Some special points in Čech-Stone compactification of natural numbers

Jana Flašková

flaskova@kma.zcu.cz

University of West Bohemia, Pilsen Czech Republic

Filters

Definition.

For a non-empty set X, a filter on X is a family $\mathcal{F} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$
- if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
- if $F \in \mathcal{F}$ and $F \subseteq G \subseteq X$ then $G \in \mathcal{F}$.

Filters

Definition.

For a non-empty set X, a filter on X is a family $\mathcal{F} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$
- if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
- if $F \in \mathcal{F}$ and $F \subseteq G \subseteq X$ then $G \in \mathcal{F}$.

If moreover \mathcal{F} satisfies

• for every $M \subseteq X$ either $M \in \mathcal{F}$ or $X \setminus M \in \mathcal{F}$ then \mathcal{F} is called an ultrafilter.

Ideals

Definition.

For a non-empty set X, an ideal on X is a family $\mathcal{I} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{I} \neq \mathcal{P}(X)$ and $\emptyset \in \mathcal{I}$
- if $A_1, A_2 \in \mathcal{I}$ then $A_1 \cup A_2 \in \mathcal{I}$
- if $A \in \mathcal{I}$ and $B \subseteq A \subseteq X$ then $B \in \mathcal{I}$.

Ideals

Definition.

For a non-empty set X, an ideal on X is a family $\mathcal{I} \subseteq \mathcal{P}(X)$ such that:

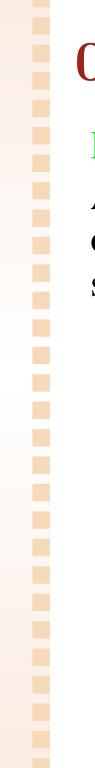
- $\mathcal{I} \neq \mathcal{P}(X)$ and $\emptyset \in \mathcal{I}$
- if $A_1, A_2 \in \mathcal{I}$ then $A_1 \cup A_2 \in \mathcal{I}$
- if $A \in \mathcal{I}$ and $B \subseteq A \subseteq X$ then $B \in \mathcal{I}$.

Examples:
$$\mathcal{Z}_0 = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$$

 $\mathcal{I}_{1/n} = \{A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty\}$

Definition A. (Gryzlov)

An ultrafilter \mathcal{U} on ω is called a 0-point if for every one-to-one function $f: \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathbb{Z}_0$.



Definition A. (Gryzlov)

An ultrafilter \mathcal{U} on ω is called a 0-point if for every one-to-one function $f: \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathbb{Z}_0$.

• (M. E. Rudin) Every *P*-point is a 0-point.

Definition A. (Gryzlov)

An ultrafilter \mathcal{U} on ω is called a 0-point if for every one-to-one function $f: \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathbb{Z}_0$.

- (M. E. Rudin) Every *P*-point is a 0-point.
- Every Q-point is a 0-point.



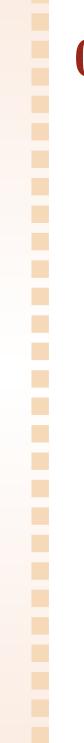
• (Shelah) There may be no *P*-points.

• (Miller) There may be no Q-points.

• (Shelah) There may be no *P*-points.

• (Miller) There may be no Q-points.

Theorem (Gryzlov) 0-points exist in ZFC.



• (Shelah) There may be no *P*-points.

• (Miller) There may be no Q-points.

Theorem (Gryzlov) 0-points exist in ZFC.

Theorem (Gryzlov)

There are $2^{\mathfrak{c}}$ many distinct 0-points.

- Problem 235. (Hart, van Mill)
- For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$?

- Problem 235. (Hart, van Mill)
- For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$?

Some consistent answers:

- For all if n > c.
- Not for all if *P*-points exist.

- Problem 235. (Hart, van Mill)
- For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$?

Some consistent answers:

- For all if n > c.
- Not for all if *P*-points exist.

Examples in ZFC:

• singletons

- Problem 235. (Hart, van Mill)
- For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$?

Some consistent answers:

- For all if n > c.
- Not for all if *P*-points exist.

Examples in ZFC:

- singletons
- (Gryzlov) $A = \{ \mathcal{U} \in \omega^* : \mathcal{Z}_0^* \subseteq \mathcal{U} \}.$

Definition B.

An ultrafilter \mathcal{U} on ω is called a summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}$.

Definition B.

