On sums and products of certain \mathcal{I} -ultrafilters

Jana Flašková

flaskova@kma.zcu.cz

University of West Bohemia, Pilsen Czech Republic

\mathcal{I} -ultrafilters

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

- if $\mathcal{I} \subseteq \mathcal{J}$ then every \mathcal{I} -ultrafilter is a \mathcal{J} -ultrafilter
- \mathcal{I} -ultrafilters and $\langle \mathcal{I} \rangle$ -ultrafilters coincide

where $\langle \mathcal{I} \rangle$ is the ideal generated by \mathcal{I}

family \mathcal{I} converging sequences and finite sets discrete sets scattered sets $\{A : \mu(\bar{A}) = 0\}$ nowhere dense sets

corresponding \mathcal{I} -ultrafilters

P-points
discrete ultrafilters
scattered ultrafilters
measure zero ultrafilters
nowhere dense ultrafilters

family \mathcal{I} converging sequences and finite sets discrete sets scattered sets $\{A: \mu(\bar{A}) = 0\}$ nowhere dense sets

corresponding \mathcal{I} -ultrafilters

P-points
discrete ultrafilters
scattered ultrafilters
measure zero ultrafilters
nowhere dense ultrafilters

Theorem (Shelah) There may be no nowhere dense ultrafilters.

Theorem 1.

If \mathcal{I} is a maximal ideal and $\chi(\mathcal{I}) = \mathfrak{c}$ then \mathcal{I} -ultrafilters exist in ZFC.

Theorem 1.

If \mathcal{I} is a maximal ideal and $\chi(\mathcal{I}) = \mathfrak{c}$ then \mathcal{I} -ultrafilters exist in ZFC.

 $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is a dense ideal if for every $A \in [\omega]^{\omega}$ there exists an infinite set $B \subseteq A$ such that $B \in \mathcal{I}$.

Proposition 2.

If \mathcal{I} is not a dense ideal then there are no \mathcal{I} -ultrafilters.

Theorem 3.

 $(\mathfrak{p} = \mathfrak{c})$ If \mathcal{I} is a dense ideal then \mathcal{I} -ultrafilters exist.

Theorem 3. ($\mathfrak{p} = \mathfrak{c}$) If \mathcal{I} is a dense ideal then \mathcal{I} -ultrafilters exist.

Theorem 4.

If \mathcal{I} is a (dense) F_{σ} -ideal or analytic P-ideal then every selective ultrafilter is an \mathcal{I} -ultrafilter.

Theorem 3. ($\mathfrak{p} = \mathfrak{c}$) If \mathcal{I} is a dense ideal then \mathcal{I} -ultrafilters exist.

Theorem 4.

If \mathcal{I} is a (dense) F_{σ} -ideal or analytic P-ideal then every selective ultrafilter is an \mathcal{I} -ultrafilter.

Theorem 5.

Let \mathcal{I} be a P-ideal. If there is an \mathcal{I} -ultrafilter then there is an \mathcal{I} -ultrafilter that is not a P-point.

Small subsets of ω or (\mathbb{N})

