Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

Some ideals and ultrafilters on the natural numbers

Jana Flašková

Department of Mathematics University of West Bohemia in Pilsen

3rd European Set Theory Conference 6 July 2011, Edinburgh Introduction • 0 0 0 0 0 Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

Ultrafilters on ω

Topologically, ultrafilters on ω are points in $\beta \omega$.

Combinatorially, ultrafilters on ω are maximal downward directed upper sets in $\mathcal{P}(\omega)$.

- $\mathcal{U} \subseteq \mathcal{P}(\omega)$ is an ultrafilter if
 - $\mathcal{U} \neq \emptyset$ and $\emptyset \notin \mathcal{U}$
 - if $U_1, U_2 \in \mathcal{U}$ then $U_1 \cap U_2 \in \mathcal{U}$
 - if $U \in \mathcal{U}$ and $U \subseteq V \subseteq \omega$ then $V \in \mathcal{U}$.
 - for every $M \subseteq \omega$ either M or $\omega \setminus M$ belongs to \mathcal{U}

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Ultrafilters on ω

Example. fixed (or principal) ultrafilter $\{A \subseteq \omega : n \in A\}$ Non-principal ultrafilters exist in ZFC.

Use of ultrafilters:

ultraproducts, parameters in some forcing constructions

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

Some classes of ultrafilters

Definition.

For $\mathcal{U}, \mathcal{V} \in \beta \omega$ we write $\mathcal{U} \leq_{RK} \mathcal{V}$ if there exists $f \in {}^{\omega}\omega$ such that $\beta f(\mathcal{V}) = \mathcal{U}$. $\beta f(\mathcal{V}) = \mathcal{U}$ iff $(\forall V \in \mathcal{V}) f[V] \in \mathcal{U}$ iff $(\forall U \in \mathcal{U}) f^{-1}[U] \in \mathcal{V}$.

- The relation \leq_{RK} is a quasiorder on $\beta\omega$.
- Two ultrafilters U, V are equivalent, U ≈ V, if there exists a permutation π of ω such that βπ(V) = U.
- The quotient relation defined by \leq_{RK} on $\beta \omega \approx$ is Rudin-Keisler order \leq_{RK} .

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

Some classes of ultrafilters

Minimal elements in the Rudin-Keisler order on ultrafilters are selective ultrafilters.

Definition.

A free ultrafilter \mathcal{U} is called a selective ultrafilter if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) (\forall i \in \omega) | U \cap R_i | \leq 1$.

• $\mathbb{M}_{\mathcal{U}}$ adds a dominating real if \mathcal{U} is a selective ultrafilter.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

Some classes of ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a *P*-point if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) \ (\forall i \in \omega) | U \cap R_i | < \omega$.

- If \mathcal{V} is a *P*-point and $\mathcal{U} \leq_{RK} \mathcal{V}$ then \mathcal{U} is a *P*-point.
- *P*-points were used for the first proof of the non-homogeneity of the space ω*. (Rudin)

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

Some classes of ultrafilters

Definition.

An ultrafilter \mathcal{U} on ω is called a nowhere dense ultrafilter if for every $f: \omega \to 2^{\omega}$ there exists $U \in \mathcal{U}$ such that f[U] is nowhere dense.

- If \mathcal{V} is a nowhere dense ultrafilter and $\mathcal{U} \leq_{\mathit{RK}} \mathcal{V}$ then \mathcal{U} is nowhere dense.
- $\mathbb{L}_{\mathcal{U}}$ adds no Cohen reals iff \mathcal{U} is a nowhere dense ultrafilter. (Błaszczyk, Shelah)

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

\mathcal{I} -ultrafilters

Definition. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $f: \omega \to X$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

Examples.

- nowhere dense ultrafilters $\ldots X = 2^{\omega}$ and \mathcal{I} are nowhere dense sets
- *P*-points ... X = 2^ω and *I* are finite and converging sequences

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

\mathcal{I} -ultrafilters

Definition. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $f: \omega \to X$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

Examples.

- nowhere dense ultrafilters $\ldots X = 2^{\omega}$ and \mathcal{I} are nowhere dense sets
- *P*-points ... X = 2^ω and *I* are finite and converging sequences or X = ω × ω and I = Fin × Fin
- selective ultrafilters $\dots X = \omega \times \omega$ and $\mathcal{I} = \mathcal{ED}$.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I} -ultrafilters

Definition. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $f: \omega \to X$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

- wlog ${\mathcal I}$ is closed under finite unions i.e. ${\mathcal I}$ is an ideal
- \mathcal{I} -ultrafilters are downwards closed in \leq_{RK}
- if $\mathcal{I} \subseteq \mathcal{J}$ then every \mathcal{I} -ultrafilter is a \mathcal{J} -ultrafilter
- principal ultrafilters are $\mathcal I\text{-ultrafilters}$ for every $\mathcal I$

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

うして 山田 マイボマ エリア しょうくしゃ

$\mathcal I\text{-ultrafilters}$ for ideals on ω

Observation.

