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Abstract. Say that a class of ultrafilters exists generically if every filter base of
size < c can be extended to an ultrafilter in that class. We investigate generic existence of
ultrafilters defined in terms of ideals on the natural numbers, like the summable ultrafilters
and the density zero ultrafilters.

Introduction. Special classes of ultrafilters on the natural numbers ω
play an important role in set theory and its applications. Recall that an
ultrafilter U is a P-point if given a countable A ⊆ U , there is B ∈ U with
B ⊆∗ A for all A ∈ A; U is a Ramsey ultrafilter if given any partition
(Xn : n ∈ ω) of ω, either Xn ∈ U for some n or there is X ∈ U with
|X ∩Xn| ≤ 1 for all n (such an X is called a selector); and U is a Q-point
if any partition (Xn : n ∈ ω) of ω into finite sets has a selector X ∈ U . It
is well-known (and easy to see) that U is Ramsey iff it is both a P-point
and a Q-point. Neither P-points nor Q-points necessarily exist (see [BJ,
Theorems 4.4.7 and 4.6.7]) (1). There are, however, situations when there
are lots of P-points (or Q-points) in the sense that each small filter base can
be extended to a P-point (Q-point, respectively).

More precisely, a classical result of Ketonen [Ke] (see also [BJ, Theorem
4.4.5]) says that every filter base of size less than c can be extended to
a P-point iff d = c (where d denotes the dominating number as usual).
Similarly, Canjar [Ca] (see also [BJ, Theorem 4.5.6]) proved that every filter
base of size < c can be extended to a Ramsey ultrafilter iff cov(M) = c
(the covering number of the meager ideal, cov(M), is the smallest size of a
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(1) It is, however, a famous open problem whether it is consistent that there are
neither P-points nor Q-points simultaneously.
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covering of the real line by meager sets). Similar results have been proved
subsequently by several people, including the first author [Br2]. We shall
say that a class of ultrafilters exists generically if every filter base of size < c
can be extended to an ultrafilter in that class. Thus generic existence of
P-points is equivalent to d = c.

By their very definition, P-points or Ramsey ultrafilters may be thought
of as containing “small” sets of integers of a certain kind. It turns out that
the notions of P-point and Ramsey ultrafilter—as well as many other similar
ultrafilter notions—can be reformulated in a general framework of “small-
ness” introduced by Baumgartner [Bau]. Let I be a family of subsets of
a set X containing all singletons and closed under subsets. Then U is an
I-ultrafilter if for every function f : ω → X there is A ∈ U with f [A] ∈ I.
In this context, P-points can be described as I-ultrafilters where I is the
collection of converging sequences of real numbers considered as sets (see
Section 2 for more details).

While generic existence has been characterized for a number of classes
of ultrafilters defined in terms of a family of “small” sets of reals (like the
P-points mentioned above, but also the measure zero and nowhere dense
ultrafilters, see Section 2 below), this has not been the case for I-ultrafilters
where I is one of the classical ideals on ω, like the summable ideal I1/n or
the density zero ideal Z. Such ultrafilters have recently been investigated
by a number of people, including the second author [Fl2].

The goal of this paper is to obtain characterizations of generic exis-
tence of such ultrafilters. It turns out that, unlike for P-points or Ramsey
ultrafilters, generic existence of summable ultrafilters or density zero ultra-
filters cannot be characterized by one of the classical cardinal invariants
of the continuum. Rather, there are new cardinal invariants responsible for
this phenomenon, for which some upper and lower bounds can be given
but which can also be shown to be consistently distinct from well-known
cardinals.

Outline of the paper. The paper is organized as follows. The prelim-
inary Section 1 sets the stage by briefly reviewing the main material from
the literature we need for our work. In Section 2, we first review a num-
ber of classes of ultrafilters which figure—more or less prominently—in our
paper, and then prove some new implications between these classes (e.g.,
every measure zero ultrafilter is a density zero ultrafilter, Corollary 2.5)
as well as non-implications (e.g., under a fragment of Martin’s axiom MA,
there is a thin ultrafilter (= hereditary Q-point) that is not a nowhere dense
ultrafilter, Theorem 2.8). In Section 3, we investigate generic existence of
I-ultrafilters where I is an ideal on ω. We prove some general results for
Fσ ideals (like the summable ideal) and for analytic P-ideals (like the den-
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sity zero ideal). For example, it is consistent that P-points exist generically
while I-ultrafilters do not for any Fσ ideal I on ω (Corollary 3.12). We then
focus on four ideals, including I1/n and Z. We show, for example, that in
the random model, summable ultrafilters (and thus density zero ultrafilters)
exist generically while the other two classes of ultrafilters do not (see The-
orems 3.26 and 3.31, and Corollary 3.34(ii)). The final Section 4 collects
a number of results which either are related to our work without directly
dealing with the main topic, or are known results for which we could not
find a reference.

1. Prologue

1.1. Ideals and ultrafilters. Let I be an ideal on a set X. All ideals
in this paper are proper (i.e., X /∈ I) and contain all singletons. We use I+

for the I-positive sets (i.e., I+ = P(X) \ I) and I∗ for the dual filter (i.e.,
I∗ = {X \A : A ∈ I}). The ideal I is tall if every infinite subset of X has an
infinite subset belonging to I; and I is a P-ideal if given a countable A ⊆ I,
there is B ∈ I with A ⊆∗ B for all A ∈ A.

Dually, all filters are proper and do not contain finite sets. In particular,
in this paper all ultrafilters on ω are nonprincipal. A family F of subsets of
a set X is said to be a filter base on X if 〈F〉 = {A ⊆ X : ∃B ∈ F (B ⊆ A)}
is a filter on X.

When considering Fσ ideals and analytic P-ideals we use their charac-
terizations in terms of lower semicontinuous submeasures.

Recall that ϕ : P(ω)→ [0,∞] is a submeasure if ϕ(∅) = 0, ϕ(X) ≤ ϕ(Y )
for X ⊆ Y , ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ) for any X,Y , and ϕ({n}) < ∞
for any n. A submeasure ϕ is called lower semicontinuous if ϕ(X) =
limn→∞ ϕ(X ∩ n) for every X ⊆ ω. Two ideals can be associated with a
lower semicontinuous submeasure:

Fin(ϕ) = {X ⊆ ω : ϕ(X) <∞},

Exh(ϕ) =
{
X ⊆ ω : lim

n→∞
ϕ(X \ n) = 0

}
.

Clearly Exh(ϕ) ⊆ Fin(ϕ), Fin(ϕ) is an Fσ ideal, and Exh(ϕ) is an Fσδ P-ideal.
On the other hand, a classical result of Mazur [Ma] says that every Fσ ideal
is of the form Fin(ϕ), and Solecki [So] proved that every analytic P-ideal is
of the form Exh(ϕ).

1.2. Cardinal invariants of the continuum. In Section 3, we shall
need many of the standard cardinal invariants of the continuum, and we
therefore briefly review their definitions and basic relations between them.
Details of everything mentioned here can be found in [Bl2] and [BJ].
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First, recall

b = min{|F| : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F (f 6≤∗ g)},
the unbounding number,

d = min{|F| : F ⊆ ωω and ∀f ∈ ωω ∃g ∈ F (f ≤∗ g)},
the dominating number.

Say X ∈ [ω]ω splits A ∈ [ω]ω if both A ∩ X and A \ X are infinite. Then
F ⊆ [ω]ω is a splitting family if all members of [ω]ω are split by a member
of F ; and F is an unreaped family for all X ∈ [ω]ω there is A ∈ F such that
X does not split A, i.e., A ⊆∗ X or A ⊆∗ ω \X.

Next, recall

s = min{|F| : F ⊆ [ω]ω is a splitting family}, the splitting number,

r = min{|F| : F ⊆ [ω]ω is an unreaped family}, the reaping number.

Many cardinal invariants come in dual pairs, like (b, d) and (s, r). Let R ⊆
ωω × ωω be a relation on ωω (or a relation between different realizations of
the reals) such that for all f ∈ ωω there is g ∈ ωω with fRg and for all
g ∈ ωω there is f ∈ ωω with ¬(fRg). Many cardinals are of the form

b(R) = min{|F| : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F ¬(fRg)}, or

d(R) = min{|F| : F ⊆ ωω and ∀f ∈ ωω ∃g ∈ F (fRg)}.
Clearly b = b(≤∗), d = d(≤∗), s = b(does not split), and r = d(does
not split). Because of duality, there is typically one proof, formalized in
terms of Tukey functions, which gives two inequalities. See [Bl2, Section 4]
for a detailed discussion of this. We shall present some such proofs below
(Propositions 3.9 and 3.10).

When I is an ideal on some set X, define

add(I) = min{|F| : F ⊆ I and
⋃
F /∈ I}, the additivity of I,

cov(I) = min{|F| : F ⊆ I and
⋃
F = X}, the covering number of I,

non(I) = min{|F | : F ⊆ X and F /∈ I}, the uniformity of I,
cof(I) = min{|F| : F ⊆ I and ∀I ∈ I ∃F ∈ F (I ⊆ F )},

the cofinality of I.
Then add(I) ≤ cov(I) ≤ cof(I) and add(I) ≤ non(I) ≤ cof(I). If I is a
Borel ideal on the reals, (add(I), cof(I)) and (cov(I), non(I)) can be con-
strued as dual pairs in the sense of the preceding paragraph. We shall need
(some of) these cardinals for three such ideals, the σ-idealM of meager sets,
the σ-ideal N of null sets, and the σ-ideal E generated by closed null sets (2).

(2) It is well-known that these cardinals do not depend on the particular representation
of the reals.
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The relationship between b, d and the invariants of the former two is sub-
sumed in Cichoń’s diagram (see [Fr1] and [BJ, Chapter 2]) where cardinals
get larger as one moves up and to the right in the diagram.

add(N ) add(M) cov(M) non(N )

cov(N ) non(M) cof(M) cof(N )

b d

Fig. 0. Cichoń’s diagram

The deepest result here is the Bartoszyński–Raisonnier–Stern Theorem
([Fr1], [BJ, Section 2.3]) saying that add(N ) ≤ add(M) and, dually,
cof(M) ≤ cof(N ). Also add(M) = min{b, cov(M)} and cof(M) =
max{d, non(M)} ([Fr1], [BJ, 2.2.9 and 2.2.11]). The cardinals we shall
mainly study in Section 3 all lie between cov(M) and cof(N ) (Observa-
tion 3.7), but we will also need some of the cardinals on the left-hand side
of the diagram.

Further useful inequalities are s ≤ d and b ≤ r [Bl2, Theorems 3.3 and
3.8], cov(M), cov(N ) ≤ cov(E) ≤ r and s ≤ non(E) ≤ non(N ), non(M) [Bl2,
Theorem 5.19], as well as add(E) = add(M) and cof(E) = cof(M) (see [BaS]
or [BJ, Theorem 2.6.17]).

1.3. Forcing. In Section 3, we shall present a number of independence
results concerning cardinal invariants related to the ultrafilters we discuss
in our work. In most cases, these results are obtained by proving ZFC-
inequalities between these cardinals and classical cardinal invariants, and
then appealing to known results about the values of the latter in well-known
models of set theory. This allows us to “black box” a substantial part of
forcing theory. There are, however, two forcing notions which we will use
directly, namely, random forcing and forcings of type M(F).

Let κ be an infinite cardinal. The measure algebra Bκ on 2κ (also called
the algebra for adding κ random reals) is the quotient of Baire subsets of 2κ

by null sets [Ku2]. If κ = ω, we write B = Bω and call the latter the
random algebra. B adds one random real, that is, a real avoiding all null sets
coded in the ground model. Any Bκ is ωω-bounding, that is, every g ∈ ωω
added by Bκ is eventually dominated by f ∈ ωω from the ground model
(see [BJ, Lemma 3.1.2]). See [Ku2] and [BJ, Section 3.2] for more details
about random forcing.

Let F be a filter on ω. We denote by M(F) Mathias forcing with F .
Conditions are of the form (s,A) where s ∈ [ω]<ω and A ∈ F with
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max(s) < min(A). The order is given by (t, B) ≤ (s,A) iff B ⊆ A and
s ⊆ t ⊆ s ∪A. M(F) is a σ-centered forcing which generically adds a real r
which diagonalizes the filter F , i.e., r ⊆∗ A for all A ∈ F . Furthermore, an
easy genericity argument shows that r ∩B is infinite for all B ∈ F+.

We shall use the following models:

• The Cohen model. The model obtained by adding κ ≥ ℵ2 Cohen reals
over a model of CH. It satisfies non(M) = ℵ1 and cov(M) = c ≥ ℵ2

[BJ, 3.3, 7.3.F, and 7.5.8].
• The random model. The model obtained by forcing with Bκ for κ ≥ ℵ2

over a model of CH. It satisfies non(N ) = d = ℵ1 and cov(N ) = c ≥ ℵ2

[BJ, 3.2, 7.3.F, and 7.6.8].
• The dual random model. The model obtained by forcing with Bω1 over

a model for MA + c ≥ ℵ2. It satisfies non(N ) = ℵ1 and cov(N ) = b =
c ≥ ℵ2 [BJ, 3.2 and 7.6.7].
• The dual Hechler model. The model obtained by a finite support iter-

ation of length ω1 of Hechler forcing over a model of MA + c ≥ ℵ2. It
satisfies cof(M) = ℵ1 and r = non(N ) = c ≥ ℵ2 [BJ, 3.5 and 7.6.10].
• The dual M(F) model. Let F be a definable filter on ω, that is, F has

a definition φ which interprets as a filter in all models in ZFC. For
simplicity, we may as well assume that F is analytic without param-
eter. The dual M(F) model is the model obtained by a finite support
iteration of length ω1 of M(F) over a model of MA + c ≥ ℵ2. It satis-
fies non(M) = ℵ1 (because of the ℵ1 many Cohen reals added at limit
stages) and non(N ) = c ≥ ℵ2 (this follows from the fact that M(F) is
σ-centered together with [BJ, 6.5.30, 6.4.12, and 6.5.27]).
If F∗ is an Fσ ideal, this model also satisfies d = c (this is so because
M(F) does not add dominating reals in this case [Br1], see also [BJ,
6.5.2]).
• The Sacks model. The model obtained by a countable support iter-

ation of length ω2 of Sacks forcing over a model of CH. It satisfies
cof(N ) = r = ℵ1 and c = ℵ2 [BJ, 7.3.A].

The following models are defined in the same way, using a countable support
iteration of length ω2 over a model of CH of the corresponding forcing notion.

• The Miller model. It satisfies non(M) = non(N ) = r = ℵ1 and d =
c = ℵ2 [BJ, 7.3.E].
• The Blass–Shelah model. It satisfies r = ℵ1 and s = c = ℵ2 [BJ, 7.4.D]

(see also [BS1]).
• The Laver model. It satisfies cov(E) = non(N ) = ℵ1 and b = c = ℵ2

[BJ, 7.3.D].
• The Mathias model. It satisfies cov(E) = ℵ1 and b = s = c = ℵ2 [BJ,

7.4.A].
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Typically, in dual models, dual cardinal invariants have opposite values, that
is, if x = c (x = ℵ1, respectively) in a model, then y = ℵ1 (y = c, respectively)
will hold in the dual model where y is the cardinal invariant dual to x (as
explained in Subsection 1.2). For example, d = ℵ1 in the random model and
b = c in the dual random model. Dual models can only be built for models
obtained by finite support iteration of ccc forcing or by the measure algebra.
They do not exist for countable support iterations of proper forcings (the
last five models above).