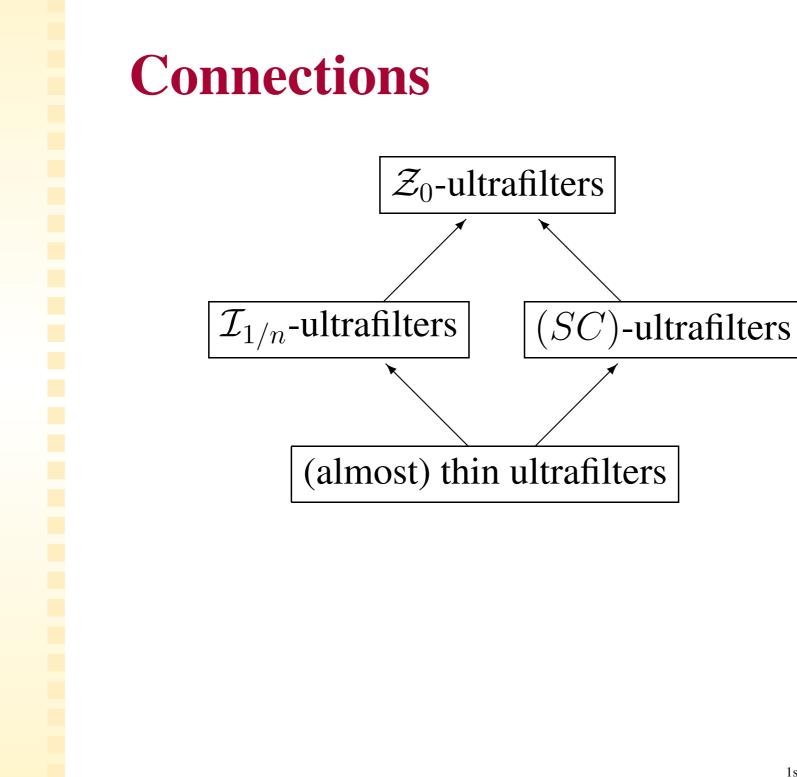
Let A be a subset of ω with an increasing enumeration $A = \{a_n : n \in \omega\}$. We say that A is

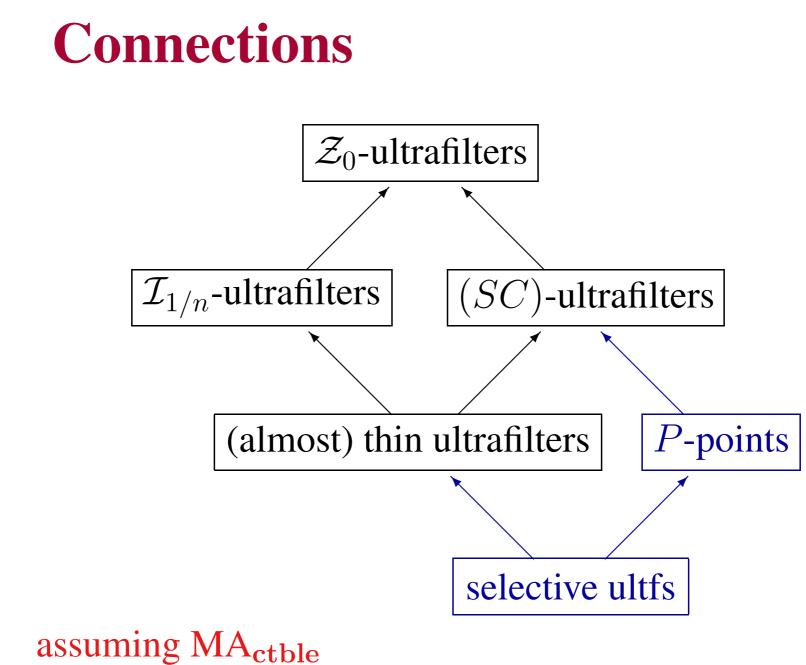
thin if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$ almost thin if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} < 1$ (SC)-set if $\lim_{n\to\infty} a_{n+1} - a_n = \infty$

Small subsets of ω or (\mathbb{N})

Let A be a subset of ω with an increasing enumeration $A = \{a_n : n \in \omega\}$. We say that A is

thin if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$ almost thin if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} < 1$ (SC)-set if $\lim_{n\to\infty} a_{n+1} - a_n = \infty$ $\mathcal{I}_{1/n} = \{A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty\}$ $\mathcal{Z}_0 = \{A \subseteq \mathbb{N} : \limsup_{n\to\infty} \frac{|A \cap n|}{n} = 0\}$





no arrow can be added

Ultrafilter sums and products

Definition B.