An ultrafilter \mathcal{U} on ω is called a summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}$.

• Every summable ultrafilter is a 0-point.

Definition B.

An ultrafilter \mathcal{U} on ω is called a summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}$.

- Every summable ultrafilter is a 0-point.
- Every Q-point is a summable ultrafilter.

Theorem 1.

(MA_{ctble}) There exists a P-point which is not a summable ultrafilter.

Theorem 1.

(MA_{ctble}) There exists a P-point which is not a summable ultrafilter.

Corollary 2.

It is consistent that there exists a 0-point which is not a summable ultrafilter.

Theorem 1.

(MA_{ctble}) There exists a P-point which is not a summable ultrafilter.

Corollary 2.

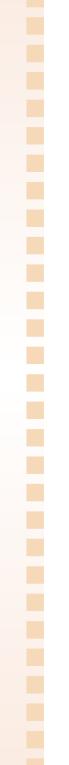
It is consistent that there exists a 0-point which is not a summable ultrafilter.

Question

Is there a 0-point which is not a summable ultrafilter in ZFC?

Theorem 3.

Summable ultrafilters exist in ZFC.



Theorem 3.

Summable ultrafilters exist in ZFC.

Corollary 4.

The set $A = \{ \mathcal{U} \in \omega^* : \mathcal{I}_{1/n}^* \subseteq \mathcal{U} \}$ is a nowhere dense subset of ω^* such that $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$.

Theorem 3.

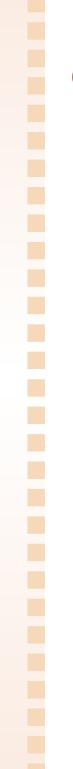
Summable ultrafilters exist in ZFC.

Corollary 4.

The set $A = \{ \mathcal{U} \in \omega^* : \mathcal{I}_{1/n}^* \subseteq \mathcal{U} \}$ is a nowhere dense subset of ω^* such that $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$.

Proposition 5.

There exist $2^{\mathfrak{c}}$ many distinct summable ultrafilters.



Definition. A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called

- a k-linked family if $F_0 \cap F_1 \cap \ldots \cap F_k$ is infinite whenever $F_i \in \mathcal{F}, i \leq k$.
- a centered system if \mathcal{F} is k-linked for every k i.e., if any finite subfamily of \mathcal{F} has an infinite intersection.

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a summable family if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a summable family if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

Proposition 6.

For every $k \in \mathbb{N}$ there exists a summable k-linked family $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$.

Lemma 7.

- If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a *k*-linked family then
- $\mathcal{F} = \{ F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) \, U^k \subseteq^* F \}$

is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.

More generally, if \mathcal{I} is a P-ideal and for every one-to-one function $f \in {}^{\omega}\mathbb{N}$ and for every $k \in \mathbb{N}$ there exists $U^k \in \mathcal{F}_k$ such that $f[U^k] \in \mathcal{I}$ then there exists $U \in \mathcal{F}$ such that $f[U] \in \mathcal{I}$.

Problems

$$\mathcal{I}_g = \{A \subseteq \mathbb{N} : \sum_{a \in A} g(a) < \infty\}$$

Question

Does there exist an ultrafilter \mathcal{U} on ω such that for every one-to-one function there exists a set $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$?

In particular, for
$$g(n) = \frac{1}{\sqrt{n}}$$
?

Problems

$$\mathcal{I}_g = \{A \subseteq \mathbb{N} : \sum_{a \in A} g(a) < \infty\}$$

Question

Does there exist an ultrafilter \mathcal{U} on ω such that for every one-to-one function there exists a set $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$?

In particular, for
$$g(n) = \frac{1}{\sqrt{n}}$$
?

Question

Does there exist an ultrafilter \mathcal{U} on ω such that for every finite-to-one function there exists a set $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}(\mathcal{Z}_0)$?

References

Rudin, M. E., Types of ultrafilters, *Topology Seminar* (*Wisconsin, 1965*), Ann. of Math. Studies **60**, 147–151, 1966.

Gryzlov, A. A., K teorii prostranstva βN , Obshchaya topologiya, Mosk. Univ., Moskva, 20–33, 1986.

Hart, K.P., van Mill, J., Open problems on $\beta\omega$, Open problems in topology, 97–125, North-Holland, Amsterdam, 1990.

Flašková, J., More than a 0-point, *Comment. Math. Univ. Carolinae* **47**, no. 4, 617–621, 2006.