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Abstract
We construct in ZFC an ultrafilter U ∈ N∗ such that for every

one-to-one function f : N → N there exists U ∈ U with f [U ] in
summable ideal, i.e. the sum of reciprocals of its elements converges.
This strengthens Gryzlov’s result concerning the existence of 0-points.

1 Introduction

In his talk during the 12th Winter School on Abstract Analysis in Srńı,
A. Gryzlov defined 0-points and he constructed such ultrafilters in ZFC (see
[2], [3]). Let us recall that an ultrafilter U ∈ N∗ is called a 0-point if for
every one-to-one function f : N → N there exists a set U ∈ U such that
f [U ] has asymptotic density zero.

We strengthen Gryzlov’s result and construct a summable ultrafilter
which we define as an ultrafilter U ∈ N

∗ such that for every one-to-one
function f : N → N there exists U ∈ U with f [U ] in the summable ideal.
Our proof was motivated by Gryzlov’s original construction as it was written
down by K. P. Hart [4].

The summable ideal is the family {A ⊆ N :
∑

a∈A
1
a < +∞}. It is not

difficult to prove that every set in the summable ideal has asymptotic den-
sity zero, but the converse is not true (consider, e.g., the set of all prime
numbers). It is also known that the summable ideal is a P -ideal, i.e., when-
ever An, n ∈ N, are sets from the ideal there exists A in the summable ideal
that contains all but finitely many elements of each An (we use the notation
An ⊆∗ A for this).

We call a family F ⊆ P(N) summable if for every one-to-one function
f : N→ N there is A ∈ F such that f [A] belongs to the summable ideal.

Let us recall that a family F ⊆ P(N) is called k-linked if F0∩F1∩· · ·∩Fk

is infinite whenever Fi ∈ F , i ≤ k, and it is called centered if any finite
subfamily of F has an infinite intersection, i.e., it is k-linked for every k ∈ N.

During the construction we make use of the following upper bound for
partial sums of the harmonic series:

Fact 1.1. 1 + 1
2 + · · ·+ 1

N ≤ 1 + lnN ≤ 1 + log2 N for every N ∈ N.
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2 Construction

Lemma 2.1 is fairly general, but it will enable us to construct a summable
centered system by applying Proposition 2.2 to get summable k-linked fam-
ilies for every k. The summable centered system may then be extended to
a summable ultrafilter.

Lemma 2.1. If Fk is a k-linked family of infinite subsets of N for every
k ∈ N then F = {F ⊆ N : (∀k)(∃Uk ∈ Fk) Uk ⊆∗ F} is a centered system.

If moreover, I is a P -ideal, f ∈ N
N a one-to-one function and for every

k ∈ N there exists Uk ∈ Fk such that f [Uk] ∈ I then there exists U ∈ F

such that f [U ] ∈ I . In particular, if Fk is summable for every k then F is
summable.

Proof. Take F 1, F 2, . . . , Fn ∈ F and for every j = 1, . . . , n choose U j
k ∈ Fk

such that U j
k ⊆∗ F j for every k. For every k ≥ n family Fk is n-linked,

hence
⋂n

j=1 U j
k is an infinite set. We have

n⋂
j=1

U j
k ⊆

∗
n⋂

j=1

F j

for every k ≥ n and it follows that family F is centered.
For the moreover part, consider A ∈ I such that f [Uk] ⊆∗ A for every

k ∈ N. We get Uk ⊆∗ f−1[A] for every k ∈ N. According to the definition
set U = f−1[A] belongs to F and f [U ] = A ∈ I .

In the proof of the next proposition we treat the natural numbers as
both numbers and sets. In order to help the reader we use

∏
to denote a

product of sets and
⊙

to denote a product of numbers.

Proposition 2.2. Let A be an infinite subset of N. For every k ∈ N there
exists a summable k-linked family Fk ⊆ P(A).

Proof. Fix k ∈ N. We divide A into disjoint finite blocks, A =
⋃

n∈NBn,
and for every n enumerate Bn, faithfully, as {b(ϕ) : ϕ ∈

∏k
j=0 Q(j, n)} where

Q(j, n) is defined by Q(j, n) = 2n·2j
. Notice that for every i ≤ k we have

Q(i, n) = 2n ·
⊙i−1

j=0 Q(j, n).
For every i ≤ k, x ∈ Q(i, n) and s ∈

∏k
j=i+1 Q(j, n) define Bn(i, x, s) =

{b(ϕa〈x〉as) : ϕ ∈
∏i−1

j=0 Q(j, n)}. For every one-to-one function f : N→ N

let mf
x = min f [Bn(i, x, s)]. Finally, let x(f, s) ∈ Q(i, n) be that x for

which mf
x is maximal, i.e., mf

x(f,s) = max{mf
x : x ∈ Q(i, n)}. Now, we
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may define Af ⊆ A block by block as the union Af =
⋃

n∈NBf
n, where

Bf
n ⊆ Bn is defined in two stages: first Bf

n =
⋃k

i=0 Bf
n(i) and second Bf

n(i) =⋃
{Bf

n(i, s) : s ∈
∏k

j=i+1 Q(j, n)}, where Bf
n(i, s) = Bn(i, x(f, s), s).

Claim 1. The family Fk = {Af : f ∈ N
N one-to-one} is k-linked.

