THIN ULTRAFILTERS

Jana Flašková

ABSTRACT. Two ideals on ω are presented which determine the same class of \mathscr{I} -ultrafilters. It is proved that the existence of these ultrafilters is independent of ZFC and the relation between this class and other well-known classes of ultrafilters is shown.

Let \mathscr{I} be a family of subsets of a set X such that \mathscr{I} contains all singletons and is closed under subsets. Given an ultrafilter \mathscr{U} on ω , we say that \mathscr{U} is an \mathscr{I} -ultrafilter if for any mapping $F : \omega \to X$ there is $A \in \mathscr{U}$ such that $F(A) \in \mathscr{I}$.

Concrete examples of \mathscr{I} -ultrafilters are nowhere dense ultrafilters, measure zero ultrafilters or countably closed ultrafilters defined by taking $X = 2^{\omega}$ and \mathscr{I} to contain all the nowhere dense sets, the sets with closure of measure zero, or the sets with countable closure, respectively. The class of α -ultrafilters was defined for an indecomposable countable ordinal α by taking $X = \omega_1$ and \mathscr{I} to consist of the subsets of ω_1 with order type less than α .

Consistency results about existence of these ultrafilters and some inclusions among the appropriate classes of ultrafilters were obtained by Baumgartner [1], Brendle [4], Barney [2]. It was proved by Shelah [8] that consistently there are no nowhere dense ultrafilters, consequently all mentioned ultrafilters (except the α -ultrafilters for which the question is still open) may not exist.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

1

JANA FLAŠKOVÁ

In this paper, we focus on free ultrafilters on ω defined by taking $X = \omega$ and \mathscr{I} to be two different collections of subsets of natural numbers.

I. Basic facts and definitions.

It was noticed in [1] that for a given family \mathscr{I} the \mathscr{I} -ultrafilters are closed downward under the Rudin-Keisler ordering \leq_{RK} (recall that $\mathscr{U} \leq_{RK} \mathscr{V}$ if there is a function $f : \omega \to \omega$ whose Stone extension $\beta f : \beta \omega \to \beta \omega$ maps \mathscr{V} on \mathscr{U} , see [5]).

Replacing $f[U] \in \mathscr{I}$ by $f[U] \in \langle \mathscr{I} \rangle$ in the definition of \mathscr{I} ultrafilter, where $\langle \mathscr{I} \rangle$ is the ideal generated by \mathscr{I} , we get the same concept (see [2]), i.e. \mathscr{I} -ultrafilters and $\langle \mathscr{I} \rangle$ -ultrafilters coincide. Obviously, if \mathscr{U} is an \mathscr{I} -ultrafilter then $\mathscr{U} \cap \mathscr{I} \neq \emptyset$ (the converse is not true) and if $\mathscr{I} \subseteq \mathscr{J}$ then every \mathscr{I} -ultrafilter is a \mathscr{J} -ultrafilter.

Lemma. If C is a class of ultrafilters closed downward under \leq_{RK} and \mathscr{I} an ideal on ω then the following are equivalent:

- (i) There exists $\mathscr{U} \in \mathcal{C}$ which is not an \mathscr{I} -ultrafilter
- (ii) There exists $\mathscr{V} \in \mathcal{C}$ which extends \mathscr{I}^* , the dual filter of \mathscr{I}

Proof. No ultrafilter extending \mathscr{I}^* is an \mathscr{I} -ultrafilter, so (ii) implies (i) trivially. To prove (i) implies (ii) assume that $\mathscr{U} \in \mathcal{C}$ is not an \mathscr{I} -ultrafilter. Hence there is a function $f \in {}^{\omega}\omega$ such that $(\forall A \in \mathscr{I})$ $f^{-1}[A] \notin \mathscr{U}$. Let $\mathscr{V} = \{V \subseteq \omega : f^{-1}[V] \in \mathscr{U}\}$. Obviously \mathscr{V} extends \mathscr{I}^* and $\mathscr{V} \leq_{RK} \mathscr{U}$. Since \mathcal{C} is closed downward under \leq_{RK} and $\mathscr{U} \in \mathcal{C}$ we get $\mathscr{V} \in \mathcal{C}$. \Box

An infinite set $A \subseteq \omega$ with enumeration $A = \{a_n : n \in \omega\}$ is called almost thin if $\limsup_n \frac{a_n}{a_{n+1}} < 1$ and thin (see [3]) if $\lim_n \frac{a_n}{a_{n+1}} = 0$. (Notice that by enumeration of a set of natural numbers we always mean an order preserving enumeration.)

