pravé strané obsahuje zaporné mocniny x, vysledek déleni je poly-
nomem pouze v piipadé, ze je tato suma nulova. Tedy

n

> ai(y) '

x' n 7
= — = Z a;(y)x’ Z TR (7.4)
Tty i=1 k=0

Nyni je mozné pouzit vztah (7.4) a prepsat (7.3) do tvaru

9(t) — g(s) f(t) — f(s)
Atys) = 209 g /W) (7.5
t—s t—s
m—1 m n n—1 n
=Y ( F&) Y bt —g(t) Y aiti_k_1> =3 (g(t) > aiti_k_1> s,
k=0 i=k+1 i=k+1 k=m i=k+1
Samoziejmé je mozné zapsat vztah (7.3) také v maticové forme
1
1 t
Alt,s)=[1s ... s"]-D- | . . (7.6)
;fn—l
Potom srovnanim vztaht (7.5) a (7.6) je ziejmé, Ze koeficienty u mocnin s°,7 = 0,...,n—1,
ve vztahu (7.5) je mozné vyjadrit opét maticové
f Z biti_l —g Z aiti_l
i=1 i=1
n . Coo R Con—1
bm — aitl_m ' t
—g Z aiti_m_l Ch—10 --- Cp—1n-1 tn_l
i=m+1 ~ ~
_ D
L —9an i
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kde
Cij = Z (akbh — ahbk) (78)

R

abpi1 = ... = b, = 0. Matice D je tadu n, nazyva se Bézoutovou matici a obvykle
se zna¢i Bez(f, g). Determinant Bézoutovy matice vzdy obsahuje rezultant jako jeden ze
svych faktoru.

konstrukce Sylvesterovy matice, jelikoz prvky Bézoutovy matice nejsou piimo koeficienty
vstupnich polynomu ale opét polynomy v koeficientech vstupnich polynomu (v podstaté
se jednd opét o determinanty uréitych matic). Na druhou stranu, Bézoutova matice je
vyrazné mensi nez Sylvesterova matice — pro n = m je Bézoutova matice rozméru n x
n a Sylvesterova matice rozméru 2n x 2n. Vypocet determinantu Bézoutovy matice (a
samotného rezultantu) muze byt tedy vyrazné rychlejsi.

Podivejme se nyni podrobnéji na odvozeni vztahu (7.8) pro prvky Bézoutovy matice.
Toto odvozeni je zalozeno na sestaveni specialni transformacni matice R, ktera transfor-
muje Sylvesterovu matici na Bézoutovu matici. Vyjdéme opét ze vztahu (7.5), ktery je
mozné prepsat maticové do tvaru

by by ... bp
by :
: b
Alt,s) = [ftf ...t fgt "] bm o=
’ n gy .- g —a; —ay ... —ay : a
—as Sn_l
o —ap,
i R_
Qo b()
a; . by
: : s
s P ap bo | R.| °
an ar b by :
. Sn—l
Syl‘(,f,g)
(7.9)
Déle je nutné upravit vztah (7.6) tak, abychom jej mohli jednoduse srovnat se vztahem
(7.9) — rozsitime tedy vektor [1,¢,...,t"] az do mocniny n + m — 1 a soucasné upravime
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Bézoutovu matici pridanim nulovych fadka. Tedy (7.6) prepiseme do tvaru

1
Alts) = [1 ... =t gn .. gom=] [ Bez(f’g)} . (7.10)
Omxn n—1
s
Ze srovnani (7.9) a (7.10) uz poté piimo plyne, ze
Bez(f,
[ o 9) } — Syl(f,g) R. (7.11)

Z (7.11) piimo plyne vztah (7.8) pro prvky Bézoutovy matice a také poskytuje jednu z
moznosti jak zkonstruovat Bézoutovu matici pomoci maticového nasobeni.

Piiklad 7.2 Uvazujme polynomy f = 2%y — 1 a g = 2> + y? + 2y — 4 jako polynomy v
proménné x s koeficienty, které zavisi na proménné y. Z rovnice (7.7), resp. z (7.11), potom
plyne

3
_ —Y -y +4y—1
Bez(f, g) - [ _y3 + 4y -1 _y2 )
resp.
[ -1 0 ¢2—4 0 y 1
Bez(f, g) 0 -1 y y—4 L0 _
02><2 Yy 0 1 Yy 0 )
0y 0 1 -y 0
[ —y —y® +dy — 1
| P4y -1 —y?
- 0 0 :
I 0 0

a tedy det(Bez(f,g)) = —y°® + 8y* — v — 165> + 8y — 1. Dostavame tedy stejny vysledek
jako v piipadé Sylvesterova rezultantu (az na nasobeni ¢islem -1). |

7.2 Rezultanty pro polynomy ve vice proménnych

Stejné jako v pripadé rezultanti pro polynomy v jedné proménné i rezultanty pro poly-
nomy ve vice proménnych poskytuji podminku pro existenci spole¢ného feSeni soustavy
polynomialnich rovnic f; = 0,...,f, = 0 ve tvaru polynomu v koeficientech vstupnich
polynomu.

Velkou vyhodou rezultanti pro polynomy ve vice proménnych ve srovnani s metodou
Grobnerovych bazi je, ze eliminuji n proménnych z n + 1 rovnic soucasné, a ne postupneé
jednu po druhé jako Grébnerovy baze. Proto jsou rezultanty obvykle vypocetné rychlejsi,
alespon pokud pouzivame klasické algoritmy pro obé metody. AvSsak moderni algoritmy

114



pro vypocet Grobnerovych bazi se snazi pomérné tspésné eliminovat tuto nevyhodu (viz
napf. [28],[5]).

Na druhé strané i rezultanty maji své nevyhody. Jednou z nich je, ze obecné vSechny
formulace rezultanti pro polynomy ve vice proménnych produkuji tzv. extra factory. To
znamena, ze determinant matice rezultantu neni obecné piimo rezultant, ale tzv. projekcnt
operdtor, ktery se sklada z rezultantu a dalsich faktoru (extra faktoru), které do rezultantu
nepatii a nesouvisi s nim. Je tedy jesté nutné eliminovat tyto extra faktory, coz pochopitelné
stoji dalsi vypocetni cas.

Tato ¢ast je vénovana nékolika formulacim rezultanti pro polynomy ve vice proménnych.
Nejprve provedeme zobecnéni Sylvesterovy (dialytické) matice pro tii polynomy ve dvou
proménnych — zobecnéni pro vice nez dvé proménné se obvykle neprovadi. Jako alternativa
slouzi tzv. Macaulayho matice, které je jednou z matic Sylvesterova typu (tzn. ze prvky v
matici jsou primo koeficienty vstupnich polynomi), konstruuje se pro obecny piipad n + 1
polynomu v n proménnych také s vyuzitim dialytické metody. Dale bude uvedeno zobecnéni
Bézoutovy matice pro polynomy v jedné proménné, tzv. Dixonova matice pro polynomy
ve vice proménnych — nejprve pro specialni pripad tii polynomu ve dvou proménnych z
duvodu zajimavého vztahu k Sylvesterové matici, a poté pro obecny pripad n+1 polynomu
v n proménnych. Na zavér bude uvedena jedna z novych formulaci matice rezultantu, tzv.
Dixonova dialytickd matice. Jak nazev napovidd, jednd se o kombinaci obou zminénnych
pristupt, jak dialytické, tak Bézoutovy (Dixonovy) metody. Nejprve se ale podivame po-
drobnéji na vztah ,rezultantu® a ,projekéniho operdtoru*.

7.2.1 Rezultant a projekéni operator

Netrivialni nasobek rezultantu, ktery obvykle ziskame jako determinant matice rezultantu,
se nazyva projekcni operdtor.
Necht F' = {f1,..., fu} C klz1,..., 2], kde fi = 3 ozt 22" = > ¢; 0z je n-

acA acA
tice polynomu predstavujici soustavu polynomidlnich rovnic. Pti pouziti libovolné z metod

konstrukce matice rezultantu na polynomidlni soustavu F v podstaté sestrojime jinou
soustavu polynomidlnich rovnic, kterou muzeme zapsat ve tvaru F' = Mp - X = 0, kde
X obsahuje vSechny monomy vyskytujici se v polynomech F’. Dostavame tak homogenni
soustavu linearnich rovnic, kterd muze mit netrividlni feSeni pouze v pripadé, ze hodnost
matice Mg je mensi nez pocet sloupcti matice Mg Jelikoz predpokldadame, ze koeficienty
Ci.o jsou obecné symbolické, chceme najit podminku na tyto symbolické koeficienty, jejiz
splnéni zarucuje existenci fesSeni soustavy F. V ptipadé, ze je hodnost Mg rovna poctu
sloupci Mg/, determinant Mg poskytuje pravé tuto podminku.

Avsak v obecném piipadé nemusi byt matice (a velice casto také neni) ¢tvercovou matici
nebo je determinant matice rezultantu identicky roven nule, ackoliv matice rezultantu zavisi
na parametrech. V takovém pripadé je vyhodné pouzit tzv. metodu RSC pro extrakci
projekéniho operatoru z matice rezultantu. O této metodé hovoii nasledujici véta.

Véta 7.2.1 (RSC, Rank Submatrix Construction) Necht F je soustava polynomidlnich
rovnic s parametry a necht Mg je matice rezultantu rozméru m xn. Jestlize C; je linedrné
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nezavisly sloupec matice Mg, odpovidajici monomu x%, a Q je libovolny mazximdlni minor
matice Mg, potom det(Q) je néjaky ndsobek rezultantu, ktery predstavuje podminku pro
existenci reSeni € soustavy F spliugici podminku € # 0.

Diikaz: See [9]. O
Jak vyplyva z Véty 7.2.1, projekéni operator je mozné ziskat jako determinant libo-
volného maximalniho minoru matice rezultantu. Je také dobré se uvédomit, ze Véta 7.2.1
nepredpokldda zadnou specidlni formulaci matice rezultantu a je tedy mozné ji pouzit pro
vypocet projekéniho operatoru z libovolné matice rezultantu.