Let \mathcal{U} and \mathcal{V}_n , $n \in \omega$, be ultrafilters on ω . \mathcal{U} -sum of ultrafilters \mathcal{V}_n , $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$, is an ultrafilter on $\omega \times \omega$ defined by $M \in \sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}_n\} \in \mathcal{U}.$

If $\mathcal{V}_n = \mathcal{V}$ for every $n \in \omega$ then we write $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle = \mathcal{U} \cdot \mathcal{V}$ and the ultrafilter $\mathcal{U} \cdot \mathcal{V}$ is called the product of ultrafilters \mathcal{U} and \mathcal{V} .

Ultrafilter sums and products

Definition C. (Baumgartner)

Let C and D be two classes of ultrafilters. We say that C is closed under D-sums provided that whenever $\{V_n : n \in \omega\} \subseteq C$ and $U \in D$ then $\sum_{\mathcal{U}} \langle V_n : n \in \omega \rangle \in C$.

• If \mathcal{D} is a class of \mathcal{I} -ultrafilters then we say that \mathcal{C} is closed under \mathcal{I} -sums.

Some results

Theorem 6.

Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If \mathcal{U} is an \mathcal{I} -ultrafilter and $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

Some results

Theorem 6.

Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If \mathcal{U} is an \mathcal{I} -ultrafilter and $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

Corollary 7.

 \mathcal{I} -ultrafilters are closed under \mathcal{I} -sums if \mathcal{I} is a P-ideal.

Some results

Theorem 6.

Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If \mathcal{U} is an \mathcal{I} -ultrafilter and $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

Corollary 7.

 \mathcal{I} -ultrafilters are closed under \mathcal{I} -sums if \mathcal{I} is a P-ideal.

Proposition 8.

For arbitrary $\mathcal{U} \in \omega^*$ the ultrafilter $\mathcal{U} \cdot \mathcal{U}$ is not an (SC)-ultrafilter.

Weak \mathcal{I} -ultrafilters

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Weak \mathcal{I} -ultrafilters

Definition D.

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an weak \mathcal{I} -ultrafilter if for every finite-to-one $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Weak \mathcal{I} -ultrafilters

Definition D.

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an weak \mathcal{I} -ultrafilter if for every finite-to-one $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -close ultrafilter if for every one-to-one $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Proposition 8^{*}.

For arbitrary $\mathcal{U} \in \omega^*$ the ultrafilter $\mathcal{U} \cdot \mathcal{U}$ is not an (SC)-close ultrafilter.

Proposition 8*.

For arbitrary $\mathcal{U} \in \omega^*$ the ultrafilter $\mathcal{U} \cdot \mathcal{U}$ is not an (SC)-close ultrafilter.

Theorem 6. Let \mathcal{I} be a *P*-ideal on ω (or \mathbb{N}).

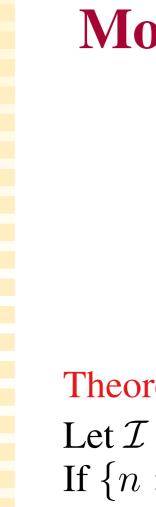
• If $\{n : \mathcal{V}_n \text{ is } \mathcal{I}\text{-ultrafilter}\} \in \mathcal{U} \text{ and}$ $\mathcal{U} \text{ is an } \mathcal{I}\text{-ultrafilter then}$ $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle \text{ is an } \mathcal{I}\text{-ultrafilter.}$

Proposition 8*.

For arbitrary $\mathcal{U} \in \omega^*$ the ultrafilter $\mathcal{U} \cdot \mathcal{U}$ is not an (SC)-close ultrafilter.

Theorem 9. Let \mathcal{I} be a *P*-ideal on ω (or \mathbb{N}).

- If $\{n : \mathcal{V}_n \text{ is weak } \mathcal{I}\text{-ultrafilter}\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is a weak $\mathcal{I}\text{-ultrafilter}$.
- If $\{n : \mathcal{V}_n \text{ is } \mathcal{I}\text{-close ultrafilter}\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an $\mathcal{I}\text{-close ultrafilter}$.



