Van der Waerden ideal

Questions 0 References o

イロト イポト イヨト イヨト ヨー のくぐ

Some cardinal invariants related to analytic quotients

Jana Flašková

Department of Mathematics University of West Bohemia in Pilsen

Infinite and finite sets - June 2011, Budapest

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Cardinal invariants of the continuum

Most of the classical cardinal invariants of the continuum are associated to the quotient algebra $\mathcal{P}(\omega)/\text{Fin.}$

References o

イロト イポト イヨト イヨト ヨー のくぐ

Cardinal invariants of the continuum

Most of the classical cardinal invariants of the continuum are associated to the quotient algebra $\mathcal{P}(\omega)/\text{Fin.}$

The pseudointersection number \mathfrak{p} is the minimal cardinality of a centered family $\mathcal{F} \subseteq [\omega]^{\omega}$ with no pseudointersection i.e. $\neg((\exists B \in [\omega]^{\omega})(\forall F \in \mathcal{F})B \subseteq^* F)$

References o

うして 山田 マイボマ エリア しょうくしゃ

Cardinal invariants of the continuum

Most of the classical cardinal invariants of the continuum are associated to the quotient algebra $\mathcal{P}(\omega)/\text{Fin.}$

The pseudointersection number \mathfrak{p} is the minimal cardinality of a centered family $\mathcal{F} \subseteq [\omega]^{\omega}$ with no pseudointersection i.e. $\neg((\exists B \in [\omega]^{\omega})(\forall F \in \mathcal{F})B \subseteq^* F)$

The almost disjointness number a is the minimal cardinality of an infinite maximal almost disjoint family $\mathcal{A} \subseteq [\omega]^{\omega}$.

References o

うして 山田 マイボマ エリア しょうくしゃ

Cardinal invariants of the continuum

Most of the classical cardinal invariants of the continuum are associated to the quotient algebra $\mathcal{P}(\omega)/\text{Fin.}$

The pseudointersection number \mathfrak{p} is the minimal cardinality of a centered family $\mathcal{F} \subseteq [\omega]^{\omega}$ with no pseudointersection i.e. $\neg((\exists B \in [\omega]^{\omega})(\forall F \in \mathcal{F})B \subseteq^* F)$

The almost disjointness number a is the minimal cardinality of an infinite maximal almost disjoint family $\mathcal{A} \subseteq [\omega]^{\omega}$.

Fact. $\aleph_1 \leq \mathfrak{p} \leq \mathfrak{a} \leq \mathfrak{c}$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Cardinal invariants of analytic quotients

All ideals are tall, analytic and contain Fin.

Given an ideal \mathcal{I} on ω we write $B \subseteq_{\mathcal{I}} A$ if $B \setminus A \in \mathcal{I}$. Note $\subseteq_{\mathsf{Fin}} = \subseteq^*$.

イロト イポト イヨト イヨト ヨー のくぐ

Cardinal invariants of analytic quotients

All ideals are tall, analytic and contain Fin.

Given an ideal \mathcal{I} on ω we write $B \subseteq_{\mathcal{I}} A$ if $B \setminus A \in \mathcal{I}$. Note $\subseteq_{\mathsf{Fin}} = \subseteq^*$.

A family $\mathcal{F} \subseteq \mathcal{I}^+$ is (\mathcal{I}^+) -centered if $\bigcap_{i=1}^k F_i \in \mathcal{I}^+$ for every $k \in \omega$, $F_i \in \mathcal{F}$, i = 1, ..., k.

Cardinal invariants of analytic quotients

All ideals are tall, analytic and contain Fin.

Given an ideal \mathcal{I} on ω we write $B \subseteq_{\mathcal{I}} A$ if $B \setminus A \in \mathcal{I}$. Note $\subseteq_{\mathsf{Fin}} = \subseteq^*$.

A family $\mathcal{F} \subseteq \mathcal{I}^+$ is (\mathcal{I}^+) -centered if $\bigcap_{i=1}^k F_i \in \mathcal{I}^+$ for every $k \in \omega$, $F_i \in \mathcal{F}$, i = 1, ..., k.

 $\mathfrak{p}(\mathcal{I}) \text{ is the minimal cardinality of an } \mathcal{I}^+ \text{-centered family } \mathcal{F} \subseteq \mathcal{I}^+ \\ \text{with no pseudointersection in } \mathcal{I}^+ \text{ i.e.} \\ \neg((\exists B \in \mathcal{I}^+)(\forall F \in \mathcal{F})B \subseteq_{\mathcal{I}} F)$

Cardinal invariants of analytic quotients

A family $\mathcal{A} \subseteq \mathcal{I}^+$ is \mathcal{I} -almost disjoint (\mathcal{I} -AD in short) if $A \cap B \in \mathcal{I}$ for every $A \neq B$, A, $B \in \mathcal{A}$.