Pokud najdeme projekéni operator, dalsim krokem je nalezeni rezultantu, resp. iden-
tifikace extra faktoru, v tomto projekénim operatoru. Prvnim krokem tedy obvykle byva
faktorizace projekéniho operatoru. Poté je nutné pro kazdy faktor rozhodnout, zda patii do
rezultantu nebo nikoliv na zakladé urcité specidlni podminky, kterd vyplyva z dané fesené
ulohy. Naptiklad, pokud hleddame implicitni vyjadieni plochy zadané racionélni parametri-
zaci, je mozné pouzit rezultanty pro eliminaci parametru z dané parametrizace. Nicméné,
¢asto dostaneme vice nez jen implicitni vyjadieni. Proto provedeme faktorizaci ziskaného
projekéniho operatoru a do kazdého faktoru dosadime danou parametrizaci plochy. Faktory,
které se po dosazeni vynuluji, tvoii implicitni vyjadieni dané plochy.

7.2.2 Sylvesteruv rezultant pro polynomy ve dvou proménnych

Sylvesterovu matici pro tii polynomy ve dvou proménnych je mozné ziskat pifimym zo-
becnénim metody konstrukce Sylvesterovy matice pro dva polynomy v jedné promeénné.
Necht

f(s,t):iiai,jsitj, g(s,t):iibi,jsitj, h(s,t):iZcmsitj (7.12)

i=0 j=0 i=0 j=0 i=0 j=0

jsou tii polynomy v proménnych s a t. Analogicky jako v pfipadé jedné proménné je mozné
zavést mnozinu polynomu

{s°t"f,s7t"g,s°t"hlo =0,....2m—1,7=0,...,n—1}. (7.13)

Potom Sylvesterova matice opét obsahuje pouze koeficienty vstupnich polynomu f, g a h
a lze ji zapsat ve tvaru

fght(fgh) . ..t" ' (fgh)s(fgh)st(fgh) ...st"" ' (fgh)...
o s2m—1(f g h) szm_lt(f g h) s2m—1tn—1(f g h)] — (7.14)
=[1¢t ...V sst ... st?t . gBmTl gmmly o gmlgn=ll L Qy(f, g, h),

kde je pouzito lexikografické uspofdddni monomi pro s > t, tj. 1,¢,...,t2"7 % ..., sk,

skt gdmel L e3me L=l Matice Syl(f, g, h) je fadu 6mn a determinant Syl-
vesterovy matice je Sylvesteruv rezultant.

Na rozdil od Sylvesterovy matice pro polynomy v jedné proménné je zde pouzito jiné
usporadani polynomu f, g a h a jejich ndsobku na levé strané (7.14). Duvodem je, zZe
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pfi pouziti tohoto usporadani ma Sylvesterova matice specialni, blokové diagonalni struk-
turu, ktera muze byt vyhodna pii vypoctu determinantu matice. Pokud bychom zachovali
usporadani jako v pripadé jedné promeénné, byla by Sylvesterova matice pouze fidkou
matici bez dalsi specidlni vnitini struktury. Samoziejmé je mozné stejnym zptisobem mo-
difikovat i definici Sylvesterovy matice pro polynomy v jedné proménné a obé definice jsou
ekvivalentni.

Sestaveni Sylvesterovy matice pro polynomy ve dvou proménnych se tedy mirné lisi
od zpusobu uvedeného pro Sylvesterovu matici pro polynomy v jedné proménné. Kazdy
sloupec opét obsahuje koeficienty polynomu f, g, h nebo jejich ndsobku z mnoziny (7.13).
Pokud je polynom f (nebo g nebo h) vynésoben ¢, koeficienty f se posunou o jeden fadek
dolt v prislusném sloupci (stejné jako v piipadé jedné proménné). Pokud je polynom f
(nebo g nebo h) vynasoben s, koeficienty f se posunou o 2n fadku dolu v ptislusném
sloupci. To ndm d4va zminénou blokovou strukturu Sylvesterovy matice. Necht

f,(t) = Z CLZ'th, gl(t) = Z bthj, hz(t) = Z Cidtj (715)
7=0 7=0 7=0

a necht S; je matice rozméru 2n x 3n danéd vztahem

[.fi gi hi t(.fi Gi hi) tn_l(fz' gi h,)] = [1 x -t%_l]sia (7-16)

kde

S — Aijn—1 bi,n—l Cin—-1 - G0 bi,O Ci0
;=

Ain bi,n Cin eG4 bi,l Cil

a'i,n bi,n Ci,n

Srovnanim (7.14) a (7.16) dostdvame blokovou strukturu Sylvesterovy matice ve tvaru

So
Sm—l SO
S Si S
Syl(f,9,h) = S
Sm Sm—l SO
S S,
S,

Na zaver této casti si predvedeme sestaveni Sylvesterovy matice na jednoduchém piiklade.
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Piiklad 7.3 Necht plocha S he ddna parametrizaci

st+1 S t

R ) = —— )= ———. 7.17
i Ve =p A= (7.17)

x(s,t) =
Odstranénim jmenovatelu a pii pouziti lexikografického uspotadani monomu pro s > t >
x >y > z dostavame soustavu polynomialnich rovnic

—st+zs+axt+xr—1 = 0,
(y—Ds+yt+y = 0, (7.18)
zs+(z—1t+2z = 0.

Polynomy (7.18) jsou stupné 1 v obou proménnych s a t. Mnozina monomu (7.13) je tedy
v tomto ptipadeé {s?t" f,s7t7g,s°t"hlc = 0,1,7 = 0}. Z (7.14) potom plyne

r—1 vy z 0 0 0
_ 22, | T y—b oz ow-l oy i
[f g hsfsgshl=I1tssts s 1 0 0 T y z—1
0 0 0 r y—-1 =z
0 0 0 -1 0 0
Syl(f.g.h)

det(Syl(f,g,h)) =ay + 2z —x+y* +3yz — 2y + 2> — 2z + 1

je implicitnim vyjadienim plochy dané parametrizaci (7.17).

Pro ovérenti, ze ziskany vysledek je skutecné rezultantem a tedy i implicitnim vyjadienim
dané plochy je mozné vyuzit Grobnerovy baze. Redukovana Grobnerova béaze pro idedl
generovany polynomy (7.18) vzhledem k lexikografickému usporadani pro s >t >z >y >
z je

(ry+xz—2x+y*+3yz— 2y + 22— 22+ 1,
tz—t+ao+y+22—1,

ty—x—y—z-+1,

sz—xrx—y—z+1,

sy—s+ax+2y+2—-1,
st—sx—tr—x+1).

Je ziejmé, ze generdtor druhého elimina¢niho idedlu I, = I N Clx,y, 2] je stejny jako
vypocteny det(Syl(f, g, h)). |

7.2.3 Dixonuv rezultant pro polynomy ve dvou proménnych

Konstrukce Bézoutovy matice pro dva polynomy v jedné proménné je mozné zobecnit pro
tfi polynomy ve dvou proménnych. Jako prvni toto zobecnéni provedl Dixon v roce 1908.
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Opét analogicky jako v pripadé polynomu v jedné proménné, pro polynomy f, g a h
(definované v (7.12)) je mozné zavést funkei

f(s;t) g(s,t) h(s,t)

i

| fED 95D h(si
A(s,t,5,t) = oG- (7.19)

Je ziejmé, ze citatel A(s,t, 5, t) nabyva nulové hodnoty pro s = 5 a t = t. Odtud pifmo
plyne, ze citatel A(s,t,5,t) je beze zbytku délitelny polynomem (s — 35)(t — ¢) a tedy
ze A(s,t,8,t) je polynom v proménnych s, 3, ¢, t. Polynom A(s,t,3,t) se nazyva Dizoniv
polynom a je mozné jej prepsat do tvaru

Als,t,5,0) =[1 ... 2" s . ost™ o sm s Dix(f, g, h)- : ,

§2m—'1£n—1

(7.20)
kde Dix(f,g,h) je ¢tvercovd matice fadu 2mn, kterd se nazyva Dizonova matice a jeji
determinant se nazyva Dizonuv rezultant.

Podobné jako v pripadé polynomu v jedné proménné je mozné odvodit transformacni
vztah, ktery prevede Sylvesterovu matici pro polynomy ve dvou proménnych na Dixonovu
matici pouze ndsobenim specialni transformaéni matici (vice viz [8]). Vztah (7.19) je mozné
prepsat do tvaru

A(s,t,5,0) = Z Z < 2 S g f (s p) gi(t)h;(t) — gi(z?)hj(zt)Jr

i=0 j=0 \ u=0 t—t
N i Ba(0)f5() = hi(D) £5()
+ Z T g g(s,t) - — + (7.21)
= t—t
L3 g g s, ) 2050 = D00
— ’ t—t '
Polynom A(s,t,5,t) je mozné chépat jako polynom v proménnych §,¢ s koeficienty, které
zavisi na s,t. Oznacime-li tyto koeficienty py.o, ..., pun-1, ¥ =0,...,2m — 1, potom plati
2m—1n—1
Als,t,5,0) = Y ) puysP. (7.22)
u=0 7=0
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Ze vztahu (7.21) potom plyne, ze polynomy py.o,- - -, Pun—1, jsou dany linedrni kombinaci
polynomi st/ f, s't’g, s't’h, 0 < i < 2m—1,0 < j < n—1 a tedy existuje matice F rozméru
6mn X 2mn takova, ze

[(f g h) e 82m_1tn_1(f g h)] -F = [po’o ---Pon—1---P2m-1,0- - -p2m—1,n—1]- (723)

Jelikoz prvni matice na levé strané (7.23) odpovida levé strané (7.14) a pravé strana (7.23)
odpovidd prvnim dvéma ¢lenum pravé strany (7.20), je mozné piepsat (7.23) do tvaru

