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Abstract. Two ideals on ω are presented which determine the

same class of I -ultrafilters. It is proved that the existence of these
ultrafilters is independent of ZFC and the relation between this

class and other well-known classes of ultrafilters is shown.

Let I be a family of subsets of a set X such that I contains all
singletons and is closed under subsets. Given an ultrafilter U on ω,
we say that U is an I -ultrafilter if for any mapping F : ω → X
there is A ∈ U such that F (A) ∈ I .

Concrete examples of I -ultrafilters are nowhere dense ultrafil-
ters, measure zero ultrafilters or countably closed ultrafilters defined
by taking X = 2ω and I to contain all the nowhere dense sets, the
sets with closure of measure zero, or the sets with countable closure,
respectively. The class of α-ultrafilters was defined for an indecom-
posable countable ordinal α by taking X = ω1 and I to consist of
the subsets of ω1 with order type less than α.
Consistency results about existence of these ultrafilters and some

inclusions among the appropriate classes of ultrafilters were obtained
by Baumgartner [1], Brendle [4], Barney [2]. It was proved by Shelah
[8] that consistently there are no nowhere dense ultrafilters, conse-
quently all mentioned ultrafilters (except the α-ultrafilters for which
the question is still open) may not exist.
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In this paper, we focus on free ultrafilters on ω defined by taking
X = ω and I to be two different collections of subsets of natural
numbers.

I. Basic facts and definitions.
It was noticed in [1] that for a given family I the I -ultrafilters

are closed downward under the Rudin-Keisler ordering ≤RK (recall
that U ≤RK V if there is a function f : ω → ω whose Stone
extension βf : βω → βω maps V on U , see [5]).
Replacing f [U ] ∈ I by f [U ] ∈ 〈I 〉 in the definition of I -

ultrafilter, where 〈I 〉 is the ideal generated by I , we get the same
concept (see [2]), i.e. I -ultrafilters and 〈I 〉-ultrafilters coincide.
Obviously, if U is an I -ultrafilter then U ∩I 6= ∅ (the converse is
not true) and if I ⊆ J then every I -ultrafilter is aJ -ultrafilter.

Lemma. If C is a class of ultrafilters closed downward under ≤RK

and I an ideal on ω then the following are equivalent:
(i) There exists U ∈ C which is not an I -ultrafilter
(ii) There exists V ∈ C which extends I ∗, the dual filter of I

Proof. No ultrafilter extending I ∗ is an I -ultrafilter, so (ii) implies
(i) trivially. To prove (i) implies (ii) assume that U ∈ C is not an
I -ultrafilter. Hence there is a function f ∈ ωω such that (∀A ∈ I )
f−1[A] 6∈ U . Let V = {V ⊆ ω : f−1[V ] ∈ U }. Obviously V
extends I ∗ and V ≤RK U . Since C is closed downward under ≤RK

and U ∈ C we get V ∈ C. �

An infinite set A ⊆ ω with enumeration A = {an : n ∈ ω} is called
almost thin if lim supn

an

an+1
< 1 and thin (see [3]) if limn

an

an+1
= 0.

(Notice that by enumeration of a set of natural numbers we always
mean an order preserving enumeration.)
We will denote the ideal generated by finite and thin sets by

T and the ideal generated by finite and almost thin sets by A .
The corresponding I -ultrafilters will be called thin ultrafilters and
almost thin ultrafilters respectively. We prove in Section I. that in
fact these two classes of ultrafilters coincide, although the ideals T
and A differ as the set {2n : n ∈ ω} ∈ A \T .
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We show in Section II. the relation between thin ultrafilters and
selective ultrafilters and the relation between thin ultrafilters and
Q-points in Section III. Let us recall the definitions:
A free ultrafilter U is called a selective ultrafilter if for all parti-

tions of ω, {Ri : i ∈ ω}, either for some i, Ri ∈ U , or ∃U ∈ U such
that (∀i ∈ ω) |U ∩Ri| ≤ 1.
A free ultrafilter U is called a Q-point if for all partitions of ω

consisting of finite sets, {Qi : i ∈ ω}, ∃U ∈ U such that (∀i ∈ ω)
|U ∩Qi| ≤ 1.