Consider f0, f1, . . . , fk distinct one-to-one functions from N to N. Since

k⋂
j=0

Afj ⊇
∞⋃

n=1

k⋂
j=0

B
fj
n

it suffices to show that
⋂k

j=0 B
fj
n 6= ∅ for every n ∈ N. To see this fix n and

define ϕ ∈
∏k

j=0 Q(j, n) recursively: put s0 = ∅ and set ϕ(k) = x(f0, s0),
next s1 = 〈ϕ(k)〉 and ϕ(k − 1) = x(f1, s1), and so on. It follows that
b(ϕ) ∈

⋂k
j=0 B

fj
n (k − j, sj) ⊆

⋂k
j=0 B

fj
n (k − j) ⊆

⋂k
j=0 B

fj
n .

Claim 2. The set f [Af ] belongs to the summable ideal for every one-to-one
function f .

Our aim is to bound the sum
∑

a∈Bf
n

1
f(a) from above by elements of

a convergent series because f [Af ] =
⋃

n∈N f [Bf
n]. At first, we estimate

the sum of the reciprocals of elements in f [Bf
n(i, s)] for every i ≤ k and

s ∈
∏k

j=i+1 Q(j, n).
Since |f [Bf

n(i, s)]| =
⊙i−1

j=0 Q(j, n) we have

∑
a∈Bf

n(i,s)

1
f(a)

≤
i−1⊙
j=0

Q(j, n) · 1

min f [Bf
n(i, s)]

=
2n·(2i−1)

mf
x(f,s)

(1)

Put qi,n =
⊙k

j=i+1 Q(j, n) and enumerate {mf
x(f,s) : s ∈

∏k
j=i+1 Q(j, n)}

increasingly as {ml : l = 1, . . . , qi,n}. It is easy to see that ml ≥ l · Q(i, n)
for every l and it follows that

qi,n∑
l=1

1
ml

≤ 1
Q(i, n)

·
qi,n∑
l=1

1
l
≤ 1 + log2 qi,n

Q(i, n)
=

1 +
∑k

j=i+1 log2 Q(j, n)
Q(i, n)

(2)

where we used Fact 1.1.
Now, observe that

1 +
k∑

j=i+1

log2 Q(j, n) ≤ 1 + n

k∑
j=0

2j = 1 + n(2k+1 − 1) ≤ n2k+1 (3)
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and putting together (1), (2) and (3) we obtain

∑
a∈Bf

n(i)

1
f(a)

≤
i−1⊙
j=0

Q(j, n) ·
1 +

∑k
j=i+1 log2 Q(j, n)

Q(i, n)
=

n2k+1

2n
. (4)

Thus we get for every n

∑
a∈Bf

n

1
f(a)

≤
k∑

i=0

n2k+1

2n
=

n(k + 1)2k+1

2n
(5)

and finally ∑
a∈Af

1
f(a)

≤
∞∑

n=1

n(k + 1)2k+1

2n
≤ 2(k + 1)2k+1, (6)

i.e., the set f [Af ] belongs to the summable ideal.

While constructing a 0-point Gryzlov made use of function Q(j, n) = n2j
.

We cannot use this function for our purpose because it “grows too slowly”.
Its polynomial growth with respect to n provides in formula (4) (or (5))
a divergent series as an upper bound for

∑
a∈Bf

n

1
f(a) . So it seems to be

necessary that Q(j, n) depends exponentially on n. In formula (4) occurs⊙i−1
j=0 Q(j, n) ·Q(i, n)−1, which excludes functions of type 2n · p(j) or 2n·p(j)

where p(j) is a polynomial in j. Hence our definition Q(j, n) = 2n·2j
seems

to be the best possible to use while constructing a summable ultrafilter.

Theorem 2.3. There is a summable ultrafilter on N.

Proof. Consider an arbitrary countable family {Ak : k ∈ N} of infinite sub-
sets of natural numbers and apply Proposition 2.2 to obtain a summable k-
linked family Fk on Ak for every k. From Lemma 2.1 we obtain a summable
centered system F on N. It is obvious that any ultrafilter that extends F

is summable.

Corollary 2.4. There are 22ω
distinct summable ultrafilters on N.

Proof. Assume {Ak : k ∈ N} is a countable family of disjoint infinite subsets
of N and Fk is a summable k-linked family on Ak for every k. For every
free ultrafilter U on N let FU ⊆ P(N) consist of sets F such that {k :
F ∩ Ak ∈ Fk} ∈ U . It is easy to see that FU is a summable filter and
FU 6= FV whenever U 6= V . It follows that there are 22ω

distinct summable
ultrafilters.
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3 Open questions

The construction relies strongly on the fact that functions in question are
one-to-one. It is a limiting assumption, but it is not known at the moment
whether it is possible to construct in ZFC a summable ultrafilter if we enlarge
the family of functions considered in the definition of a summable ultrafilter
to all finite-to-one functions, or even more, to all functions from N to N
(examples constructed under Martin’s Axiom for countable posets can be
found in [1]).

Another interesting question arises if we replace the summable ideal in
the definition of a summable ultrafilter by a generalized summable ideal that
is defined for any (decreasing) function g : N→ [0,∞) with limn→∞ g(n) = 0
by Ig = {A ⊆ N :

∑
a∈A g(a) < ∞} where we assume

∑
n∈N g(n) = ∞ to

obtain a proper ideal. It is easy to see that the ideal Ig is a P -ideal that
extends the ideal of all finite sets. Again, a straightforward modification of
construction in [1] provides examples of such ultrafilters under Martin’s Ax-
iom for countable posets, but there are no examples in ZFC at the moment.
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