Hindman spaces and summable ultrafilters

Jana Flašková

flaskova@kma.zcu.cz

University of West Bohemia, Pilsen Czech Republic

22nd Summer Conference on Topology and its Applications – p. 1/1

Van der Waerden spaces

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

Van der Waerden spaces

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

• (van der Waerden theorem) Sets that are not AP-sets form an ideal

Van der Waerden spaces

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

• (van der Waerden theorem) Sets that are not AP-sets form an ideal

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an AP-set.

 $A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

 $A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

• (Hindman theorem) Sets that are not IP-sets form an ideal

 $A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

• (Hindman theorem) Sets that are not IP-sets form an ideal

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an AP-set.

 $A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

• (Hindman theorem) Sets that are not IP-sets form an ideal

A topological space X is called Hindman if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an IP-set.

 $A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

• (Hindman theorem) Sets that are not IP-sets form an ideal

A topological space X is called Hindman if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an IP-set.

!!! only finite T_2 spaces fullfill the condition!!!

An IP-sequence in a topological space is a sequence indexed by FS(D) for some infinite $D \subseteq \mathbb{N}$.

An IP-sequence in a topological space is a sequence indexed by FS(D) for some infinite $D \subseteq \mathbb{N}$.

An IP-sequence $\langle x_n \rangle_{n \in FS(D)}$ in a topological space XIP-converges to a point $x \in X$ if for every neighborhood U of x there exists $m \in \mathbb{N}$ such that $\{x_n : n \in FS(D \setminus m)\} \subseteq U.$

An IP-sequence in a topological space is a sequence indexed by FS(D) for some infinite $D \subseteq \mathbb{N}$.

An IP-sequence $\langle x_n \rangle_{n \in FS(D)}$ in a topological space XIP-converges to a point $x \in X$ if for every neighborhood U of x there exists $m \in \mathbb{N}$ such that $\{x_n : n \in FS(D \setminus m)\} \subseteq U.$

Definition B. (Kojman)

A topological space X is called Hindman if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists an infinite set $D \subseteq \mathbb{N}$ such that $\langle x_n \rangle_{n \in FS(D)}$ IP-converges to some $x \in X$.

Theorem (Kojman)

• There exists a sequentially compact space which is not van der Waerden.

Known facts

Theorem (Kojman)

- There exists a sequentially compact space which is not van der Waerden.
- There exists a sequentially compact space which is not Hindman.

Known facts

Theorem (Kojman)

- There exists a sequentially compact space which is not van der Waerden.
- There exists a sequentially compact space which is not Hindman.

Proof. Consider the one-point compactification of $\Psi(\mathcal{A})$ for a suitable MAD family \mathcal{A} .

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

• The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$
- Every point in \mathbb{N} is isolated.

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$
- Every point in \mathbb{N} is isolated.
- Every point p_A has neighborhood base of all sets $\{p_A\} \cup A \setminus K$ where K is a finite subset of A.

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$
- Every point in \mathbb{N} is isolated.
- Every point p_A has neighborhood base of all sets $\{p_A\} \cup A \setminus K$ where K is a finite subset of A.

Note: $\Psi(\mathcal{A})$ is regular, first countable and separable.

Known facts

Theorem (Kojman)If a Hausdorff space X satisfies the following condition(*) The closure of every countable set in X is compact and first-countable.

Then X is both van der Waerden and Hindman.

Known facts

Theorem (Kojman)

If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is both van der Waerden and Hindman.

For example, compact metric spaces or every succesor ordinal with the order topology satisfy (*).

Theorem (Kojman, Shelah)

(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Kojman, Shelah)

(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Jones)

(MA $_{\sigma-\text{cent.}}$) There exists a van der Waerden space which is not Hindman.

Theorem (Kojman, Shelah) (CH) There exists a year der Weer

(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Jones)

(MA $_{\sigma-\text{cent.}}$) There exists a van der Waerden space which is not Hindman.

(Jones) Is it consistent that there is a Hindman space which is not a van der Waerden space?

Theorem (Kojman, Shelah) (CH) There exists a van der Waer

(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Jones)

(MA $_{\sigma-\text{cent.}}$) There exists a van der Waerden space which is not Hindman.

(Jones) Is it consistent that there is a Hindman space which is not a van der Waerden space?

Is it possible to strentghen the result of Jones?

• $\mathcal{I}_{1/n}$ is an F_{σ} -ideal like van der Waerden ideal.

• $\mathcal{I}_{1/n}$ is an F_{σ} -ideal like van der Waerden ideal.

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an AP-set.

• $\mathcal{I}_{1/n}$ is an F_{σ} -ideal like van der Waerden ideal.

Definition C.

A topological space X is called $\mathcal{I}_{1/n}$ -space if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ does not belong to $\mathcal{I}_{1/n}$.

Theorem 1.

If a Hausdorff space \boldsymbol{X} satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is an $\mathcal{I}_{1/n}$ -space.

Theorem 1.

If a Hausdorff space \boldsymbol{X} satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is an $\mathcal{I}_{1/n}$ -space.

Theorem 2.

There exists a sequentially compact space which is not an $\mathcal{I}_{1/n}$ -space.

$\mathcal{I}_{1/n}$ & van der Waerden spaces

Erdős-Turán Conjecture. Every set $A \notin \mathcal{I}_{1/n}$ is an AP-set.