We sometimes use the fact that if M is a model of ZFC of size < cov(M)
(< cov(N ), respectively), then there is a Cohen real (random real, resp.)
over M . Also, MA(countable) is equivalent to cov(M) = c [BJ, 3.3.1 and
the subsequent comment].

A forcing notion P has the Laver property [BJ, 6.3.27] if given any p ∈ P,
any h ∈ ωω, and any P-name ḟ ∈

∏
n h(n) for a function strictly below h,

there are q ≤ p and φ : ω → [ω]<ω with |φ(n)| ≤ n + 1 for all n such
that q  ∀n (ḟ(n) ∈ φ(n)). Sacks [BJ, 7.3.2 and 6.3.38], Miller [BJ, 7.3.45],
Laver [BJ, 7.3.29], and Mathias [BJ, 7.4.7] forcing and their countable sup-
port iterations [BJ, 6.3.34] all have the Laver property. If P is a forcing
with the Laver property, then every new real added by P is contained in
a closed measure zero set coded in the ground model [BJ, Lemma 6.3.32].
In particular, in all models obtained by a forcing with the Laver property,
cov(E) = ℵ1 holds.

2. Classes of ultrafilters

2.1. I-ultrafilters and Katětov order. Let I be a family of subsets
of a set X such that I contains all singletons and is closed under subsets.
Given an ultrafilter U on ω, we say that U is a weak I-ultrafilter if for every
finite-to-one function f : ω → X there exists A ∈ U such that f [A] ∈ I. If
the latter only holds for one-to-one functions f , we call U an I-point. It is
well-known that it suffices to work with families of sets which are tall ideals.
More explicitly, if 〈I〉 = {

⋃
i<nAi : n ∈ ω and Ai ∈ I} is the ideal generated

by I, then the maximality property of the ultrafilter U implies that U is an
I-ultrafilter iff it is an 〈I〉-ultrafilter, and similarly for “weak I-ultrafilter”
and “I-point”. Furthermore, if an ideal I is not tall, a nonprincipal ultrafilter
cannot be an I-ultrafilter (if A ⊆ X is countable such that I�A is the ideal
of finite sets, then any bijection f : ω → A witnesses that U is not an
I-ultrafilter).

The rationals Q(2ω) of the Cantor space 2ω may be identified with se-
quences that are eventually zero. Thus, an alternative description of Q(2ω) is
the collection of those σ ∈ 2<ω such that either σ = 〈〉 is the empty sequence
or |σ| ≥ 1 and σ(|σ| − 1) = 1 (simply cut an eventually zero sequence at
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the last place where it assumes the value 1). Since the exact representation
of Q(2ω) does not matter for most proofs, we shall be rather sloppy with this
and often identify Q(2ω) with 2<ω though formally this is not correct (3).
A similar comment applies to the rationals Q(ωω) of the Baire space ωω.

Consider the following ideals:

• conv, the ideal on Q(2ω) generated by converging (to reals) sequences
of rational numbers,
• count, the ideal of sets with countable closure, on Q(2ω) (or Q(ωω)),
• mz, the ideal of sets with closure of measure zero, on Q(2ω),
• nwd, the ideal of nowhere dense sets, on Q(2ω) (or Q(ωω)),
• disc, the ideal generated by discrete sets, on Q(2ω),
• scat, the ideal generated by scattered sets, on Q(2ω),
• Kσ, the ideal of sets with σ-compact closure, on Q(ωω),
• R, the ideal generated by homogeneous sets in some fixed instance of

the random graph on ω,
• Fin×Fin, the ideal generated by vertical sections and sets bounded by

functions, on ω × ω,
• ED, the Fσ ideal generated by vertical sections and graphs of functions

on ω × ω,
• EDfin, the Fσ ideal generated by graphs of functions bounded by the

identity function, on ∆ = {(i, j) ∈ ω × ω : j ≤ i},
• thin, the ideal generated by thin sets on ω,
• SC, the ideal generated by SC-sets on ω,
• I1/n, the Fσ P-ideal of summable sets on ω,
• Z, the P-ideal of sets of density zero, on ω.

In this context recall that A = {an ∈ ω : n ∈ ω} is thin if lim an/an+1 = 0,
and an SC-set if lim(an+1−an)=∞. A set A⊆ω is summable if

∑
n∈A 1/n+1

<∞, and of density zero if lim |A ∩ n|/n = 0.

The corresponding classes of ultrafilters have been investigated by a
number of authors (see, in particular, [Bau], [Sh], [Br2], [Bar], [Fl1], [Fl2],
and [HZ2]). The following establishes a close connection with the better
known classes of ultrafilters mentioned in the introduction.

Observation 2.1 ([Fl4]).

(i) ([Bau]) The following are equivalent for an ultrafilter U on ω:

(1) U is a P-point,
(2) U is a (weak) conv-ultrafilter (conv-point),
(3) U is a (weak) Fin× Fin-ultrafilter (Fin× Fin-point).

(3) The only place where this matters is in the proof of Proposition 2.6 below, and
there we shall be careful.
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(ii) The following are equivalent for an ultrafilter U on ω:

(1) U is a Ramsey ultrafilter,
(2) U is an (a weak) R-ultrafilter (R-point),
(3) U is an (a weak) ED-ultrafilter (ED-point).

(iii) The following are equivalent for an ultrafilter U on ω:

(1) U is a Q-point,
(2) U is a weakly thin-ultrafilter (thin-point),
(3) U is a weak EDfin-ultrafilter (an EDfin-point).

Here, the statements without parentheses may be replaced by those in
parentheses. E.g., in (i)(2), “U is a conv-ultrafilter”, “U is a weak conv-
ultrafilter”, and “U is a conv-point” are all equivalent, and similarly for the
other statements.

To understand the connection between I-ultrafilters for different choices
of I, the Katětov order ≤K plays a crucial role. For ideals I and J on
countable sets X and Y we write I ≤K J if there is a function f : Y → X
such that f−1(I) ∈ J for all I ∈ I. The Katětov–Blass order is defined by
I ≤KB J if there is a finite-to-one function f : Y → X such that f−1(I) ∈ J
for all I ∈ I.

Observation 2.2 ([Fl4]). Let I and J be tall ideals.

(i) (see also [Hr1, Proposition 4.5]) An ultrafilter U on ω is an I-ultra-
filter iff I 6≤K U∗.

(ii) An ultrafilter U on ω is a weak I-ultrafilter iff I 6≤KB U∗.
(iii) If I ≤K J and U is an I-ultrafilter, then it is also a J -ultrafilter.
(iv) If I ≤KB J and U is a weak I-ultrafilter, then it is also a weak

J -ultrafilter.

It would be tempting to conjecture that some converse of this holds,
namely, that I 6≤K J implies that, under some assumption like MA(σ-
centered), an I-ultrafilter that is not a J -ultrafilter can be constructed.
This, however, is false: e.g., Fin × Fin 6≤K conv (ED 6≤K R, resp.), yet
both ideals describe the P-points (Ramsey ultrafilters, resp.). The following
stronger fact is well-known:

Observation 2.3.

(i) Fin× Fin 6≤K Z. More generally, Fin× Fin 6≤K I for any P-ideal I.
(ii) ED 6≤K nwd. In particular, Fin× Fin 6≤K nwd.

Proof. (i) Suppose that f : ω → ω × ω witnesses that Fin × Fin ≤K I.
We may assume that the inverse images of the vertical sections belong to I.
Since I is a P-ideal, there is a set A ⊆ ω × ω with finite vertical sections
such that f−1(A) ∈ I∗, a contradiction.
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(ii) Again let f : 2<ω → ω × ω be such that the inverse images of the
vertical sections are nowhere dense. Then it is easy to construct a graph of
a (partial) function A ⊆ ω × ω such that f−1(A) is dense.

The Katětov–Blass order on the ideals introduced above can be summa-
rized in the following diagram where ideals get KB-larger as one moves up.
(In fact, as witnesses for the reduction one can always choose one-to-one
functions.) For a similar diagram, see [Hr2] and the recent [BFV].

This diagram is complete in the sense that no further line can be added.
That is, if I is not below J in the diagram, then I 6≤K J . This follows, on
the one hand, from Observation 2.3, and on the other hand from the fact
that, for many pairs I, J , there are consistently I-ultrafilters that are not
J -ultrafilters (4) so that I 6≤K J follows by Observation 2.2(iii).

Some of the ideals (e.g., count or nwd) may be considered on different
underlying sets like the rationals of 2ω and the rationals of ωω. However,
these different versions are easily seen to be KB-equivalent.

R

conv ED

disc count Fin× Fin EDfin
∼=KB thin

scat

Kσ mz SC I1/n

nwd Z

HH
HH

��
��

HH
HH

"
"
"
"
"
"
""

PP
P

��
��

��
�

HH
HH

��
��

���
���

��

��
��

HH
HH

HH
HH

Fig. 1

Almost all of the lines are trivial, and most are inclusion relations. The
nontrivial lines are the ones between R and conv, R and ED, conv and
Fin × Fin, conv and SC, mz and Z, Kσ and scat, as well as the equivalence
EDfin

∼=KB thin.

For R ≤KB conv, see [Me, Lemma 3.3.3]; for R ≤KB ED, partition a sub-
set of ω into countably many countable 0-homogeneous sets An such that
the color between any two elements of different An is 1 (this is possible by
the universality of the random graph), and then let f : ω × ω → ω map
the vertical sections to the An; for EDfin

∼=KB thin, see [Fl4, Lemma 3.3];
for conv ≤KB Fin × Fin, take countably many sequences An converging
to different limits and let f : ω × ω → 2<ω map the vertical sections to

(4) This is explained in detail in the discussion following Figure 2 below. Note that
for Borel ideals I and J , I ≤K J is a Σ1

2 statement and therefore absolute. Thus the
consistency of I-ultrafilters that are not J -ultrafilters implies that I 6≤K J holds in ZFC.
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the An; for conv ≤KB SC, let f : ω → 2<ω be defined by f(m) = σm
where {σ2n−1, σ2n , . . . , σ2n+1−2} lists 2n in backward lexicographic order for
all n ∈ ω (if A ⊆ 2<ω is a converging sequence then, for each k, almost all
elements of A have the same initial segment of length k, and thus, by defini-
tion of the backward lexicographic order, almost any two distinct elements
of f−1(A) have difference at least 2k).

We show:

Proposition 2.4. mz ≤KB Z.

Proof. Enumerate all sequences in 2<ω of length n as

2n = {σ2n−1, σ2n , . . . , σ2n+1−2}.

Then f : ω → 2<ω : m 7→ σm is a bijection.

Assume A ⊆ 2<ω has closure of measure zero. Then there are τi ∈ 2<ω,
i ∈ ω, such that µ(

⋃
i∈ω[τi]) = 1 and

⋃
i∈ω[τi]∩A = ∅, that is, σ 6⊇ τi for all

σ ∈ A and all i ∈ ω.

Fix ε > 0. There exists i0 such that µ(
⋃
i<i0

[τi]) > 1 − ε. Consider
n0 ∈ ω such that |τi| ≤ n0 for every i < i0. For every n ≥ n0 we get
|f−1(A) ∩ [2n − 1, 2n+1 − 2]|/2n < ε. Unfixing ε, we see that f−1(A) has
density zero.

Corollary 2.5. Every measure zero ultrafilter is a Z-ultrafilter.

Proposition 2.6. Kσ ≤KB scat.

Proof. Define f : Q(2ω) → Q(ωω) as follows: f(s) = (n0, . . . , nk−1)
where k = |s−1({1})| and s−1({1}) = {n0 < n1 < · · · < nk−1}. (Since
s ∈ Q(2ω), this means |s| = nk−1 + 1, and f is indeed one-to-one.)

Let A ⊆ ωω be closed. Define the rank rkA(σ) for σ ∈ ω<ω by

rkA(σ) =

{
0 if [σ] ∩A is compact,

min{β : ∀∞k (sup{rkA(σ k̂ τ̂) : τ ∈ ω<ω} < β)} otherwise.

(So, in the noncompact case, the rank is always at least 1, and it is exactly 1
iff almost all [σ k̂] ∩A are compact.)

A standard and well-known argument shows that A∩ [σ] is σ-compact iff
rkA(τ) < ω1 for all τ ⊇ σ. (Indeed, if rkA(τ) =∞ for some τ ⊇ σ, then we
can recursively construct a superperfect tree T with [T ] ⊆ A with stem τ and
splitting nodes the nodes of rank ∞. On the other hand, by induction on α
we can show that if rkA(τ) ≤ α for all τ ⊇ σ, then A∩ [σ] is σ-compact: for
α = 0, this is obvious; for α > 0, note that T = {τ : τ ⊇ σ and rkA(τ) = α}
generates a finitely branching tree T and that A∩[σ] = [T ]∪

⋃
{A∩[τ ] : τ ⊇ σ

is such that ρA(ρ) < α for all ρ ⊇ τ} is a union of a compact set and (by
induction hypothesis) countably many σ-compact sets.)
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For B ⊆ Q(2ω) and s ∈ B define the rank ρB by ρB(s) = α if s ∈
Bα \ Bα+1, where Bα denotes the αth Cantor–Bendixson derivative of B,
as usual. Note that B is scattered iff all s ∈ B have rank < ω1.

Let A ⊆ Q(ωω). We claim that ρf−1(A)(f
−1(σ)) ≤ rkĀ(σ) for all σ ∈

A∩ ran(f). This implies in particular that if Ā is σ-compact, then f−1(A) is
scattered (and if Ā is compact, then f−1(A) is discrete). Hence f witnesses
Kσ ≤KB scat.

We use induction on rank. If rkĀ(σ) = 0, then Ā ∩ [σ k̂] = ∅ for al-
most all k (by compactness). So there is k0 such that A ∩ [σ k̂] = ∅ for
all k ≥ k0. Hence f−1(A)∩ [f−1(σ)�k0] = {f−1(σ)}. This shows that f−1(σ)
is isolated in f−1(A) and so ρf−1(A)(f

−1(σ)) = 0. If rkĀ(σ) = α > 0, then
for almost all k and all τ , rkĀ(σ k̂ τ̂) < α. Therefore, by induction hypoth-
esis, for almost all k and all τ , f−1(σ k̂ τ̂) does not belong to (f−1(A))α.
Hence f−1(σ) is isolated in (f−1(A))α (or does not belong to it). Thus
ρf−1(A)(f

−1(σ)) ≤ α.

Corollary 2.7. Every Kσ-ultrafilter is a scattered ultrafilter.

Using Observation 2.1 we now obtain the following diagram of inclusion
relations between the ultrafilter classes where a line means that the class
below is included in the class above:

Ramsey ultfs

P-points thin ultfs

discrete ultfs countable closed ultfs SC-ultfs I1/n-ultfs

scattered ultfs

Kσ-ultfs measure zero ultfs

nowhere dense ultfs Z-ultfs

HH
HH

��
��

XXX
XXX

XX

���
���

��

���
���

��

XXX
XX

���
���

��

�
�
�
�
�
��

���

XXX
XXX

XX

���
���

��

Fig. 2

No line can be added in ZFC. That is, if the ultrafilter class C is not
below the ultrafilter class D in the diagram, then, consistently, there is an
ultrafilter in C which does not belong to D. This follows from Theorems 2.8
and 2.10 which will be proved below and from a number of known results
which we now recall.

