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Cardinal invariants of the continuum

Most of the classical cardinal invariants of the continuum are
associated to the quotient algebra P(ω)/Fin.

The pseudointersection number p is the minimal cardinality of a
centered family F ⊆ [ω]ω with no pseudointersection i.e.
¬((∃B ∈ [ω]ω)(∀F ∈ F)B ⊆∗ F )

The almost disjointness number a is the minimal cardinality of
an infinite maximal almost disjoint family A ⊆ [ω]ω.

Fact. ℵ1 ≤ p ≤ a ≤ c
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Cardinal invariants of analytic quotients

All ideals are tall, analytic and contain Fin.

Given an ideal I on ω we write B ⊆I A if B \ A ∈ I.
Note ⊆Fin = ⊆∗.

A family F ⊆ I+ is (I+-)centered if
⋂k

i=1 Fi ∈ I+ for every
k ∈ ω, Fi ∈ F , i = 1, . . . , k .

p(I) is the minimal cardinality of an I+-centered family F ⊆ I+
with no pseudointersection in I+ i.e.
¬((∃B ∈ I+)(∀F ∈ F)B ⊆I F )
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Cardinal invariants of analytic quotients

A family A ⊆ I+ is I-almost disjoint (I-AD in short)
if A ∩ B ∈ I for every A 6= B, A, B ∈ A.

a(I) is the minimal cardinality of an infinite I-MAD family
A ⊆ I+ i.e. (∀B ∈ I+)(∃A ∈ A)B ∩ A ∈ I+

Observation. p(I) ≤ a(I) ≤ c

In general, p(I) and a(I) need not be uncountable
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Some known results

Theorem (Farkas, Soukup).
a(Zµ) = ℵ0 for any tall density zero ideal Zµ.

a(Ih) ≥ ℵ1 for any tall summable ideal Ih.

Definition (Farkas, Soukup).
Let ā(I) be the cardinality of an uncountable I-MAD family.

Theorem (Farkas, Soukup).
ā(I) ≥ b for any tall analytic P-ideal I.
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Some known results

Theorem (Brendle).
p(I) ≥ p for any tall Fσ ideal.

The idea of the proof.
p(I) can be increased by a σ-centered forcing.

Combining results of Farkas, Soukup and Brendle
we obtain for Fσ P-ideals:

p ≤ p(I) ≤ b ≤ a(I)
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AP-sets and van der Waerden theorem

Definition.
A set A ⊆ N is called an AP-set if it contains arbitrary long
arithmetic progressions.

Van der Waerden Theorem.
If an AP-set is partitioned into finitely many pieces then at least
one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on N
— van der Waerden ideal denoted byW
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Van der Waerden idealW

The van der Waerden idealW is

• a tall ideal — because every infinite A ⊆ N contains an infinite
subset with no arithmetic progressions of length 3

• Fσ-ideal — becauseW =
⋃

n∈NWn where

Wn = {A ⊆ N : A contains no a. p. of length n}

• not a P-ideal — consider for example the sets

Ak = {2n + k : n ∈ ω} for k ∈ ω
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Van der Waerden idealW

Szemerédi Theorem.

W ⊆ Z where Z = {A ⊆ N : lim sup
n→∞

|A ∩ n|
n

= 0}

Erdős Conjecture.

W ⊆ I1/n where I1/n = {A ⊆ N :
∑
a∈A

1
a
<∞}
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Pseudointersection number of P(ω)/W

SinceW is an Fσ ideal, we have p ≤ p(W).

Proposition 1. p(W) ≤ p

The idea of the proof.
There exists a regular embedding of P(ω)/Fin into P(ω)/W.

Corollary 2. p(W) = p
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Almost disjointness number of P(ω)/W

Proposition 3. a(W) ≤ a

The idea of the proof.
There exists a regular embedding of P(ω)/Fin into P(ω)/W.

Define f : [ω]ω →W+ by

f (A) =
⋃
n∈A

[2n,2n+1)
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More about the almost disjointness number

Theorem (Farkas, Soukup).
a(I) ≥ b for any tall Fσ P-ideal.

Question A. Is a(W) ≥ b?

We have seen ā(Z) ≤ a and a(W) ≤ a hold.

Question B. Is a(I1/n) ≤ a?
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More about the pseudointersection number

We observed that p(W) ≤ p and thus p(W) = p hold.

Question C. Is p(I1/n) = p?

Question D.
Is there an Fσ ideal I such that p(I) > p is consistent?
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