We will denote the ideal generated by finite and thin sets by \mathscr{T} and the ideal generated by finite and almost thin sets by \mathscr{A} . The corresponding \mathscr{I} -ultrafilters will be called *thin ultrafilters* and *almost thin ultrafilters* respectively. We prove in Section I. that in fact these two classes of ultrafilters coincide, although the ideals \mathscr{T} and \mathscr{A} differ as the set $\{2^n : n \in \omega\} \in \mathscr{A} \setminus \mathscr{T}$. We show in Section II. the relation between thin ultrafilters and selective ultrafilters and the relation between thin ultrafilters and Q-points in Section III. Let us recall the definitions:

A free ultrafilter \mathscr{U} is called a *selective ultrafilter* if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some $i, R_i \in \mathscr{U}$, or $\exists U \in \mathscr{U}$ such that $(\forall i \in \omega) | U \cap R_i | \leq 1$.

A free ultrafilter \mathscr{U} is called a Q-point if for all partitions of ω consisting of finite sets, $\{Q_i : i \in \omega\}, \exists U \in \mathscr{U} \text{ such that } (\forall i \in \omega) | U \cap Q_i | \leq 1.$

II. Thin ultrafilters and almost thin ultrafilters.

The existence of thin ultrafilters is independent of ZFC. It is easy to construct a thin ultrafilter if we assume the Continuum Hypothesis (in Section II. we prove that the strictly weaker assumption (see [6]) that selective ultrafilters exist is sufficient) and we prove in Section III. that every thin ultrafilter is a Q-point whose existence is not provable in ZFC (see [7]).

Proposition 1. (CH) There is a thin ultrafilter.

Proof. Enumerate ${}^{\omega}\omega = \{f_{\alpha} : \alpha < \omega_1\}$. By transfinite induction on $\alpha < \omega_1$ we construct countable filter bases \mathscr{F}_{α} satisfying

- (i) \mathscr{F}_0 is the Fréchet filter
- (ii) $\mathscr{F}_{\alpha} \subseteq \mathscr{F}_{\beta}$ whenever $\alpha \leq \beta$
- (iii) $\mathscr{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathscr{F}_{\alpha}$ for γ limit
- (iv) $(\forall \alpha) \ (\exists F \in \mathscr{F}_{\alpha+1}) \ f_{\alpha}[F] \in \mathscr{T}$

Suppose we have constructed \mathscr{F}_{α} . If there exists a set $F \in \mathscr{F}_{\alpha}$ such that $f_{\alpha}[F] \in \mathscr{T}$ then put $\mathscr{F}_{\alpha+1} = \mathscr{F}_{\alpha}$. If $f_{\alpha}[F] \notin \mathscr{T}$ (in particular, $f_{\alpha}[F]$ is infinite) for every $F \in \mathscr{F}_{\alpha}$ then enumerate $\mathscr{F}_{\alpha} = \{F_n : n \in \omega\}$ and construct by induction a set $U = \{u_n : n \in \omega\}$ which we extend the filter base by:

Choose arbitrary $u_0 \in F_0$ such that $f_{\alpha}(u_0) > 0$ (such an element exists since $f_{\alpha}[F_0]$ is infinite). If $u_0, u_1, \ldots, u_{k-1}$ are already known we can choose $u_k \in \bigcap_{i \leq k} F_i$ so that $f_{\alpha}(u_k) > k \cdot f_{\alpha}(u_{k-1})$.