Baumgartner [Bau] proved that (under MA(σ-centered)) there is a mea-
sure zero ultrafilter that is not scattered. Assuming there is a P-point there
is a countable closed ultrafilter that is neither discrete nor SC; in fact, if
U is a P-point, then Uω is countable closed [Br2], the Un are discrete but
Uω is not [Bau], and U2 is not SC [Fl2, Proposition 3.2.2]. By results of
Barney [Bar], it is consistent there are measure zero ultrafilters that are
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not Kσ-ultrafilters (in fact, by our Proposition 2.6, this is a consequence of
Baumgartner’s result cited at the beginning of this paragraph). The second
author proved (under MA(countable)) that there is a P-point that is not
a summable ultrafilter [Fl3] and that there is a summable ultrafilter that
is not an SC-ultrafilter [Fl2, Corollary 2.3.7]. Hong and Zhang [HZ2] and
(independently) the first author [Br4] proved that (under MA(σ-centered))
there is a discrete ultrafilter that is not density zero. In [HZ2], it is also
proved that (under CH) there is a Kσ-ultrafilter that is not density zero.

We complete this cycle of results by showing, in the next two subsections,
that under a fragment of MA there is a thin ultrafilter that is not nowhere
dense and a discrete ultrafilter that is not Kσ.

2.2. A thin ultrafilter

Theorem 2.8. Assume MA(countable). There exists a thin ultrafilter
which is not a nowhere dense ultrafilter.

We use:

Lemma 2.9. Assume MA(countable). Assume F is a filter base on Q
such that |F| < c and every F ∈ F is somewhere dense. Also assume f :
Q → ω is a function. Then there exists G ⊆ Q such that f [G] is thin and
G ∩ F is somewhere dense for every F ∈ F .

Proof. If there is a set F0 ∈ F such that f [F0] is thin then G = F0

has the required property. So we may assume that f [F ] is not thin for any
F ∈ F . If there exists K ∈ [ω]<ω such that f−1(K)∩F is somewhere dense
for every F ∈ F then let G = f−1(K).

In the following we will assume that no such set exists, i.e.,

(♣) for every K ∈ [ω]<ω there is FK ∈ F such that f−1(K) ∩ FK is
nowhere dense in Q.

Case I: ∀F ∈ F ∃∞n (f−1{n} ∩ F is somewhere dense).

By assumption the set SF = {n ∈ ω : f−1{n}∩F is somewhere dense} is
infinite for every F ∈ F . Define a poset P = {K ∈ [ω]<ω : ∀u, v ∈ K (if u < v
then u2 < v)} where K ≤P L iff K = L or K ⊃ L and min(K \L) > maxL.
For every F ∈ F define DF = {K ∈ P : K ∩ SF 6= ∅}.

Claim 2.9.1. DF is dense in P for every F ∈ F .

Proof. Let L ∈ P. Since SF is infinite there exists n ∈ SF such that
n > (maxL)2. Put K = L ∪ {n}. Obviously, K ≤P L and K ∈ DF .

The family D = {DF : F ∈ F} consists of less than c many dense sets in
P. By Martin’s Axiom for countable posets there exists a D-generic filter G.
Let A =

⋃
{K : K ∈ G}.
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Now it is easy to verify the following:

• ∀F ∈ F (f−1(A) ∩ F is somewhere dense). (Given F ∈ F there is
K ∈ G such that K ∩ SF 6= ∅. Thus also A ∩ SF is non-empty and
f−1(A) ∩ F is somewhere dense.)
• A is thin. (Whenever ai, ai+1 are two successive elements in A there

exists K ∈ G such that ai, ai+1 ∈ K. So we have a2
i < ai+1 and

limi→∞ ai/ai+1 ≤ limi→∞ 1/ai = 0.)

To complete the proof in Case I, set G = f−1(A).

Case II: ∃F0 ∈ F ∀∞n (f−1{n} ∩ F0 is nowhere dense).

It follows from (♣) that we may actually assume that f−1{n} ∩ F0 is
nowhere dense for every n ∈ ω. For every F ∈ F fix an open set UF ⊆ Q
such that F0∩F is dense in UF (such a set exists because F0∩F is somewhere
dense in Q) and for every UF fix its countable (clopen) base BF = {BF,i :
i ∈ ω}.

Define a poset P = {K ∈ [Q]<ω : ∀u, v ∈ f [K] (if u < v then u2 < v)}
with K ≤P L iff K ⊇ L. For every F ∈ F and i ∈ ω define DF,i = {K ∈ P :
K ∩ F ∩BF,i 6= ∅}.

Claim 2.9.2. DF,i is dense in P for all F ∈ F and i ∈ ω.

Proof. Fix L ∈ P. The set f−1[0, (max f [L])2]∩F0 ∩F is nowhere dense
because it is a union of finitely many nowhere dense sets. So there is an open
set B′ ⊆ BF,i such that B′∩f−1[0, (max f [L])2]∩F0∩F = ∅. Since F0∩F is
dense in UF and B′ is an open subset of UF , the intersection B′ ∩ F0 ∩ F is
nonempty. Choose q ∈ B′∩F0∩F and set K = L∪{q}. Obviously, K ≤P L
and K ∈ DF,i.

The family D = {DF,i : F ∈ F , i ∈ ω} consists of less than c many dense
sets in P. By Martin’s Axiom for countable posets there exists a D-generic
filter G. Let G =

⋃
{K : K ∈ G}.

Now it is easy to verify that G has the required properties:

• ∀F ∈ F (G ∩ F is somewhere dense). (The set G ∩ F is dense in UF
because G ∩ F ∩BF,i 6= ∅ for every i ∈ ω.)
• f [G] is thin. (Let f [G] = {ak : k ∈ ω} be an increasing enumeration of
f [G]. For every ak, ak+1 there exists K ∈ G such that ak, ak+1 ∈ f [K].
So we have a2

k < ak+1 and limk→∞ ak/ak+1 ≤ limk→∞ 1/ak = 0.)

This completes the proof of the lemma.

Proof of Theorem 2.8. Fix a bijection b : ω → Q. Enumerate ωω = {fα :
α < c}. By transfinite induction on α < c we will construct filter bases Fα,
α < c, (on ω) so that the following conditions are satisfied:
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(i) F0 is the Fréchet filter,
(ii) Fα ⊆ Fβ whenever α ≤ β,
(iii) Fγ =

⋃
α<γ Fα for γ limit,

(iv) ∀α (|Fα| ≤ |α| · ω),
(v) ∀α ∀F ∈ Fα (b[F ] is somewhere dense in Q),

(vi) ∀α ∃F ∈ Fα+1 (fα[F ] is thin).

Suppose we already know Fα. If there is a set F ∈ Fα such that fα[F ]
is thin then set Fα+1 = Fα. If fα[F ] is not thin for any F ∈ Fα then apply
Lemma 2.9 with the filter base {b[F ] : F ∈ Fα} and the function fα ◦ b−1.
Let Fα+1 be the filter base generated by Fα and b−1(G) where G is the set
obtained in Lemma 2.9.

Finally, let F =
⋃
α<cFα. Since b[F ] is a somewhere dense subset of Q

for every F ∈ F , the filter base F can be extended to an ultrafilter which is
not a nowhere dense ultrafilter. Every ultrafilter extending F , however, is a
thin ultrafilter because of condition (vi).

2.3. A discrete ultrafilter

Theorem 2.10. Assume MA(σ-centered). There is a discrete ultrafilter
which is not a Kσ ultrafilter.

Since it does not matter which representation of the rationals in 2ω

and ωω we use, for simplicity we shall work with 2<ω and ω<ω instead
of Q(2ω) and Q(ωω), for discrete and Kσ sets, respectively.

Using an argument similar to the proof of Theorem 2.8 from Lemma 2.9,
we see that it suffices to prove the following:

Lemma 2.11. Assume MA(σ-centered). Let F ⊆ K+
σ be a filter base

on ω<ω with |F| < c and let f : ω<ω → 2<ω. Then there is B ⊆ ω<ω such
that f [B] is discrete and F ∪ {B} still generates a filter base in K+

σ .

Proof. If,

(∗) for some s ∈ 2<ω, f−1({s}) ∩A ∈ K+
σ for all A ∈ F ,

then B = f−1({s}) works. So assume this is not the case.
Next assume

(∗∗) for all A ∈ F there is s ∈ 2<ω such that f−1({s}) ∩A ∈ K+
σ .

Since F is a filter base and since (∗) fails, for all n ∈ ω there is sn ∈ 2n

such that for all A ∈ F there is s ∈ 2<ω with sn ⊆ s and f−1({s}) ∩
A ∈ K+

σ . Hence, by König’s Lemma, there is z ∈ 2ω such that for all
A ∈ F and n there is s ⊇ z�n with f−1({s}) ∩ A ∈ K+

σ . Let X = {x :
ω → 2<ω : x(n) ⊇ z�n for all n} and, for A ∈ F , set XA = {x ∈ X :
∀n (f−1({x(n)}) ∩A ∈ Kσ)}. Then XA is nowhere dense in X. Since |F| <
cov(M) = c, there is c ∈ X with c /∈ XA for all A ∈ F . Hence, for all
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A ∈ F , there is n with f−1({c(n)}) ∩ A ∈ K+
σ , ran(c) is discrete, and so

B = f−1(ran(c)) works. So assume that (∗∗) also fails.
Hence there is A ∈ F such that f−1({s})∩A ∈ Kσ for all s. Since we may

assume the set B we want to construct is a subset of A, it is irrelevant what
f does outside of A and we may as well assume f�(ω<ω \ A) is one-to-one.
That is, without loss of generality, we may suppose that A = ω<ω and
f−1({s}) ∈ Kσ for all s. Say F ⊆ ω<ω is a canonical finite tree (cft for
short) if F is a finite tree and t ∈ F , |t′| ≤ |t| and t′ ≤ t (i.e., t′(i) ≤ t(i) for
all i ∈ dom(t′)) imply t′ ∈ F . Let Z := {((σt, τt) ∈ (ω<ω)2 : t ∈ F ) : F is
a cft} be the collection of all sequences of pairs of elements of ω<ω, indexed
by elements of cfts (i.e., the collection of all functions with domain some cft
and range contained in (ω<ω)2). Clearly Z is a countable set. Consider the
following p.o. P. Conditions are pairs p = (gp, Φp) = (g, Φ) such that

(i) g : ran(f)→ ω is a finite partial function,
(ii) for s 6= r from dom(g), [s�g(s)] ∩ [r�g(r)] = ∅,

(iii) for A ∈ F , A \
⋃
{f−1[s�g(s)] : s ∈ dom(g)} ∈ K+

σ ,
(iv) Φ : F → Z is a finite partial function,
(v) for all A ∈ dom(Φ), Φ(A) = ((σAt , τ

A
t ) : t ∈ FA) where FA = F pA is

a cft, and for all t ∈ FA:

• the τAt are the splitting nodes of an initial segment of a super-
perfect tree (this means that if t̂ k ∈ FA, then τAt ⊂ τAt̂ k and
τAt̂ k′(|τAt |) < τAt̂ k(|τAt |) for k′ < k),
• τAt ⊂ σAt̂ k and σAt̂ k�|τAt |+ 1 = τAt̂ k�|τAt |+ 1,
• σAt ∈ A ∩ f−1(dom(g)), and
• ∃∞n (A ∩ [τAt ˆn] \

⋃
{f−1[s�g(s)] : s ∈ dom(g)} ∈ K+

σ ).

The order q ≤ p is given by

• gq ⊇ gp,
• dom(Φq) ⊇ dom(Φp),
• Φq(A) ⊇ Φp(A) for all A ∈ dom(Φp) (more explicitly, F qA ⊇ F pA and

σA,qt = σA,pt , τA,qt = τA,pt for t ∈ F pA and A ∈ dom(Φp)).

Claim 2.11.1. P is σ-centered.

Proof. Let {hA : A ∈ F} be a family of functions from ω to Z such that
for all finite partial functions Ψ : F → Z there are infinitely many n with
hA(n) = Ψ(A) for all A ∈ dom(Ψ).

(The construction of such hA is a standard argument: let Z = {zn :
n ∈ ω}. Construct a strictly increasing sequence (kn ∈ ω : n ∈ ω) and
sequences (ρv ∈ Zkn : v ∈ 2n) for all n such that v ⊆ w implies ρv ⊆ ρw and
for all n and all functions ψ : 2n+1 → {zj : j < n} there is i ∈ [kn, kn+1)
such that ρv(i) = ψ(v) for all v ∈ 2n+1. Let χ : F → 2ω be a one-to-one
function and set hA =

⋃
{ρχ(A)�n : n ∈ ω} ∈ Zω. To see that this works
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fix a finite partial function Ψ : F → Z. Let n be large enough so that
the χ(A)�n are all distinct for A ∈ dom(Ψ), and ran(Ψ) ⊆ {zj : j < n}.
There is ψ : 2n+1 → {zj : j < n} such that ψ(χ(A)�n + 1) = Ψ(A) for
A ∈ dom(Ψ). If i ∈ [kn, kn+1) is such that ρv(i) = ψ(v) for all v ∈ 2n+1,
then hA(i) = ρχ(A)�n+1(i) = ψ(χ(A)�n+ 1) = Ψ(A) for all A ∈ dom(Ψ).)

For n ∈ ω and a finite partial function g : ran(f) → ω, let Pn,g =
{p ∈ P : gp = g and Φp(A) = hA(n) for all A ∈ dom(Φp)}. Any set R of
finitely many conditions in Pn,g clearly has a common extension, namely
(g,
⋃
{Φp : p ∈ R}). So the Pn,g are centered. On the other hand, given

p ∈ P, the property of the hA implies that p ∈ Pn,gp for infinitely many n.

Claim 2.11.2. For all k, Dk = {p : |dom(gp)| ≥ k} is dense.

Proof. It suffices to show that given p ∈ P there is q ≤ p with |dom(gq)| =
|dom(gp)| + 1. Let ` :=

∑
{|FA| : A ∈ dom(Φp)} + 2. Choose distinct

si ∈ ran(f) \
⋃
{[s�gp(s)] : s ∈ dom(gp)}, i < `. This choice is possible

by condition (iii) and because f−1({s}) ∈ Kσ for all s. Next choose the
values g(si) such that the [si�g(si)] are pairwise disjoint and also disjoint
from the [s�gp(s)].

Notice that for each A ∈ dom(Φp) and each t ∈ FA, there is at most one
i such that the set{
n : A ∩ [τAt ˆn] \

(⋃
{f−1[s�gp(s)] : s ∈ dom(gp)} ∪ f−1[si�g(si)]

)
∈ K+

σ

}
is finite. (For suppose for i = i0, i1 and some m ∈ ω, we had A ∩ [τAt ˆn] \
(
⋃
{f−1[s�gp(s)] : s ∈ dom(gp)} ∪ f−1[si�g(si)]) ∈ Kσ for all n > m. Then

we would also have A ∩ [τAt ˆn] \
⋃
{f−1[s�gp(s)] : s ∈ dom(gp)} ∈ Kσ for all

n > m, contradicting the last part of clause (v) for the condition p.) Hence
there are at least two i’s such that for all A and t the latter set is infinite,
that is, adding either of the corresponding si preserves clause (v).

