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I-ultrafilters

Definition A. (Baumgartner)

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on ω is called an I-ultrafilter if for
every F : ω → X there exists A ∈ U such that

F [A] ∈ I .

• if I ⊆ J then every I-ultrafilter is a J -ultrafilter

• I-ultrafilters and 〈I〉-ultrafilters coincide

where 〈I〉 is the ideal generated by I
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I-ultrafilters for X = 2
ω

family I
converging sequences
and finite sets

discrete sets

scattered sets

{A : µ(Ā) = 0}

nowhere dense sets

corresponding I-ultrafilters

P -points

discrete ultrafilters

scattered ultrafilters

measure zero ultrafilters

nowhere dense ultrafilters
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I-ultrafilters for X = 2
ω

family I
converging sequences
and finite sets

discrete sets

scattered sets

{A : µ(Ā) = 0}

nowhere dense sets

corresponding I-ultrafilters

P -points

discrete ultrafilters

scattered ultrafilters

measure zero ultrafilters

nowhere dense ultrafilters

Theorem (Shelah)
There may be no nowhere dense ultrafilters.
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I-ultrafilters for X = ω

Theorem 1.

If I is a maximal ideal and χ(I) = c then I-ultrafilters
exist in ZFC.
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I-ultrafilters for X = ω

Theorem 1.

If I is a maximal ideal and χ(I) = c then I-ultrafilters
exist in ZFC.

I ⊆ P(ω) is a dense ideal if for every A ∈ [ω]ω there

exists an infinite set B ⊆ A such that B ∈ I .

Proposition 2.

If I is not a dense ideal then there are no I-ultrafilters.
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I-ultrafilters for X = ω

Theorem 3.

(p = c) If I is a dense ideal then I-ultrafilters exist.
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I-ultrafilters for X = ω

Theorem 3.

(p = c) If I is a dense ideal then I-ultrafilters exist.

Theorem 4.

If I is a (dense) Fσ-ideal or analytic P -ideal then every
selective ultrafilter is an I-ultrafilter.
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I-ultrafilters for X = ω

Theorem 3.

(p = c) If I is a dense ideal then I-ultrafilters exist.

Theorem 4.

If I is a (dense) Fσ-ideal or analytic P -ideal then every
selective ultrafilter is an I-ultrafilter.

Theorem 5.

Let I be a P -ideal. If there is an I-ultrafilter then there
is an I-ultrafilter that is not a P -point.
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Small subsets of ω or (N)

Let A be a subset of ω with an increasing enumeration

A = {an : n ∈ ω}. We say that A is

thin if limn→∞
an

an+1
= 0

almost thin if limn→∞
an

an+1
< 1

(SC)-set if limn→∞ an+1 − an = ∞
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Small subsets of ω or (N)

Let A be a subset of ω with an increasing enumeration

A = {an : n ∈ ω}. We say that A is

thin if limn→∞
an

an+1
= 0

almost thin if limn→∞
an

an+1
< 1

(SC)-set if limn→∞ an+1 − an = ∞

I1/n= {A ⊆ N :
∑

a∈A
1

a < ∞}

Z0= {A ⊆ N : lim supn→∞
|A∩n|

n = 0}
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Connections

Z0-ultrafilters

I1/n-ultrafilters
¡

¡
¡µ

(SC)-ultrafilters
@

@
@I

(almost) thin ultrafilters
¡

¡
¡µ

@
@

@I
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Connections
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¡
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assuming MActble

no arrow can be added
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Ultrafilter sums and products

Definition B.

Let U and Vn, n ∈ ω, be ultrafilters on ω.
U -sum of ultrafilters Vn,

∑
U〈Vn : n ∈ ω〉,

is an ultrafilter on ω × ω defined by

M ∈
∑

U〈Vn : n ∈ ω〉 if and only if

{n : {m : 〈n, m〉 ∈ A} ∈ Vn} ∈ U .

If Vn = V for every n ∈ ω then we write∑
U〈Vn : n ∈ ω〉 = U · V and the ultrafilter U · V

is called the product of ultrafilters U and V .
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Ultrafilter sums and products

Definition C. (Baumgartner)

Let C and D be two classes of ultrafilters.
We say that C is closed under D-sums provided that

whenever {Vn : n ∈ ω} ⊆ C and U ∈ D
then

∑
U〈Vn : n ∈ ω〉 ∈ C.

• If D is a class of I-ultrafilters then we say that
C is closed under I-sums.
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Some results

Theorem 6.

Let I be a P -ideal on ω (or N).
If U is an I-ultrafilter and {n : Vn is I-ultrafilter} ∈ U
then

∑
U〈Vn : n ∈ ω〉 is an I-ultrafilter.
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Some results

Theorem 6.

Let I be a P -ideal on ω (or N).
If U is an I-ultrafilter and {n : Vn is I-ultrafilter} ∈ U
then

∑
U〈Vn : n ∈ ω〉 is an I-ultrafilter.

Corollary 7.