[1...¢2n1 . dm=1 | @m=120-1] . Qy](f g h) - F =

=[1...2n7 1 smmh s 2Tl L Dix(f, g, h). (7.24)

Piidanim 4mn nulovych fadku k Dixonové matici a rozsitenim vektoru na pravé strané
dostavame

[, g1 gmel | @me1ne1  Sul(f. g h) - F =
S [l gmel | gmelgne), l Dix(f,g,h) } | (7.25)

O4mn X2mn

Zminény transformacni vztah mezi Sylvesterovou a Dixonovou matici tedy je

Syl(f,g,h)-F = { Dix(f, g, ) } . (7.26)

O4mn X2mn

Nicméné stale nevime nic blizsiho o struktufe matice F. Matice F je rozméru 6mn x 2mn
a lze ji zapsat blokové ve tvaru

Foo ... Foom-

)

F2m—1,0 s F2m—1,2m—1
kde kazdy blok m& rozmeér 3n x n. Vztah (7.23) muzeme piepsat nasledovné

FOu

)

[fgh... s (f g h)]- : = [Puo - Pun—1]-
F2m—1,u
Z rovnic (7.21) a (7.22) vyplyva, ze prvky matic F,,, 0 < o < 2m — 1, jsou generovany

koeficienty vyrazu

3 gi(t)h;(t) — gi(t)h;(t)

i+j=c+u+l b=t |
S ha(t) fj(af - iu(ﬂfj (t)7 (7.27)
i+j=o+u+1
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zt jt — zt jt
3 fi(t)g; () — fi(£)g;(t)

t—t

i+j=o+utl
Kazdy clen v téchto tfech souctech je Bézoutovym polynomem pro dva polynomy v jedné
proménné a tedy kazdy tento clen generuje Bézoutovu matici. Proto kazdy blok F,,, ob-
sahuje t¥i sumy Bézoutovych matic, které se po fddcich prolinaji (necht Bg , 1 =1,2,3, je
j-ty Fadek i-té matice; potom ¥, , = [Bi; Bi; By; B?; B2; B; .. ]). Tedy,

F,., = prolinani po fadcich tif matic
> Bez(gi hy), > Bez(h f)), > Bez(fi,g;)(7.28)
i+j=0+utl i+j=otu+1 i+j=0+utl

Navic, bloky F,, maji nasledujici vlastnosti:
o F,,=F, v, pokud 0 +u =0+ u;
o F,., = Os,xp, pokud o +u > 2m — 1.

Z toho déle plyne, ze
F _{FO,O'-‘,-ua U+u§2m_17

O jinak
a plati
F F .. Foom_
Fo, . Foom-1 F(O]’(l) 0,1 0,2m—1
F == — '7
Fom-10 - Fom19m1 oo
34—

Pro zjednoduSeni muzeme vypustit prvni index u bloku a oznacit matice Fy; symbolem
F;. Potom
FO . Fgm_l
F= : . (7.29)
F2m—1
Na zavér si opét predvedeme sestaveni Dixonovy matice a vypocet Dixonova rezultantu
na jednoduchém prikladeé.

Piiklad 7.4 Necht plocha S je ddna stejnou parametrizaci jako v Pifkladé 7.3. Dostavame
tedy stejnou vychozi soustavu polynomidlnich rovnic

—st+axs+at+x—-1 = 0,
(y—Ds+yt+y = 0,
zs+(z—1t+2z = 0.
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Pro nalezeni Dixonovy matice je mozné vyuzit vztah (7.26), jelikoz jiz zname Sylvesterovu
matici (viz Priklad 7.3). Staé¢i tedy najit transformaéni matici F a vyndsobit ji Sylvesterovu
matici. Dané polynomy jsou stupné 1 v obou proménnych s a ¢, tzn. m =1, n =1, a ze

vztahu (7.29) plyne
(2]

F, O

Matice F ma rozmér 6x2 a kazdy blok F; ma rozmeér 3x 1. Z (7.28) vyplyva jak zkonstruovat
bloky Fy a F;. Nejprve je nezbytné najit polynomy f;, g; a h;, i = 0,1, pomoci (7.15)

fo=ap +ant = —1+at fi=a+ant =z —1t,
go = boo + boit =y +yt g1 =bo+but=y—-1,
h02000+001t22+(2—1)t hl =0+ ciit = 2.

Potom musime vypocitat Bézoutovy rezultanty pro polynomy f;, ¢;, h;, abychom mohli
ur¢it sumy uvedené v (7.28). Pro sestaveni matice Fy bereme viechny sumy pro vSechna
1,7 takova, ze i + 7 = 1. Tedy

Z Bez(g;,hj) = Bez(go,h1) +Bez(g1,ho) = —yz+ (y—1)(z—1) = -y — 2 +1,
itj=1

Z Bez(h;, f;) = Bez(ho, fi) +Bez(hy, fo) = —2z—2(2 — 1)+ 22 =2 — 2,
it+j=1
> Bez(fi,g) = Bez(fo, 1)+ Bez(fi,90) = —a(y—1)+ay+y=x+y.
it+j=1
Matici Fy dostavame ve tvaru
—y—z+1
Fy, = T —z
rT+y

Podobné vypocteme prvky matice F;. Sumy bereme pro vsechna i, j takova, ze ¢ + j = 2.
Dostavame

Z Bez(g;, hi) = Bez(gi,h1) =0,

i+j=2
> Bez(hi, f;) = Bez(hy, i) =2,
i+j=2
Z Bez(fiagi) = Bez(.flygl) =Yy—- 1
i+j=2
a tedy
0
Fl = —Z
y—1



Z bloku Fy a F; jiz snadno sestavime vyslednou transformaéni matici F ve tvaru

[ —y— 241 0
r—z —z
_ r+y y-—1
F= 0 0
—Zz 0
L oy 0 ]
Potom
[ —1 Y Z 0 0 0 | [-y—2z+1 0
T Y z—1 0 0 0 Tr—z —z
Dix(f,g,h) | _ r y—1 =z x=1 'y z r+y y—1
O4><2 - -1 0 0 T Yy z—1 0 0
0 0 0 r y—1 z —z 0
|0 0 0 -1 0 0 11 w-—1 0 |
SYI(f.0.h) ¥
a po vynasobeni dostaneme Dixonovu matici ve tvaru
. lr+yt+z-—1 —z
DlX(f,g,h)— —y —y—z+1

Determinant Dixonovy matice je
det(Dix(f,g,h)) = —ay —xz +x —y* —3yz + 2y — 2> + 2z — 1,

coz je stejny vysledek jako jsme obdrzeli ze Sylvesterovy matice (az na nasobek ¢islem -1)
v Priklade 7.3. u

Zbyvajici ¢ast této kapitoly bude vénovana formulacim matic rezultanti pro obecny
piipad n + 1 polynomu v n proménnych.

7.2.4 Matice Sylvesterova typu

Konstrukce matic rezultantu Sylvesterova typu je zalozena na podobné myslence jako dia-
lytickd metoda — pro danou soustavu polynomidlnich rovnic F' = {fy, ..., f.} chceme najit
mnozinu monomu, tzv. mnozinu nasobiteli, pomoci které muzeme ziskat novou soustavu
polynomiélnich rovnic F”.

Definice 7.2.1 Necht f(x1,...,x,) je polynom a necht X je mnoZina ndsobiteli. Potom
X[ ={z"flz" € X}

je mnozina polynomai ziskand ndsobenim polynomu f prvky mnoZiny X.
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Poznamenejme, ze je-li € feSenim f = 0, potom je také fesenim X f = 0. Na druhou
stranu, jestlize € je feSenim X f = 0 a existuje monom z® € X takovy, ze €* # 0, potom
¢ je také tesenim f = 0. Specidlné, pokud X obsahuje 1, potom mnoziny feseni f = 0 a
X f = 0 jsou shodné.

Necht X, X, ..., X, jsou mnoziny nasobiteli pro polynomy fo, ..., f,. Potom je mozné
uvazovat novou soustavu rovnic

Xofo

X
Fl: . 1f1 :MF,.X7
X"I’LfTL

kde ¢ € X, pokud a = 8+, 27 € X; a 27 € f; pro néjaké 0 < i < n. Matice My je
potom matici rezultantu Sylvesterova typu.

Definice 7.2.2 Matice rezultantu je matici Sylvesterova typu, jestlize proky v této matici
gsou bud nuly nebo koeficienty polynomai vyjchozi soustavy polynomidlnich rovnic.

Je ztejmé, ze dialyticka metoda vzdy déava matici rezultantu Sylvesterova typu. Jinym
piikladem matice rezultantu Sylvesterova typu je Macaulayho matice uvedena v néasledujici
¢asti.

7.2.5 Macaulayho matice

Macaulayho matice je matici rezultantu Sylvesterova typu se specidlni volbou mnozin
nasobiteltt pro dané polynomy vychozi soustavy rovnic. Necht F' = {fo,..., fu} je sou-
stava polynomidlnich rovnic a necht

N = Zdeg(fi) —n,
i=0
kde deg(f;) je celkovy stupen polynomu f;. Necht
X ={a"25? - zp|as +ag+ -+ a, <N}
je mnozina monomu takovych, ze |X| = ( N: " ) a necht

Xo = {aPxy? - xitog + g+ -+, < N —deg(fo)},

X = {afxy? - aitjog s+ -+ o, < N —deg(fi) Aag < deg(fo)},

Xy = {a"2? - apt|ar +ag+ -+ a, <N —deg(fa) Aag < deg(fo) A
A ag < deg(fi)},

X, = {z7xy? x| Fag+ -+ a, < N —deg(fn) A
N Qg <deg(fl), Vi o ZS’I’L—l}
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Z konstrukce mnozin X; vyplyva, ze vSechny monomy mnoziny polynomu X;f; lezi v

mnoziné X. Navic,
n

> Xl =X,
i=0

Potom soustava polynomidlnich rovnic

Xofo
X1fi

F' = =Mp - X

X"I’Lf’ﬂ

mé | X| rovnic a |X| monomu. Matice rezultantu ziskand pomoci mnozin nésobitelu X; je
tedy ¢tvercovou matici a nazyva se Macaulayho matici.