If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1/n}$ -space is van der Waerden.

$\mathcal{I}_{1/n}$ & van der Waerden spaces

Erdős-Turán Conjecture. Every set $A \notin \mathcal{I}_{1/n}$ is an AP-set.

If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1/n}$ -space is van der Waerden.

Theorem 3.

(MA_{σ -cent.}) There exists a van der Waerden space which is not an $\mathcal{I}_{1/n}$ -space.

There is no inclusion between $\mathcal{I}_{1/n}$ and Hindman ideal.

$\mathcal{I}_{1/n}$ & Hindman spaces

There is no inclusion between $\mathcal{I}_{1/n}$ and Hindman ideal.

Theorem 4.

(MA_{σ -cent.}) There exists an $\mathcal{I}_{1/n}$ -space which is not Hindman.

There is no inclusion between $\mathcal{I}_{1/n}$ and Hindman ideal.

Theorem 4.

(MA_{σ -cent.}) There exists an $\mathcal{I}_{1/n}$ -space which is not Hindman.

Proposition

(MA_{σ -cent.}) There exists a MAD family \mathcal{A} consisting of non-IP-sets so that for every $B \subseteq \mathbb{N}, B \notin \mathcal{I}_{1/n}$ and every finite-to-one function $f : B \to \mathbb{N}$ there exists $C \subseteq B, C \notin \mathcal{I}_{1/n}$ and $A \in \mathcal{A}$ so that $f[C] \subseteq A$.

Question

Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$ -space?

Question

Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$ -space?

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

Question

Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$ -space?

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

• Every IP-set is by definition ip-rich

Question

Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$ -space?

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

- Every IP-set is by definition ip-rich
- (Folkman-Rado-Sanders) Sets that are not ip-rich form an ideal

Question

Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$ -space?

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

- Every IP-set is by definition ip-rich
- (Folkman-Rado-Sanders) Sets that are not ip-rich form an ideal
- Ideal \mathcal{I}_{ipr} is an F_{σ} -ideal

 $\mathcal{I}_{1/n}$ & \mathcal{I}_{ipr} -spaces

Definition D.

A topological space X is called \mathcal{I}_{ipr} -space if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an ip-rich set.

 $\mathcal{I}_{1/n}$ & \mathcal{I}_{ipr} -spaces

Definition D.

A topological space X is called \mathcal{I}_{ipr} -space if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an ip-rich set.

Theorem 7.

(MA_{σ -cent.}) There exists an \mathcal{I}_{ipr} -space which is not an $\mathcal{I}_{1/n}$ -space.

Weak \mathcal{I} -ultrafilters

Definition (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on \mathbb{N} is called an \mathcal{I} -ultrafilter if for every $F : \mathbb{N} \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Weak \mathcal{I} -ultrafilters

Definition E.

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on \mathbb{N} is called an weak \mathcal{I} -ultrafilter if for every finite-to-one $F : \mathbb{N} \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Weak \mathcal{I} -ultrafilters

Definition E.

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on \mathbb{N} is called an weak \mathcal{I} -ultrafilter if for every finite-to-one $F : \mathbb{N} \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Definition (Hindman)

An ultrafilter \mathcal{U} on \mathbb{N} is called weakly summable if every $U \in \mathcal{U}$ is an IP-set.

Theorem 8.

(MA_{ctble}) There exists an $\mathcal{I}_{1/n}$ -ultrafilter $\mathcal{U} \in \mathbb{N}^*$ such that every $U \in \mathcal{U}$ is an ip-rich set.

$\mathcal{I}_{1/n}$ -ultrafilters

Theorem 8.

(MA_{ctble}) There exists an $\mathcal{I}_{1/n}$ -ultrafilter $\mathcal{U} \in \mathbb{N}^*$ such that every $U \in \mathcal{U}$ is an ip-rich set.

Theorem 9.

(MA_{ctble}) There exists a weak $\mathcal{I}_{1/n}$ -ultrafilter $\mathcal{U} \in \mathbb{N}^*$ which is weakly summable ultrafilter.

$\mathcal{I}_{1/n}$ -ultrafilters

Theorem 8.

(MA_{ctble}) There exists an $\mathcal{I}_{1/n}$ -ultrafilter $\mathcal{U} \in \mathbb{N}^*$ such that every $U \in \mathcal{U}$ is an ip-rich set.

Theorem 9.

(MA_{ctble}) There exists a weak $\mathcal{I}_{1/n}$ -ultrafilter $\mathcal{U} \in \mathbb{N}^*$ which is weakly summable ultrafilter.

Question Is it consistent that there is a weakly summable $\mathcal{I}_{1/n}$ -ultrafilter?

Kojman, M., Van der Waerden spaces, *Proc. Amer. Math. Soc.* **130**, no. 3, 631 – 635 (electronic), 2002.

Kojman, M., Hindman spaces, *Proc. Amer. Math. Soc.* **130**, no. 6, 1597 – 1602 (electronic), 2002.

Kojman, M., Shelah, S., Van der Waerden spaces and Hindman spaces are not the same, *Proc. Amer. Math. Soc.* **131**, no. 5, 1619 – 1622 (electronic), 2003.

Jones, A., A brief remark on van der Waerden spaces, *Proc. Amer. Math. Soc.* **132**, no. 8, 2457 – 2460 (electronic), 2004.