It is obvious that $U \subseteq^* F_n$, i.e. all but finitely many elements of U are contained in F_n , for all $n \in \omega$. We can check immediately that

JANA FLAŠKOVÁ

 $f_{\alpha}[U]$ is thin:

$$\lim_{n \to \infty} \frac{f_{\alpha}(u_n)}{f_{\alpha}(u_{n+1})} \le \lim_{n \to \infty} \frac{f_{\alpha}(u_n)}{(n+1) \cdot f_{\alpha}(u_n)} = \lim_{n \to \infty} \frac{1}{(n+1)} = 0$$

To complete the induction step let $\mathscr{F}_{\alpha+1}$ be the countable filter base generated by \mathscr{F}_{α} and the set U.

It is clear that any ultrafilter extending $\bigcup_{\alpha < \omega_1} \mathscr{F}_{\alpha}$ is thin. \Box

Since $\mathscr{T} \subset \mathscr{A}$ every thin ultrafilter has to be almost thin. The following proposition states that the converse also holds true and the classes of almost thin and thin ultrafilters coincide.

Proposition 2. Every almost thin ultrafilter is a thin ultrafilter.

Proof. Because of the Lemma it suffices to prove that every almost thin ultrafilter contains a thin set. To that end assume that \mathscr{U} is an almost thin ultrafilter and $U_0 \in \mathscr{U}$ is an almost thin set which is not thin with enumeration $U_0 = \{u_n : n \in \omega\}$. Denote $\limsup_n \frac{u_n}{u_{n+1}} = q_0 < 1$. We may assume that the set of even numbers belongs to \mathscr{U} (otherwise the role of even and odd numbers interchange).

Define $g: \omega \to \omega$ so that $g(u_n) = 2n, g[\omega \setminus U_0] = \{2n+1 : n \in \omega\}.$

Since \mathscr{U} is an almost thin ultrafilter there exists $U_1 \in \mathscr{U}$ such that $g[U_1]$ is almost thin. Let $U = U_0 \cap U_1 = \{u_{n_k} : k \in \omega\}$. Almost thin sets are closed under subsets, therefore $g[U] = \{g(u_{n_k}) : k \in \omega\} \subseteq g[U_1]$ is almost thin and $1 > \limsup_k \frac{g(u_{n_k})}{g(u_{n_{k+1}})} = \limsup_k \frac{2n_k}{2n_{k+1}}$.

We know that there is n_0 such that $(\forall n \ge n_0) \frac{u_n}{u_{n+1}} \le \frac{q_0+1}{2}$ and that there is k_0 such that $(\forall k \ge k_0) n_k \ge n_0$. Hence for $k \ge k_0$ we have

$$\frac{u_{n_k}}{u_{n_{k+1}}} = \frac{u_{n_k}}{u_{n_k+1}} \cdot \dots \cdot \frac{u_{n_{k+1}-1}}{u_{n_{k+1}}} \le \left(\frac{q_0+1}{2}\right)^{n_{k+1}-n_k}$$

It follows from $\limsup_k \frac{n_k}{n_{k+1}} < 1$ that $\lim_k (n_{k+1} - n_k) = +\infty$. Hence

$$\lim_{k \to \infty} \frac{u_{n_k}}{u_{n_{k+1}}} \le \lim_{k \to \infty} \left(\frac{q_0 + 1}{2}\right)^{n_{k+1} - n_k} = 0$$

and the set $U \in \mathscr{U}$ is thin. \Box

III. Thin ultrafilters and selective ultrafilters.

Proposition 3. Every selective ultrafilter is thin.

Proof. Selective ultrafilters are minimal points in Rudin-Keisler ordering (see [5]), hence the class is downward closed under \leq_{RK} and we may apply the Lemma. It suffices to prove that there is no selective ultrafilter extending the dual filter of \mathscr{T} .

Claim: Every selective ultrafilter contains a thin set.