Macaulay také urcil extra faktor, ktery je obsazen v projekénim operdtoru ziskaném
jako determinant Macaulayho matice. Timto extra faktorem je determinant jisté submatice
matice My .
eg

Definice 7.2.3 Monom x* € X se nazyvd redukovany, jestliZe z? U dels zo Pro praveé

jedno i € {0,...,n}.

Jestlize vypustime vSechny tadky a sloupce piislusné redukovanym monomum z?%, do-
staneme submatici Mg/, jejiz determinant je presné extra faktorem (az na znaménko)
obsazenym v projekénim operatoru.

7.2.6 Dixonova matice

V ¢éasti 7.2.3 jiz byla zminéna konstrukce Dixonovy matice pro tfi polynomy ve dvou
proménnych. Tato ¢ast bude vénovana zobecnéni pro obecny piipad n + 1 polynomu v n
proménnych.

Necht F' = {fo,...,fu} C Z(ay,...,an)[x1,...,7,] je mnozina n + 1 polynomu v
n proménnych xi,...,z, s koeficienty z télesa Z(a,...,a,). Analogicky jako v piipadé
dvou proménnych nejprve zavedeme zobecnény Dixonuv polynom.

Definice 7.2.4 Necht F = {fo,...,fa} C Z(ay,...,an)[x1,..., 2, je soustava poly-
nomidlnich rovnic a necht

fl(,fl,l’g,...,xn) fn_|_1($1,£(72,...,$n)

fl(,fl,flfg,...,xn) fn+1(,f1,.ﬁlf2,...,$n)
5(1’1,...,l’n,i’1,...,i‘n): fl(j17j27"'7xn) fn+1(j1,i’2,...,$n) ,

fi(Z1, Ty Tn) oo a1 (T, T, Ty)
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kde z; jsou nové pridané proménné a fi(Z1, ..., Tk, Thtt, - .-, Tn) ziskdme substituci noviyjch
proménnych z; za x;,i = 0,...,k, v polynomu f;. Potom Dixonuv polynom je definovdn
vztahem

0z, oy Ty Ty, ey T)

(xl _jl)"'(xn _jn)

A(fo,...,fn;xl,...,l’n,i'l,...,i’n): (730)

Je ztejmé, ze Dixonuv polynom je skutecné polynomem, a ne raciondlni funkci. Jelikoz
determinant 0 v ¢itateli vztahu (7.30) nabyva nulové hodnoty pro libovolné z; = z;,0 <
i < n, je délitelny (x; — z;), Vi. Dixonuv polynom je mozné také prepsat do maticové
podoby — viz nasledujici definice.

Definice 7.2.5 Dizonuv polynom A(fo,. .., fu;T1,. o Tny T1, ..., Ty) je moiné zapsat ve

tvaru o
A(.an"'7.fn;xla"'7$n>j1a"'7jn):X'G'Xv

kde X = (z®,...,x*) je tdadkovy vektor obsahujici uspordadanou mnoZinu monomi v
proménngjchxy,. .., x, vA, a X = (7%, ..., 2%) je sloupcovyj vektor obsahujici usporddanou
mnozinu monomu v proménnych i, ..., T, v A. Prvek vi-tém rdidku a j-tém sloupci matice

O je koeficientem monomu x* %% v Dizonové polynomu A. Matice ® se nazjvd Dixonova
matice.

Podobné jako v ptipadé Bézoutovy matice je Dixonova matice hustou matici, jelikoz jeji
prvky nejsou ptimo koeficienty polynomu vychozi soustavy polynomialnich rovnic ale deter-
minanty matic téchto koeficienti. To predstavuje vyhodu i nevyhodu oproti maticim Syl-
vesterova typu — Dixonova matice je vyrazné mensi nez ruzné matice Sylvesterova typu, ale
na druhou stranu je vypocetné narocnéjsi jeji sestaveni. Vyhoda ziskana mensim rozmeérem
matice vSak obvykle prevazuje nad zminénou nevyhodou — vypocet symbolického determi-
nantu je velmi citlivy na velikost matice a mensi matice rezultantu predstavuji tedy velkou
vyhodu pii extrakci projekéniho operatoru z matice rezultantu.

Resenf soustavy polynomidlnich rovnic F = {fy, ..., f.} je soucasné kofenem Dixonova

polynomu. Proto linearni soustava
X-0=0

musi byt fesitelna, pokud existuje feseni vychozi soustavy polynomialnich rovnic. A tedy,
nulovost determinantu matice ® je nutnou podminkou pro existenci feseni soustavy poly-
nomialnich rovnic F.

V nékterych piipadech nemusi byt Dixonova matice ® ¢tvercova nebo muze byt jeji
hodnost mensi nez pocet fadku a sloupcu. V takovém piipadé je mozné vyuzit metodu
RSC pro ziskani projekéniho operdtoru z takové matice.

7.2.7 Dixonova dialytickd matice

Posledni formulaci matice rezultantu zminénou v této kapitole bude tzv. Dizonova dia-
lytickd matice, kterd je matici Sylvesterova typu a vychazi z Dixonovy formulace matice
rezultantu.
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Pro se sestaveni se pouziva jeden volitelny parametr — libovolny polynom g. Odlisné
volby parametru g vedou k odliSnym maticim rezultantu, s rozdilnymi rozmeéry matic.
Nicméné existuji odhady a podminky pro optimalni volbu g, které zarucuji minimali-
zaci rozméru matice a tim i minimalizaci stupné extra faktoru obsazeného v projekénim

operatoru.
Necht g € Clzy,...,2,,a1,...,ay) je libovolny polynom a necht F = {fo,..., fu} C
Clx1, ..., Tp, a1, ..., ay] je soustava polynomidlnich rovnic. Ozna¢me

Al(g) = A(.f0> BRI fi—lag> fi-i-la SRR fn7 Tiyeeoy Tny T1ye ey "Z'n)a
Dixonuv polynom soustavy F', kde i-ty polynom byl nahrazen polynomem g.

Véta 7.2.2 Polynomidlni ndasobek Dixzonova polynomu soustavy polynomaidlnich rovnic F' =
{fo, -, fn} je mozné vyjadrit jako soucet soucini zadanych polynomi f; a Dizonovych po-
lynoma zbyjvagicich polynoma a daného polynomidlniho ndsobku, tj.

IA(fo, -y [ @1y e o Ty Ty e Ty) = Z fili(9), (7.31)
=0

kde g je libovolny polynom.
Diikaz: Viz [9]. O
Vyuzijeme-li maticovy zapis Dixonova polynomu, je mozné piepsat polynom A;(g) do

tvaru

Ai(g) = Xi0,(9)X,

kde ©;(g) je Dixonova matice soustavy polynomialnich rovnic {fo,..., fi-1,9, fis---, fu}:
Vynésobime-li A;(g) polynomem f;, dostavame

Ai(9)fi = (Xi®i(9)Xi) f; = (XiO4(9)) - (Xifi).

Potom vektory X, je mozné pouzit jako mnoziny nasobitelti pro piislusné polynomy f; a
zkonstruovat dialytickou matici, tj.

Xofo

Xifi

F' = =Mp-Y.

XTLfTL
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Nésledné, vyjdeme-li z (7.31), dostavame

IA(fo, - 1, T, Ty, T,) = XOgX =

= ZAZ(Q)fZ = ZX2®2(9)<Xzfz) =
i=0 i=0
Xo fo
_ X1f1
= Y[Oo(9) : ©1(g) :...: Ou(g)] | . =
ann
= Y(T -Mpn)Y =YOY,
kde .
?:UX,- a T=0y(9):0:(g9):...:0,(9) a O =T -Mp.
i=0
Odtud tedy plyne
X0gX =YO'Y.
Dusledek 7.2.3 Pro danou soustavu polynomidlnich rovnic F = {fo,..., fu} je mozné

odpovidagici Dizonovu matici rozloZit na soucin dvou matic, z nichZ jedna je dialytickou
matict, tj.

=T Mg,
kde Mg je Dizonova dialytickd matice pro danou soustavu F'.

Tento dusledek je v podstaté zobecnénim transformacniho vztahu mezi Sylvesterovou a
Bézoutovou matici v pripadé polynomu v jedné proménné a mezi Sylvesterovou a Dixo-
novou matici pro tfi polynomy ve dvou proménnych pro obecny piipad polynomu v n
proménnych.
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Kapitola 8

Implicitizace krivek a ploch

Existuji v zasadé dva standardni zpusoby reprezentace algebraickych variet — implicitni
reprezentace a parametricka reprezentace. Podle toho, jaké operace potfebujeme provadét
s danou algebraickou varietou, muze byt vyhodnéjsi implicitni nebo parametrickd repre-
zentace. Parametrické vyjadreni je vyhodnéjsi pro generovani bodu na varieté, napt. pro
jejl vykresleni. Implicitni vyjadieni je lepsi v ptipadé, ze potiebujeme zjistit, zda dany
bod lezi na dané varieté, pfip. uvniti nebo vné dané variety. Dalsim piikladem je hledéni
prunik dvou variet, kde je vyhodné mit k dispozici implicitni vyjadieni jedné variety a
parametrické vyjadreni druhé variety. Proto je dulezita existence metod pro piechod od
jednoho vyjadieni ke druhému.

Typickymi objekty geometrického modelovani jsou racionalni Bézierovy kiivky a plochy
a NURBS (NeUniformni Racionédlni B-Spline) kiivky a plochy, které jsou reprezentovény
parametricky. Proto se v této kapitole zamétime na problém implicitizace, tzn. na nalezeni
implicitniho popisu parametricky zadané racionalni algebraické variety.