For at most one such i, adding si can violate clause (iii). (For suppose for
i = i0, i1 we had Ai \ (

⋃
{f−1[s�gp(s)] : s ∈ dom(gp)} ∪ f−1[si�g(si)]) ∈ Kσ

for some Ai ∈ F . Then (Ai0 ∩ Ai1) \
⋃
{f−1[s�gp(s)] : s ∈ dom(gp)} ∈ Kσ,

contradicting (iii) for p.)
Hence there is i such that if we let Φq = Φp, dom(gq) = dom(gp) ∪ {si},

and gq(si) = g(si), then q is a condition extending p.

Since we may set Φ(A) = ∅, it is easy to see that we may add any A to
the domain of Φ. However, we may also extend the set Φ(A):

Claim 2.11.3. Given any A ∈ F and any cft F , EA,F = {p : A ∈
dom(Φp) and F ⊆ F pA} is dense.

Proof. It suffices to prove that given p ∈ P with A ∈ dom(Φp) and
t ∈ ω<ω there is q ≤ p with t ∈ F qA. We may assume that t /∈ F pA and either
t = 〈〉 or, letting t = u k̂, u ∈ F pA and u k̂′ ∈ F pA for all k′ < k. For this
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is the single step for recursively building up the required q in finitely many
steps, according to the definition of “cft”. Since both cases are similar, we
only treat the (somewhat more general) second case.

First, using the last part of clause (v), choose n such that n > τAu k̂′(|τAu |)
for all k′ < k and

A ∩ [τAu ˆn] \
⋃
{f−1[s�gp(s)] : s ∈ dom(gp)} ∈ K+

σ .

Let ` :=
∑
{|FA′ | : A′ ∈ dom(Φp)}+ 3. Choose σi ∈ A\

⋃
{f−1[s�gp(s)] : s ∈

dom(gp)}, i < `, with τAu ˆn ⊆ σi and si = f(σi) all distinct. This is clearly
possible by choice of n and because f−1({s}) ∈ Kσ for all s. By the argument
in the second and third paragraphs of the proof of the previous claim we
can find i < ` and extend p to a condition p′ such that si ∈ dom(gp

′
) and

additionally

A ∩ [τAu ˆn] \
⋃
{f−1[s�gp

′
(s)] : s ∈ dom(gp

′
)} ∈ K+

σ .

By definition of Kσ, this means we can find τAt ⊇ τAu ˆn such that

∃∞n
(
A ∩ [τAt ˆn] \

⋃
{f−1[s�gp

′
(s)] : s ∈ dom(gp

′
)} ∈ K+

σ

)
.

Let σAt = σi, and set gq = gp
′
, Φq(A) = Φp(A) ∪ {(σAt , τAt )} and Φq(A′) =

Φp(A′) for A′ 6= A from dom(Φp). Clearly q is a condition extending (p′ and
thus also) p.

By MA(σ-centered), there is a filter G ⊆ P meeting all Dk and all EA,F .
Let g =

⋃
{gp : p ∈ G}. By Claim 2.11.2, g is an infinite partial function from

ran(f) to ω, and by (ii), dom(g) is a discrete set. By (v) and Claim 2.11.3, for
all A ∈ F , the {τAt : t ∈ F pA and p ∈ G} are splitting nodes of a superperfect
tree TA such that its set of branches, [TA], is contained in the closure of
A ∩ f−1(dom(g)). Thus B = f−1(dom(g)) is as required.

3. Generic existence

3.1. Basic results. Let I be a tall ideal on a countable set X. To
simplify definitions and proofs below, we shall work with X = ω. To charac-
terize generic existence of I-ultrafilters, we introduce the cardinal invariant
ge(I), called the generic existence number (5),

ge(I) = min{|F| : F is a filter base, F ⊆ I+, and

∀I ∈ I ∃F ∈ F (|I ∩ F | < ℵ0)}.
This cardinal has been introduced independently by Hong and Zhang [HZ1]
and called non∗∗(I) there. They also remarked independently the following:

(5) The stipulation F ⊆ I+ in this definition is in fact redundant, for if there is
I ∈ I ∩ F , then |I ∩ F | = ℵ0 for all F ∈ F . Our reason for keeping F ⊆ I+ is that it
makes the definition more natural.
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Observation 3.1.

(i) If ge(I) = c, then any filter base of size < c can be extended to an
I-ultrafilter.

(ii) There is a filter base of size ge(I) which cannot be extended to an
I-point.

(iii) Every ultrafilter generated by less than ge(I) many sets is an I-
ultrafilter.

(iv) The following are equivalent:

(1) ge(I) = c.
(2) Generic existence of I-ultrafilters.
(3) Generic existence of weak I-ultrafilters.
(4) Generic existence of I-points.

Proof. (i) Once we prove that given a filter base F of size < c and a
function f : ω → ω, we can find G ∈ [ω]ω such that F ∪ {F ∩G : F ∈ F} is
still a filter base and f(G) ∈ I, then a straightforward recursive construction
of length c produces the required I-ultrafilter.

So assume F and f are given. If f(F ) ∈ I for some F ∈ F , we are done.
Hence suppose that f(F) ⊆ I+. Then, by assumption ge(I) = c, there is
I ∈ I such that |I ∩ f(F )| = ℵ0 for all F ∈ F . Set G = f−1(I). Then G∩F
is infinite for all F ∈ F and f(G) = I ∈ I, so G is as required.

(ii) Let F ⊆ I+ be a filter base of size ge(I) such that for all I ∈ I
there is F ∈ F with I ∩ F being finite. Let f = id be the identity function.
Clearly there is no ultrafilter U containing F such that U = f(U) ∈ I for
some U ∈ U .

(iii) If F is a filter base of size < ge(I) which generates an ultrafilter U ,
and f ∈ ωω, then, by the argument of (i), f(F ) ∈ I for some F ∈ F (the
case f(F) ⊆ I+ cannot happen because U is an ultrafilter).

(iv) follows from (i) and (ii).

Observation 3.2. For tall ideals I, ge(I) ≥ ℵ1.

Proof. Assume F is a countable filter base. Then F has a pseudointer-
section F ∈ [ω]ω. By tallness, there is a countable I ⊆ F belonging to I,
and I has infinite intersection with all members of F . Thus F cannot be a
witness for the value of ge(I).

This cardinal is closely related to two other cardinal invariants of the
ideal I which have been introduced by Hernández and Hrušák [HH], the
uniformity and cofinality of I:

non∗(I) = min{|F| : F ⊆ [ω]ω and ∀I ∈ I ∃F ∈ F (|I ∩ F | < ℵ0)},
cof∗(I) = min{|F| : F ⊆ I and ∀I ∈ I ∃F ∈ F (I ⊆∗ F )}.
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In fact, for the latter definition, the star is irrelevant for tall ideals:

cof∗(I) = cof(I) := min{|F| : F ⊆ I and ∀I ∈ I ∃F ∈ F (I ⊆ F )}.
The point is that tallness implies that cof∗(I) is infinite, and then cof∗(I) =
cof(I) follows. See also Subsection 1.2 for cof(I).

Observation 3.3. For all ideals I, non∗(I) ≤ ge(I) ≤ cof(I).

In fact, using a two-ideal version of the cofinality (6), we obtain a char-
acterization of ge(I). Let I ⊆ J be ideals and set

cof(I,J ) = min{|F| : F ⊆ J and ∀I ∈ I ∃F ∈ F (I ⊆ F )}.
Then cof(I, I) = cof(I), and obviously cof(I,J ) ≤ cof(I) and cof(I,J ) ≤
cof(J ). We have:

Observation 3.4. For all ideals I, ge(I) = min{cof(I,J ) : I ⊆ J } =
min{cof(J ) : I ⊆ J }.

Proof. If F witnesses the value of cof(I,J ), then clearly F∗ = {ω \ F :
F ∈ F} ⊆ I+ is a filter base as in the definition of ge(I). On the other
hand, if F ⊆ I+ is a filter base witnessing the value of ge(I), then F∗ =
{ω \F : F ∈ F} is a base of an ideal J which contains I (because, if I ∈ I,
then there is F ∈ F with |I ∩ F | < ℵ0, i.e. I ⊆∗ ω \ F ).

It is well-known that the Katětov–Blass order is connected with unifor-
mity non∗ of ideals:

Observation 3.5 ([HH, Proposition 3.1] or [Hr1, Theorem 1.2]). For
all ideals I ≤KB J , non∗(I) ≤ non∗(J ).

For generic existence, the Katětov order is enough:

Observation 3.6. For all ideals I ≤K J , ge(I) ≤ ge(J ).

Proof. Let F be a witness for the value of ge(J ), and let f be a Katětov
reduction. We claim that f(F) is a witness for the value of ge(I). Clearly,
if F ∈ F , then f(F ) ∈ I+, in particular f(F ) is infinite, and f(F) forms
a filter base. If I ∈ I, then f−1(I) ∈ J , thus there is F ∈ F such that
f−1(I) ∩ F is finite, whence I ∩ f(F ) is finite.

Using the cardinal ge(I) as well as the characterizations of some of the
classical classes of ultrafilters in the language of I-ultrafilters, as explained
in Section 2 (see, in particular, Observation 2.1), we now obtain reformu-
lations of the classical theorems about generic existence mentioned in the
Introduction.

For example, in view of the characterization of P-points as conv-ultra-
filters and Fin×Fin-ultrafilters (Observation 2.1(i)), Ketonen’s theorem [Ke]

(6) Unlike the other definitions of cardinal invariants here, this definition will be used
for ideals on arbitrary sets.
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quoted in the Introduction may be strengthened to d = ge(conv) =
ge(Fin × Fin). Hong and Zhang [HZ1, Theorem 3.6] give a direct proof of
d = ge(Fin × Fin), and we provide a direct proof of d = ge(conv) in the
appendix (Proposition 4.4) because we could not find a reference. Concern-
ing the other cardinals mentioned above, it is known that non∗(conv) =
non∗(Fin× Fin) = ℵ0, cof(Fin× Fin) = d, and cof(conv) = c (see [Me, Theo-
rems 1.6.15 and 1.6.19]).

Similarly, since Ramsey ultrafilters are ED-ultrafilters and R-ultrafilters
(Observation 2.1(ii)), Canjar’s theorem [Ca] from the Introduction becomes
cov(M) = ge(ED) = ge(R). See [HZ1, Theorem 3.7] for a direct proof for
ED, and Proposition 4.5 for a direct proof for R. We have non∗(ED) =
non∗(R) = ℵ0 and cof(ED) = cof(R) = c (see [Me, Theorems 1.6.4 and
1.6.30]).

Also, results by the first author characterizing generic existence of
nowhere dense and measure zero ultrafilters [Br2, Theorems C, D, and F]
say that ge(nwd) = cof(nwd) = cof(M) = max{non(M), d} and ge(mz) =
cof(E ,M) = max{non(E), d}. Furthermore non∗(mz) = non∗(nwd) = ℵ0

(see Proposition 4.1 below for a stronger result). Also cof(mz) = cof(E) =
cof(M) (see Subsection 1.2 and [Br2, Subsection 1.3]). In fact, ge(I) can
be characterized in terms of classical cardinal invariants, for all I with
I ≤K nwd in Figure 1 except for disc and scat (7).

We shall investigate generic existence of thin ultrafilters, SC-ultrafilters,
summable ultrafilters, and density zero ultrafilters. Unfortunately, unlike the
results in the previous paragraphs, we do not have nice characterizations of
the cardinal ge for these ultrafilters. There is, however, a reason for this.
Using several ZFC-provable inequalities and some independence results, we
will see that ge(I) cannot be characterized as any of the classical cardinal
invariants, for I being either thin or SC or I1/n or Z. Furthermore, we shall
see that the ge-numbers are consistently distinct for these four ideals (see
Corollary 3.34), and that, except for thin (see Conjecture 3.20), they are
consistently larger than the corresponding non∗-numbers (Corollaries 3.24,
3.33, 3.38).

By ge(ED) = cov(M) mentioned above, by Figure 1 (Subsection 2.1)
and its discussion, and by Observation 3.6, we see:

Observation 3.7. cov(M) ≤ ge(thin) ≤ ge(SC) ≤ ge(Z) ≤ cof(N ) and
ge(thin) ≤ ge(I1/n) ≤ ge(Z).

The last inequality of the first line uses Fremlin’s cof(Z) = cof(N ) [Fr2]
and Observation 3.3.

(7) About the latter, we only know d ≤ ge(disc) ≤ ge(scat) ≤ cof(M) and the consis-
tency of ge(scat) < cof(M) in the random model [Bau, Theorem 3.5]. See [Br2, Problem
4.4.(1)].
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There are some results which can be proved in general for analytic ide-
als, in particular for ideals which have an easy description in terms of lower
semicontinuous submeasures, like Fσ ideals and analytic P-ideals (see Sub-
section 1.1 for such ideals).

Recall that a function φ : dom(φ)→ [ω]<ω is a partial slalom if dom(φ) ⊆
ω is infinite and |φ(n)| ≤ n for all n ∈ dom(φ). If f(n) ∈ φ(n) for almost
all n ∈ dom(φ), we say the partial slalom φ localizes the function f ∈ ωω.
Let pLoc denote the collection of partial slaloms. Similarly, Loc denotes the
collections of total slaloms, i.e., those φ ∈ pLoc with dom(φ) = ω. Let

d(pLoc) = min{|Φ| : Φ ⊆ pLoc and

∀g ∈ ωω ∃φ ∈ Φ ∀∞n ∈ dom(φ) (g(n) ∈ φ(n))},
d(Loc) = min{|Φ| : Φ ⊆ Loc and ∀g ∈ ωω ∃φ ∈ Φ ∀∞n (g(n) ∈ φ(n))},

d(pbdLoc) = min
{
κ : ∀h ∈ ωω ∃Φ ⊆ pLoc with |Φ| ≤ κ and

∀g ∈
∏
n

h(n) ∃φ ∈ Φ ∀∞n ∈ dom(φ) (g(n) ∈ φ(n))
}
,

d(bdLoc) = min
{
κ : ∀h ∈ ωω ∃Φ ⊆ Loc with |Φ| ≤ κ and

∀g ∈
∏
n

h(n) ∃φ ∈ Φ ∀∞n (g(n) ∈ φ(n))
}
.

Here p stands for “partial” and bd stands for “bounded”. For later reference,
we state what is known about these cardinals.

Fact 3.8.

(a) d(Loc) = max{d, d(bdLoc)} and d(pLoc) = max{d, d(pbdLoc)}.
(b) (Bartoszyński) cof(M) ≤ d(pLoc) ≤ d(Loc) = cof(N ).
(c) cov(N ), cov(M) ≤ cov(E) ≤ d(pbdLoc) ≤ d(bdLoc).
(d) d(pbdLoc) (and thus any of the four cardinals defined here) is con-

sistently larger than d and non(N ).
(e) d(bdLoc) (and thus also d(pbdLoc)) is consistently smaller than b

and s (and thus also smaller than non(N ) and non(M)).