Assume \mathscr{U} is a selective ultrafilter and consider the partition of ω , $\{R_n : n \in \omega\}$, where $R_0 = \{0\}$ and $R_n = [n!, (n+1)!)$ for n > 0. Since \mathscr{U} is selective there exists $U_0 \in \mathscr{U}$ such that $|U_0 \cap R_n| \leq 1$ for every $n \in \omega$. Since \mathscr{U} is an ultrafilter either $A_0 = \bigcup \{R_n : n \text{ is even}\}$ or $A_1 = \bigcup \{R_n : n \text{ is odd}\}$ belongs to \mathscr{U} . Without loss of generality, assume $A_0 \in \mathscr{U}$. Enumerate $U = U_0 \cap A_0 \in \mathscr{U}$ as $\{u_k : k \in \omega\}$. If $u_k \in [(2m_k)!, (2m_k + 1)!)$ then $u_{k+1} \geq (2m_k + 2)!$ and we have $\frac{u_k}{u_{k+1}} \leq \frac{(2m_k+1)!}{(2m_k+2)!} = \frac{1}{2m_k+2} \leq \frac{1}{2k+2}$. Hence U is thin. \Box

Proposition 4. (CH) Not every thin ultrafilter is selective.

Proof. Fix a partition $\{R_n : n \in \omega\}$ of ω into infinite sets and enumerate ${}^{\omega}\omega = \{f_{\alpha} : \alpha < \omega_1\}$. By transfinite induction on $\alpha < \omega_1$ we will construct countable filter bases \mathscr{F}_{α} satisfying

(i) \mathscr{F}_0 is the countable filter base generated by Fréchet filter and $\{\omega \setminus R_n : n \in \omega\}$

(ii) $\mathscr{F}_{\alpha} \subseteq \mathscr{F}_{\beta}$ whenever $\alpha \leq \beta$

(iii) $\mathscr{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathscr{F}_{\alpha}$ for γ limit

(iv) $(\forall \alpha)$ $(\forall F \in \mathscr{F}_{\alpha})$ $\{n : |F \cap R_n| = \omega\}$ is infinite

(v) $(\forall \alpha) \ (\exists F \in \mathscr{F}_{\alpha+1}) \ f_{\alpha}[F] \in \mathscr{T}$

Suppose we know already \mathscr{F}_{α} . If there is a set $F \in \mathscr{F}_{\alpha}$ such that $f_{\alpha}[F] \in \mathscr{T}$ then put $\mathscr{F}_{\alpha+1} = \mathscr{F}_{\alpha}$. If $(\forall F \in \mathscr{F}_{\alpha}) f_{\alpha}[F] \notin \mathscr{T}$ then one of the following cases occurs.

JANA FLAŠKOVÁ

Case A. $(\forall F \in \mathscr{F}_{\alpha})$ $\{n : |f_{\alpha}[F \cap R_n]| = \omega\}$ is infinite

Fix an enumeration $\{F_m : m \in \omega\}$ of \mathscr{F}_{α} . According to the assumption the set $I_m = \{n : |f_{\alpha}[\bigcap_{i \leq m} F_i \cap R_n]| = \omega\}$ is infinite for all $m \in \omega$. Let us enumerate the set $\{\langle m, n \rangle : n \in I_m, m \in \omega\}$ as $\{p_k : k \in \omega\}$ so that each ordered pair $\langle m, n \rangle$ occurs infinitely many times. By induction we will construct a set $U = \{u_k : k \in \omega\}$ which we may add to \mathscr{F}_{α} .

Consider $p_0 = \langle m, n \rangle$. Since $|f_{\alpha}[\bigcap_{i \leq m} F_i \cap R_n]| = \omega$ we can choose $u_0 \in \bigcap_{i \leq m} F_i \cap R_n$ such that $f_{\alpha}(u_0) > 0$. Suppose we know u_0, \ldots, u_{k-1} such that $u_{i+1} > u_i, u_i \in \bigcap_{j \leq m} F_j \cap R_n$ where $p_i = \langle m, n \rangle$ and $f_{\alpha}(u_{i+1}) > (i+1) \cdot f_{\alpha}(u_i)$ for i < k-1. Consider $p_k = \langle m, n \rangle$. Since $\bigcap_{i \leq m} F_i \cap R_n$ and its image under f_{α} is infinite we may choose $u_k \in \bigcap_{i \leq m} F_i \cap R_n$ so that $u_k > u_{k-1}$ and $f_{\alpha}(u_k) > k \cdot f_{\alpha}(u_{k-1})$.

It remains to verify that $f_{\alpha}[U]$ is thin and $\mathscr{F}_{\alpha} \cup \{U\}$ generates a filter base satisfying (iv).