II. Thin ultrafilters and almost thin ultrafilters.
The existence of thin ultrafilters is independent of ZFC. It is easy

to construct a thin ultrafilter if we assume the Continuum Hypothe-
sis (in Section II. we prove that the strictly weaker assumption (see
[6]) that selective ultrafilters exist is sufficient) and we prove in Sec-
tion III. that every thin ultrafilter is a Q-point whose existence is
not provable in ZFC (see [7]).

Proposition 1. (CH) There is a thin ultrafilter.

Proof. Enumerate ωω = {fα : α < ω1}. By transfinite induction on
α < ω1 we construct countable filter bases Fα satisfying
(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ T
Suppose we have constructed Fα. If there exists a set F ∈ Fα such
that fα[F ] ∈ T then put Fα+1 = Fα. If fα[F ] 6∈ T (in particular,
fα[F ] is infinite) for every F ∈ Fα then enumerate Fα = {Fn : n ∈
ω} and construct by induction a set U = {un : n ∈ ω} which we
extend the filter base by:
Choose arbitrary u0 ∈ F0 such that fα(u0) > 0 (such an element

exists since fα[F0] is infinite). If u0, u1, . . . , uk−1 are already known
we can choose uk ∈

⋂
i≤k Fi so that fα(uk) > k · fα(uk−1).

It is obvious that U ⊆∗ Fn, i.e. all but finitely many elements of
U are contained in Fn, for all n ∈ ω. We can check immediately that
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fα[U ] is thin:

lim
n→∞

fα(un)
fα(un+1)

≤ lim
n→∞

fα(un)
(n+ 1) · fα(un)

= lim
n→∞

1
(n+ 1)

= 0

To complete the induction step letFα+1 be the countable filter base
generated by Fα and the set U .
It is clear that any ultrafilter extending

⋃
α<ω1

Fα is thin. �

Since T ⊂ A every thin ultrafilter has to be almost thin. The
following proposition states that the converse also holds true and
the classes of almost thin and thin ultrafilters coincide.

Proposition 2. Every almost thin ultrafilter is a thin ultrafilter.

Proof. Because of the Lemma it suffices to prove that every almost
thin ultrafilter contains a thin set. To that end assume that U is an
almost thin ultrafilter and U0 ∈ U is an almost thin set which is not
thin with enumeration U0 = {un : n ∈ ω}. Denote lim supn

un

un+1
=

q0 < 1. We may assume that the set of even numbers belongs to U
(otherwise the role of even and odd numbers interchange).
Define g : ω → ω so that g(un) = 2n, g[ω\U0] = {2n+1 : n ∈ ω}.
SinceU is an almost thin ultrafilter there exists U1 ∈ U such that

g[U1] is almost thin. Let U = U0 ∩ U1 = {unk
: k ∈ ω}. Almost thin

sets are closed under subsets, therefore g[U ] = {g(unk
) : k ∈ ω} ⊆

g[U1] is almost thin and 1 > lim supk
g(unk

)
g(unk+1 )

= lim supk
2nk

2nk+1
.

We know that there is n0 such that (∀n ≥ n0)
un

un+1
≤ q0+1

2 and
that there is k0 such that (∀k ≥ k0) nk ≥ n0. Hence for k ≥ k0 we
have

unk

unk+1

=
unk

unk+1
· · · · ·

unk+1−1

unk+1

≤
(

q0 + 1
2

)nk+1−nk

It follows from lim supk
nk

nk+1
< 1 that limk(nk+1 − nk) = +∞.