Proof. (a) is obvious. The equality in (b) is a classical result of Bar-
toszyński [Ba1], while the standard proof of the Bartoszyński–Raisonnier–
Stern Theorem (see also [BJ, Section 2.3], [Fr1], and Subsection 1.2) in fact
yields cof(M) ≤ d(pLoc) ≤ cof(N ) (8). In (c), only cov(E) ≤ d(pbdLoc)
needs proof (see the end of Subsection 1.2 for the cardinals related to E).

(8) In the literature, d(pLoc) is also known as linear prediction number v`, but since
we work with slaloms and localization here and not with predictors, we prefer the notation
d(pLoc).
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To see the latter, note that if h∈ωω increases fast enough, say h(n)≥n2n

for all n ∈ ω, then, for φ ∈ pLoc,

Aφ =
{
g ∈

∏
n

h(n) : ∀∞n ∈ dom(φ) (g(n) ∈ φ(n))
}

is an Fσ null set in the space
∏
n h(n) and thus belongs to the ideal E . Hence

cov(E) ≤ d(pbdLoc).
(d) holds in the random model (Subsection 1.3), by (c). Preservation of

d(bdLoc) = ℵ1 by forcings with the Laver property (see [Ka] or [HMM])
implies that (e) holds in the Mathias model (Subsection 1.3) (9).

Let ϕ be a lower semicontinuous submeasure, f ∈ ωω a strictly increasing
function, and ε̄ = (εn > 0 : n ∈ ω). Define

Xf,ε̄ = {g : ω → [ω]<ω : ∀n (g(n) ⊆ [f(n), f(n+ 1)) and ϕ(g(n)) < εn)},
Hf,ε̄ = {h : ω → [[ω]<ω]<ω partial with infinite domain : ∀n ∈ dom(h)

(|h(n)| ≤ n and ∀a ∈ h(n) (a ⊆ [f(n), f(n+ 1)) and ϕ(a) < εn))},
H0
f,ε̄ = {h ∈ Hf,ε̄ : h is total}.

First assume I = Fin(ϕ). Fix f such that ϕ([f(n), f(n + 1))) > n3 for all
n ∈ ω. Let ω̄ = (n : n ∈ ω).

Proposition 3.9. There are functions

Hf,ω̄ → I+ (h 7→ Ah) and I → Xf,n (B 7→ gB)

such that for all h ∈ Hf,ω̄ and all B ∈ I, if gB(n) ∈ h(n) for almost all
n ∈ dom(h) then |B ∩ Ah| < ℵ0. Furthermore the Ah for h ∈ H0

f,ω̄ form a

filter base in I+.

Proof. Let Ah =
⋃
n∈dom(h)([f(n), f(n + 1)) \

⋃
h(n)). Notice that for

n ∈ dom(h), ϕ([f(n), f(n + 1)) \
⋃
h(n)) > n3 − n2. So ϕ(Ah) = ∞ and

Ah ∈ I+. The same argument shows that for finitely many h ∈ H0
f,ω̄, the

intersection of the Ah still belongs to I+.
For n > ϕ(B), let gB(n) = B ∩ [f(n), f(n + 1)). For n ≤ ϕ(B), let

gB(n) = ∅.
Now assume that for almost all n ∈ dom(h), gB(n) ∈ h(n). Then for

almost all n, B∩Ah∩[f(n), f(n+1)) = ∅. Thus B∩Ah is finite as required.

Now assume I = Exh(ϕ). Let δ0 = limn ϕ(ω \n). By definition of Exh(ϕ)
and because ω /∈ I, we have δ0 > 0 and possibly δ0 =∞. This time f ∈ ωω
will be treated as an additional variable, but we only consider f such that
ϕ([f(n), f(n + 1))) > δ for all n ∈ ω where δ = δ0/2 in case δ0 < ∞ and
δ = 1 otherwise. By lower semicontinuity any f increasing fast enough has

(9) In [Ka] and [HMM], d(bdLoc) is called l because of its connections with the Laver
property.
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this property (for, given any m ∈ ω, ϕ(ω \m) ≥ δ0 implies that for every
large enough `, ϕ([m, `)) > δ). Let εn = δ/n2 for all n ∈ ω.

Proposition 3.10. There are functions

Hf,ε̄ → I+ (hf 7→ Ahf ), I → ωω (B 7→ fB), I → Xf,εn (B 7→ gB,f )

such that for all f ∈ ωω, all hf ∈ Hf,ε̄ and all B ∈ I, if fB ≤∗ f and
gB,f (n) ∈ hf (n) for almost all n ∈ dom(hf ) then |B ∩ Ahf | < ℵ0. Fur-

thermore the Ahf for hf ∈ H0
f,ε̄ (for possibly distinct f) form a filter base

in I+.

Proof. As in the previous proof, we let

Ahf =
⋃

n∈dom(hf )

([f(n), f(n+ 1)) \
⋃
hf (n)).

This time we have ϕ([f(n), f(n + 1)) \
⋃
hf (n)) > δ − δ/n. So ϕ(Ahf ) ≥ δ

and Ahf ∈ I+. If hfi ∈ H0
fi,ε̄

for i < k, then, choosing large enough

appropriate ni, we can arrange that ϕ(
⋂
i<k[fi(ni), fi(ni + 1))) > δ/2k,

while ϕ(
⋃
i<k

⋃
hfi(ni)) is bounded by

∑
i<k εnini = δ

∑
i<k 1/ni. Thus

ϕ(
⋂
i<k Ahfi ) ≥ δ/2

k.

Next choose fB such that ϕ(B \ fB(n)) < εn for all n. Finally, define

gB,f (n) =

{
B ∩ [f(n), f(n+ 1)) if ϕ(B ∩ [f(n), f(n+ 1))) < εn,

∅ otherwise.

Notice that if fB ≤∗ f , then gB,f (n) = B ∩ [f(n), f(n+ 1)) for almost all n.

If we also assume that gB,f (n) ∈ hf (n) for almost all n ∈ dom(hf ), then
for almost all n, B ∩ Ahf ∩ [f(n), f(n + 1)) = ∅. Thus B ∩ Afh is finite as
required.

Corollary 3.11.

(i) Let I be an Fσ ideal. Then non∗(I) ≤ d(pbdLoc) and ge(I) ≤
d(bdLoc).

(ii) Let I be an analytic P-ideal. Then non∗(EDfin) ≤ non∗(I) ≤ d(pLoc)
and ge(I) ≤ cof(N ).

Proof. (i) Since I is an Fσ ideal, by Mazur’s Theorem there is a lower
semicontinuous submeasure ϕ such that I = Fin(ϕ). Let f and ω̄ be as in the
paragraph before Proposition 3.9. Since Xf,ω̄ can be identified with the space
of functions in ωω bounded by h̄ ∈ ωω where h̄(n) = |{a ⊆ [f(n), f(n+ 1)) :
ϕ(a) < n}|, the definition of d(pbdLoc) gives us B ⊆ Hf,ω̄ of size d(pbdLoc)
such that for all g ∈ Xf,ω̄ there is h ∈ B such that g(n) ∈ h(n) for almost
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all n ∈ dom(h), Let A = {Ah : h ∈ B}. Then |A| ≤ d(pbdLoc) and A is a
witness for non∗(I) by 3.9 (10).

For the second part of the statement, use the last clause of 3.9 to obtain
a witness for ge(I) of size ≤ d(bdLoc).

(ii) The first inequality follows from [HH, Proposition 3.2].

Since I is an analytic P-ideal, by Solecki’s Theorem there is a lower
semicontinuous submeasure ϕ such that I = Exh(ϕ). Let ε̄ = (εn : n ∈ ω) be
as in the paragraph before Proposition 3.10. Let F be a dominating family
of size d. Fix f ∈ F . Since Xf,ε can be identified with the space of functions
in ωω bounded by h̄ ∈ ωω where h̄(n) = |{a ⊆ [f(n), f(n+ 1)) : ϕ(a) < εn}|,
the definition of d(pbdLoc) gives us Bf ⊆ Hf,ε̄ of size ≤ d(pbdLoc) such
that for all g ∈ Xf,ε̄ there is hf ∈ Bf such that g(n) ∈ hf (n) for almost
all n ∈ dom(hf ). Let A = {Ahf : hf ∈ Bf and f ∈ F}. Then |A| ≤
max{d, d(pbdLoc)} = d(pLoc) and A is a witness for non∗(I): given B ∈ I,
first find f ∈ F dominating fB and then hf ∈ Bf such that gB,f (n) ∈ hf (n)
for almost all n ∈ dom(hf ); thus B ∩Ahf is finite by 3.10.

For the second part of the statement, use the last clause of 3.10 as well
as d(Loc) = cof(N ) to obtain a witness for ge(I).

Of course, the second part of (ii) is not a new result because it also follows
from Todorčević’s cof(I) ≤ cof(N ) ([To], see also [Ba2, Theorem 4.23]).
(i) strengthens a result of Hrušák et al. [HMM, Corollary 4.6] who proved
non∗(I) ≤ d(bdLoc) for Fσ ideals I. See Subsection 4.2 for results dual to
Corollary 3.11.

Corollary 3.12.

(i) ge(I) < min{b, s} is consistent for all Fσ ideals I (simultaneously).
(ii) It is consistent that P-points generically exist and for any Fσ ideal,
I-ultrafilters do not.

Both statements hold in the Mathias model.

Proof. (i) This follows from Fact 3.8(e) and Corollary 3.11(i).

(ii) This is immediate from (i). Recall here that P-points exist generi-
cally (by Ketonen’s Theorem [Ke]) iff d = c, and that max{b, s} ≤ d (see
Subsection 1.2).

An alternative model for (ii) with continuum arbitrarily large can be
obtained by starting with a model of MA and going through all forcings
of type M(I∗), where I is an Fσ ideal which arises in some intermediate
extension, cofinally often in a finite support iteration whose length has co-

(10) Since A ⊆ I+, this proof really shows non+(I) ≤ d(pbdLoc)—see Proposi-
tion 4.1(v) below. A similar comment applies to the proof of (ii) and Proposition 4.1(vi).
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finality ω1 (11). See Subsection 1.3 for this forcing, and see below in The-
orem 3.14 through Corollary 3.16 for why the iteration forces ge(I) = ℵ1.
To see the iteration preserves d = c, use the fact that M(I∗) does not add
dominating reals [Br1] (for this, see again Subsection 1.3).

Conjecture 3.13. If I is an analytic P-ideal, then ge(I) ≤ d(pLoc),
and if I is an Fσ ideal, then ge(I) ≤ d(pbdLoc).

Theorem 3.14. Let I be an analytic ideal such that M(I∗) generically
adds an I-positive set which has I-positive intersection with all ground model
I-positive sets. Then ge(I) < non(N ) is consistent and holds in the dual
M(I∗) model.

Proof. M(I∗) adds a real r that is almost disjoint from all I ∈ I in
the ground model (see Subsection 1.3 for the properties of M(I∗)). Further-
more r ∩ B is infinite for all B ∈ I+ from the ground model. We assume
additionally that r ∩B ∈ I+ for all B ∈ I+ from the ground model.

Now start with a model of MA + c ≥ ℵ2 and perform a finite sup-
port iteration of M(I∗) of length ω1 to obtain the dual M(I∗) model. Let
(rα : α < ω1) be the sequence of generics. By applying the assumption (see
the previous paragraph) in appropriate intermediate models, we see that any
finite intersection of the rα is still I-positive. In particular, they form a filter
base. On the other hand, any I ∈ I lies in some intermediate extension, and
therefore there is an α such that rα ∩ I is finite. Thus the rα are a witness
for ge(I) = ℵ1 in the final model.

On the other hand, the dual M(I∗) model satisfies non(N ) = c (see
Subsection 1.3) (12).

Lemma 3.15. Let I be either an Fσ ideal or an analytic P-ideal. Then
M(I∗) generically adds an I-positive set which has I-positive intersection
with all ground model I-positive sets.

Proof. We again use the characterization of such ideals via lower semi-
continuous submeasures ϕ. Consider first the case I = Fin(ϕ). Then, given
any n ∈ ω, any A ∈ I+ and any condition (s,B) ∈ M(I∗), there is t with
s ⊆ t ⊆ s ∪ B such that ϕ(t ∩ A) > n (because ϕ(B ∩ A) = ∞). Hence
ϕ(r ∩A) =∞ where r is the generic.

Next let I = Exh(ϕ). Let A ∈ I+. Hence δ = limn ϕ(A\n) > 0. Note that
limn ϕ((A∩B)\n) = δ for B ∈ I∗. Thus, given any n ∈ ω and any condition

(11) Note that this is not a dual M(I∗) model even though all iterands are of the form
M(I∗).

(12) In Proposition 3.21 below, we will show that d(bd 6=) = c (see the beginning of
Subsection 3.2 for the definition of this cardinal) in the dual M(I∗) model. By d(bd 6=) ≤
non(N ) (see Fact 3.17(d)), this is even a stronger result.
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(s,B) ∈M(I∗), there is t with s ⊆ t ⊆ s∪B such that ϕ((A∩ t) \n) > δ/2.
Therefore we see again that r ∩A ∈ I+ where r is the generic.

Notice that this is not true for analytic ideals in general. Consider for
example I = Fin × Fin. Since the vertical sections are in the ideal, the
Mathias generic for I∗ has finite intersection with all vertical sections. This
means, however, that it belongs to I. Of course, since ge(I) = d (see the
discussion after Observation 3.6), ge(I) < non(N ) is still consistent.

Corollary 3.16. Let I be either an Fσ ideal or an analytic P-ideal.
Then ge(I) < non(N ) is consistent and holds in the dual M(I∗) model.

For Fσ ideals, this alternatively follows from 3.12(i) because s ≤ non(N )
in ZFC (see Subsection 1.2). Also, if Conjecture 3.13 were true, Corol-
lary 3.16 would follow from the known consistency of d(pLoc) < non(N ).
The latter holds in the dual PLOC model where PLOC is the standard forc-
ing for adding a generic partial slalom localizing all ground model functions
(see, e.g., [Br3, p. 47] for the definition of this forcing). A finite support iter-
ation of PLOC over a model of MA + c ≥ ℵ2 of length ω1 generically adds a
witness for d(pLoc) = ℵ1, while PLOC is σ-centered and the preservation of
non(N ) = c is proved like for dual M(I∗) type models (see Subsection 1.3).

3.2. Thin ultrafilters. We already know (see Section 2) that thin ul-
trafilters and EDfin-ultrafilters are the same, and that the Q-points are ex-
actly the weakly thin ultrafilters and the weak EDfin-ultrafilters. Define the
following cardinals.

d( 6=) = min{|F| : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F ∀∞n (f(n) 6= g(n))},
d(p 6=) = min{|F| : F ⊆ ωω consists of partial functions with infinite

domain and ∀g ∈ ωω ∃f ∈ F ∀∞n ∈ dom(f) (f(n) 6= g(n))},
d(bd 6=) = min{|F| : F ⊆ ωω is bounded and

∀g ∈ ωω ∃f ∈ F ∀∞n (f(n) 6= g(n))},
d(pbd 6=) = min{|F| : F ⊆ ωω is bounded, consists of partial functions

with infinite domain, and ∀g ∈ ωω ∃f ∈ F ∀∞n ∈ dom(f) (f(n) 6= g(n))}.
For later reference, we state what is known about these cardinals.