Cardinal invariants of analytic quotients

A family $\mathcal{A} \subseteq \mathcal{I}^+$ is \mathcal{I} -almost disjoint (\mathcal{I} -AD in short) if $A \cap B \in \mathcal{I}$ for every $A \neq B$, A, $B \in \mathcal{A}$.

 $\mathfrak{a}(\mathcal{I})$ is the minimal cardinality of an infinite \mathcal{I} -MAD family $\mathcal{A} \subseteq \mathcal{I}^+$ i.e. $(\forall B \in \mathcal{I}^+)(\exists A \in \mathcal{A})B \cap A \in \mathcal{I}^+$

Cardinal invariants of analytic quotients

A family $\mathcal{A} \subseteq \mathcal{I}^+$ is \mathcal{I} -almost disjoint (\mathcal{I} -AD in short) if $A \cap B \in \mathcal{I}$ for every $A \neq B$, A, $B \in \mathcal{A}$.

 $\mathfrak{a}(\mathcal{I})$ is the minimal cardinality of an infinite \mathcal{I} -MAD family $\mathcal{A} \subseteq \mathcal{I}^+$ i.e. $(\forall B \in \mathcal{I}^+)(\exists A \in \mathcal{A})B \cap A \in \mathcal{I}^+$

Observation. $\mathfrak{p}(\mathcal{I}) \leq \mathfrak{a}(\mathcal{I}) \leq \mathfrak{c}$

Cardinal invariants of analytic quotients

A family $\mathcal{A} \subseteq \mathcal{I}^+$ is \mathcal{I} -almost disjoint (\mathcal{I} -AD in short) if $A \cap B \in \mathcal{I}$ for every $A \neq B$, $A, B \in \mathcal{A}$.

 $\mathfrak{a}(\mathcal{I})$ is the minimal cardinality of an infinite \mathcal{I} -MAD family $\mathcal{A} \subseteq \mathcal{I}^+$ i.e. $(\forall B \in \mathcal{I}^+)(\exists A \in \mathcal{A})B \cap A \in \mathcal{I}^+$

Observation. $\mathfrak{p}(\mathcal{I}) \leq \mathfrak{a}(\mathcal{I}) \leq \mathfrak{c}$

In general, $\mathfrak{p}(\mathcal{I})$ and $\mathfrak{a}(\mathcal{I})$ need not be uncountable

Van	der	Waerden	idea
000)		
00			

Questions o References o

Some known results

Theorem (Farkas, Soukup).

 $\mathfrak{a}(\mathcal{Z}_{\mu}) = \aleph_0$ for any tall density zero ideal \mathcal{Z}_{μ} .

 $\mathfrak{a}(\mathcal{I}_h) \geq \aleph_1$ for any tall summable ideal \mathcal{I}_h .

References o

Some known results

Theorem (Farkas, Soukup).

 $\mathfrak{a}(\mathcal{Z}_{\mu}) = \aleph_0$ for any tall density zero ideal \mathcal{Z}_{μ} .

 $\mathfrak{a}(\mathcal{I}_h) \geq \aleph_1$ for any tall summable ideal \mathcal{I}_h .

Definition (Farkas, Soukup).

Let $\bar{\mathfrak{a}}(\mathcal{I})$ be the cardinality of an uncountable $\mathcal{I}\text{-MAD}$ family.

References o

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Some known results

Theorem (Farkas, Soukup).

 $\mathfrak{a}(\mathcal{Z}_{\mu}) = \aleph_0$ for any tall density zero ideal \mathcal{Z}_{μ} .

 $\mathfrak{a}(\mathcal{I}_h) \geq \aleph_1$ for any tall summable ideal \mathcal{I}_h .

Definition (Farkas, Soukup).

Let $\bar{\mathfrak{a}}(\mathcal{I})$ be the cardinality of an uncountable $\mathcal{I}\text{-MAD}$ family.

Theorem (Farkas, Soukup).

 $\bar{\mathfrak{a}}(\mathcal{I}) \geq \mathfrak{b}$ for any tall analytic *P*-ideal \mathcal{I} .

Van der Waerden ideal

Questions 0 References

Some known results

Theorem (Brendle).

