
I -ULTRAFILTERS FOR IDEAL I ON ω

JANA FLAŠKOVÁ

Abstract. This paper covers the talk held by the author at
35th Winter School on Abstract Analysis - Section Topology
in Hejnice, 2007. It summarizes some presented general re-
sults concerning I -ultrafilters where I is an ideal on ω and
provides proofs which where omitted in the talk.

1. Introduction

Definition 1.1 (Baumgartner). Let I be a family of subsets of
a set X such that I contains all singletons and is closed under
subsets. Given an ultrafilter U on ω, we say that U is an I -
ultrafilter if for any F : ω → X there is A ∈ U such that F [A] ∈ I .

It is easy to see that I -ultrafilters are downwards closed in the
≤RK-ordering and if we have I ⊆ J then every I -ultrafilter is a
J -ultrafilter.

Particular examples of I -ultrafilters are nowhere dense ultrafil-
ters, measure zero ultrafilters or countably closed ultrafilters de-
fined by taking X = 2ω and I to contain all the nowhere dense
sets, the sets with closure of measure zero, or the sets with count-
able closure, respectively. The class of α-ultrafilters was defined for
an indecomposable countable ordinal α by taking X = ω1 and I

to consist of the subsets of ω1 with order type less than α. Con-
sistency results about existence of these ultrafilters and some in-
clusions among the appropriate classes of ultrafilters were obtained
by Baumgartner [2], Brendle [4], Barney [1]. It was proved by She-
lah [10] that consistently there are no nowhere dense ultrafilters,
consequently all mentioned ultrafilters (except the α-ultrafilters for
which the question is still open) may not exist.

Key words and phrases. I -ultrafilter, density ideal, summable ideal, van
der Waerden ideal, analytic P-ideal.
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We investigate here I -ultrafilters in the setting X = ω (or N).
We assume that the family I contains all finite subsets of ω and is
usually an ideal. In fact, it is not important whether we deal with
ideals or not because if we replace the family I in the definition of
I -ultrafilter by 〈I 〉 (the ideal generated by I ), we get the same
concept (noticed in [1], “proved” in my thesis).

An ideal I ⊆ P(ω) is called tall if every A 6∈ I contains an
infinite subset that belongs to the ideal I . (Some authors call such
ultrafilters dense.) For every A,B ⊆ ω we say that A is almost
contained in B and we write A ⊆∗ B if A \ B is finite. Let us
also recall that an ideal I is called a P -ideal if whenever An ∈ I ,
n ∈ ω, then there is A ∈ I such that An ⊆∗ A for every n.

Example 1.2. Density ideal Z0 = {A ⊆ ω : lim supn→∞
|A∩n|
n =

0}, summable ideal I1/n = {A ⊆ N :
∑

n∈A
1
n < ∞} and van

der Waerden ideal W = {A ⊆ ω : A does not contain arithmetic
progressions of arbitrary length} are tall ideals, but only the first
two are P -ideals.

2. Some general results

Are there any I -ultrafilters at all? It turns out that for some
ideals the answer is positive. To prove this we shall recall that
χ(I ), the character of I , is the minimal cardinality of a base for
I , i.e. χ(I ) = min{|B| : B ⊆ I ∧ (∀I ∈ I )(∃B ∈ B) I ⊆∗ B}.
Theorem 2.1. If I is a maximal ideal on ω such that χ(I ) = c

then I -ultrafilters exist.

Proof. Enumerate all functions from ω to ω as {fα : α < c}. By
transfinite induction on α < c we will construct filter bases Fα

satisfying
(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ I

Suppose we know already Fα. If there is a set F ∈ Fα such
that fα[F ] ∈ I then put Fα+1 = Fα. Hence we may assume
that fα[F ] 6∈ I . Then ω \ fα[F ] ∈ I for every F ∈ Fα and since
χ(I ) = c > |Fα| we can find M ∈ I such that M ∩fα[F ] is infinite
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for every F ∈ Fα. To complete the induction step let Fα+1 be the
filter base generated by Fα and f−1

α [M ].
It is obvious that any ultrafilter that extends the filter base F =⋃
α<c Fα is an I -ultrafilter. �

Unfortunately, there are many interesting ideals which are not
maximal, e.g. all the three in Example 1.2, and to which we cannot
apply Theorem 2.1. What about ideals which are not maximal? At
first, we give a necessary condition on I .

Proposition 2.2. If the ideal I is not tall then there are no I -
ultrafilters.