Hence
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lim
k→∞

unk

unk+1

≤ lim
k→∞

(
q0 + 1
2

)nk+1−nk

= 0

and the set U ∈ U is thin. �

III. Thin ultrafilters and selective ultrafilters.

Proposition 3. Every selective ultrafilter is thin.

Proof. Selective ultrafilters are minimal points in Rudin-Keisler or-
dering (see [5]), hence the class is downward closed under ≤RK and
we may apply the Lemma. It suffices to prove that there is no selec-
tive ultrafilter extending the dual filter of T .

Claim: Every selective ultrafilter contains a thin set.
Assume U is a selective ultrafilter and consider the partition of ω,
{Rn : n ∈ ω}, where R0 = {0} and Rn = [n!, (n + 1)!) for n > 0.
Since U is selective there exists U0 ∈ U such that |U0∩Rn| ≤ 1 for
every n ∈ ω. Since U is an ultrafilter either A0 =

⋃
{Rn : n is even}

or A1 =
⋃
{Rn : n is odd} belongs to U . Without loss of generality,

assume A0 ∈ U . Enumerate U = U0 ∩ A0 ∈ U as {uk : k ∈ ω}.
If uk ∈ [(2mk)!, (2mk + 1)!) then uk+1 ≥ (2mk + 2)! and we have

uk

uk+1
≤ (2mk+1)!
(2mk+2)!

= 1
2mk+2

≤ 1
2k+2 . Hence U is thin. �

Proposition 4. (CH) Not every thin ultrafilter is selective.

Proof. Fix a partition {Rn : n ∈ ω} of ω into infinite sets and
enumerate ωω = {fα : α < ω1}. By transfinite induction on α < ω1
we will construct countable filter bases Fα satisfying
(i) F0 is the countable filter base generated by Fréchet filter and

{ω \Rn : n ∈ ω}
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) (∀F ∈ Fα) {n : |F ∩Rn| = ω} is infinite
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ T

Suppose we know already Fα. If there is a set F ∈ Fα such that
fα[F ] ∈ T then put Fα+1 = Fα. If (∀F ∈ Fα) fα[F ] 6∈ T then
one of the following cases occurs.
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Case A. (∀F ∈ Fα) {n : |fα[F ∩Rn]| = ω} is infinite
Fix an enumeration {Fm : m ∈ ω} of Fα. According to the

assumption the set Im = {n : |fα[
⋂

i≤m Fi ∩Rn]| = ω} is infinite for
all m ∈ ω. Let us enumerate the set {〈m,n〉 : n ∈ Im,m ∈ ω} as
{pk : k ∈ ω} so that each ordered pair 〈m,n〉 occurs infinitely many
times. By induction we will construct a set U = {uk : k ∈ ω} which
we may add to Fα.
Consider p0 = 〈m,n〉. Since |fα[

⋂
i≤m Fi ∩ Rn]| = ω we can

choose u0 ∈
⋂

i≤m Fi ∩ Rn such that fα(u0) > 0. Suppose we
know u0, . . . , uk−1 such that ui+1 > ui, ui ∈

⋂
j≤m Fj ∩ Rn where

pi = 〈m,n〉 and fα(ui+1) > (i + 1) · fα(ui) for i < k − 1. Con-
sider pk = 〈m,n〉. Since

⋂
i≤m Fi ∩ Rn and its image under fα is

infinite we may choose uk ∈
⋂

i≤m Fi ∩ Rn so that uk > uk−1 and
fα(uk) > k · fα(uk−1).
It remains to verify that fα[U ] is thin and Fα ∪ {U} generates a

filter base satisfying (iv).
• fα[U ] is thin:

lim
k→∞

fα(uk)
fα(uk+1)

≤ lim
k→∞

fα(uk)
(k + 1) · fα(uk)

= lim
k→∞

1
(k + 1)

= 0

• (∀F ∈ Fα) {n : |U ∩ F ∩Rn| = ω} is infinite:
For every F ∈ Fα there is mF ∈ ω such that U ∩ F ∩ Rn ⊇

U ∩
⋂

i≤mF
Fi ∩ Rn which is infinite whenever n ∈ ImF

since U ∩⋂
i≤mF

Fi ∩Rn ⊇ {uk : pk = 〈mF , n〉}.
To complete the induction step letFα+1 be the countable filter base
generated by Fα and U .