V poslednich letech jsou metody implicitizace algebraickych variet intenzivné studovany.
Zakladni pristup spo¢iva v pouziti metod eliminace proménnych, jako jsou rezultanty (viz
kap. 7 nebo také [9],[13],[17],[24]) nebo Grobnerovy béze (viz kap. 3 nebo také [3], [2]).
Odstranénim jmenovatelu je parametrizace prevedena na soustavu polynomidlnich rovnic,
z nichz jsou vyeliminovany parametry. Obecné ale nemusi byt ziskano implicitni vyjadieni
nejmensi variety obsahujici dané parametrické vyjadieni. Pti pouziti Grobnerovych bazi
spo¢iva mozné Teseni v pridani jedné rovnice, kterd zaruci nenulovost jmenovateli para-
metrizace (viz kap. 6). Odlisny zpusob feseni toho problému je prezentovan v [1].

V pripadé pouziti rezultantu pridani rovnice, ktera zajisti nenulovost jmenovatelu pa-
rametrizace, nepomuze. Determinant matice rezultantu (resp. maximalniho minoru) muze
stale obsahovat extra faktory, které je nutné eliminovat ze ziskaného projekéniho operatoru.

Obecné lze dale Fici, ze algoritmy implicitizace pomoci Grobnerovych bazi a rezultantu
maji ,,problémy“ s parametrizacemi, které obsahuji tzv. base points!. V takovém pifpadé je
Dixonuv rezultant (a libovolny jiny rezultant ziskany jako determinant matice rezultantu)

Necht S(u,v) = (X (u,v),Y (u,v), Z(u,v), W(u,v)) je parametrizace plochy v projektivnim prostoru.
Base point je takovd dvojice (ug,vo) € C2, 7e plati X (ug,v0) = 0 A Y(ug,v0) = 0 A Z(ug,v) =
0 A W(UQ,'UQ) =0.
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identicky roven nule. K extrakci nenulového projekéniho operatoru z matice rezultantu je
mozné pouzit metodu RSC (viz kap. 7 nebo také [9], [11], [12] a [24]). V piipadé pouziti
Grobnerovych bazi nedochdzi k tplné eliminaci proménnych (implicitni vyjddieni neni
obsazeno v idedlu generovaném parametrickymi rovnicemi), coz je mozné fesit pridanim
rovnice zajistujici nenulovost jmenovatelii parametrizace, jak bylo zminéno vyse. Dalsim
moznym TFeSenim je perturbace vstupnich polynomu pomoci vhodné zvolenych polynomu,
které nenabyvaji nulové hodnoty pro base points dané parametrizace (viz [16], [15]). Poté
eliminujeme parametry ze ziskané soustavy rovnic a implicitni vyjadieni je obsazeno v

Dalsi metodou implicitzace algebraickych variet je metoda moving curves a moving
surfaces (viz [25], [26]). Implicitni vyjadieni je ziskdno opét jako determinant specialné
vytvorené matice, kterd muze byt dokonce men$i nez odpovidajici matice rezultantu.
Napiiklad, pokud pouzijeme metody moving conics (quadrics) pro implicitizaci racionélnich
kiivek (ploch) bez base points, velikosti ziskané matice je ¢tvrtinou odpovidajici Dixonovy
matice. Jestlize existuji base points pro danou kiivku (plochu), metoda se v podstaté zjed-
nodusi — snizi se stupen nékterych prvku v matici nebo se dokonce zmensi ziskand matice.

S vyuzitim znalost{ metod moving lines a moving planes, ¢lanky [6] a [7] prezentuji
metodu pro implicitizaci racionalnich ktivek a ploch, kde implicitni vyjadieni je ziskano
jako determinant specidlni matice Sylvesterova typu (fidkd matice, jednoduché prvky) s
rozmérem Bézoutovy matice.

V poslednich letech se objevil zajimavy pristup implicitizace kiivek a ploch vyuzivajici
numerickych metod — klasické polynomialni interpolace (viz [18], [19]). Po sestaveni matice
rezultantu (¢lanky jsou zalozeny na pouziti Macaulayho rezultantu, ale je mozné vyuzit li-
bovolné formulace matice rezultantu), je determinant interpolovéan pomoci klasické Lagran-
geovy interpola¢ni metody (pro implicitizaci kiivek), piip. se vyuzije rozsiteni pro piipad
vice proménnych (pro plochy).

Clémek[Bl] uvadi velmi jednoduchou metodu implicitizace, kterd je zalozena na odhadu
stupné implicitniho vyjadieni a hleda koeficienty obecného polynomu odhadnutého stupné
pomoci feseni soustavy linearnich rovnic.

8.1 Implicitizace pomoci Grobnerovych bazi a rezul-
tantu

Zakladni metodou implicitizace algebraickych variet je pouziti metod eliminace proménnych
pro eliminace parametri z parametrického vyjddieni algebraické variety. Necht

_ (X)) Y(2)
C(t) = (W—(t)’ W—(t)> (8.1)

je raciondlni parametrizace rovinné krivky C'. Potom odstranénim jmenovatelu dostavame
soustavu rovnic

W) - X(#) = 0,
v W) -Y() = 0. (8:2)
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Eliminaci parametru t ze soustavy (8.2) pomoci Grobnerovych bazi nebo rezultantt ziskdme
polynom F'(x,y) pouze v proménnych z, y, ktery obsahuje implicitni vyjadfeni pro danou
ktivku C. Vyjimkou jsou parametrizace obsahujici base points, kdy neni mozné elimino-
vat parametr pomoci téchto metod piimo — touto situaci se budeme podrobnéji zabyvat
pozdéji. Nicméné, i kdyz parametrizace neobsahuje base points, F'(z,y) muze obsahovat
také extra faktory?. Neni tedy garantovano, Ze F(x,y) predstavuje nejmenss varietu, kterd
obsahuje kiivku C' danou parametrizaci (8.1). To lze zajistit (pfi pouziti Grébnerovych
bazi) pridanim jedné proménné a jedné rovnice

1—s-W(t) =0. (8.3)

Rovnice (8.3) zaru¢i nenulovost jmenovatele parametrizace (8.1). Eliminaci proménnych s,
t ze soustavy rovnic (8.2)+(8.3) dostavame polynom R(x,y), ktery predstavuje nejmensi
varietu obsahujici kiivku C' (viz kap. 6). Polynom R(z,y) je tedy implicitnim vyjadienim
kiivky C' dané parametrizaci (8.1). Pfi pouziti rezultantu toto bohuzel garantovat nelze,
ani po pridani rovnice (8.3) k soustavé (8.2).

Analogicky je mozné najit implicitni vyjadreni raciondlné parametrizované plochy. Ne-
cht

X(u,v) Y(u,v) Z(u,v) ) (8.4)

S(u,v) = (W(u,v)7 Wi(u,v)” W(u,v)

je racionalni parametrizace plochy S. Odstranénim jmenovateli dostavame soustavu rovnic

x-W(u,v) — X(u,v) = 0,
y-Wu,v) —Y(u,v) = 0, (8.5)
z-W(u,v) — Z(u,v) = 0.

Eliminaci parametru u, v (opét za predpokladu, ze parametrizace (8.4) nemd base points)
ziskdme polynom F'(z,y, z) pouze v proménnych z, y, z, ktery obsahuje implicitni vyjadient
dané plochy a obecné také extra faktory. Obdobné je tedy mozné piidat rovnici

1—s-W(u,v)=0 (8.6)

pro zaruceni nenulovosti jmenovatelu parametrizace (8.5). Potom eliminaci proménnych s,
u, v pomoci Grobnerovych bazi dostaneme polynom R(z,y, z), ktery reprezentuje nejmensi
varietu obsahujici danou plochu S a je tedy implicitnim vyjadienim plochy S.

Jak jiz bylo zminéno vyse, base point je kazdé spolecné teseni (ug,vq) € C? soustavy
rovnic

X(u,v) =0, Y(u,v)=0, Z(u,v)=0, W(u,v)=0.

Jestlize parametrizace plochy obsahuje base point, obé metody selhdvaji pti nalezeni im-
plicitntho vyjadteni plochy S. Nyni si vysvétlime, co to zpusobuje.

2Extra faktory jsou faktory F(z,y), které nepatii do implicitntho vyjadfeni kiivky C. Pfesnéji, faktory
F(z,y), pro které F(V)‘(,—((tt)), %) = 0 tvori implicitni vyjadieni dané kiivky C. Ostatni faktory jsou extra
faktory.
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Pouzijeme-li rezultanty, projekéni operdtor ziskany z matice rezultantu pro soustavu
(8.5) vzhledem k parametrizaci s base point(s) je identicky nulovy. Jestlize (ug,vy) € C?
je base point parametrizace S(u,v), potom substituci do (8.5) dostavame

z-0—0 = 0,
y-0—0 = 0,
2:0-0 = 0.

Soustava rovnic (8.5) ma tedy netrividlni feSeni (ug,vg) nezavislé na z, y, z. Jelikoz re-
zultant pfedstavuje nutnou a postacujici podminku existenci spolecného teSeni vychozi
soustavy rovnic, je rezultant v tomto pripadé identicky nulovy.

Pouziti Grobnerovych bazi pro implicitizaci kiivek a ploch je zalozena na faktu, ze impli-
citni vyjadreni je obsazeno v idedlu I generovaném polynomy soustavy (8.5). Pii vhodné
volbé uspotradani jsme toto implicitni vyjadieni schopni ziskat z vypoctené Grobnerovy
béaze. Problémem parametrizaci s base points je, ze odpovidajici ideal I neobsahuje zadny
polynom nezavisly na u, v (kromé 0) a tedy idedl I v tomto piipadé neobsahuje implicitni
vyjadieni plochy S. Necht

I=(x -Wu,v)— X(u,v),y Wu,v) = Y(u,v),z- W(u,v) — Z(u,v)) (8.7)

je idedl generovany rovnicemi (8.5) a necht (ug,vy) je base point parametrizace (8.4).
Predpokladejme, ze I obsahuje polynom F(z,y,z) nezavisly na u, v. Potom je mozné
zapsat polynom F'(z,y, z) ve tvaru

F(z,y,2) = Ai(z,y,2,u,0v) (:)3 W (u,v) — X (u, v))—l—
+ A2<xayuzvu7v)(y'w(u7v) —Y(U,’U))+
+ As(z,y,z,u,0)(z- W(u,v) — Z(u,v)).

