\mathcal{I} -ultrafilters and summable ideals

Jana Flašková

flaskova@kma.zcu.cz

University of West Bohemia, Pilsen Czech Republic

10th Asian Logic Conference, Kobe 2008 – p. 1/17

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

- if $\mathcal{I}\subseteq \mathcal{J}$ then every $\mathcal{I}\text{-ultrafilter}$ is a $\mathcal{J}\text{-ultrafilter}$

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

- if $\mathcal{I}\subseteq\mathcal{J}$ then every $\mathcal{I}\text{-ultrafilter}$ is a $\mathcal{J}\text{-ultrafilter}$
- if $\mathcal{U} \leq_{RK} \mathcal{V}$ and \mathcal{V} is an \mathcal{I} -ultrafilter then \mathcal{U} is also an \mathcal{I} -ultrafilter

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

- if $\mathcal{I}\subseteq\mathcal{J}$ then every $\mathcal{I}\text{-ultrafilter}$ is a $\mathcal{J}\text{-ultrafilter}$
- if $\mathcal{U} \leq_{RK} \mathcal{V}$ and \mathcal{V} is an \mathcal{I} -ultrafilter then \mathcal{U} is also an \mathcal{I} -ultrafilter
- ${\mathcal I}\text{-ultrafilters}$ and $\langle {\mathcal I}\rangle\text{-ultrafilters}$ coincide

where $\langle \mathcal{I} \rangle$ is the ideal generated by \mathcal{I}

Definition B.

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called

weak \mathcal{I} -ultrafilter if for every *finite-to-one* function $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Definition B.

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called

weak \mathcal{I} -ultrafilter if for every *finite-to-one* function $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

 \mathcal{I} -friendly ultrafilter if for every *one-to-one* function $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Definition.

An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}$.

Definition.

An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}$.

Lemma 1.

If \mathcal{I} is not a tall ideal then there are no \mathcal{I} -ultrafilters.

Definition.

An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}$.

Lemma 1.

If \mathcal{I} is not a tall ideal then there are no \mathcal{I} -ultrafilters.

Proposition 2.

 $(\mathfrak{p} = \mathfrak{c})$ If \mathcal{I} is a tall ideal then \mathcal{I} -ultrafilters exist.

Definition.

Given a function $g:\omega\to [0,\infty)$ such that $\sum_{n\in\omega}g(n)=\infty$ then the family

$$\mathcal{I}_g = \{A \subseteq \omega : \sum_{a \in A} g(a) < +\infty\}$$

is a proper ideal which we call summable ideal determined by function g.

- Every summable ideal is a *P*-ideal.
- Every summable ideal is an F_{σ} ideal.

- Every summable ideal is a *P*-ideal.
- Every summable ideal is an F_{σ} ideal.

Observation.

A summable ideal is tall if and only if $\lim_{n \to \infty} g(n) = 0$.

- Every summable ideal is a *P*-ideal.
- Every summable ideal is an F_{σ} ideal.

Observation.

A summable ideal is tall if and only if $\lim_{n \to \infty} g(n) = 0$.

We consider only tall summable ideals.

Definition.

An ultrafilter \mathcal{U} on ω is called a rapid ultrafilter if the enumeration functions of its sets form a dominating family in $({}^{\omega}\omega, \leq^*)$.

Definition.

An ultrafilter \mathcal{U} on ω is called a rapid ultrafilter if the enumeration functions of its sets form a dominating family in $(^{\omega}\omega, \leq^*)$.

Theorem (Hrušák)

An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{I}_g^* \not\leq_{KB} \mathcal{U}$ for every summable ideal \mathcal{I}_g .

Definition.

An ultrafilter \mathcal{U} on ω is called a rapid ultrafilter if the enumeration functions of its sets form a dominating family in $({}^{\omega}\omega, \leq^*)$.

Theorem (Hrušák)

An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{I}_g^* \not\leq_{KB} \mathcal{U}$ for every summable ideal \mathcal{I}_g .

Theorem (Vojtáš)

An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every summable ideal \mathcal{I}_g .

Theorem 3.

For an ultrafilter $\mathcal{U}\in\omega^*$ the following are equivalent:

- \mathcal{U} is rapid
- \mathcal{U} is a weak \mathcal{I}_g -ultrafilter for every summable ideal \mathcal{I}_g
- \mathcal{U} is an \mathcal{I}_g -friendly ultrafilter for every summable ideal \mathcal{I}_g
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every summable ideal \mathcal{I}_g

Theorem 4.

(MA_{ctble}) There is an \mathcal{I}_g -ultrafilter which is not a rapid ultrafilter.

Theorem 4.

(MA_{ctble}) There is an \mathcal{I}_g -ultrafilter which is not a rapid ultrafilter.

Theorem 5.

(MA_{ctble}) There is a rapid ultrafilter which is not an \mathcal{I}_g -ultrafilter.

Theorem 4.

(MA_{ctble}) There is an \mathcal{I}_g -ultrafilter which is not a rapid ultrafilter.

Theorem 5.

(MA_{ctble}) There is a rapid ultrafilter which is not an \mathcal{I}_g -ultrafilter.

Theorem 5^* .

(MA_{ctble}) For every tall ideal \mathcal{I} there is a Q-point which is not an \mathcal{I} -ultrafilter.