Case B. (∃F0 ∈ Fα) {n : |fα[F0 ∩Rn]| = ω} is finite
Enumerate Fα \ {F0} = {Fm : m > 0}. Since F0 satisfies (iv)

there is n0 ∈ ω such that |fα[F0 ∩ Rn0 ]| < ω and |F0 ∩ Rn0 | = ω.
It follows that there is z0 ∈ ω such that f−1α [{z0}] ∩ F0 ∩ Rn0 is
infinite. The set

⋂
i≤m Fi satisfies (iv) for any m ∈ ω and for all but

finitely many n the set fα[
⋂

i≤m Fi∩Rn] is finite. So we may choose
nm > nm−1 such that fα[

⋂
i≤m Fi∩Rnm

] is finite and
⋂

i≤m Fi∩Rnm

infinite. We find zm such that f−1α [{zm}]∩
⋂

i≤m Fi∩Rnm
is infinite.
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Consider the sequence 〈zm : m ∈ ω〉. We can find a subsequence
〈zmj

: j ∈ ω〉 which is either constant or satisfies zmj+1 > (j+1)·zmj

for every j ∈ ω. Set U =
⋃

j∈ω f−1α [{zmj
}]. It is obvious that fα[U ] ∈

T and (∀F ∈ Fα) {n : |U ∩ F ∩Rn| = ω} is infinite.
To complete the induction step letFα+1 be the countable filter base
generated by Fα and U .

The filter base F =
⋃

α<ω1
Fα satisfies (iv) and every ultrafilter

which extends F is thin because of condition (v).

Claim: Every filter satisfying (iv) may be extended to an ultrafilter
satisfying (iv).
WheneverF is a filter satisfying (iv) and A ⊆ ω then either for every
F ∈ F exist infinitely many n ∈ ω such that |A ∩ F ∩ Rn| = ω, so
the filter generated by F and A satisfies (iv) or there is F0 ∈ F
such that for all but finitely many n ∈ ω we have |A∩F0 ∩Rn| < ω.
Then since for every F ∈ F exist infinitely many n ∈ ω for which
|F ∩ F0 ∩ Rn| = ω the filter generated by F and ω \ A satisfies
(iv). Hence for every subset of ω we may extend F either by the set
itself or its complement. Consequently, F may be extended to an
ultrafilter satisfying (iv). �

IV. Thin ultrafilters and Q-points.

Proposition 5. Every thin ultrafilter is a Q-point.

Proof. Let U be a thin ultrafilter andQ = {Qn : n ∈ ω} a partition
of ω into finite sets. Enumerate Qn = {qn

i : i = 0, . . . , kn} (where
kn = |Qn| − 1).
Define a one-to-one function f : ω → ω in the following way:

f(q00) = 0, f(qn+1
0 ) = (n + 2) · max{f(qn

kn
), kn+1} for n ∈ ω and

f(qn
i ) = f(qn

0 ) + i for i ≤ kn, n ∈ ω

Notice that f � Qn is strictly increasing for every n.