Proof. Suppose that for A ∈ [ω]ω \ I we have I ∩P(A) = [A]<ω

and let eA : ω → A be an increasing enumeration of the set A.
Now assume for the contrary that there exists an I -ultrafilter

U ∈ ω∗. According to the definition of an I -ultrafilter there exists
U ∈ U such that eA[U ] ∈ I . Since eA[U ] ⊆ A the set eA[U ]
is finite. It follows that U is finite because eA is one-to-one — a
contradiction to the assumption that no set in U is finite. �

Under some additional set-theoretic assumptions the necessary
condition from Proposition 2.2 is also sufficient. We recall the def-
inition of the pseudointersection number :
p = min{|F | : F ⊆ [ω]ω centered, ¬((∃A ∈ [ω]ω)(∀F ∈ F )A ⊆∗
F )}
Proposition 2.3. (p= c) If I is a tall ideal then I -ultrafilters
exist.

Proof. Enumerate all functions from ω to ω as {fα : α < c}. By
transfinite induction on α < c we will construct filter bases Fα

satisfying
(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ I

Suppose we know already Fα. If there is a set F ∈ Fα such
that fα[F ] ∈ I then put Fα+1 = Fα. Hence we may assume that
fα[F ] 6∈ I , in particular fα[F ] is infinite, for every F ∈ Fα.
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Since |Fα| < c = p there exists M ∈ [ω]ω such that M ⊆∗ fα[F ]
for every F ∈ Fα. The ideal I is tall, so there is A ∈ I which is
an infinite subset of M and we have A ⊆∗ fα[F ] and f−1

α [A] ∩ F
is infinite for every F ∈ Fα. It follows that f−1

α [A] is compatible
with Fα. To complete the induction step let Fα+1 be the filter base
generated by Fα and f−1

α [A].
It is easy to see that every ultrafilter that extends F =

⋃
α<c Fα

is an I -ultrafilter. �

Is it possible to weaken somehow the assumption p = c? Yes,
but it seems we have to restrict the class of considered ideals. We
will show that if I is a tall analytic P -ideal or Fσ-ideal then it is
enough to assume that a selective ultrafilter exists.

A free ultrafilter U is called a selective ultrafilter (or a Ramsey
ultrafilter) if for all partitions of N, {Ri : i ∈ ω}, either for some
i, Ri ∈ U , or (∃U ∈ U ) (∀i ∈ ω) |U ∩ Ri| ≤ 1. It is proved in
[5] that selective ultrafilters are minimal in Rudin-Keisler order on
ultrafilters.

A free ultrafilter U is called a P -point if for all partitions of N,
{Ri : i ∈ ω}, either for some i, Ri ∈ U , or (∃U ∈ U ) (∀i ∈ ω)
|U ∩ Ri| < ω. Equivalently: U ∈ N∗ is a P -point if and only if
whenever Un ∈ U , n ∈ ω, there is U ∈ U such that U ⊆∗ Un for
each n. The class of P -points is downwards closed under Rudin-
Keisler order (see e.g. [5]).

A free ultrafilter U is called a Q-point if for every partition
{Qn : n ∈ ω} of ω into finite sets there exists U ∈ U such that
|U∩Qn| ≤ 1 for every n ∈ ω. Q-points in general are not downwards
closed in the ≤RK-ordering.

We say that a free ultrafilter U is a hereditary Q-point if it is a
Q-point such that for every V ≤RK U the ultrafilter V is again a
Q-point.

Notice that a free ultrafilter U ∈ ω∗ is selective if and only if U

is P -point and Q-point.

Lemma 2.4. If I is a tall Fσ-ideal or a tall analytic P -ideal and
U is a Q-point then U ∩I 6= ∅.
Proof. Let us first prove the lemma for an analytic P -ideal I .
Solecki in [11] proved that there exists a lower semicontinuous sub-
measure ϕ : P(ω) → [0,∞] such that I = Exh(ϕ) = {A ⊆ ω :
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limn→∞ ϕ(A \ n) = 0}. The ideal Exh(ϕ) is tall if and only if
limn→∞ ϕ({n}) = 0. So we can define by induction an increasing
sequence 〈nk〉k∈ω such that ϕ({m}) < 1

2k
whenever m ≥ nk. Now,

since U is a Q-point there exists U ∈ U such that |U∩[nk, nk+1)| ≤
1 for every k ∈ ω. It is not difficult to check that U ∈ Exh(ϕ) = I .