Jelikoz toto musi platit nezavisle na volbé (u,v), musi tento vztah platit také pro (ug, vo).
Tedy,

F(x,y,2) Ay (,y, Z,Uo,vo)(if - W (ug, vo) — X (o, Uo))
As(z,y, 2, ug, vo) (y - W (ug, vo) — Y (uo, vo))
As(z,y, z,uo,vo)(z W (ug, vo) — Z(uo, vo))
0.
Odtud vyplyva, ze jedinym polynomem nezavislym na u, v v idedlu I je nulovy polynom
a vSechny ostatni polynomy obsahuji u nebo v.

Existuje nékolik moznosti jak problém s base points fesit:

I+ + |
|+

e je mozné pridat rovnici (8.6) pro zajisténi nenulovosti jmenovatele W (u,v), coz eli-
minuje base points,

e je mozné pouzit metodu perturbaci, tzn. modifikovat vychozi soustavu rovnic (8.5)
pomoci vhodné zvolenych polynomu (viz [15], [16]),

e pokud pouzijeme rezultanty pro eliminaci parametru, je mozné vyuzit metodu RSC
pro extrakci projekéniho operatoru z matice rezultantu i v piipadé, ze determinant
matice rezultantu je nulovy (viz [9], [24]).
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8.2 Implicitizace pomoci moving curves a moving sur-
faces

Metody moving curves (pro kiivky) a moving surfaces (pro plochy) spoc¢ivaji v sestaveni
specidlni matice, jejiz determinant je implicitnim vyjadfenim dané algebraické variety.
Podrobnéjsi popis metod je mozné najit v [25], [26].

Necht Q(t) = (X(¢),Y (¢), W(t)) je raciondln{ rovinna kiivka stupné n v projektivnim
rozsiteni Ey. Moving curve stupné m je definovana vztahem

m

C(X;t) =) fi(X) =0,

=0

kde X = (z,y,w) a f;(X) je polynom stupné d, a predstavuje mnozinu algebraickych
krivek lisicich se v zavislosti na t. Rekneme, Ze moving curve sleduje racionalni kiivku
Q(t), jestlize pro vsechna t lezi bod Q(¢) na moving curve, tj. plati

C(Q(t):t) = Z £i(X(@),Y (1), W ()t =0.

Nejcastéji se pouzivaji dva typy moving curves — moving lines a moving conics. Moving
line stupné m — 1 je mozné definovat ekvivalentné dvéma zpusoby:

Lm—l(x>y)tm_l + -+ Ll(zv y)t + L()(Zlf,y) =0

nebo
Alt)x + B(t)y + C(t) =0,

kde L;(z,y) jsou linearni polynomy v proménnych z, y a A(t), B(t), C(t) jsou polynomy
stupné m —1 v proménné ¢ (alespon jeden z nich). Pro libovolné ¢, moving line predstavuje
implicitni rovnici pitimky v roviné zy.
Moving line sleduje raciondlni kiivku Q(t), jestlize plati
X(t) Y(t)

AW + BOpg +C0 =0

nebo ekvivalentné
A)X(t)+ Bt)Y(t)+ C(t)W (t) = 0.

Geometricky to znamena, ze implicitné zadana piimka odpovidajici parametru ¢ prochézi
bodem dané racionélni ktivky, ktery odpovida stejnému parametru t.
Pro danou racionalni kiivku Q(¢) stupné m obvykle hleddme moving lines stupné m — 1

Lm—l(xvy)tm_l + +L1($7y)t+L0(xay) = 07 (88)
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které sleduji kiivku Q(t). Jelikoz kazdy polynom L;(x,y) je linedrni v z, y, muzeme (8.8)
prepsat do tvaru

(Am_ll’ + Bm—ly + Cm_l)tm_l —+ -+ (Alllj' + Bly + Cl)t + (A()ZL’ + B()’y + CO) = 0 (89)

Dosadime-li za = a y souradnice racionalni parametrizace kiivky Q(t), tj. racionalni funkce
X(t)/W(t) aY(t)/W(t) a vyndsobime-li ziskany vztah polynomem W (t), dostaneme po-
lynom stupné 2m — 1 v proménné ¢

(A1 X () + B Y (8) + Con a W ()™ - -+ (Ap X (8) + BoY (1) + CoW () = 0. (8.10)

Pokud mé moving line (8.9) sledovat kiivku Q(¢), potom musi byt polynom (8.10) identicky
nulovy. To vede na feSeni homogenni soustavy 2m linedrnich rovnic pro 3m neznamych
Ay, By, Cy. Maticové lze tuto soustavu zapsat ve tvaru

Ao
By
Co
XY W ... "X ety ¢t | =0, (8.11)
Am—l
Bm—l
Cm—l

kde tadky matice koeficientu odpovidaji mocnindm ¢ a sloupce koeficientum polynomu
X, Y W,k =0,...,m — 1.

Homogenni soustava 2m linedrnich rovnic pro 3m nezndmych ma alespon m lineadrné
nezavislych teseni. Pokud

pi(t) = Lim-i(z,y)t™ "+ + Lii(z,y)t + Lig(z,y) = 0,
: (8.12)
pm(t) = Lm,m—l($7 y)tm_l +- 4+ Lm,l(x> y)t + Lm70($7 y) =0

jsou tato linedrné nezdvisla reseni soustavy (8.11), potom

Lio ... Lima
R(z,y) = : =0

Lm,O Lm,m—l

je implicitnim vyjddrenim racionalni kiivky Q(t), za predpokladu, ze kiivka nemé base
points.

Véta 8.2.1 Metoda moving lines vidy generuje sprdavné implicitni vyjadreni raciondlni
krvky, pokud dand raciondlni krivka neobsahuje base points.
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Diikaz: Viz [26]. O

Pokud ktivka obsahuje base points, potom musi byt metoda modifikovana — racionalni
kiivka stupné m s r base points je reprezentovana implicitné polynomem stupné m — r.
Detaily modifikace zminéné metody pro racionalni kiivky s base points je mozné najit v
26].

Metoda moving lines je velmi blizka metodé implicitizace zalozené na pouziti Bézoutova
rezultantu. Obé metody produkuji matice fadu m pro danou racionalni kiivku stupné m.
Navic, radky Bézoutovy matice predstavuji moving lines dané racionalni kiivky a je mozné
dokéazat, ze fadky matice generovana metodou moving lines jsou linearnimi kombinacemi
radek Bézoutovy matice.

Hlavni vyhoda metody moving curves pro implicitizaci kiivek spoc¢iva v pouziti moving
curves s bazovymi funkcemi vysstho stupné. Jak jiz bylo zminéno vyse, pouzivaji se zejména
moving conics. Moving conic stupné m — 1 je definovdana ekvivalentné dvéma zpusoby:

Cm—l(x>y)tm_l +—|—C’1(:L',y)t+C'0(:E,y) =0 (813)
nebo
At)z* + B(t)zy + C(t)y* + D(t)z + E(t)y + F(t) = 0, (8.14)
kde C;(z,y) jsou polynomy stupné dva v proménnych z, y a A(t), B(t), C(t), D(t), E(t),
F(t) jsou polynomy stupné m — 1 v t.
Podobné jako v piipadé moving lines, moving conic (8.14) sleduje racionélni kiivku
Q(t), jestlize nabyva nulové hodnoty na této kiivce, tj.
A)X2(t) + BOX @)Y (¢) + C(H)Y2(t)+
+D()X (W () + E@)Y ()W (t) + F(t)W?3(t) = 0.
Geometricky to znamena, ze implicitné zadana kuzelosecka odpovidajici parametru ¢ prochazi
bodem racionalni kiivky, ktery odpovida stejnému parametru ¢.

Kazdy koeficient C;(z,y) ve vztahu (8.13) je kvadratickym polynomem v proménnych
x, y. Vztah (8.13) je tedy mozné prepsat do tvaru

(A 12?4+ B12y + Cr 19> + Dy 12 + B 1y + Fp )t 1+
: (8.15)
+(A0£L’2 + Boxy + Coy2 + D()[L’ + Eoy + FO) =0.

Pro nalezeni implicitntho vyjadieni raciondlni kiivky Q(t) stupné 2m hleddme moving
conics stupné m — 1, které sleduji Q(t). Opét dosadime parametrizaci kiivky Q(t) repre-
zentovanou polynomy X (¢)/W (t) a Y (t)/W (t) za x a y a vynasobime celou rovnici W?(t),
¢imz dostaneme

(A1 X()* + B X@Q)Y () + -+ B  Y(OW(E) + e W)™ 1+
: (8.16)
+(AgX (1) + BoX ()Y (t) + CoY (t)* + Do X ()W (t) + EoY ()W (t) + FoW?(t)) = 0.
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Jelikoz polynomy X (t), Y (t), W(t) jsou stupné 2m v proménné t, levé strana (8.16) je
polynomem stupné 5m — 1 v proménné ¢. Polynom (8.16) musi byt opét identicky nu-
lovy, aby (8.16) sledovala racionalni kiivku Q(t). Koeficienty polynomu (8.16) tedy musi
byt identicky nulové, coz vede na feseni homogenni soustavy 5m linedrni rovnic pro 6m
neznémych Ak, Bk, Ck, Dk, Ek, Fk, k= 0, s, — 1

(X2 XY Y2XW YW W2 .. ¢ I X2 gL XY ¢ ly2 g L XW e Y W el
C a0 ]

=0, (8.17)

kde tadky matice koeficienti odpovidaji mocninam ¢, sloupce odpovidaji koeficientum
polynomii t* X2, t* XY, t*Y2 t*XW t* YW, t*W? k= 0,...,m — 1. Homogenni soustava
(8.17) mé alespon m linedrné nezavislych feseni

q1 (t) = C11,771—1(‘73'7 y)tm_l + -+ C11,1(1’7 y)t + Cl,O(zv y) = 07

: (8.18)
Qm(t) = Cm,m—l(zv y)tm_l + -+ Cm,l(zv y)t + Cm,O(x> y) = 0.