Fact 3.17.

(a) d(p 6=) = min{d, d(pbd 6=)} and d(p 6=) ≤ d(pbd 6=) ≤ d(bd 6=) (13).
(b) (Bartoszyński and Miller) cov(M) = d( 6=) = d(p 6=).

(13) It is also known that the value of d(pbd 6=) does not depend on the bound h as
long as h(n) goes to infinity (see, e.g., [BrG, Lemma 14]). On the other hand, using the
methods of [KO], one can prove that for different bounds h ∈ ωω, the cardinals dh(bd 6=)
may simultaneously assume many different values.
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(c) d(pbd 6=) ≤ d(pbdLoc) and d(bd 6=) ≤ d(bdLoc).
(d) d(bd 6=) ≤ non(N ).
(e) d( 6=) < min{d, d(bd 6=)} is consistent (14).
(f) d(pbd 6=) > cof(M) = d = cov(M) is consistent.

Proof. (a) To see the equality, let F be a witness for the value of d(p 6=).
We may assume d > |F| (otherwise we are done). Hence there is h ∈ ωω

such that for all f ∈ F , f(n) < h(n) for infinitely many n ∈ dom(f). Thus,
for f ∈ F , letting gf be the restriction of f to {n ∈ dom(f) : f(n) < h(n)},
we see that G = {gf : f ∈ F} is a family of partial functions bounded by h
and witnessing the value of d(pbd 6=).

(b) is the Bartoszyński–Miller characterization of cov(M) [BJ, Section
2.4] (see also [Ba1]), and (c) is obvious.

(d) Note that if h ∈ ωω increases fast enough, say h(n) ≥ 2n for all
n ∈ ω, and g ∈

∏
n h(n), then

Ag =
{
x ∈

∏
n

h(n) : ∃∞n (x(n) = g(n))
}

defines a Gδ null set. Thus if B ⊆
∏
n h(n) is nonnull, for all g ∈

∏
n h(n)

there is f ∈ B with f /∈ Ag, i.e., f(n) 6= g(n) for almost all n. Hence B is a
witness for d(bd 6=).

For (e) see [GJS, Theorems 0.16 and 3.8] (an alternative model is the
dual eventually different reals model), while (f) holds in the dual Hechler
model (see [Me, Theorem 1.6.12]).

Concerning cardinal invariants related to the ideals EDfin and thin, we
have cof(EDfin) = cof(thin) = c (see [Me, Theorem 1.6.6] for EDfin and
Proposition 4.6 below for thin). Furthermore:

Proposition 3.18.

(i) (Hrušák et al. [HMM]) non∗(EDfin) ≤ r.
(ii) (Hrušák et al. [HMM]) non∗(EDfin) = d(pbd 6=).
(iii) non∗(thin) = d(pbd 6=).
(iv) d(pbd 6=) ≤ ge(EDfin) = ge(thin) ≤ d(bd 6=).

Proof. (iii) is immediate by (ii), EDfin
∼=KB thin, and Observation 3.5.

(iv) The first inequality is obvious by (ii), (iii), and Observation 3.3, so
let us prove the second. Let g ∈ ωω. Clearly it suffices to show that there are
functions

∏
n g(n) → ED+

fin : f 7→ Xf and EDfin →
∏
n g(n) : Y 7→ hY such

(14) In an earlier version of this paper we erroneously also claimed that cov(M) =
min{d, d(bd 6=)}. We thank Michael Hrušák for pointing out that this is false and that
cov(M) < min{d, d(bd 6=)} in the model of [GJS]. He also pointed out that add(M) =
min{b, d(pbd 6=)} = min{b, d(bd 6=)}. The proof is like the one of (a), using additionally
add(M) = min{b, cov(M)} (see Subsection 1.2).
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that the Xf for f ∈
∏
n g(n) form a filter base and whenever f(n) 6= hY (n)

for almost all n then Y ∩Xf is finite.

To this end, partition ω into intervals In, n ∈ ω, of length n2, and let
each In be a union of intervals J jn, j < n, of length n. Let kn be the number
of sequences of the form s�In with s(i) < g(i) for every i ∈ In, and let ψn
be a bijection between

∏
i∈In g(i) and kn. For f ∈

∏
n g(n), let

Xf =
{

(kn, ψn(s)) : n ∈ ω, s ∈
∏
i∈In

g(i) and ∃j < n (s�J jn = f�J jn)
}
.

If f`, ` < m, from
∏
n g(n) are given, for any n ≥ m we can find s ∈∏

i∈In g(i) with s�J `n = f`�J `n for all ` < m. Hence
⋂
`<mXf` 6= ∅, and in

fact, since the number of such s goes to infinity as n → ∞, it follows that⋂
`<mXf` ∈ ED

+
fin.

Given Y ∈ EDfin find functions h`, ` < m, below the identity such that
Y ⊆

⋃
`<m h`. For n ≥ m, define hY �In such that hY agrees with ψ−1

n (h`(kn))

at the `th element of J jn for each ` < m and j < n. We need to check that
Xf and hY are as required.

Suppose that f(i) 6= hY (i) for almost all i, say, for all i ≥ i0. We
may assume that i0 = min(In0) for some n0 ≥ m. Let n ≥ n0. Assume

(kn, ψn(s)) ∈ Xf . Then s�J jn = f�J jn for some j < n. On the other hand, for

each ` < m, ψ−1
n (h`(kn)) agrees with hY at the `th element of J jn. Since f

and hY disagree everywhere on this interval, s�J jn 6= ψ−1
n (h`(kn))�J jn. Thus

ψn(s) 6= h`(kn). Since this is true for every ` < m, we have (kn, ψn(s)) /∈ Y .
Therefore Y ∩Xf is finite.

Corollary 3.19. ge(thin) > cof(M) is consistent. In particular, it is
consistent that thin ultrafilters generically exist while nowhere dense ultra-
filters do not. In fact, this holds in the dual Hechler model.

The first statement follows from the proposition and Fact 3.17(f). For
the second statement, recall that ge(nwd) = cof(M) (see the discussion after
Observation 3.6).

This should be compared with Theorem 2.8. It is an alternative method
for (consistently) obtaining thin ultrafilters that are not nowhere dense.

Conjecture 3.20. d(pbd 6=) = ge(EDfin) = ge(thin).

The second inequality in Proposition 3.18(iv) above is consistently strict:

Proposition 3.21. ge(EDfin) < d(bd 6=) is consistent. In fact, this holds
in the model of Theorem 3.14.

Proof. Since EDfin is an Fσ ideal, ge(EDfin) = ℵ1 in the model of Theo-
rem 3.14 by Lemma 3.15. Therefore it suffices to show that d(bd 6=) remains
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of size c if σ-centered forcing is iterated over a model of MA. This is a
standard argument which we include for the sake of completeness.

Let P be a σ-centered forcing notion, P =
⋃
k Pk with each Pk being

centered. Let g ∈ ωω. Let ḟ be a P-name for a function in
∏
n g(n). Then

(∗) there is a set {fk : k ∈ ω} of ground model functions in
∏
n g(n)

such that whenever h ∈
∏
n g(n) agrees with all fk infinitely often,

then ∃∞n (h(n) = ḟ(n)) is forced.

To see this, for each k and n, find fk(n) ∈ g(n) such that no condition
of Pk forces that ḟ(n) 6= fk(n). Such fk(n) exists by the centeredness of Pk
and the fact that there are only finitely many possibilities for ḟ(n). Now let
p ∈ P and n0 ∈ ω. There is k such that p ∈ Pk. Also there is n ≥ n0 such
that fk(n) = h(n). By the choice of fk there is q ≤ p such that q forces that
ḟ(n) = fk(n) = h(n). Hence it is forced that ḟ agrees with h infinitely often.

Now consider the iteration in the proof of Theorem 3.14. It is well-known
that the whole iteration is σ-centered (since it has length ω1 < c; see, e.g.,
[Bag, Lemma 3.3]). Let κ < c and let Ḟ = {ḟα : α < κ} be a name for
a family of functions in

∏
n g(n). Consider F = {fαk : α < κ and k ∈ ω}

as in (∗). Clearly |F| < c. Thus, by MA in the ground model, there is
h ∈

∏
n g(n) such that h agrees with all fαk infinitely often. By (∗) this

means that h agrees with all ḟα infinitely often in the extension. Hence Ḟ is
not a witness for d(bd 6=). This proves d(bd 6=) = c in the generic extension.

3.3. SC-ultrafilters. We turn to SC-ultrafilters. We have cof(SC) = c
(see Proposition 4.6). Part (i) of 3.18 can be improved as follows:

Proposition 3.22. non∗(SC) ≤ r.

Proof. A family R ⊆ [ω]ω is a hereditarily unreaped family if for any
R ∈ R, {S ∈ R : S ⊆ R} is unreaped. It is well-known and easy to see that
there is a hereditarily unreaped family R of size r. Fix such an R. For R ∈ R
and n ∈ ω, let XR,n = {m+ n : m ∈ R}. We claim that X = {XR,n : R ∈ R
and n ∈ ω} is a witness for non∗(SC).

Let A ∈ SC. Suppose A =
⋃
i<k Ai where each Ai is an SC-set. This

means that

(?) there is an `0 such that for all i < k and all a 6= b ∈ Ai larger than `0,
we have |a− b| > 2k.

Let B0 = A. There is R0 ∈ R such that either R0∩B0 is finite or R0 ⊆∗ B0.
In the former case, XR0,0 ∩ A is finite and we are done. In the latter case
we proceed. Assume for the moment k ≥ 2, let i < k − 1 and assume Bi
and Ri have been constructed so that Ri ⊆∗ Bi. Let Bi+1 = {m ∈ Ri :
m+ (i+ 1) ∈ A}. Since R is hereditarily unreaped, there is Ri+1 ∈ R with
Ri+1 ⊆ Ri such that either Ri+1 ∩ Bi+1 is finite (this holds in particular
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when Bi+1 is finite in which case we can take Ri+1 = Ri), or Ri+1 ⊆∗ Bi+1.
In the former case, XRi+1,i+1 ∩A is finite and we are again done. Otherwise
we proceed.

Now suppose Bk−1 and Rk−1, k ≥ 1, have been constructed and Rk−1 ⊆∗
Bk−1. We claim that XRk−1,k ∩A is finite. Indeed, by construction, there is
an `1 ≥ `0 such that for all m ∈ Rk−1 larger than `1 and all i < k, m+i ∈ A.
By (?), for fixed m ≥ `0, each Aj can contain at most one number of the
form m + i, i < k. Hence, if m ≥ `1 and m ∈ Rk−1, then each Aj must
contain exactly one such m + i. Therefore no Aj can contain m + k. Thus
XRk−1,k ∩A is bounded by `1.

Observation 3.23. ge(SC) ≥ d.

This follows from conv ≤K SC (see the discussion after Figure 1 in Sub-
section 2.1), ge(conv) = d (Proposition 4.4), and Observation 3.6.

Corollary 3.24. non∗(SC) < ge(SC) is consistent.

This holds in any model for d > r, like the Miller model or the Blass–
Shelah model (see Subsection 1.3). For a model of d > r where d and r can
assume arbitrary values see [BS2] (this is a model of dual M(U) type).

To be able to compare the cardinals of the SC-sets and those of the
summable ideal (see the next subsection), we prove the following two theo-
rems.

Theorem 3.25. non∗(SC) > non(N ) is consistent. In fact, this holds in
the dual random model.

Theorem 3.26. ge(SC) < cov(N ) is consistent. In fact, this holds in
the random model.

We first show 3.25 and then 3.26. Before beginning the proof of Theo-
rem 3.25, we prove the following two lemmata.

Lemma 3.27. Let Ẋ be a B-name for an infinite subset of ω, and let
B ∈ B, ε > 0, and n0, k ∈ ω. Then there is a finite set a such that

(i) min a ≥ n0,
(ii) |n−m| ≥ k for all n 6= m ∈ a,

(iii) µ([[a ∩ Ẋ 6= ∅]] ∩B) ≥ (1− ε)µ(B).

Here B denotes the random algebra (see Subsection 1.3) and µ is Lebesgue
measure.

Proof. We first claim that we can find a and C ⊆ B with µ(C) ≥ 1
2kµ(B)

satisfying (i) and (ii) and such that C  a ∩ Ẋ 6= ∅.
Indeed, choose n1 > n0 such that µ([[[n0, n1) ∩ Ẋ 6= ∅]] ∩ B) ≥ 1

2µ(B).
Then split [n0, n1) into k (possibly empty) pieces ai, i < k, such that distinct
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elements of each ai have distance at least k. Clearly, for one i < k, we must
have µ([[ai ∩ Ẋ 6= ∅]] ∩B) ≥ 1

2kµ(B).
Using this claim, recursively construct finite sets ai and conditions Bi,

i ∈ ω, such that

• B0 ⊆ B and Bi+1 ⊆ B \
⋃
j≤iBj ,

• µ(B0) = 1
2kµ(B) and µ(Bi+1) = 1

2kµ(B \
⋃
j≤iBj),

• n0 ≤ min(a0) and max(ai) + k ≤ min(ai+1),
• (ii) holds for all ai,
• Bi  ai ∩ Ẋ 6= ∅.

Now notice that, by induction,

µ
(
B \

⋃
j<i

Bj

)
=

(2k − 1)i

(2k)i
µ(B) and µ(Bi) =

1

2k

(2k − 1)i

(2k)i
µ(B)

Therefore

µ
(⋃
i∈ω

Bi

)
=
∑
i∈ω

µ(Bi) =
1

2k

∑
i∈ω

(
2k − 1

2k

)i
µ(B) = µ(B)

Hence, by choosing N large enough, a =
⋃
i<N ai is as required.

Lemma 3.28.

(i) Let Ẋ be a B-name for an infinite subset of ω and let B ∈ B. Then
there is an SC-set A ∈ V such that B forces Ẋ ∩A is infinite.

(ii) Let κ < c and λ be arbitrary. Assume MAκ(σ-centered). Let Ẋα,
α < κ, be Bλ-names for infinite subsets of ω and let B ∈ Bλ. Then
there is an SC-set A ∈ V such that B forces Ẋα ∩ A is infinite for
all α < κ.

Here Bλ denotes the measure algebra for adding λ random reals (see
Subsection 1.3).

Proof. (i) is a special case of (ii) for κ = λ = ω. We prove (ii).
Let P be the following forcing notion: conditions p are quadruples

(ap, kp, εp, F p) such that

(A) ap ⊆ ω is finite (approximations of A),
(B) kp ∈ ω,
(C) εp ∈ Q, εp > 0,
(D) F p ⊆ κ is finite,
(E) µ([[|Ẋα ∩ ap| ≥ kp]] ∩B) ≥ (1− εp)µ(B) for all α ∈ F p,

and the order q ≤P p is given by

• aq ⊇ ap and min(aq \ ap) ≥ max(ap) + kp,
• |n−m| ≥ kp for all n 6= m in aq \ ap,
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• kq ≥ kp,
• εq ≤ εp,
• F q ⊇ F p.

We need to verify the following four claims:

Claim 3.28.1. P is σ-centered.

Claim 3.28.2. Dα = {p : α ∈ F p} is dense for α < κ.

Claim 3.28.3. Ek = {p : kp ≥ k} is dense for k ∈ ω.