Theorem 6. Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ and \mathcal{U} is an \mathcal{I} -ultrafilter then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

Theorem 10.

Assume \mathcal{I} is an ideal on \mathbb{N} . If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter then $\{n : \mathcal{V}_n \text{ is an } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ and \mathcal{U} is an \mathcal{I} -ultrafilter.

Theorem 6.

Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ and \mathcal{U} is an \mathcal{I} -ultrafilter then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

Theorem 10.

Assume \mathcal{I} is an ideal on \mathbb{N} . If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter then $\{n : \mathcal{V}_n \text{ is an } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ and \mathcal{U} is an \mathcal{I} -ultrafilter.

Theorem 11.

Assume \mathcal{I} is an ideal on \mathbb{N} and there exists $g : \mathbb{N} \to \mathbb{N}$ with g(n) > n for every $n \in \mathbb{N}$ and $A \notin \mathcal{I}$ implies $g[A] \notin \mathcal{I}$ for every $A \subseteq \mathbb{N}$. If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is a weak \mathcal{I} -ultrafilter then $\{n : \mathcal{V}_n \text{ is a weak } \mathcal{I}$ -ultrafilter} $\in \mathcal{U}$.

Theorem 11.

Assume \mathcal{I} is an ideal on \mathbb{N} and there exists $g : \mathbb{N} \to \mathbb{N}$ with g(n) > n for every $n \in \mathbb{N}$ and $A \notin \mathcal{I}$ implies $g[A] \notin \mathcal{I}$ for every $A \subseteq \mathbb{N}$. If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is a weak \mathcal{I} -ultrafilter then $\{n : \mathcal{V}_n \text{ is a weak } \mathcal{I}$ -ultrafilter} $\in \mathcal{U}$.

Theorem 12.

Assume \mathcal{I} is an ideal on \mathbb{N} and $A \notin \mathcal{I}$ implies $A + 1 \notin \mathcal{I}$ and $2A \notin \mathcal{I}$ for each $A \subseteq \mathbb{N}$. If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -close ultrafilter then $\{n : \mathcal{V}_n \text{ is an } \mathcal{I}\text{-close ultrafilter}\} \in \mathcal{U}$.

A "problematic" ideal

Van der Waerden ideal is the family $\mathcal{W} = \{A \subseteq \mathbb{N} : A \text{ does not contain arithmetic}$ progressions of arbitrary length $\}$.

A "problematic" ideal

Van der Waerden ideal is the family $\mathcal{W} = \{A \subseteq \mathbb{N} : A \text{ does not contain arithmetic}$ progressions of arbitrary length $\}$.

- If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is a weak \mathcal{W} -ultrafilter then $\{n : \mathcal{V}_n \text{ is a weak } \mathcal{W}$ -ultrafilter $\} \in \mathcal{U}$.
- If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{W} -close ultrafilter then $\{n : \mathcal{V}_n \text{ is an } \mathcal{W}$ -close ultrafilter $\} \in \mathcal{U}$.

A "problematic" ideal

Van der Waerden ideal is the family $\mathcal{W} = \{A \subseteq \mathbb{N} : A \text{ does not contain arithmetic}$ progressions of arbitrary length $\}$.

- If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is a weak \mathcal{W} -ultrafilter then $\{n : \mathcal{V}_n \text{ is a weak } \mathcal{W}$ -ultrafilter $\} \in \mathcal{U}$.
- If $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{W} -close ultrafilter then $\{n : \mathcal{V}_n \text{ is an } \mathcal{W}$ -close ultrafilter $\} \in \mathcal{U}$.

Question: Are W-ultrafilters closed under W-sums or products?

Baumgartner, J., Ultrafilters on ω , J. Symbolic Logic **60**, no. 2, 624–639, 1995.

Flašková, J., Ultrafilters and small sets, Ph.D. Thesis, Charles University, Prague, 2006.