• $f_{\alpha}[U]$ is thin:

$$\lim_{k \to \infty} \frac{f_{\alpha}(u_k)}{f_{\alpha}(u_{k+1})} \le \lim_{k \to \infty} \frac{f_{\alpha}(u_k)}{(k+1) \cdot f_{\alpha}(u_k)} = \lim_{k \to \infty} \frac{1}{(k+1)} = 0$$

• $(\forall F \in \mathscr{F}_{\alpha}) \{n : |U \cap F \cap R_n| = \omega\}$ is infinite:

For every $F \in \mathscr{F}_{\alpha}$ there is $m_F \in \omega$ such that $U \cap F \cap R_n \supseteq U \cap \bigcap_{i \leq m_F} F_i \cap R_n$ which is infinite whenever $n \in I_{m_F}$ since $U \cap \bigcap_{i < m_F} F_i \cap R_n \supseteq \{u_k : p_k = \langle m_F, n \rangle\}.$

To complete the induction step let $\mathscr{F}_{\alpha+1}$ be the countable filter base generated by \mathscr{F}_{α} and U.

Case B. $(\exists F_0 \in \mathscr{F}_{\alpha})$ $\{n : |f_{\alpha}[F_0 \cap R_n]| = \omega\}$ is finite

Enumerate $\mathscr{F}_{\alpha} \setminus \{F_0\} = \{F_m : m > 0\}$. Since F_0 satisfies (iv) there is $n_0 \in \omega$ such that $|f_{\alpha}[F_0 \cap R_{n_0}]| < \omega$ and $|F_0 \cap R_{n_0}| = \omega$. It follows that there is $z_0 \in \omega$ such that $f_{\alpha}^{-1}[\{z_0\}] \cap F_0 \cap R_{n_0}$ is infinite. The set $\bigcap_{i \leq m} F_i$ satisfies (iv) for any $m \in \omega$ and for all but finitely many n the set $f_{\alpha}[\bigcap_{i \leq m} F_i \cap R_n]$ is finite. So we may choose $n_m > n_{m-1}$ such that $f_{\alpha}[\bigcap_{i \leq m} F_i \cap R_{n_m}]$ is finite and $\bigcap_{i \leq m} F_i \cap R_{n_m}$ infinite. We find z_m such that $f_{\alpha}^{-1}[\{z_m\}] \cap \bigcap_{i < m} F_i \cap R_{n_m}$ is infinite. Consider the sequence $\langle z_m : m \in \omega \rangle$. We can find a subsequence $\langle z_{m_j} : j \in \omega \rangle$ which is either constant or satisfies $z_{m_{j+1}} > (j+1) \cdot z_{m_j}$ for every $j \in \omega$. Set $U = \bigcup_{j \in \omega} f_{\alpha}^{-1}[\{z_{m_j}\}]$. It is obvious that $f_{\alpha}[U] \in \mathscr{T}$ and $(\forall F \in \mathscr{F}_{\alpha}) \{n : |U \cap F \cap R_n| = \omega\}$ is infinite.

To complete the induction step let $\mathscr{F}_{\alpha+1}$ be the countable filter base generated by \mathscr{F}_{α} and U.

The filter base $\mathscr{F} = \bigcup_{\alpha < \omega_1} \mathscr{F}_{\alpha}$ satisfies (iv) and every ultrafilter which extends \mathscr{F} is thin because of condition (v).

Claim: Every filter satisfying (iv) may be extended to an ultrafilter satisfying (iv).

Whenever \mathscr{F} is a filter satisfying (iv) and $A \subseteq \omega$ then either for every $F \in \mathscr{F}$ exist infinitely many $n \in \omega$ such that $|A \cap F \cap R_n| = \omega$, so the filter generated by \mathscr{F} and A satisfies (iv) or there is $F_0 \in \mathscr{F}$ such that for all but finitely many $n \in \omega$ we have $|A \cap F_0 \cap R_n| < \omega$. Then since for every $F \in \mathscr{F}$ exist infinitely many $n \in \omega$ for which $|F \cap F_0 \cap R_n| = \omega$ the filter generated by \mathscr{F} and $\omega \setminus A$ satisfies (iv). Hence for every subset of ω we may extend \mathscr{F} either by the set itself or its complement. Consequently, \mathscr{F} may be extended to an ultrafilter satisfying (iv). \Box

IV. Thin ultrafilters and Q-points.

Proposition 5. Every thin ultrafilter is a Q-point.