If \mathcal{I} is a maximal ideal on ω then \mathcal{U} is an \mathcal{I} -ultrafilter if and only if $\mathcal{I}^* \not\leq_{RK} \mathcal{U}$.

Theorem.

If \mathcal{I} is a maximal ideal and $\chi(\mathcal{I}) = \mathfrak{c}$ then \mathcal{I} -ultrafilters exist in ZFC.

Proposition.

Assume \mathcal{I} is ideal on ω and \mathcal{U} is an ultrafilter on ω . The following are equivalent:

- *U* is an *I*-ultrafilter
- $\mathcal{V} \not\leq_{RK} \mathcal{U}$ for every ultrafilter $\mathcal{V} \supseteq \mathcal{I}^*$

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

\mathcal{I} -ultrafilters for ideals on ω

All ideals contain the ideal Fin. All ultrafilters are non-principal.

Obviously, there are no Fin-ultrafilters.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I} -ultrafilters for ideals on ω

All ideals contain the ideal Fin. All ultrafilters are non-principal.

Obviously, there are no Fin-ultrafilters.

An ideal \mathcal{I} on ω is tall if for every $A \in [\omega]^{\omega}$ there exists an infinite set $B \subseteq A$ such that $B \in \mathcal{I}$.

Proposition.

If \mathcal{I} is not a tall ideal then there are no \mathcal{I} -ultrafilters.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

(日)

$\mathcal I\text{-ultrafilters}$ for ideals on ω

Theorem

 $(\mathsf{MA}_{\sigma\text{-centered}}) \text{ If } \mathcal{I} \text{ is a tall ideal then } \mathcal{I}\text{-ultrafilters exist.}$

Classes of \mathcal{I} -ultrafilters

Products of ultrafilters

Problems and questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

$\mathcal I\text{-ultrafilters}$ for ideals on ω

Theorem

 $(\mathsf{MA}_{\sigma\text{-centered}})$ If $\mathcal I$ is a tall ideal then $\mathcal I\text{-ultrafilters exist.}$

Theorem

If \mathcal{I} is a (tall) F_{σ} -ideal or analytic P-ideal then every selective ultrafilter is an \mathcal{I} -ultrafilter.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Some ideals on ω

Let *A* be a subset of ω with an increasing enumeration $A = \{a_n : n \in \omega\}$. We say that *A* is

thin if $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$

$$\mathcal{I}_{1/n} = \{ \mathbf{A} \subseteq \mathbb{N} : \sum_{\mathbf{a} \in \mathbf{A}} \frac{1}{\mathbf{a}} < \infty \}$$

 $\mathcal{Z} = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}$

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

$\mathcal I\text{-ultrafilters}$ for ideals on ω

Proposition.

Every selective ultrafilter is a thin ultrafilter.

Observation (Rudin).

Every *P*-point is a \mathcal{Z} -ultrafilter.

Theorem.

 (MA_{ctble}) For every F_{σ} -ideal \mathcal{I} on ω there is a P-point that is not an \mathcal{I} -ultrafilter.

Classes of *I*-ultrafilters 000000●

Products of ultrafilters

Problems and questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

$\mathcal I\text{-ultrafilters}$ for ideals on ω

Theorem (Brendle).

 $(MA_{\sigma\text{-centered}})$ There is a nowhere dense ultrafilter which is not \mathcal{Z} -ultrafilter.

Classes of *⊥*-ultrafilters

Products of ultrafilters

Problems and questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

$\mathcal I\text{-ultrafilters}$ for ideals on ω

Theorem (Brendle).

 $(MA_{\sigma\text{-centered}})$ There is a nowhere dense ultrafilter which is not \mathcal{Z} -ultrafilter.

Theorem.

 (MA_{ctble}) There is a thin ultrafilter which is not nowhere dense.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

Products of ultrafilters

Definition.

Let \mathcal{U} and \mathcal{V}_n , $n \in \omega$, be ultrafilters on ω . \mathcal{U} -sum of ultrafilters \mathcal{V}_n , $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$, is an ultrafilter on $\omega \times \omega$ defined by $M \in \sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}_n\} \in \mathcal{U}$.