Claim 3.28.4. Fε = {p : εp ≤ ε} is dense for ε ∈ Q with ε > 0.

Proof of Claim 3.28.1. Fix a ⊆ ω finite, k ∈ ω and ε ∈ Q with ε > 0.
Then Pa,k,ε = {p ∈ P : ap = a, kp = k, εp = ε} is clearly centered, and P is
the countable union of the Pa,k,ε.

Proof of Claim 3.28.2. Let α ∈ κ and p ∈ P. We may assume α /∈ F p.
Applying the previous lemma kp times with Ẋ = Ẋα, ε = εp/kp, k = kp, we
find sets ai, i < kp, such that

• min(a0) ≥ max(ap) + kp, min(ai+1) ≥ max(ai) + kp for all i < kp − 1,
• |n−m| ≥ kp for all n 6= m in ai and all i < kp,
• µ([[ai ∩ Ẋα 6= ∅]] ∩B) ≥ (1− ε)µ(B).

Define q by letting aq = ap ∪
⋃
{ai : i < kp}, kq = kp, εq = εp, and

F q = F p ∪ {α}. Clearly µ([[|Ẋα ∩ aq| ≥ kq]] ∩ B) ≥ (1 − εq)µ(B). Hence
q ∈ P, q ≤P p and q ∈ Dα, as required.

Proof of Claim 3.28.3. Let k ∈ ω and p ∈ P. We may assume k > kp.
Let kq = k, εq = εp, and F q = F p. Apply Lemma 3.27 k · |F p| times to
obtain aq ⊇ ap such that µ([[|Ẋα ∩ (aq \ ap)| ≥ kq]] ∩ B) ≥ (1− εq)µ(B) for
all α ∈ F q, q ≤P p, and q ∈ Ek.

Proof of Claim 3.28.4. Let ε ∈ Q with ε > 0 and p ∈ P. We may assume
ε < εp. Let kq = kp, εq = ε, F q = F p, and again apply Lemma 3.27 kp · |F p|
times as in the proof of the previous claim to obtain the required q ≤P p
with q ∈ Fε.

We continue with the proof of Lemma 3.28. Using MAκ(σ-centered), we
find a filter G ⊆ P such that G ∩Dα 6= ∅ and G ∩ Ek 6= ∅ and G ∩ Fε 6= ∅
for all α < κ, all k ∈ ω, and all ε ∈ Q with ε > 0. Let A =

⋃
{ap :

p ∈ G}. By definition of ≤P and since G meets all Ek, we deduce that A is
an SC-set. Since G meets all Dα, Ek, and Fε, we see that for all α < κ,
µ([[|Ẋα ∩A| = ℵ0]] ∩B) = µ(B), that is, B  |Ẋα ∩A| = ℵ0, as required.

Proof of Theorem 3.25. Now assume MA and c ≥ ℵ2. Force with Bω1 .
The resulting model, the dual random model, satisfies non(N ) = ℵ1 (see
Subsection 1.3). To see that non∗(SC) = c, apply the previous lemma. This
completes the proof of Theorem 3.25.
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Before beginning the proof of Theorem 3.26, we prove the following two
lemmata.

Lemma 3.29. Assume that F ⊆ ω contains arbitrarily long intervals. Let
Ẋ be a B-name for an SC-set, and assume B ∈ B. Then there are C ≤ B and
G ⊆ F containing arbitrarily long intervals such that C forces Ẋ ∩G = ∅.

Proof. Since B is ωω-bounding (see Subsection 1.3), by strengthening B
if necessary we may assume there is g ∈ ωω such that

B  ∀k ∀n 6= m ∈ Ẋ (n,m ≥ g(k)⇒ |n−m| ≥ k).

Let Fk ⊆ F , k ∈ ω, be intervals of length 22k with min(Fk) ≥ g(22k). Then
B  ∀k (|Ẋ ∩ Fk| ≤ 1). Let Fk be a union of 2k intervals F ik, i < k, of
length 2k. Then, for each k, there is ik < 2k such that

µ([[Ẋ ∩ F ikk 6= ∅]] ∩B) ≤ 1

2k
µ(B).

Let G =
⋃
k≥2 F

ik
k . Then clearly

µ([[Ẋ ∩G 6= ∅]] ∩B) ≤ µ(B)/2.

Therefore, G and C = B \ [[Ẋ ∩G 6= ∅]] are as required.

Lemma 3.30. Assume CH. There is a ⊆∗-decreasing chain (Fα : α < ω1)
of sets containing arbitrarily long intervals such that, whenever Ẋ is a B-
name for an SC-set and B ∈ B, then there are C ≤ B and α < ω1 such that
C forces Ẋ ∩ Fα = ∅.

Proof. Let (Ẋα, Bα), α < ω1, and list all pairs (Ẋ, B) such that Ẋ is a
nice B-name (in the sense of Kunen [Ku1, Definition VII.5.11]) for an SC-set
and B ∈ B. Recursively construct Fα such that

• F0 = ω,
• Fα contains arbitrarily long intervals,
• if α is limit then Fα is a pseudointersection of the Fβ for β < α,
• if α = β+ 1 is successor, then Fα ⊆ Fβ and there is C ≤ Bβ such that

C  Ẋβ ∩ Fα = ∅.
It is clear that this can be done by the previous lemma.

Proof of Theorem 3.26. In the random model, the Fα from the previous
lemma witness ge(SC) = ℵ1: let Ẋ be a Bλ-name for an SC-set; there is
A ⊆ λ countable such that Ẋ is a BA-name, i.e., we may construe Ẋ as a
B-name; by 3.30, there is α such that some condition in the generic forces
Ẋ ∩ Fα = ∅. This completes the proof of Theorem 3.26.

3.4. Summable ultrafilters. It is well-known that cof(I1/n) = cof(N )
[Fr2]. A lower bound for ge(I1/n) is given by

Theorem 3.31. ge(I1/n) ≥ cov(E). In particular, ge(I1/n) ≥ cov(N ).
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Proof. It suffices to show that there are functions
∏
n 2n → I1/n :

f 7→ Zf and I+
1/n → E : X 7→ BX such that Zf ∩ X is infinite when-

ever f /∈ BX . For then, given F ⊆ I+
1/n of size < cov(E), there is f ∈∏

n 2n \
⋃
{BX : X ∈ F}. Hence Zf ∩ X is infinite for all X ∈ F and F

cannot be a witness for ge(I1/n).

Consider a partition of ω into consecutive intervals In where |In| = 2n

for every n. There exists a one-to-one correspondence between functions in∏
n 2n and selectors on {In : n ∈ ω}: one can assign to every f ∈

∏
n 2n a

set Zf ⊆ ω in such a way that |Zf ∩ In| = 1 for every n ∈ ω by defining
Zf = {min(In) + f(n) : n ∈ ω}. Clearly each Zf belongs to I1/n.

Given X ∈ I+
1/n, define ϕX : ω → [ω]<ω by ϕX(n) = {m − min In :

m ∈ In ∩X}.
For the closed set BX,m = {f ∈

∏
n 2n : ∀n ≥ m (f(n) 6∈ ϕX(n))} one

obtains the following upper bound of µ(BX,m):

µ(BX,m) =
∏
n≥m

|In \X|
2n

=
∏
n≥m

(
1− |X ∩ In|

2n

)
≤
∏
n≥m

e−|X∩In|/2
n

= e
∑
n≥m−|X∩In|/2n .

Hence µ(BX,m) = 0 because
∑

n≥m |X ∩ In|/2n =∞ for every X 6∈ I1/n.

Consequently, BX = {f ∈
∏
n 2n : ∀∞n (f(n) 6∈ ϕX(n))} =

⋃
m∈ω BX,m

is an Fσ null set and thus belongs to E . If f 6∈ BX then f(n) ∈ ϕX(n) for
infinitely many n ∈ ω. It follows that Zf ∩X is infinite (15).

Proposition 3.32 (Hernández and Hrušák [HH, Theorem 3.7]).

non∗(I1/n) ≤ non(N ).

Corollary 3.33. non∗(I1/n) < ge(I1/n) is consistent.

This holds in any model for non(N ) < cov(N ), like the random and dual
random models.

Furthermore we obtain:

Corollary 3.34.

(i) non∗(I1/n) < non∗(SC) is consistent. In particular, non∗(thin) <
non∗(SC) and non∗(I1/n) < non∗(Z) are consistent.

(ii) ge(SC) < ge(I1/n) is consistent. In particular, ge(thin) < ge(I1/n)
and ge(SC) < ge(Z) are consistent.

(iii) ge(I1/n) < ge(SC) is consistent. In particular, ge(thin) < ge(SC)
and ge(I1/n) < ge(Z) are consistent.

(15) Since we did not use the fact that F is a filter base, this proof really shows
non+(I1/n) ≥ cov(E)—see Proposition 4.1(vii) below.
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Proof. By Figure 1 and Observations 3.5 and 3.6, it suffices to prove the
first statement of each of the three items.

(i) This holds in the dual random model, by 3.25 and 3.32.

(ii) This holds in the random model, by 3.26 and 3.31.

(iii) Since ge(SC) ≥ d by Observation 3.23, this holds in any model with
ge(I1/n) < d, like the models for Corollary 3.12. More concretely, this is true
in the dual M(I∗1/n) model or, alternatively, in the Mathias, Laver, or Miller

models.

Conjecture 3.35. r < non∗(I1/n) is consistent.

This would also imply the consistency of non∗(SC) < non∗(I1/n), by
Proposition 3.22, and thus of non∗(thin) < non∗(I1/n) and of non∗(SC) <
non∗(Z) (by Figure 1 and Observation 3.5). There is strong evidence that
3.35 holds because the dual inequality is indeed consistent (Proposition 4.3
below).

3.5. Density zero ultrafilters. We already mentioned Fremlin’s cof(Z)
= cof(N ) [Fr2]. Lower and upper bounds for non∗(Z) are as follows:

Theorem 3.36.

(i) (Hernández and Hrušák [HH, Theorems 3.10 and 3.12]) We have
min{d, cov(N )} ≤ non∗(Z) ≤ max{d, non(N )}.

(ii) (Raghavan and Shelah [RS]) b ≤ non∗(Z) (16).

Observation 3.37. ge(Z) ≥ max{non∗(Z), d, cov(E), non(E)}.

This follows from Observation 3.3, from I1/n ≤K Z and ge(I1/n) ≥
cov(E) (Theorem 3.31), as well as from mz ≤K Z (Proposition 2.4)
and ge(mz) = cof(E ,M) = max{d, non(E)} [Br2]. (For the definition of
cof(I,J ), see before Observation 3.4.)

Corollary 3.38. non∗(Z) < ge(Z) is consistent.

By Theorem 3.36(i), Observation 3.37 and cov(N ) ≤ cov(E), this holds
in any model for max{d, non(N )} < cov(N ), like the random model.

Conjecture 3.39. ge(Z) < non(M) is consistent. In particular, it is
consistent that nowhere dense ultrafilters generically exist, while density zero
ultrafilters do not.

3.6. Some models. The following table summarizes the values of the
cardinal invariants of this section in some standard models of ZFC. For com-
pleteness, we include cov(M) as lower bound and cof(N ) as upper bound.

(16) This improves an earlier result of Hernández, Hrušák, and Zapletal ([HH, Theo-
rem 3.4] and [HrZ, Proposition 4.1]) saying that min{b, non(N )} ≤ non∗(Z).
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All results here follow from the values of classical cardinal invariants in
these models (see Subsection 1.3), and the ZFC-inequalities as well as the
consistency results discussed in the preceding subsections.

cov non∗ ge non∗ ge non∗ ge non∗ ge cof

(M) (EDfin) (thin) (SC) (SC) (I1/n) (I1/n) (Z) (Z) (N )

C c c c c c c c c c c

B ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 c ℵ1 c c

dual B ℵ1 ℵ1 ℵ1 c c ℵ1 c c c c

dual D ℵ1 c c c c c c c c c

M ℵ1 ℵ1 ℵ1 ? c ℵ1 ℵ1 c c c

L ℵ1 ℵ1 ℵ1 ? c ℵ1 ℵ1 c c c

MI ℵ1 ℵ1 ℵ1 ℵ1 c ℵ1 ℵ1 ? c c

BS ℵ1 ℵ1 ? ℵ1 c ? ? ? c c

S ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1
dual M(I∗1/n) ℵ1 ℵ1 ℵ1 ? c ℵ1 ℵ1 ? c c

dual M(Z∗) ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 ℵ1 c

Fig. 3

Here C denotes the Cohen model, B the random model, “dual B” the dual
random model, “dual D” the dual Hechler model, M the Mathias model, L
the Laver model, MI the Miller model, BS the Blass–Shelah model, S the
Sacks model, “dual M(I∗1/n)” the finite support iteration of M(I∗1/n) of

length ω1 over a model of MA + ¬CH, and “dual M(Z∗)” the analogous
model for M(Z∗) (see Subsection 1.3 for more details about these models).

4. Epilogue

4.1. A variant of the uniformity. If we compare the definitions of
non∗(I) and ge(I), it is very natural to consider the following cardinal in-
variant:

non+(I) = min{|F| : F ⊆ I+ and ∀I ∈ I ∃F ∈ F (|I ∩ F | < ℵ0)}.
Clearly, non∗(I) ≤ non+(I) ≤ ge(I). Also I ≤K J implies non+(I) ≤
non+(J ). We summarize what we know about this new cardinal.

Proposition 4.1.

(i) non+(I) = non∗(I) = ℵ0 for all I ≤K nwd. In particular, for tall
ideals I Katětov below nwd, we have non+(I) < ge(I).

(ii) non+(Fin× Fin) = d = ge(Fin× Fin) > ℵ0 = non∗(Fin× Fin).
(iii) non+(ED) = cov(M) = ge(ED) > ℵ0 = non∗(ED).
(iv) non+(EDfin) = non∗(EDfin) = d(pbd 6=).
(v) If I is Fσ, then non+(I) ≤ d(pbdLoc).
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(vi) If I is an analytic P -ideal, then d(pbd 6=) ≤ non+(I) ≤ d(pLoc).
(vii) cov(E) ≤ non+(I1/n). In particular, non+(I1/n) > non∗(I1/n) and

non+(Z) > non∗(Z) are both consistent.

Proof. (i) The basic open neighborhoods are in nwd+, and thus witness
non+(nwd) = ℵ0.

(ii)&(iii) For non∗ and ge see the discussion after Observation 3.6. Since
non+(I) ≤ ge(I), it suffices to show non+(Fin × Fin) ≥ d and non+(ED) ≥
cov(M), respectively.

For the former, fix F ⊆ (Fin× Fin)+ with |F| < d. For A ∈ F define

fA(n) = min{k ≥ n : (m, k) ∈ A for some m ≥ n}.
This is well-defined because A is positive. By assumption, there is g ∈ ωω
with g 6≤∗ fA for all A ∈ F . Without loss of generality, g is strictly increasing.
Set B = {(n, k) : k ≤ g(n) and n ∈ ω}. Then B ∈ Fin×Fin and |B∩A| = ℵ0

for all A ∈ F , as required.
For the latter, fix F ⊆ ED+ with |F| < cov(M). For A ∈ F define a

partial function gA : ω → ω by stipulating n ∈ dom(gA) if (n, k) ∈ A for
some k ∈ ω and then setting gA(n) = min{k : (n, k) ∈ A} for n ∈ dom(gA).
Since A ∈ ED+, dom(gA) must be infinite. Given f : ω → ω partial with
infinite domain, let Bf = {x ∈ ωω : ∀∞n ∈ dom(f) (x(n) 6= f(n))}. It is
well-known and easy to see that Bf is meager.