Koeficienty moving conics (8.18) tvoif matici C(z,y) = (Cyj(x,y)) rozméru m x m. Deter-
minant této matice je dobrym kandidatem na implicitni vyjadieni dané racionalni kiivky.
V nékterych piipadech se ale muze stat, ze det(C(z,y)) je identicky roven nule, a to i
v pripadé, ze kiivka neobsahuje base points. Nasledujici véta uvadi nutnou a postacujici
podminku, za které metoda moving conics poskytuje implicitni vyjadieni raciondlni ktivky
sudého stupné.

Véta 8.2.2 Metoda moving conics poskytuje implicitni vyjddrent raciondlni kiivky stupné
2m bez base points prdve tehdy, kdyz neexistuje Zddnda moving line stupné m — 1, kterd
sleduje krivku. Navic, pokud existuje moving line stupné m—1, kterd sleduje krivku, libovolny
determinant ziskany metodou moving conics je identicky nulovy.

Diikaz: Viz [26]. O

Necht S(u,v) = (X (u,v),Y (u,v), Z(u,v), W(u,v)) je raciondlni parametrizace plochy
v projektivnim rozsiteni E3 a

X(u,v) = 2’”: 2": aijuivj, Y(u,v) = 2’”: 2": b,-juivj,

i=0 j=0 i=0 j=0

136



m n m
Z(u,v) = g g ciju'v’ Wi(u,v) = g dijuv’.
=0 j=0 i=0 j=0
Mowving surface je definovan vztahem

[

1=1

kde X = (z,y, z,w), hi(X) = 0,i = 1,...,0 jsou implicitné zadané plochy a 7;(u,v),i =
1,..., 0 jsou polynomy v proménnych u, v. Moving surface sleduje racionalni plochu S(u, v),
jestlize pro vSechna (u,v) lezi odpovidajici bod S(u,v) na daném moving surface, tj. plati

9(S(u,v);u,v) = Z hi(X (u,v), Y (u,v), Z(u,v), W(u,v))y(u,v) = 0.

Obvykle se pouzivaji pouze moving planes a moving quadrics. Moving plane stupné
(01,02) je ddna vztahem

o1 02

Z Z(Ai,jx + Bz‘,jy + CZ'J'Z + Di,jU)) . uivj =0. (819)

i=0 j=0

Pro pevné dané hodnoty u and v predstavuje vztah (8.19) implicitni rovnici roviny. Moving
plane sleduje racionélni plochu S(u,v), jestlize

o1 02

>N (A X (u,0) + BigY(u,v) + CijZ(u,v) + Di ;W (u,v)) - u'v? = 0. (8.20)

i=0 j=0

Levéa strana rovnice (8.20) je polynomem stupné m + o1 v proménné u a stupné n + oy v
proménné v. Polozime-li koeficienty u monomi wiv’/,i = 0,...,m + 01,7 = 0,...,n + 09
rovny nule, dostaneme homogenni soustavu (m + o + 1)(n + o9 + 1) linearnich rovnic pro
4(0'1 + 1)(0'2 + 1) IleZIlél'IlYCh {Ai,ja Bi,ja Ci,ja Di’j},i = 0, cey O'l,j = 0, ..., 092. Reéeni této
soustavy dava systém moving planes, které sleduji danou plochu S(u,v).

Pro moving planes se obvykle voli o7 = 2m — 1, 09 = n — 1. Dostavame tedy homo-
genni soustavu 6mn linedrnich rovnic pro 8mn neznamych, kterd ma alespon 2mn linedrné
nezavislych teseni. Moving planes, které sledujici zadanou plochu S(u,v), ziskdme z feSeni
této soustavy ve tvaru

2m—1 n—1
=0 4j=0
(8.21)
2m—1 n—1
Loy = (A2 4+ BTy + C20z + D2 w) - u'v? = 0.
i=0 j=0
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Determinant matice koeficientii u monomu u‘v? v (8.21), tj

Al Ox + Bl Oy + Cl OZ + DO Ow e A%m—l,n—lx + e + D%m—l,n—lw

2mn 2mn 2mn 2mn 2mn 2mn
AO,O SL’—FBO’O y_'_C Z_'_DO,Ow c A 1n 1LU+ D 1n 1w

nabyva nulové hodnoty, jestlize (x,y, z, w) lezi na plose S(u, v). Odtud tedy vyplyvé, ze po-
kud tento determinant neni identicky roven nule, potom je ndsobkem implicitniho vyjadieni
plochy S(u,v). Metoda moving planes generuje matici stejného rozméru jako implicitizace
ploch za pouziti Dixonova rezultantu a obé tyto metody jsou ekvivalentni — kazdy radek
Dixonovy matice predstavuje jednu moving plane sledujici plochu S(u,v).

Zajimavym zpusobem, jak zmensit rozmér matice generované metodou, je pouziti mo-
ving quadrics. Moving quadric stupné (o1, 03) je ddna vztahem

g1 02

> Z( sz + Bi,ij + C'Z-Jz2 + D, jxy + E; joz + F jyz+
1=0j=

Gijrw+ H; jyw + I jzw + J; jw?) - u'v? = 0. (8.22)

Pro pevné dané hodnoty u and v piedstavuje vztah (8.22) implicitni rovnici kvadriky.
Moving quadric sleduje raciondlni plochu S(u,v), jestlize

Z Z(Az yX(u U) + Bi’jY(u, U)2 4.4
1=0j=
li;Z (u, YW (u, ) + Ji ;W (u,v)?) - uiv? = 0. (8.23)

Leva strana rovnice (8.23) je polynomem stupné 2m + o v proménné u a stupné 2n + oy v
proménné v. PoloZzime-li koeficienty u monomu w'v’,i =0,...,2m+01,7=0,...,2n+ o9
rovny nule, dostaneme homogenni soustavu (2m+ o7 +1)(2n+ 09+ 1) linedrnich rovnic pro
10(o1 + 1)(02 + 1) neznamych {A; ;, B;;, ..., 1, Jij},i =0,...,01,j = 0,...,09. Resen{
této soustavy davé systém moving quadrics, které sleduji danou plochu S(u,v).

Pro moving quadrics se obvykle voli oy = m — 1, 09 = n — 1. Z (8.23) tedy dostdvame
homogenni soustavu 9mn linedrnich rovnic pro 10mn neznamych, kterd mé alespoin mn
linedrné nezéavislych reseni. Moving quadrics, které sledujici zadanou plochu S(u, v), ziskdme
z TeSeni této soustavy ve tvaru

2
Q1 = ZZ (Alja* + By + -+ I} 2w + JLw?) - u'e? =0,

i=0 j=0

(8.24)

an (Amnlj + any2 N IZTZnZU) + J;fjmwz) . uivj =0.
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Determinant matice koeficientii u monomu u‘v’? v (8.24), tj.

1,2 1,2 1,2 1 2 1 2 1 2

Apor® + Boogy® + -+ Jgow* o Ap 1,7+ By gyt g W
mn .2 mn,,2 mn,,,2 mn 2 mn 2 mn 2

Al x® + B, + e ST - r°+ B 4+ J w
0,0 0,0Y 0,0 m—1,n—1 m—1,n—1Y m—1,n—1

nabyva nulové hodnoty, jestlize (z,y, z, w) lezi na plose S(u, v). Odtud tedy vyplyva, ze po-
kud tento determinant neni identicky roven nule, potom je nasobkem implicitniho vyjadieni
plochy S(u,v). Je zfejmé, Ze pii pouziti moving quadrics je ziskand matice vyrazné mensi
— pouze rozmeéru mn X mn, oproti matici rozméru 2mn x 2mn v piipadé moving planes,
resp. Dixonova rezultantu.

8.3 Implicitizace pomoci polynomialni interpolace

Tato metoda je zalozena na pouziti Lagrangeovy interpolace ve dvou a vice proménnych
pro nalezeni rezultantu, a tedy i implicitniho vyjadieni kiivky nebo plochy dané racionalni
parametrizaci.

Necht X0 Y
C(t) = (W(t)’W(t))’ GCD(X,Y, W) =1

je raciondlni parametrizace rovinné algebraické kiivky C'. Jelikoz GCD je zde nejvétsim spo-
leénym délitelem danych polynomu, podminka GCD(X,Y, W) = 1 znamen4, ze polynomy
X, Y, W nemaji zadny spolecny faktor. Pro takovou parametrizaci je implicitni vyjadieni
F(x,y) dané kiivky C' obsazeno v rezultantu Res(zW (t) — X (¢),yW (t) — Y (1)) (viz kap.
8.1). Podminku GCD(X,Y, W) = 1 je mozné odebrat, ale pak zahrneme také parametrizace
s base points — matice rezultantu muze byt singularni a je nutné pouzit metodu RSC, tzn.
najit maximalni minor.

Stézejnim bodem metody je volba interpolacniho prostoru, tzn. odhad maximalnich
stupnu v proménnych z a y hledaného implicitniho vyjadieni. Pro tcely odhadu téchto
stupnu zkratime spolecné faktory (pokud existuji) ve slozkach parametrizace C(t), tzn.
obecné dostavame parametrizace C(t) = (X (t)/Wi(t), Y (t)2/Wa(t)), kde GCD (X, W) =

Véta 8.3.1 Necht C(t) = (Xy(t)/Wy(t),Ya(t)/Wa(t)) je proper raciondlni parametrizace
ireducibilni krivky C, pro kterou plati GCD(Xy, W;) = GCD(Y,, Ws) = 1 a necht F(x,y)
je implicitni vyjadrend krivky C'. Potom
m = max{deg,(X),deg,(W1)} = deg,(F)
n = max{deg,(Ys),deg,(W2)} = deg,(F).

