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Filters
Definition.
For a non-empty setX, afilter onX is a family
F ⊆ P(X) such that:

• F 6= ∅ and∅ 6∈ F
• if F1, F2 ∈ F thenF1 ∩ F2 ∈ F
• if F ∈ F andF ⊆ G ⊆ X thenG ∈ F .
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F ⊆ P(X) such that:

• F 6= ∅ and∅ 6∈ F
• if F1, F2 ∈ F thenF1 ∩ F2 ∈ F
• if F ∈ F andF ⊆ G ⊆ X thenG ∈ F .

If moreoverF satisfies
• for everyM ⊆ X eitherM ∈ F or X \ M ∈ F

thenF is called anultrafilter.
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Ideals
Definition.
For a non-empty setX, anidealonX is a family
I ⊆ P(X) such that:

• I 6= P(X) and∅ ∈ I
• if A1, A2 ∈ I thenA1 ∪ A2 ∈ I
• if A ∈ I andB ⊆ A ⊆ X thenB ∈ I.
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Ideals
Definition.
For a non-empty setX, anidealonX is a family
I ⊆ P(X) such that:

• I 6= P(X) and∅ ∈ I
• if A1, A2 ∈ I thenA1 ∪ A2 ∈ I
• if A ∈ I andB ⊆ A ⊆ X thenB ∈ I.

Examples: Z0= {A ⊆ N : lim sup
n→∞

|A∩n|
n = 0}

I1/n= {A ⊆ N :
∑

a∈A

1

a < ∞}
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0-points
Definition A. (Gryzlov)
An ultrafilterU onω is called a0-point if for every
one-to-one functionf : ω → N there existsU ∈ U
such thatf [U ] ∈ Z0.

Advances in Set-theoretic topology – p. 4/14



0-points
Definition A. (Gryzlov)
An ultrafilterU onω is called a0-point if for every
one-to-one functionf : ω → N there existsU ∈ U
such thatf [U ] ∈ Z0.

• (M. E. Rudin) EveryP -point is a0-point.

Advances in Set-theoretic topology – p. 4/14



0-points
Definition A. (Gryzlov)
An ultrafilterU onω is called a0-point if for every
one-to-one functionf : ω → N there existsU ∈ U
such thatf [U ] ∈ Z0.

• (M. E. Rudin) EveryP -point is a0-point.

• EveryQ-point is a0-point.

Advances in Set-theoretic topology – p. 4/14



0-points

• (Shelah) There may be noP -points.

• (Miller) There may be noQ-points.

Advances in Set-theoretic topology – p. 5/14



0-points

• (Shelah) There may be noP -points.

• (Miller) There may be noQ-points.

Theorem (Gryzlov)
0-points exist in ZFC.

Advances in Set-theoretic topology – p. 5/14



0-points

• (Shelah) There may be noP -points.

• (Miller) There may be noQ-points.

Theorem (Gryzlov)
0-points exist in ZFC.

Theorem (Gryzlov)
There are2c many distinct0-points.
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Topological consequences

Problem 235. (Hart, van Mill)
For what nowhere dense setsA ⊆ ω∗ do we have⋃

π∈Sω

π[A] 6= ω∗?
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• For all if n > c.

• Not for all if P -points exist.
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Topological consequences

Problem 235. (Hart, van Mill)
For what nowhere dense setsA ⊆ ω∗ do we have⋃

π∈Sω

π[A] 6= ω∗?

Some consistent answers:

• For all if n > c.

• Not for all if P -points exist.

Examples in ZFC:

• singletons

• (Gryzlov) A = {U ∈ ω∗ : Z∗
0
⊆ U}.
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Summable ultrafilters
Definition B.
An ultrafilterU onω is called asummable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ I1/n.
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Summable ultrafilters
Definition B.
An ultrafilterU onω is called asummable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ I1/n.

• Every summable ultrafilter is a0-point.

• EveryQ-point is a summable ultrafilter.
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Summable ultrafilters
Theorem 1.
(MActble) There exists aP -point which is not
a summable ultrafilter.
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Summable ultrafilters
Theorem 1.
(MActble) There exists aP -point which is not
a summable ultrafilter.

Corollary 2.
It is consistent that there exists a0-point which is not
a summable ultrafilter.

Question
Is there a0-point which is not a summable ultrafilter
in ZFC?
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Summable ultrafilters
Theorem 3.
Summable ultrafilters exist in ZFC.
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Summable ultrafilters
Theorem 3.
Summable ultrafilters exist in ZFC.

Corollary 4.
The setA = {U ∈ ω∗ : I∗

1/n ⊆ U} is a nowhere dense

subset ofω∗ such that
⋃

π∈Sω

π[A] 6= ω∗.
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Summable ultrafilters
Theorem 3.
Summable ultrafilters exist in ZFC.

Corollary 4.
The setA = {U ∈ ω∗ : I∗

1/n ⊆ U} is a nowhere dense

subset ofω∗ such that
⋃

π∈Sω

π[A] 6= ω∗.

Proposition 5.
There exist2c many distinct summable ultrafilters.

Advances in Set-theoretic topology – p. 9/14



Construction
Definition.
A family F ⊆ P(ω) is called

• ak-linked family if F0 ∩ F1 ∩ . . . ∩ Fk is infinite
wheneverFi ∈ F , i ≤ k.

• acentered systemif F is k-linked for everyk
i.e., if any finite subfamily ofF has an infinite
intersection.
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Construction
We say thatF ⊆ P(ω) is asummable familyif for
every one-to-one functionf : ω → N there isA ∈ F
such thatf [A] ∈ I1/n.
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Construction
We say thatF ⊆ P(ω) is asummable familyif for
every one-to-one functionf : ω → N there isA ∈ F
such thatf [A] ∈ I1/n.

Proposition 6.
For everyk ∈ N there exists a summablek-linked
family Fk ⊆ P(ω).
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Construction
Lemma 7.
If Fk ⊆ P(ω) is ak-linked family then

F = {F ⊆ ω : (∀k)(∃Uk ∈ Fk)Uk ⊆∗ F}
is a centered system.

If everyFk is summable thenF is summable.

More generally, ifI is aP -ideal and for every
one-to-one functionf ∈ ω

N and for everyk ∈ N there
existsUk ∈ Fk such thatf [Uk] ∈ I then there exists
U ∈ F such thatf [U ] ∈ I.
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Problems
Ig = {A ⊆ N :

∑
a∈A g(a) < ∞}

Question
Does there exist an ultrafilterU onω such that for
every one-to-one function there exists a setU ∈ U
such thatf [U ] ∈ Ig?
In particular, forg(n) = 1√

n
?
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Problems
Ig = {A ⊆ N :

∑
a∈A g(a) < ∞}

Question
Does there exist an ultrafilterU onω such that for
every one-to-one function there exists a setU ∈ U
such thatf [U ] ∈ Ig?
In particular, forg(n) = 1√

n
?

Question
Does there exist an ultrafilterU onω such that for
everyfinite-to-onefunction there exists a setU ∈ U
such thatf [U ] ∈ I1/n(Z0)?
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