Proof. Let \mathscr{U} be a thin ultrafilter and $\mathscr{Q} = \{Q_n : n \in \omega\}$ a partition of ω into finite sets. Enumerate $Q_n = \{q_i^n : i = 0, \dots, k_n\}$ (where $k_n = |Q_n| - 1$).

Define a one-to-one function $f: \omega \to \omega$ in the following way: $f(q_0^0) = 0, \ f(q_0^{n+1}) = (n+2) \cdot \max\{f(q_{k_n}^n), k_{n+1}\}$ for $n \in \omega$ and $f(q_i^n) = f(q_0^n) + i$ for $i \leq k_n, n \in \omega$

Notice that $f \upharpoonright Q_n$ is strictly increasing for every n.

Since \mathscr{U} is a thin ultrafilter there exists $U_0 \in \mathscr{U}$ such that $f[U_0] = \{v_m : m \in \omega\}$ is a thin set. Hence there is $m_0 \in \omega$ such that $\frac{v_m}{v_{m+1}} < \frac{1}{2}$ for every $m \geq m_0$.

Since f is one-to-one and \mathscr{Q} a partition of ω we find $K \subseteq \omega$ of size at most m_0 such that $\{f^{-1}(v_i) : i < m_0\} \subseteq \bigcup_{n \in K} Q_n$. The latter set is finite. Therefore $U = U_0 \setminus \bigcup_{n \in K} Q_n \in \mathscr{U}$. Claim: $(\forall n \in \omega) | U \cap Q_n | \leq 1$

The intersection is clearly empty for $n \in K$. Assume for the contrary that for some $n \notin K$ there are two distinct elements $u_1, u_2 \in U \cap Q_n$, $u_1 < u_2$. Then $f(u_1) = v_m$ for some $m \ge m_0$ and $f(u_2) = v_n$ for some $n \ge m + 1$. We get $\frac{v_m}{v_{m+1}} \ge \frac{v_m}{v_n} = \frac{f(u_1)}{f(u_2)} \ge \frac{f(q_0^n)}{f(q_0^n) + k_n} \ge \frac{(n+1)\cdot M}{(n+1)\cdot M+M} = \frac{n+1}{n+2}$ where $M = \max\{f(q_{k_{n-1}}^{n-1}), k_n\}$. But $\frac{n+1}{n+2} \ge \frac{1}{2}$, a contradiction. \Box

Note that while proving that every selective ultrafilter contains a thin set we actually proved that every Q-point contains a thin set as the partition under consideration consists of finite sets. However, Q-points need not be thin ultrafilters.

Proposition 6. (CH) Not every Q-point is a thin ultrafilter.

Proof. Fix $\{R_n : n \in \omega\}$ a partition of ω into infinite sets. Let $\{\mathscr{Q}_{\alpha} : \alpha < \omega_1\}$ be the list of all partitions of ω into finite sets. By transfinite induction on $\alpha < \omega_1$ we will construct countable filter bases \mathscr{F}_{α} so that the following are satisfied:

(i) \mathscr{F}_0 is the Fréchet filter

(ii) $\mathscr{F}_{\alpha} \subseteq \mathscr{F}_{\beta}$ whenever $\alpha < \beta$

(iii) $\mathscr{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathscr{F}_{\alpha}$ for γ limit

(iv) $(\forall \alpha) \ (\forall F \in \mathscr{F}_{\alpha}) \ (\forall n) \ |F \cap R_n| = \omega$

(v) $(\forall \alpha) \ (\exists F \in \mathscr{F}_{\alpha+1}) \ (\forall Q \in \mathscr{Q}_{\alpha}) \ |F \cap Q| \leq 1$

Suppose we already know \mathscr{F}_{α} . If there is a set $F \in \mathscr{F}_{\alpha}$ such that $|F \cap Q| \leq 1$ for each $Q \in \mathscr{Q}_{\alpha}$ then let $\mathscr{F}_{\alpha+1} = \mathscr{F}_{\alpha}$. If $(\forall F \in \mathscr{F}_{\alpha})$ $(\exists Q \in \mathscr{Q}_{\alpha}) |F \cap Q| > 1$, we construct by induction a set U compatible with \mathscr{F}_{α} such that $|U \cap Q| \leq 1$ for each $Q \in \mathscr{Q}_{\alpha}$.