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \downarrow \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U}\cap\mathcal{I}_q
eq \emptyset$

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \downarrow \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \downarrow \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $ZFC \Downarrow \cancel{ZFC}$ $\mathcal{U}\cap\mathcal{I}_q
eq \emptyset$

 \mathcal{U} is an \mathcal{I}_q -ultrafilter $ZFC \Downarrow \cancel{M} MA_{ctble}$ \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \downarrow \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $ZFC \Downarrow \cancel{ZFC}$ $\mathcal{U} \cap \mathcal{I}_q \neq \emptyset$

 \mathcal{U} is an \mathcal{I}_q -ultrafilter $ZFC \Downarrow \cancel{MA}_{ctble}$ \mathcal{U} is a weak \mathcal{I}_q -ultrafilter $ZFC \Downarrow \cancel{??}$ \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $ZFC \Downarrow \cancel{ZFC}$ $\mathcal{U} \cap \mathcal{I}_q \neq \emptyset$

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \downarrow \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U}\cap\mathcal{I}_q
eq \emptyset$

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U} \cap \mathcal{I}_q
eq \emptyset$

 $(\mathfrak{p} = \mathfrak{c})$ For every tall ideal \mathcal{I} there is an \mathcal{I} -ultrafilter.

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U} \cap \mathcal{I}_a \neq \emptyset$

Theorem 6.

(MA_{ctble}) For every summable ideal \mathcal{I}_q there is an \mathcal{I}_q -ultrafilter.

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U} \cap \mathcal{I}_a \neq \emptyset$

Observation

For every summable ideal \mathcal{I}_q there is an ultrafilter $\mathcal{U} \in \omega^*$ such that $\mathcal{U} \cap \mathcal{I}_q \neq \emptyset$.

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \downarrow \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U}\cap\mathcal{I}_q
eq \emptyset$

 \mathcal{U} is an \mathcal{I}_q -ultrafilter \mathcal{U} is a weak \mathcal{I}_q -ultrafilter \mathcal{U} is an \mathcal{I}_q -friendly ultrafilter $\mathcal{U}\cap\mathcal{I}_q
eq \emptyset$

At least for some summable ideals \mathcal{I}_g -friendly ultrafilters exist in ZFC.

Some results

Theorem 7. $\mathcal{I}_{1/n}$ -friendly ultrafilters exist in ZFC.

Some results

Theorem 7. $\mathcal{I}_{1/n}$ -friendly ultrafilters exist in ZFC.

Corollary 8. If $\mathcal{I}_{1/n} \subseteq \mathcal{I}_g$ then \mathcal{I}_g -friendly ultrafilters exist in ZFC. Examples: $g(n) = \frac{1}{n \ln n}$

Some results

Theorem 7. $\mathcal{I}_{1/n}$ -friendly ultrafilters exist in ZFC.

Corollary 8. If $\mathcal{I}_{1/n} \subseteq \mathcal{I}_g$ then \mathcal{I}_g -friendly ultrafilters exist in ZFC. Examples: $g(n) = \frac{1}{n \ln n}$

Theorem 9. If $g(n) = \frac{\ln^p n}{n}$, $p \in \omega$, then \mathcal{I}_g -friendly ultrafilters exist in ZFC.

Theorem 7. $\mathcal{I}_{1/n}$ -friendly ultrafilters exist in ZFC.

Theorem 7. $\mathcal{I}_{1/n}$ -friendly ultrafilters exist in ZFC.

Definition.

A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called

- a k-linked family if $F_1 \cap \ldots \cap F_k$ is infinite whenever $F_i \in \mathcal{F}, i \leq k$.
- a centered system if \mathcal{F} is k-linked for every k i.e., if any finite subfamily of \mathcal{F} has an infinite intersection.

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a summable family if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a summable family if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

Proposition 10.

For every $k \in \mathbb{N}$ there exists a summable k-linked family $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$.

Lemma 11. If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a *k*-linked family then $\mathcal{F} = \{F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F\}$ is a centered system.

Lemma 11. If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a *k*-linked family then $\mathcal{F} = \{F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F\}$ is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.

Lemma 11. If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a *k*-linked family then $\mathcal{F} = \{F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F\}$ is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.

More generally, if \mathcal{I} is a P-ideal and for every one-to-one function $f \in {}^{\omega}\mathbb{N}$ and for every $k \in \mathbb{N}$ there exists $U^k \in \mathcal{F}_k$ such that $f[U^k] \in \mathcal{I}$ then there exists $U \in \mathcal{F}$ such that $f[U] \in \mathcal{I}$.

Some questions

Question.

Do \mathcal{I}_g -friendly ultrafilters exist in ZFC for every summable ideal \mathcal{I}_g ? What about $g(n) = \frac{1}{\sqrt{n}}$ or $\frac{1}{\ln n}$?

Some questions

Question.

Do \mathcal{I}_g -friendly ultrafilters exist in ZFC for every summable ideal \mathcal{I}_g ? What about $g(n) = \frac{1}{\sqrt{n}}$ or $\frac{1}{\ln n}$?

Question.

Is there an \mathcal{I}_g -friendly ultrafilter which is not an \mathcal{I}_h -friendly ultrafilter whenever $\mathcal{I}_g \not\subseteq \mathcal{I}_h$?

References

Baumgartner, J., Ultrafilters on ω , J. Symbolic Logic **60**, no. 2, 624–639, 1995.

Flašková, J., More than a 0-point, *Comment. Math. Univ. Carolinae* **47**, no. 4, 617–621, 2006.

Vojtáš, P., On ω^* and absolutely divergent series, Topology Proceedings **19**, 335 – 348, 1994.