I-ultrafilters are closed under I-sums if I is a P -ideal.
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Some results

Theorem 6.

Let I be a P -ideal on ω (or N).
If U is an I-ultrafilter and {n : Vn is I-ultrafilter} ∈ U
then

∑
U〈Vn : n ∈ ω〉 is an I-ultrafilter.

Corollary 7.

I-ultrafilters are closed under I-sums if I is a P -ideal.

Proposition 8.

For arbitrary U ∈ ω∗ the ultrafilter U · U is not an

(SC)-ultrafilter.
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Weak I-ultrafilters

Definition A. (Baumgartner)

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on ω is called an I-ultrafilter
if for every F : ω → X there exists A ∈ U
such that F [A] ∈ I .
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Weak I-ultrafilters

Definition D.

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on ω is called an weak I-ultrafilter
if for every finite-to-one F : ω → X there exists A ∈ U
such that F [A] ∈ I .
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Weak I-ultrafilters

Definition D.

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on ω is called an weak I-ultrafilter
if for every finite-to-one F : ω → X there exists A ∈ U
such that F [A] ∈ I .

An ultrafilter U on ω is called an I-close ultrafilter if
for every one-to-one F : ω → X there exists A ∈ U
such that F [A] ∈ I .
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More results

Proposition 8∗.

For arbitrary U ∈ ω∗ the ultrafilter U · U is not an

(SC)-close ultrafilter.
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More results

Proposition 8∗.

For arbitrary U ∈ ω∗ the ultrafilter U · U is not an

(SC)-close ultrafilter.

Theorem 6.

Let I be a P -ideal on ω (or N).

• If {n : Vn is I-ultrafilter} ∈ U and

U is an I-ultrafilter then∑
U〈Vn : n ∈ ω〉 is an I-ultrafilter.
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More results

Proposition 8∗.

For arbitrary U ∈ ω∗ the ultrafilter U · U is not an

(SC)-close ultrafilter.

Theorem 9.

Let I be a P -ideal on ω (or N).

• If {n : Vn is weak I-ultrafilter} ∈ U then∑
U〈Vn : n ∈ ω〉 is a weak I-ultrafilter.

• If {n : Vn is I-close ultrafilter} ∈ U then∑
U〈Vn : n ∈ ω〉 is an I-close ultrafilter.
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More results

Theorem 10.

Assume I is an ideal on N.
If

∑
U〈Vn : n ∈ N〉 is an I-ultrafilter

then {n : Vn is an I-ultrafilter} ∈ U
and U is an I-ultrafilter.

Theorem 6.

Let I be a P -ideal on ω (or N).
If {n : Vn is I-ultrafilter} ∈ U
and U is an I-ultrafilter
then

∑
U〈Vn : n ∈ ω〉 is an I-ultrafilter.
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More results

Theorem 10.

Assume I is an ideal on N.
If
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then {n : Vn is an I-ultrafilter} ∈ U
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More results

Theorem 11.

Assume I is an ideal on N and there exists g : N → N

with g(n) > n for every n ∈ N and A 6∈ I implies

g[A] 6∈ I for every A ⊆ N.

If
∑

U〈Vn : n ∈ ω〉 is a weak I-ultrafilter

then {n : Vn is a weak I-ultrafilter} ∈ U .
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More results

Theorem 11.

Assume I is an ideal on N and there exists g : N → N

with g(n) > n for every n ∈ N and A 6∈ I implies

g[A] 6∈ I for every A ⊆ N.

If
∑

U〈Vn : n ∈ ω〉 is a weak I-ultrafilter

then {n : Vn is a weak I-ultrafilter} ∈ U .

Theorem 12.

Assume I is an ideal on N and A 6∈ I implies
A + 1 6∈ I and 2A 6∈ I for each A ⊆ N.

If
∑

U〈Vn : n ∈ ω〉 is an I-close ultrafilter

then {n : Vn is an I-close ultrafilter} ∈ U .
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A "problematic" ideal

Van der Waerden ideal is the family

W = {A ⊆ N : A does not contain arithmetic

progressions of arbitrary length}.
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A "problematic" ideal

Van der Waerden ideal is the family

W = {A ⊆ N : A does not contain arithmetic

progressions of arbitrary length}.

• If
∑

U〈Vn : n ∈ ω〉 is a weak W-ultrafilter

then {n : Vn is a weak W-ultrafilter} ∈ U .

• If
∑

U〈Vn : n ∈ ω〉 is an W-close ultrafilter

then {n : Vn is an W-close ultrafilter} ∈ U .
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A "problematic" ideal

Van der Waerden ideal is the family

W = {A ⊆ N : A does not contain arithmetic

progressions of arbitrary length}.

• If
∑

U〈Vn : n ∈ ω〉 is a weak W-ultrafilter

then {n : Vn is a weak W-ultrafilter} ∈ U .

• If
∑

U〈Vn : n ∈ ω〉 is an W-close ultrafilter

then {n : Vn is an W-close ultrafilter} ∈ U .

Question:
Are W-ultrafilters closed under W-sums or products?
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