 $\mathfrak{p}(\mathcal{I}) \geq \mathfrak{p}$ for any tall F_{σ} ideal.

Van der Waerden ideal

Questions 0 References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Some known results

Theorem (Brendle).

 $\mathfrak{p}(\mathcal{I}) \geq \mathfrak{p}$ for any tall F_{σ} ideal.

The idea of the proof.

 $\mathfrak{p}(\mathcal{I})$ can be increased by a $\sigma\text{-centered}$ forcing.

References o

イロト イポト イヨト イヨト ヨー のくぐ

Some known results

Theorem (Brendle).

 $\mathfrak{p}(\mathcal{I}) \geq \mathfrak{p}$ for any tall F_{σ} ideal.

The idea of the proof.

 $\mathfrak{p}(\mathcal{I})$ can be increased by a σ -centered forcing.

Combining results of Farkas, Soukup and Brendle we obtain for F_{σ} *P*-ideals:

 $\mathfrak{p} \leq \mathfrak{p}(\mathcal{I}) \leq \mathfrak{b} \leq \mathfrak{a}(\mathcal{I})$

イロト イポト イヨト イヨト ヨー のくぐ

AP-sets and van der Waerden theorem

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem.

If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

AP-sets and van der Waerden theorem

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem.

If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on $\mathbb N$ — van der Waerden ideal denoted by $\mathcal W$

Van der	Waerden	ideal
000		
00		

Questions 0 0 References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal $\ensuremath{\mathcal{W}}$ is

 a tall ideal — because every infinite A ⊆ N contains an infinite subset with no arithmetic progressions of length 3

Van der	Waerden	ideal
000		
00		

Questions 0 References o

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal $\ensuremath{\mathcal{W}}$ is

- a tall ideal because every infinite A ⊆ N contains an infinite subset with no arithmetic progressions of length 3
- F_{σ} -ideal because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where $\mathcal{W}_n = \{ A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n \}$

References o

イロト イポト イヨト イヨト ヨー のくぐ

Van der Waerden ideal ${\cal W}$

The van der Waerden ideal $\ensuremath{\mathcal{W}}$ is

 a tall ideal — because every infinite A ⊆ N contains an infinite subset with no arithmetic progressions of length 3

•
$$F_{\sigma}$$
-ideal — because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where
 $\mathcal{W}_n = \{ A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n \}$

not a *P*-ideal — consider for example the sets
A_k = {2ⁿ + k : n ∈ ω} for k ∈ ω

Van der Waerden ideal

Questions 0 References o

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Van der Waerden ideal ${\cal W}$

Szemerédi Theorem.

$$\mathcal{W} \subseteq \mathcal{Z}$$
 where $\mathcal{Z} = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$

Van der Waerden ideal

Questions 0 References o

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Van der Waerden ideal ${\cal W}$

Szemerédi Theorem.

$$\mathcal{W} \subseteq \mathcal{Z}$$
 where $\mathcal{Z} = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$

Erdős Conjecture.

$$\mathcal{W} \subseteq \mathcal{I}_{1/n} \quad ext{where} \ \ \mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} rac{1}{a} < \infty \}$$

References o

Pseudointersection number of $\mathcal{P}(\omega)/\mathcal{W}$

Since \mathcal{W} is an F_{σ} ideal, we have $\mathfrak{p} \leq \mathfrak{p}(\mathcal{W})$.

References o

Pseudointersection number of $\mathcal{P}(\omega)/\mathcal{W}$

Since \mathcal{W} is an F_{σ} ideal, we have $\mathfrak{p} \leq \mathfrak{p}(\mathcal{W})$.

Proposition 1. $\mathfrak{p}(\mathcal{W}) \leq \mathfrak{p}$

References o

Pseudointersection number of $\mathcal{P}(\omega)/\mathcal{W}$

Since \mathcal{W} is an F_{σ} ideal, we have $\mathfrak{p} \leq \mathfrak{p}(\mathcal{W})$.

Proposition 1. $\mathfrak{p}(\mathcal{W}) \leq \mathfrak{p}$

The idea of the proof.

There exists a regular embedding of $\mathcal{P}(\omega)/\text{Fin}$ into $\mathcal{P}(\omega)/\mathcal{W}$.

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Pseudointersection number of $\mathcal{P}(\omega)/\mathcal{W}$

Since \mathcal{W} is an F_{σ} ideal, we have $\mathfrak{p} \leq \mathfrak{p}(\mathcal{W})$.