Diikaz: Viz [18]. O
Véta nam tedy 1ikd, ze polynom F'(z,y) predstavujici implicitni vyjadieni kiivky C' patif
do prostoru polynomu II,, ,,,(x, y).
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Polynom F(z,y) je mozné najit pomoci klasické Lagrangeovy interpolace. Pro in-
terpolacni uzly (x;,y;),¢ = 0,...,n,j5 = 0,...,m a interpolovand data f;; € K,i =
0,...,n,7=0,...,m chceme najit polynom

F(z,y) = Z cijz'y! € Upm(z,y), I={(i,5)i=0,...,n,5=0,...,m}
(1,9)el

takovy, ze

Interpola¢ni podminky (8.25) je mozné zapsat jako soustavu linedrnich rovnic

Ac=f, (8.26)

kde matice koeficientu A je ddna Kroneckerovym soucinem® A =V, ® V,, kde V,, V,
jsou Vandermondeovy matice

1 x§ R 1 o y§ ey
1 oy =7 ... af 1y oyi ..o oy

V, = o N : ’Vy - : o : ’
1z, x2 ... a" L oym v .. ym

c je sloupcovy vektor neznamych koeficientu implicitniho vyjadieni F'(x,y) a f je sloupcovy
vektor obsahujici interpolovand data.

Interpolac¢ni uzly (x;,y;) se obvykle voli x; =4,i=0,...,nay; =7,j=0,...,m, coz
také zarucuje regularitu matice A. Interpolovand data f;; odpovidaji hodnotam rezultantu
F(i,7) v daném interpola¢nim uzlu (i, 7). Pokud tedy je M(z,y) symbolickd Bézoutova
matice rezultantu a M;; = M(4, j), potom f;; = det M;;.

Specidlni strukturu matice A je mozné vyuzit k rychlejsimu feseni soustavy (8.26).
Vyuzijeme-li jednu z vlastnosti Kroneckerova soucinu, uvedenou ve Vété 8.3.2, feSeni sou-
stavy linedrnich rovnic (8.26) s matici koeficientt A = V, ® V,, muze byt pievedeno na
feSeni n + 1 soustav se stejnou matici soustavy V, s ndslednym fesenim m + 1 soustav se
stejnou matici soustavy V..

Definice 8.3.1 Operdtor vec vytvdii sloupcovy vektor z dané matice A skladdanim sloupci
matice A = [a; ag ... a,] pod sebe, 1j.
a
2b)
vec(A) =

an

3Kroneckertiv sou¢in B ® D je definovdn pomoci blok, tzn. vyslednd matice je slozena z blokt (by;D),
kde B = (bkl)
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Véta 8.3.2
vec(AXB) = (B ® A)vec(X). (8.27)

Diikaz: Necht B = [by by ... b,| je matice rozméru m x n a X = [x; X3 ... X,,,]. Potom,
k-ty sloupec matice AXB je

(AXB)., = AXb; = AinbM = [b1xA barA ... by iA] ) =

i=1

= ([bl,lm bg7k, ce bm,k] ®A)V€C(X).

-

'
T
bk

Skladanim sloupcu pod sebe dostavame

(AXB)., b ® A
(AXB).» bl ® A T
vec(AXB) = _ = _ vec(X) = (B* ® A)vec(X).
(AXB)., by ® A
O
Polozime-li tedy A =V,, B=V! X = C, kde
Coo --- Con ]
C=| ... U I c = vec(C)
Cmo -+ Cmn ]
a podobné i
Joo oo Jon
F=] ... o f = vec(F),
me cee fmn ]

potom dosazenim do (8.27) dostavame

vec(V,CV!) = (V,®V,)c =f = vec(F).
A

Odtud vyplyva, ze
vec(V,CVY!) = vec(F) = V,CV! =F.

Oznaé¢ime-li CVI = W, potom V,W = F. Shrnuto — misto feseni soustavy rovnic (8.26)
s matici soustavy rozméru (m + 1)(n + 1) je mozné fesit n + 1 soustav rovnic

V,W=F
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a nasledné m + 1 soustav rovnic

Vv, CT =wT,

Jelikoz V, a 'V, jsou Vandermondeovy matice, je mozné vyuzit specidlnich metod pro
feseni soustav linedrnich rovnic s matici soustavy tohoto typu. Podrobnéji viz [18].

Metodu je mozné pomérné pifmo zobecnit pro racionalni plochy. Necht
X Y Z
S0y (X0) Y(wv) Z(wo
W(u,v)” W(u,v) W(u,v)

je raciondlni parametrizace plochy S. Odstranénim jmenovateltu ve slozkach parametrizace
dostavame polynomy

X(u,v) —aW(u,v), Y(u,v)—yW(u,v), Z(u,v)—zW(u,v) (8.28)

s celkovymi stupni dy,d;, ds.

Prvni krokem je opét urceni interpola¢niho prostoru I, ,,(z,y, 2) tak, ze Macaulayho
rezultant R(x,y, z) pro polynomy (8.28) vzhledem k u, v je z II; ,,, n (2, y, 2). Plat{ (viz [19]),
ze

[ = degm(R(x,y,z)) < d1d27

m = degy(R(x7 Y, Z)) < d0d27

n= degz(R($7 Y, Z)) < dody.
Déle nasleduje opét standardni interpolace pro interpolacni uzly (x;,yj, 2),4 =0,...,1,j =
0,...,m,k =0,...,n a interpolovand data ;3,2 = 0,...,0,j =0,..., m,k =0,...,n Vv

interpolacnim prostoru II; ,, ,(x, y, 2) pro nalezeni rezultantu R(z,y, z). To vede na feSeni
soustavy linedrnich rovnic

Ac=r, (8.29)

kde matice soustavy je ddna Kroneckerovym sou¢inem (V, ® V,) @ V, a V,, V,, V,
jsou Vandermondeovy matice, ¢ je sloupcovy vektor neznamych koeficientii implicitniho
vyjadieni R(x,y, z) a r je sloupcovy vektor obsahujici interpolovand data.

Interpolac¢ni uzly se obvykle voli jako miizkové body, tj. (z;,y;, zx) = (i,7,k),i =
0,...,05,j = 0,...,m,k = 0,...,n. Interpolovana data r;;; odpovidaji hodnotam im-
plicitniho vyjadfeni (rezultant) R(i,j, k) v mfizkovych bodech (i,7, k). Jestlize je tedy
M(z,y, z) symbolickd Macaulayho matice (nebo libovolna jind symbolickd matice rezul-
tantu) ziskand eliminaci parametru u, v z rovnic (8.28) a M;;, = M(1, j, k), potom 7, =
det M,]k

I v tomto ptipadé je mozné vyuzit specialni strukturu matice A pro rychlejsi feseni
soustavy (8.29). Jelikoz matice A je Kroneckerovym sou¢inem matic V,, V, a V, feeni
soustavy linedrnich rovnic s matici soustavy A rozméru (I + 1)(m + 1)(n + 1) muze byt
prevedeno na postupné feseni (n + 1) soustav rovnic s matici soustavy V,, nasledované
feSenim (m + 1) soustav rovnic s matici soustavy V, a na zavér fesenim (I + 1) soustav
rovnic s matici soustavy V,. Vice o této metodé je mozné najit v [19].
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8.4 Prima metoda implicitizace

Jednoduché a primocara metoda implicitizace krivek a ploch danych racionalni paramet-
rizaci byla prezentovéana neddvno v [31]. Metoda je zalozena na odhadu stupné hledaného
implicitniho vyjadfeni s naslednym fesenim soustavy linedrni rovnic pro neznamé koefici-
enty tohoto implicitniho vyjadieni.

Metoda je zavedena pro racionalni plochy, ale podobné funguje i pro racionalni kiivky.
Necht

X(u,v) Y(u,0) Z(u,v) ) (8.30)

Su,v) = (W(u,v)’ W (u,v)" W(u,v)

je raciondlni parametrizace plochy S. Hlavnim tkolem je nalezeni polynomu F'(x,y, z) tak,

7o (X (ww) Y(w,v) Z(u,v)\
F(z,y,z) =F (W(u,v)’ W(u,v)’ W(Uav)) =

Nejprve je tedy potieba odhadnout stupen hledaného polynomu F', a to pomoci:

1. urceni celkového stupné polynomu F', nebo
2. urceni stupnu polynomu F' v jednotlivych proménnych z, y, z.
V piipadé, ze je dan celkovy stupen polynomu F', muzeme F' zapsat ve tvaru
F= Z agrr'y’ 2", Z aZy >0, (8.31)

ZU,)ZYU,RZ

i+j+k<n i+jtk=n

ZU,)1=ZY,kR=Z

kde koeficienty a;j; jsou nezndmé. Dosazenim (8.30) do (8.31) dostavame

ik
- LS A ) (8.32)
, WiWiwk  h
i+jt+k<n
Jelikoz g musi byt identicky rovno nule, koeficienty u vSech monomi u®v® v g se musi
rovnat nule. Kazdy z téchto koeficienti je polynomem v proménnych a;j; a predstavuje
jednu z rovnic soustavy linearnich rovnic, jejimz feSenim najdeme nezndmé koeficienty
implicitntho vyjadfeni F. Plocha (8.30) m& implicitni vyjadfeni stupné < n pravé tehdy,
kdyz tato linedrni soustava ma netrivialni feseni a,j;. Implicitni vyjadieni raciondlni plochy
(8.30) potom dostaneme jako nekonstantni faktor F|,,,,—a,, v proménnych z, y, 2.
Pokud jsou dény stupné polynomu F' v jednotlivych proménnych z, y, z (napt. pomoci
vztahu (8.29), muzeme F' zapsat ve tvaru

ng Ny

F = Z Z i airr'y’ 2~ (8.33)

i=0 j=0 k=0

Daéle metoda pokracuje analogicky jako v pripadé pouziti celkového stupné. Podrobnéji viz
také [31].
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