If $\mathcal{V}_n = \mathcal{V}$ for every $n \in \omega$ then we write $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle = \mathcal{U} \cdot \mathcal{V}$ and the ultrafilter $\mathcal{U} \cdot \mathcal{V}$

is called the product of ultrafilters \mathcal{U} and \mathcal{V} .

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I} -sums

Definition. (Baumgartner)

Let C and D be two classes of ultrafilters. We say that C is closed under D-sums provided that whenever $\{\mathcal{V}_n : n \in \omega\} \subseteq C$ and $\mathcal{U} \in D$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle \in C$.

 If D is a class of I-ultrafilters then we say that C is closed under I-sums.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

No product (sum) of ultrafilters is a *P*-point.

Theorem (Baumgartner)

Nowhere dense ultrafilters are closed under nowhere dense sums.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

\mathcal{I} -sums

Theorem.

Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If \mathcal{U} is an \mathcal{I} -ultrafilter and $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

In other words, if $\mathcal I$ is a P-ideal then $\mathcal I\text{-ultrafilters}$ are closed under $\mathcal I\text{-sums}.$

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

\mathcal{I} -sums

Theorem.

Let \mathcal{I} be a P-ideal on ω (or \mathbb{N}). If \mathcal{U} is an \mathcal{I} -ultrafilter and $\{n : \mathcal{V}_n \text{ is } \mathcal{I}$ -ultrafilter $\} \in \mathcal{U}$ then $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ is an \mathcal{I} -ultrafilter.

In other words, if ${\cal I}$ is a P-ideal then ${\cal I}\mbox{-ultrafilters}$ are closed under ${\cal I}\mbox{-sums}.$

Theorem.

Let \mathcal{I} be a *P*-ideal. If there is an \mathcal{I} -ultrafilter then there is an \mathcal{I} -ultrafilter that is not a *P*-point.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Thin ultrafilters

Proposition.

For arbitrary $\mathcal{U} \in \omega^*$ the ultrafilter $\mathcal{U} \cdot \mathcal{U}$ is not a thin ultrafilter.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Existence of \mathcal{I} -ultrafilters in ZFC

Theorem (Shelah)

It is consistent with ZFC that there are no nowhere dense ultrafilters.

Proposition.

It is consistent with ZFC that there are no thin ultrafilters.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

Existence of \mathcal{I} -ultrafilters in ZFC

Theorem (Shelah)

It is consistent with ZFC that there are no nowhere dense ultrafilters.

Proposition.

It is consistent with ZFC that there are no thin ultrafilters.

Question.

Do \mathcal{I} -ultrafilters exist in ZFC for any tall analytic ideal \mathcal{I} ? In particular, do $\mathcal{I}_{1/n}$ -ultrafilters or \mathcal{Z} -ultrafilters exist in ZFC?

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

Weak *I*-ultrafilters

Definition.

Let \mathcal{I} be an ideal on ω . An ultrafilter \mathcal{U} on ω is called

weak \mathcal{I} -ultrafilter if for each finite-to-one $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

 \mathcal{I} -friendly ultrafilter if for each one-to-one $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

Weak *I*-ultrafilters

Definition.

Let ${\mathcal I}$ be an ideal on $\omega.$ An ultrafilter ${\mathcal U}$ on ω is called

weak \mathcal{I} -ultrafilter if for each finite-to-one $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

 \mathcal{I} -friendly ultrafilter if for each one-to-one $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}$.

Theorem.

- (Gryzlov) *Z*-friendly ultrafilters exist in ZFC.
- $\mathcal{I}_{1/n}$ -friendly ultrafilters exist in ZFC.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト (目) (ヨ) (ヨ) (ヨ) () ()

W-ultrafilters

The van der Waerden ideal W consists of subsets of ω which do not contain arbitrary long arithmetic progressions.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

イロト イポト イヨト イヨト ヨー のくぐ

W-ultrafilters

The van der Waerden ideal W consists of subsets of ω which do not contain arbitrary long arithmetic progressions.

- Every thin ultrafilter is a \mathcal{W} -ultrafilter.
- Every \mathcal{W} -ultrafilter is \mathcal{Z} -ultrafilter.

Classes of *I*-ultrafilters

Products of ultrafilters

Problems and questions

W-ultrafilters

The van der Waerden ideal W consists of subsets of ω which do not contain arbitrary long arithmetic progressions.

- Every thin ultrafilter is a *W*-ultrafilter.
- Every *W*-ultrafilter is *Z*-ultrafilter.

Questions.

- Do *W*-ultrafilters exist in ZFC?
- Are *W*-ultrafilters closed under products?