If I is a tall Fσ-ideal then according to a characterisation of
Mazur [9] there is again a lower semicontinuous submeasure ϕ :
P(ω) → [0,∞] such that I = Fin(ϕ) = {A ⊆ ω : ϕ(A) < ∞}.
Since Exh(ϕ) ⊆ Fin(ϕ) and every Q-point contains a set from
Exh(ϕ) it also contains a set from Fin(ϕ) = I . �
Proposition 2.5. If I is Fσ ideal or analytic P -ideal then every
selective ultrafilter is an I -ultrafilter.

Proof. If U is a selective ultrafilter then for every f : ω → ω
the ultrafilter f(U ) is also selective and in particular a Q-point.
Hence f(U ) ∩ I 6= ∅ and it follows that there is U ∈ U such that
f [U ] ∈ I . �

Notice that actually every hereditary Q-point is an I -ultrafilter.

Remark 2.6. If we assume MActble then for every (tall) ideal I ⊆
P(ω) there is aQ-point which is not an I -ultrafilter (= Proposition
2.4.7. in [8]).

3. Description of P -points via I -ultrafilters

If X = 2ω then P -points are precisely the I -ultrafilters for
I consisting of all finite and converging sequences, if X = ω1

then P -points are precisely the I -ultrafilters for I = {A ⊆ ω1 :
A has order type ≤ ω} (see [2]). Is there a family I of subsets of
natural numbers such that P -points are precisely the correspond-
ing I -ultrafilters? The following theorem shows that such a family
cannot be an Fσ ideal.

Theorem 3.1. (MActble) For every Fσ-ideal I ⊆ P(ω) there is a
P -point that is not an I -ultrafilter.

Proof. Since I is Fσ there is a lower semicontinuous submeasure
ϕ : P(ω) → [0,∞] such that I = Fin(ϕ) = {A ⊆ ω : ϕ(A) < ∞}
(see [9]). Enumerate all partitions of ω (into infinite sets) as {Rα :
α < c}. By transfinite induction on α < c we will construct filter
bases Fα, α < c, so that the following conditions are satisfied:
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(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα) ϕ(F ) =∞
(vi) (∀α) (∃F ∈ Fα+1) either (∃Rαn ∈ Rα) F ⊆ Rαn or (∀Rαn ∈

Rα) |F ∩Rαn| < ω

Induction step: Suppose we already know Fα and we construct
Fα+1.

Case A. (∃K ∈ [ω]<ω) (∀F ∈ Fα) ϕ(F ∩⋃n∈K R
α
n) =∞

If for every n ∈ K there is a set Fn ∈ Fα such that ϕ(Fn ∩
Rαn) < ∞ then ϕ(

⋂
n∈K Fn ∩

⋃
n∈K R

α
n) < ∞ — a contradiction

to the assumption of Case A. Thus for some n0 ∈ K we have
ϕ(F ∩ Rαn0

) = ∞ for every F ∈ Fα and to complete the induction
step let Fα+1 be the filter base generated by Fα and the set Rαn0

.

Case B. (∀K ∈ [ω]<ω) (∃FK ∈ Fα) ϕ(FK ∩
⋃
n∈K R

α
n) <∞

Consider P = {〈K,n〉 ∈ [ω]<ω × ω : K ⊆ ⋃i≤nR
α
i , K ∩ Rαn 6=

∅} and define 〈K,n〉 ≤P 〈L,m〉 if 〈K,n〉 = 〈L,m〉 or K ⊃ L,
min(K \ L) > maxL, n > m and (K \ L) ∩ ⋃i≤mR

α
i = ∅. This

is a countable poset which we can apply Martin’s Axiom on. We
only have to find a suitable collection of its dense subsets – for
F ∈ Fα and k, j ∈ ω let DF,k = {〈K,n〉 ∈ P : ϕ(K ∩ F ) ≥ k} and
Dj = {〈K,n〉 ∈ P : n ≥ j}.

Claim: DF,k is dense in (P,≤P ) for every F ∈ Fα and k ∈ ω; Dj

is dense in (P,≤P ) for every j ∈ ω.

Consider 〈L,m〉 ∈ P arbitrary. Since L is finite there exists p ≥
m such that [0,maxL] ⊆ ⋃i≤pR

α
i . According to the assumption

there is Fp ∈ Fα such that ϕ(Fp ∩
⋃
i≤pR

α
i ) < ∞. It follows that

ϕ((Fp ∩ F ) \⋃i≤pR
α
i ) =∞. We can choose a finite set L′ ⊆ (Fp ∩

F )\⋃i≤pR
α
i such that ϕ(L′) ≥ k because ϕ is lower semicontinuous.