Proposition 1. $\mathfrak{p}(\mathcal{W}) \leq \mathfrak{p}$

The idea of the proof.

There exists a regular embedding of $\mathcal{P}(\omega)/\text{Fin}$ into $\mathcal{P}(\omega)/\mathcal{W}$.

Corollary 2. $\mathfrak{p}(\mathcal{W}) = \mathfrak{p}$

Questions o References o

Almost disjointness number of $\mathcal{P}(\omega)/\mathcal{W}$

Proposition 3. $\mathfrak{a}(\mathcal{W}) \leq \mathfrak{a}$

- * ロ > * 個 > * 注 > * 注 > ・注 ・ のへで

References o

Almost disjointness number of $\mathcal{P}(\omega)/\mathcal{W}$

Proposition 3. $\mathfrak{a}(\mathcal{W}) \leq \mathfrak{a}$

The idea of the proof.

There exists a regular embedding of $\mathcal{P}(\omega)/\text{Fin}$ into $\mathcal{P}(\omega)/\mathcal{W}$.

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Almost disjointness number of $\mathcal{P}(\omega)/\mathcal{W}$

Proposition 3. $\mathfrak{a}(\mathcal{W}) \leq \mathfrak{a}$

The idea of the proof.

There exists a regular embedding of $\mathcal{P}(\omega)/\text{Fin}$ into $\mathcal{P}(\omega)/\mathcal{W}$.

Define $f: [\omega]^{\omega} \to \mathcal{W}^+$ by

$$f(A) = \bigcup_{n \in A} [2^n, 2^{n+1})$$

More about the almost disjointness number

Theorem (Farkas, Soukup).

 $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{b}$ for any tall F_{σ} *P*-ideal.

More about the almost disjointness number

Theorem (Farkas, Soukup). $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{b}$ for any tall F_{σ} *P*-ideal.

Question A. Is $\mathfrak{a}(\mathcal{W}) \geq \mathfrak{b}$?

イロト イポト イヨト イヨト ヨー のくぐ

More about the almost disjointness number

Theorem (Farkas, Soukup). $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{b}$ for any tall F_{σ} *P*-ideal.

Question A. Is $\mathfrak{a}(\mathcal{W}) \geq \mathfrak{b}$?

We have seen $\overline{\mathfrak{a}}(\mathcal{Z}) \leq \mathfrak{a}$ and $\mathfrak{a}(\mathcal{W}) \leq \mathfrak{a}$ hold.

イロト イポト イヨト イヨト ヨー のくぐ

More about the almost disjointness number

Theorem (Farkas, Soukup). $\mathfrak{a}(\mathcal{I}) \geq \mathfrak{b}$ for any tall F_{σ} *P*-ideal.

Question A. Is $\mathfrak{a}(\mathcal{W}) \geq \mathfrak{b}$?

We have seen $\overline{\mathfrak{a}}(\mathcal{Z}) \leq \mathfrak{a}$ and $\mathfrak{a}(\mathcal{W}) \leq \mathfrak{a}$ hold.

Question B. Is $\mathfrak{a}(\mathcal{I}_{1/n}) \leq \mathfrak{a}$?

More about the pseudointersection number

We observed that $\mathfrak{p}(\mathcal{W}) \leq \mathfrak{p}$ and thus $\mathfrak{p}(\mathcal{W}) = \mathfrak{p}$ hold.

More about the pseudointersection number

We observed that $\mathfrak{p}(\mathcal{W}) \leq \mathfrak{p}$ and thus $\mathfrak{p}(\mathcal{W}) = \mathfrak{p}$ hold.

Question C. Is $p(\mathcal{I}_{1/n}) = p$?

More about the pseudointersection number

We observed that $\mathfrak{p}(\mathcal{W}) \leq \mathfrak{p}$ and thus $\mathfrak{p}(\mathcal{W}) = \mathfrak{p}$ hold.

Question C. Is $p(\mathcal{I}_{1/n}) = p$?

Question D.

Is there an F_{σ} ideal \mathcal{I} such that $\mathfrak{p}(\mathcal{I}) > \mathfrak{p}$ is consistent?

Van der Waerden ideal

Questions 0 References

イロト イポト イヨト イヨト ヨー のくぐ

References

B. Farkas, L. Soukup, More on cardinal invariants of analytic *P*-ideals, *Comment. Math. Univ. Carolin.* **50** (2), 281 – 295, 2009.

J. Brendle, Cardinal invariants of analytic quotients, *presentation in ESI workshop*, 2009.