By assumption on F , there is c ∈ ωω such that c /∈ BgA for all A ∈ F .
This means that for all A ∈ F , c(n) = gA(n) holds for infinitely many
n ∈ dom(gA), that is, (n, c(n)) ∈ A for infinitely many n. Identifying c with
its graph, we see that |c ∩ A| = ℵ0 for all A ∈ F . Since c is a function,
c ∈ ED is immediate, and the proof of non+(ED) ≥ cov(M) is complete.

(iv) By Proposition 3.18(ii), it suffices to show non+(EDfin) ≤ d(pbd 6=).
The proof is similar to the corresponding proof for non∗(EDfin) [HMM,
Proposition 3.6 and Lemma 3.9], but there are some subtle differences, and
therefore we include the argument.

In the first step we show non+(EDfin) ≤ r. Let R be a hereditarily un-
reaped family of size r (see the proof of Proposition 3.22 for this notion and
a similar argument). For R ∈ R and n ∈ ω, let

XR,n = {(m, i) : m ∈ R and n
√
m ≤ i < (n+ 1)

√
m ≤ m}.

Clearly XR,n ∈ ED+
fin. We claim that X = {XR,n : R ∈ R, n ∈ ω} is a

witness for non+(EDfin). To see this, fix A ∈ EDfin. There are functions fj ,
j < k, below the identity such that A ⊆

⋃
j<k fj . Set

An = {m : ∃j < k (n
√
m ≤ fj(m) < (n+ 1)

√
m)}

for n ∈ ω. Since R is unreaped, we may find R0 ∈ R such that either R0∩A0

is finite or R0 ⊆∗ A0. More generally, if Rn, n < k−1, has been constructed,
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we may find Rn+1 ∈ R with Rn+1 ⊆ Rn such that either Rn+1 ∩ An+1 is
finite or Rn+1 ⊆∗ An+1. Assume first that Rn ∩An is finite for some n < k,
and let n be minimal with this property. Then clearly XRn,n∩A is finite. If,
on the other hand, Rn ⊆∗ An for all n < k, then XRk−1,k ∩A is finite. This
completes the first step of the proof.

In the second step we show non+(EDfin) ≤ d(pbd 6=). Fix g ∈ ωω. Let
κ < non+(EDfin), and let F be a family of partial functions below g of size κ.
We need to find a total function h ∈ ωω such that for all f ∈ F there are
infinitely many n ∈ dom(f) with f(n) = h(n).

Partition ω into intervals In, n ∈ ω, of length n. Let kn be the number
of sequences of the form s�In with s(i) < g(i) for all i ∈ In. Let ψn :∏
i∈In g(i)→ kn be a bijection. For f ∈ F let

Xf =
{

(kn, ψn(s)) : In ∩ dom(f) 6= ∅, s ∈
∏
i∈In

g(i) and

∃i ∈ In ∩ dom(f) (s(i) = f(i))
}
.

Clearly Xf ∈ ED+
fin. By assumption there is Y ∈ EDfin such that Y ∩ Xf

is infinite for all f ∈ F . Assume Y ⊆
⋃
`<m h`. For f ∈ F fix `f = ` < m

such that Zf = {kn : In ∩ dom(f) 6= ∅ and (kn, h`(kn)) ∈ Xf} is infinite.
By the first step, we know that {Zf : f ∈ F} is reaped by some A ∈ [ω]ω,
that is, A ∩ Zf and Zf \ A are both infinite for all f ∈ F . Iterating this
argument, we obtain a partition (A` : ` < m) of ω such that for all f ∈ F
and all ` < m, A` ∩ Zf is infinite. Define h ∈ ωω by stipulating h�In =
ψ−1
n (h`(kn)) if kn ∈ A`. To see that h is as required, fix f ∈ F . Let ` = `f .

If kn ∈ A` ∩Zf , then (kn, h`(kn)) ∈ Xf and h�In = ψ−1
n (h`(kn)), that is, for

some i ∈ In ∩ dom(f) we have h(i) = ψ−1
n (h`(kn))(i) = f(i). Since A` ∩ Zf

is infinite, there are infinitely many such i ∈ dom(f), as required.

(v)&(vi) The proof of Corollary 3.11 shows non+(I) ≤ d(pbdLoc) for Fσ
ideals I and non+(I) ≤ d(pLoc) for analytic P-ideals I. For the lower bound
in (vi), use Corollary 3.11(ii) and Proposition 3.18(ii).

(vii) The proof of Theorem 3.31 shows cov(E) ≤ non+(I1/n). The strict
inequalities hold in the random model (cf. Corollaries 3.33 and 3.38).

We do not know whether non+(SC) ≥ d or non+(SC) ≤ r (cf. Observa-
tion 3.23 and Proposition 3.22). Also, we do not know of any ideal I for
which non∗(I) < non+(I) and non+(I) < ge(I) are both consistent.

4.2. Duality. For a tall ideal I on ω define

add∗(I) = min{|F| : F ⊆ I and ∀X ∈ I ∃I ∈ F (|I \X| = ℵ0)},
cov∗(I) = min{|F| : F ⊆ I and ∀X ∈ [ω]ω ∃I ∈ F (|X ∩ I| = ℵ0)}.
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Then add∗ is dual to cof∗, and cov∗ is dual to non∗. Also add(I) ≥ ℵ1 is
equivalent to I being a P-ideal. Furthermore add∗(I) ≤ cov∗(I) ≤ cof∗(I)
and add∗(I) ≤ non∗(I). Moreover, I ≤K J implies cov∗(I) ≥ cov∗(J )
([HH, Proposition 3.1] or [Hr1, Theorem 1.2]). See [HH] for more on these
cardinals.

The dual versions of some of the cardinals in Subsection 3.1 are given
by:

b(pLoc) = min{|F| : F ⊆ ωω and

∀φ ∈ pLoc ∃g ∈ F ∃∞n ∈ dom(φ) (g(n) 6∈ φ(n))},
b(Loc) = min{|F| : F ⊆ ωω and ∀φ ∈ Loc ∃g ∈ F ∃∞n (g(n) 6∈ φ(n))},

b(pbdLoc) = min{|F| : F ⊆ ωω is bounded and

∀φ ∈ pLoc ∃g ∈ F ∃∞n ∈ dom(φ) (g(n) 6∈ φ(n))},
b(bdLoc) = min{|F| : F ⊆ ωω is bounded and

∀φ ∈ Loc ∃g ∈ F ∃∞n (g(n) 6∈ φ(n))}.
Then b(Loc) = add(N ) [Ba1] (see also [BJ, Section 2.3]), and a number
of results dual to those for the d-cardinals hold as well (17). Here we only
explain what Propositions 3.9 and 3.10 say for the dual cardinals.

Corollary 4.2.

(i) Let I be an Fσ ideal. Then cov∗(I) ≥ b(pbdLoc).
(ii) Let I be an analytic P-ideal. Then cov∗(EDfin) ≥ cov∗(I) ≥ b(pLoc).

Proof. We only prove (ii). The proof of (i) is similar but easier and
uses 3.9 instead of 3.10. See also the similar proof of Corollary 3.11. The
first inequality is [HH, Proposition 3.2].

For the second inequality, first note that b(pLoc) = min{b, b(pbdLoc)}.
Assume F ⊆ I is of size < b(pLoc). We need to show F is not a witness
for cov∗(I). Use Proposition 3.10 and its notation. Since |F| < b, there is
f ∈ ωω with f ≥∗ fB for all B ∈ F . By |F| < b(pbdLoc) there is hf ∈ Hf,ε̄
such that for all B ∈ F and almost all n ∈ dom(hf ), gB,f (n) ∈ hf (n).
Therefore |B ∩Ahf | < ℵ0 for all B ∈ F , as required.

The following is motivated by Conjecture 3.35.

Proposition 4.3. s > cov∗(I1/n) is consistent and holds in the Mathias
model.

Proof. Denote the ω2-stage countable support iteration of Mathias forc-
ing by Mω2 . It is well-known that s = c = ℵ2 in the resulting Mathias model

(17) b(pLoc) was originally introduced by Blass [Bl1] as linear evasion number e`. For
the equality b(pLoc) = e` see [BrS]. b(bdLoc) was first considered by Pawlikowski [Pa]
(see also [BJ, Theorem 2.7.10]), who showed that this cardinal is equal to the transitive
additivity of measure.
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(see Subsection 1.3). Let (In : n ∈ ω) be a partition of ω into intervals of
length 2n in the ground model which satisfies CH.

Let Ẋ be an Mω2-name for an infinite subset of ω. By replacing Ẋ by
an infinite subset if necessary, we may assume that the trivial condition
forces that |Ẋ ∩ In| ≤ 1 for all n. Also let p ∈ Mω2 . By the Laver property
of Mω2 (see Subsection 1.3 again), there are q ≤ p and Y ∈ [ω]ω with
|Y ∩ In| ≤ n+ 1 for all n such that q forces Ẋ ⊆ Y . Clearly Y ∈ I1/n. Hence
the ground model witnesses cov∗(I1/n) = ℵ1 in the generic extension.

Duality now suggests that there should be an ωω-bounding, P-point
preserving forcing which increases non∗(I1/n). This would confirm Conjec-
ture 3.35.

4.3. Some proofs. Here we collect some proofs of known results for
which we could not find a reference.

Proposition 4.4. ge(conv) = d.

Proof. Since conv ≤K Fin × Fin (see the discussion after Figure 1 in
Subsection 2.1), ge(conv) ≤ ge(Fin× Fin) holds by Observation 3.6. On the
other hand, Hong and Zhang [HZ1, Theorem 3.6] proved that ge(Fin× Fin)
= d. Hence it suffices to prove d ≤ ge(conv).

Let F be a filter base on 2<ω with |F| < d. We need to show that there is
I ∈ conv such that F ∩ I is infinite for all F ∈ F . Since F is a filter base, for
all n ∈ ω there is s ∈ 2n such that {t ⊇ s : t ∈ F} is infinite for all F ∈ F .
By König’s Lemma, the tree of such s’s has an infinite branch, that is, there
is z ∈ 2ω such that for all n ∈ ω and all F ∈ F , the set {t ⊇ z�n : t ∈ F} is
infinite. For F ∈ F define fF ∈ ωω by

fF (n) := min{|t| : t ∈ F and t ⊇ z�n}.

Since |F| < d, there is g ∈ ωω with g 6≤∗ fF for all F ∈ F . Letting In =
{t ∈ 2<ω : |t| ≤ g(n) and t ⊇ z�n} for n ∈ ω, we see that if we rewrite
I =

⋃
n In as a sequence, it converges to z. So I ∈ conv. On the other hand,

F ∩ I is infinite, as required.

Proposition 4.5. ge(R) = cov(M).

Proof. As in the previous proof, use ge(R) ≤ ge(ED) (which follows from
R ≤K ED (Figure 1 in Subsection 2.1) and Observation 3.6) and ge(ED) =
cov(M) [HZ1, Theorem 3.7] to see that is suffices to show cov(M) ≤ ge(R).

Let F be a filter base on ω with |F| < cov(M). Again we prove that,
for some I ∈ R, F ∩ I is infinite for all F ∈ F . Let f : [ω]2 → 2 be such
that f({n,m}) = 1 iff {n,m} is an edge of the random graph. Now build a
tree T ⊆ ω<ω such that for all σ ∈ T , the set of successors Aσ = {n ∈ ω :
σˆn ∈ T} is infinite and
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• Aτ ⊂ Aσ for τ ⊇ σ,
• for all i ∈ dom(σ), either f({σ(i), n}) = 1 for all n ∈ Aσ or f({σ(i), n})

= 0 for all n ∈ Aσ,
• Aσ ∩ F is infinite for all F ∈ F .

Let A〈〉 = ω. Suppose σ ∈ T with |σ| ≥ 1. Since F is a filter base, for
either j = 0 or j = 1, {n ∈ Aσ�|σ|−1 : f({σ(|σ| − 1), n}) = j} has infinite
intersection with all F ∈ F . Let Aσ be the set which does. This completes
the construction of T .

Notice that [T ], the set of branches of T , is homeomorphic to the Baire
space ωω. For F ∈ F , letBF = {x ∈ [T ] : |ran(x)∩F | < ℵ0}. By construction
of T , BF is a meager subset of [T ] for all F ∈ F . Since |F| < cov(M), we
may find c ∈ [T ] with c /∈ BF for all F ∈ F . Letting C = ran(c), we see that

• |C ∩ F | = ℵ0 for all F ∈ F ,
• for all i ∈ ω, f�{{c(i), c(j)} : i < j} is a constant function with, say,

value g(i) (by construction of T ).

Using again the fact that F is a filter base, we see that for either j = 0 or
j = 1, Ij := {i ∈ ω : g(i) = j} ⊆ C has infinite intersection with all F ∈ F .
Thus the homogeneous set I = Ij is as required.

The following proposition implies the results cof(thin) = cof(SC) = c
mentioned earlier. (For the definition of cof(I,J ) and its relation to cof(I)
and cof(J ), see before Observation 3.4.)

Proposition 4.6. cof(thin,SC) = c.

Proof. Let an, n ∈ ω, be a sequence of natural numbers such that
(an + 2n)/an+1 converges to 0. Partition ω into intervals Jm, m ∈ ω, of
length (2m)!. Let (fn : n ∈ Jm) list all bijections between the set 2m of bi-
nary sequences of length m and the set {i < 2m} of numbers below 2m. For
x ∈ 2ω define Ax = {an + fn(x�m) : m ∈ ω and n ∈ Jm}. By choice of an,
all Ax are thin. Also, they are pairwise almost disjoint. Furthermore, given
distinct xi, i < k, for all m such that all initial segments xi�m are distinct
there is an n ∈ Jm such that the numbers fn(xi�m), i < k, are k consecutive
numbers. This implies that if B ∈ SC, say B =

⋃
i<k Bi where each Bi is an

SC-set, then B can contain at most k sets of the form Ax. Thus, if F ⊆ SC
is a family of less than c many sets, there is x ∈ 2ω such that Ax is not
contained in any member of F , and cof(thin,SC) = c follows.
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Department of Mathematics
University of West Bohemia

Univerzitńı 22
306 14 Plzeň, Czech Republic
E-mail: flaskova@kma.zcu.cz

http://dx.doi.org/10.1016/S0168-0072(98)00051-7

	Introduction
	1 Prologue
	1.1 Ideals and ultrafilters
	1.2 Cardinal invariants of the continuum
	1.3 Forcing

	2 Classes of ultrafilters
	2.1 I-ultrafilters and Katetov order
	2.2 A thin ultrafilter
	2.3 A discrete ultrafilter

	3 Generic existence
	3.1 Basic results
	3.2 Thin ultrafilters
	3.3 SC-ultrafilters
	3.4 Summable ultrafilters
	3.5 Density zero ultrafilters
	3.6 Some models

	4 Epilogue
	4.1 A variant of the uniformity
	4.2 Duality
	4.3 Some proofs

	References