Let n = max{i : L′ ∩Rαi 6= ∅} and K = L∪L′. Note that from the
choice of p we have minL′ > maxL and it follows that 〈K,n〉 ≤P
〈L,m〉 and 〈K,n〉 ∈ DF,k. So DF,k is dense. For j ≤ m we have
〈L,m〉 ∈ Dj and for any j > m we can choose arbitrary r ∈ Rαj such
that r > maxL. Let K ′ = L ∪ {r}. Of course, 〈K ′, j〉 ≤P 〈L,m〉
and 〈K ′, j〉 ∈ Dj . So Dj is dense. And the claim is proved.
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The family D = {DF,k : F ∈ Fα, k ∈ ω} ∪ {Dj : j ∈ ω} consists
of dense subsets in P and |D | < c. Therefore there is a D-generic
filter G . Let U =

⋃{K : 〈K,n〉 ∈ G }. It remains to check that:
• (∀F ∈ Fα) ϕ(U ∩ F ) =∞

Take k ∈ ω arbitrary. For every K ∈ G ∩DF,k we have U ⊇ K and
k ≤ ϕ(K ∩ F ) ≤ ϕ(U ∩ F ). Hence ϕ(U ∩ F ) =∞.
• (∀Rαn ∈ Rα) |U ∩Rαn| < ω

Take 〈Kn, jn〉 ∈ G ∩Dn where jn = min{j : (∃K ∈ [ω]<ω)〈K, j〉 ∈
G ∩ Dn}. Now observe that for 〈K,m〉 ∈ G we have K ∩ Rαn = ∅
if m < n and that K ∩ Rαn = Kn ∩ Rαn if m ≥ n. To see the latter
consider 〈L,m′〉 ∈ G such that 〈L,m′〉 ≤P 〈K,m〉 and 〈L,m′〉 ≤P
〈Kn, jn〉 (such a condition exists because G is a filter) for which
we get L ∩ Rαn = K ∩ Rαn and L ∩ Rαn = Kn ∩ Rαn. It follows that
U ∩Rαn = Kn ∩Rαn is finite.
To complete the induction step let Fα+1 be the filter base generated
by Fα and the set U .

It follows from condition (vi) that every ultrafilter which extends
filter base F =

⋃
α<c Fα is a P -point. Because of condition (v)

there exists an ultrafilter extending F which extends the dual filter
of Fin(ϕ) = I , i.e. it is not an I -ultrafilter. �

For analytic P -ideals the answer is not so easy. On one hand
we know from the previous proposition that there is a P -point not
I1/n-ultrafilter, on the other hand every P -point is a Z0-ultrafilter.
So, is there any hope to characterize P -points as I -ultrafilters for
some analytic P -ideal I ?

Theorem 3.2 ([6]). (CH) Let I be an analytic P -ideal. There
exists a P -point which is not an I -ultrafilter if and only if P(ω)/I
does not have a countable splitting family.

Thus P -points are contained in the class of I -ultrafilters for
some analytic P -ideals. However, the following proposition shows
that P -ideals in general are not good candidates for characterisation
of P -points via I -ultrafilters.

Proposition 3.3. (p=c) If I is a tall P -ideal then there is an
I -ultrafilter which is not a P -point.

Proof. We proved in Proposition 2.3 that assuming p = c there exist
I -ultrafilters for every tall ideal I . We will show that if I is a tall
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P -ideal then the square of an I -ultrafilter is again an I -ultrafilter
and it is not a P -point. So let us recall the definition of the product
of ultrafilters (see e. g. [5]): If U and V are ultrafilters on ω then
U · V = {A ⊆ ω × ω : {n : {m : 〈n,m〉 ∈ A} ∈ V } ∈ U } is an
ultrafilter on ω × ω. By the square of ultrafilter U we mean the
ultrafilter U · U .

Notice that the partition {{n}×ω : n ∈ ω} of ω×ω witnesses the
fact that no product of free ultrafilters on ω is a P -point. Hence to
complete the proof of Proposition 3.3 it is sufficient to check that
if U is an I -ultrafilter then U · U is again an I -ultrafilter, i. e.
for every f : ω × ω → ω there is U ∈ U · U such that f [U ] ∈ I .

So assume U is an I -ultrafilter and f : ω × ω → ω an arbitrary
function. For every n ∈ ω define fn : ω → ω by fn(m) = f(〈n,m〉).

Since U is an I -ultrafilter there exists Vn ∈ U such that fn[Vn] ∈
I for every n. Now we can find a set A ∈ I such that fn[Vn] ⊆∗ A
for every n because I is a P -ideal.