Since U is a thin ultrafilter there exists U0 ∈ U such that f [U0] =
{vm : m ∈ ω} is a thin set. Hence there ism0 ∈ ω such that vm

vm+1
< 1
2

for every m ≥ m0.
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Since f is one-to-one andQ a partition of ω we find K ⊆ ω of size
at most m0 such that {f−1(vi) : i < m0} ⊆

⋃
n∈K Qn. The latter

set is finite. Therefore U = U0 \
⋃

n∈K Qn ∈ U .
Claim: (∀n ∈ ω) |U ∩Qn| ≤ 1
The intersection is clearly empty for n ∈ K. Assume for the contrary
that for some n 6∈ K there are two distinct elements u1, u2 ∈ U∩Qn,
u1 < u2. Then f(u1) = vm for some m ≥ m0 and f(u2) = vn

for some n ≥ m + 1. We get vm

vm+1
≥ vm

vn
= f(u1)

f(u2)
≥ f(qn

0 )
f(qn

0 )+kn
≥

(n+1)·M
(n+1)·M+M =

n+1
n+2 where M = max{f(qn−1

kn−1
), kn}. But n+1

n+2 ≥
1
2 , a

contradiction. �

Note that while proving that every selective ultrafilter contains a
thin set we actually proved that every Q-point contains a thin set
as the partition under consideration consists of finite sets. However,
Q-points need not be thin ultrafilters.

Proposition 6. (CH) Not every Q-point is a thin ultrafilter.

Proof. Fix {Rn : n ∈ ω} a partition of ω into infinite sets. Let
{Qα : α < ω1} be the list of all partitions of ω into finite sets. By
transfinite induction on α < ω1 we will construct countable filter
bases Fα so that the following are satisfied:
(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α < β

(iii) Fγ =
⋃

α<γ Fα for γ limit
(iv) (∀α) (∀F ∈ Fα) (∀n) |F ∩Rn| = ω

(v) (∀α) (∃F ∈ Fα+1) (∀Q ∈ Qα) |F ∩Q| ≤ 1
Suppose we already know Fα. If there is a set F ∈ Fα such that

|F ∩ Q| ≤ 1 for each Q ∈ Qα then let Fα+1 = Fα. If (∀F ∈ Fα)
(∃Q ∈ Qα) |F∩Q| > 1, we construct by induction a set U compatible
with Fα such that |U ∩Q| ≤ 1 for each Q ∈ Qα.
Enumerate Fα = {Fk : k ∈ ω}, Qα = {Qn : n ∈ ω} and list

{Rn : n ∈ ω} = {Mk : k ∈ ω} so that each Rn is listed infinitely
often. To start the construction of U choose u0 ∈ M0 arbitrarily.
Since

⋃
Qα = ω there exists n0 ∈ ω such that u0 ∈ Qn0 .
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Suppose we already know u0, . . . , uk−1 and n0, . . . , nk−1 such that
ui ∈ Qni

for i < k. Since
⋃

i<k Qni
is finite and

⋂
i<k Fi ∩ Mk is

infinite according to (iv) we may choose uk ∈ (
⋂

i<k Fi ∩ Mk) \⋃
i<k Qni . Let Qnk

be the unique element of Qα which contains uk.
Finally, let U = {uk : k ∈ ω}. For every n ∈ ω we have either

U ∩ Qn = {uk} (if n = nk) or U ∩ Qn = ∅. It remains to check
that U is compatible with Fα and satisfies (iv). However, for every
F ∈ Fα and for every Rn there is nF ∈ ω such that U ∩ F ∩ Rn ⊇
U ∩

⋂
i<nF

Fi ∩ Rn ⊇ {uk : k ≥ nF ,Mk = Rn}. The latter set
is infinite. Hence the countable filter base generated by Fα and U
satisfies (ii), (iv), (v) as required and it may be taken as Fα+1.

Because of condition (v) every ultrafilter which extends the filter
base F =

⋃
α<ω1

Fα is a Q-point. Let G = {
⋃

n∈M Rn : ω \ M ∈
T }. Condition (iv) in induction assumption guarantees that F ∪G
generates a free filter on ω. Every ultrafilter U which extendsF ∪G
is a Q-point but not a thin ultrafilter because for every U ∈ U
f [U ] 6∈ T where f : ω → ω is defined by f � Rn = n. �
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