Enumerate $\mathscr{F}_{\alpha} = \{F_k : k \in \omega\}, \ \mathscr{Q}_{\alpha} = \{Q_n : n \in \omega\}$ and list $\{R_n : n \in \omega\} = \{M_k : k \in \omega\}$ so that each R_n is listed infinitely often. To start the construction of U choose $u_0 \in M_0$ arbitrarily. Since $\bigcup \mathscr{Q}_{\alpha} = \omega$ there exists $n_0 \in \omega$ such that $u_0 \in Q_{n_0}$.

Suppose we already know u_0, \ldots, u_{k-1} and n_0, \ldots, n_{k-1} such that $u_i \in Q_{n_i}$ for i < k. Since $\bigcup_{i < k} Q_{n_i}$ is finite and $\bigcap_{i < k} F_i \cap M_k$ is infinite according to (iv) we may choose $u_k \in (\bigcap_{i < k} F_i \cap M_k) \setminus \bigcup_{i < k} Q_{n_i}$. Let Q_{n_k} be the unique element of \mathscr{Q}_{α} which contains u_k .

Finally, let $U = \{u_k : k \in \omega\}$. For every $n \in \omega$ we have either $U \cap Q_n = \{u_k\}$ (if $n = n_k$) or $U \cap Q_n = \emptyset$. It remains to check that U is compatible with \mathscr{F}_{α} and satisfies (iv). However, for every $F \in \mathscr{F}_{\alpha}$ and for every R_n there is $n_F \in \omega$ such that $U \cap F \cap R_n \supseteq U \cap \bigcap_{i < n_F} F_i \cap R_n \supseteq \{u_k : k \ge n_F, M_k = R_n\}$. The latter set is infinite. Hence the countable filter base generated by \mathscr{F}_{α} and U satisfies (ii), (iv), (v) as required and it may be taken as $\mathscr{F}_{\alpha+1}$.

Because of condition (v) every ultrafilter which extends the filter base $\mathscr{F} = \bigcup_{\alpha < \omega_1} \mathscr{F}_{\alpha}$ is a *Q*-point. Let $\mathscr{G} = \{\bigcup_{n \in M} R_n : \omega \setminus M \in \mathscr{T}\}$. Condition (iv) in induction assumption guarantees that $\mathscr{F} \cup \mathscr{G}$ generates a free filter on ω . Every ultrafilter \mathscr{U} which extends $\mathscr{F} \cup \mathscr{G}$ is a *Q*-point but not a thin ultrafilter because for every $U \in \mathscr{U}$ $f[U] \notin \mathscr{T}$ where $f: \omega \to \omega$ is defined by $f \upharpoonright R_n = n$. \Box

References

- [1] J. Baumgartner, Ultrafilters on ω, J. Symbolic Logic 60 (1995), 624–639.
- [2] C. Barney, Ultrafilters on the natural numbers, J. Symbolic Logic 68 (2003), 764–784.
- [3] A. Blass, R. Frankiewicz, G. Plebanek, C. Ryll-Nardzewski, A note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001), 97–103.
- [4] J. Brendle, Between P-points and nowhere dense ultrafilters, Israel J. Math. 113 (1999), 205–230.
- [5] W. W. Comfort, S. Negrepontis, *The Theory of Ultrafilters*, Springer, Berlin, New York, 1974.
- [6] K. Kunen, Some points in βω, Math. Proc. Cambridge Philos. Soc. 80 (1976), 385–398.
- [7] A. W. Miller, There are no Q-points in Laver's model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), 103–106.
- [8] S. Shelah, There may be no nowhere dense ultrafilters, Proceedings of the logic coloquium Haifa '95, Lecture notes Logic, vol. 11, Springer, Berlin, 1998, pp. 305–324.