Obviously, for every n ∈ ω we have f−1
n [fn[Vn]] ∈ U . It follows

that either f−1
n [fn[Vn] ∩ A] or f−1

n [fn[Vn] \ A] belongs to U . Let
I0 = {n ∈ ω : f−1

n [fn[Vn] ∩A] ∈ U } and I1 = {n ∈ ω : f−1
n [fn[Vn] \

A] ∈ U }. Since U is an ultrafilter it contains one of the sets I0, I1.

Case A. I0 ∈ U

Put U = {{n} × f−1
n [fn[Vn] ∩ A] : n ∈ I0}. It is easy to see that

U ∈ U · U and f [U ] =
⋃
n∈I0 fn[Vn] ∩A ⊆ A ∈ I .

Case B. I1 ∈ U

Since fn[Vn] \ A is finite and U is an ultrafilter, there exists
kn ∈ fn[Vn] \ A such that f−1

n {kn} ∈ U . Define g : ω → ω by
g(n) = kn. Since U is an I -ultrafilter there exists V ∈ U such
that g[V ] ∈ I . It remains to put U = {{n}×f−1

n {kn} : n ∈ I1∩V }.
It is easy to check that U ∈ U · U and f [U ] ⊆ g[V ] ∈ I . �

Is it possible to characterise P -points as I -ultrafilters for some
non-P -ideal I ?

4. Three other families of subsets of ω

It is difficult to formulate any general statements about ideals
which are neither (analytic) P -ideals nor Fσ ideals because there is
no ’nice’ description of such ideals. So we study in this section just
three particular families of subsets of ω.
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Definition 4.1. A set A ∈ [ω]ω with an (increasing) enumeration
A = {an : n ∈ N} is called

• thin (see [3]) if limn→∞ an
an+1

= 0.
• almost thin if limn→∞ an

an+1
< 1.

• (SC)-set if limn→∞ an+1 − an =∞.

It is easy to check that every thin set is almost thin and every
almost thin set is an (SC)-set. Hence the corresponding classes
of ultrafilters are also in inclusion. In fact, thin ultrafilters and
almost thin ultrafilters coincide although the ideals generated by
thin and almost thin sets are two distinct Fσδ ideals. The ideal
generated by (SC)-sets is an Fσδ ideal too and the corresponding
(SC)-ultrafilters need not be thin.

Proposition 4.2. For U ∈ ω∗ the following are equivalent:
(1) U is a thin ultrafilter.
(2) U is an almost thin ultrafilter.
(3) U is a hereditary Q-point.

Proposition 4.2 was proved in [7].

Theorem 4.3 (= Proposition 2.3.3. in [8]). Every P -point is an
(SC)-ultrafilter.

Proof. Let U be a P -point. Consider an arbitrary function f : ω →
ω. Our aim is to find U ∈ U such that f [U ] ∈ (SC).

Take arbitrary U0 ∈ U . If f [U0] ∈ (SC) then set U = U0.
Otherwise, we will proceed by induction. Suppose we know already
Ui ∈ U , i = 0, 1, . . . , k − 1, such that Ui ⊆ Ui−1 for i > 0 and the
difference of two successive elements of f [Ui] is greater or equal to
2i for every i < k. Enumerate f [Uk−1] = {un : n ∈ ω}. Since U is
an ultrafilter either f−1[{u2n : n ∈ ω}] ∩ Uk−1 or f−1[{u2n+1 : n ∈
ω}] ∩ Uk−1 belongs to U . Denote this set by Uk. If f [Uk] ∈ (SC)
then let U = Uk. If f [Uk] 6∈ (SC) then we may continue the
induction because the difference of two successive elements of f [Uk]
is greater or equal to 2 · 2k−1 = 2k.

If we obtain an infinite sequence of sets Un ∈ U such that
Un ⊇ Un+1 and the difference of two successive elements of f [Un] is
greater or equal to 2n for every n then since U is a P -point there
is U ∈ U such that U ⊆∗ Un for every n ∈ ω. For this U we have
f [U ] ⊆∗ f [Un] for every n ∈ ω. Thus for every k ∈ ω all but finitely
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many pairs of successive elements in f [U ] have difference greater or
equal to 2k and it follows that f [U ] ∈ (SC). �
Theorem 4.4. (MActble)

(1) There is a P -point that is not a thin ultrafilter.
(2) There exists a thin ultrafilter which is not a P -point.

Proof. Since the ideal generated by thin sets is contained in Fσ ideal
I1/n part (1) is a consequence of Proposition 3.1. A thin ultrafilter
which is not a P -point was constructed in [7]. �
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