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Seguentially compact spaces

All topological spaces are Hausdorft.

A topological spaceX is called
if for every sequencér,,),c., in X there exists
a converging subsequence,, ) rc..

36th Winter School on abstract Analvsis. Heinice — p. 2/16



Seguentially compact spaces

All topological spaces are Hausdorff.

Definition.

A topological spaceX is calledsequentially compact
if for every sequencér,,),c., in X there exists
a converging subsequence,, ) rc..

Is It possible to choose the subseguence so
that the set of indices Is "large"?
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Van der Waer den spaces

A C Nis anAP-setif A contains arithmetic
progressions of arbitrary length.
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Van der Waer den spaces
ACNisan If A contains arithmetic
progressions of arbitrary length.

e (van der Waerden theorem)
Sets that are not AP-sets form an ideal

e van der Waerden ideal is dn,.-ideal

A topological spaceX is called

if for every sequencér,,),.c., in X there exists

a converging subsequenc¢e,, )., SO that
{ny : k € w}is an AP-set.

36th Winter School on abstract Analvsis. Heinice — p. 3/16



Van der Waer den spaces

Theorem (Kojman)

If a Hausdorff space& satisfies the following
condition

(x) The closure of every countable setinis
compact and first-countable.

ThenX Is van der Waerden.
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Van der Waer den spaces

Theorem (Kojman)

If a Hausdorff space& satisfies the following
condition

(x) The closure of every countable setinis
compact and first-countable.

ThenX Is van der Waerden.

For example, compact metric spaces or every succes(
ordinal with the order topology satisfy).
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Van der Waer den spaces

Every van der Waerden space is sequentially compac
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Van der Waer den spaces

Every van der Waerden space is sequentially compac

Theorem (Kojman)

There exists a compact, sequentially compact,
separable space which is first-countable at all points
but one, which is not van der Waerden.
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A CNIsan If A contains all finite sums of
elements of some infinite set.
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A CNIsan If A contains all finite sums of
elements of some infinite set.

e (Hindman theorem)
Sets that are not IP-sets form an ideal

A topological spaceX is calledHindman
if for every sequencér,,),c., in X there exists

a converging subsequence,, )., SO that
{ny : k € w}is anlP-set
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A CNIsan If A contains all finite sums of
elements of some infinite set.

e (Hindman theorem)
Sets that are not IP-sets form an ideal

A topological spaceX is calledHindman
if for every sequencér,,),c., in X there exists

a converging subsequence,, )., SO that
{ny : k € w}is anlP-set

Il only finite T, spaces fullfill the condition!!!
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Two F_-1deals
Ti={ACN:Y 4+ <00}
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Two F_-1deals
:{AQN:EaeA%<OO}

e 1,y 1s ank;-ideal andP-ideal

A CNIsan If A contains all finite sums of
elements of arbitrarily large finite sets.
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Two F_-1deals
Ti={ACN:Y 4+ <00}

e 1,y 1s ank;-ideal andP-ideal

A C Nis anip-rich setif A contains all finite sums of
elements of arbitrarily large finite sets.

¢ (Folkman-Rado-Sanders)
Sets that are not ip-rich form an ideal
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Two F_-1deals
Il/n {A C N: EaeA < OO}
e 1,y 1s ank;-ideal andP-ideal

A C Nis anip-rich setif A contains all finite sums of
elements of arbitrarily large finite sets.

¢ (Folkman-Rado-Sanders)
Sets that are not ip-rich form an ideal

e |dealZ;,, Is anF,-ideal
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11 m-Spaces and I,

A topological spaceX is called
if for every sequencér,,),c., in X there exists

a converging subsequenc¢e,, ). SO that
{ni : k € w}is an AP-set.
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11 m-Spaces and I,

A topological spaceX is called

If for every sequencérz,,),.c., in X there exists a
converging subsequence,, )., SO that
{ny : k € w} does not belong @, /,,.

36th Winter School on abstract Analvsis. Heinice — p. 8/16



11 m-Spaces and I,

A topological spaceX is called

if for every sequenceér,,),c., in X there exists a

converging subsequence,, )., SO that
{ny : k € w} does not belong @, /,,.

A topological spaceX is called

if for every sequencérz,,),c., in X there exists a

converging subsequence,, )., SO that
{n; : k € w} does not belong ta;,,.
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Z-spaces

Theorem 1.

If a Hausdorff spac&X satisfies the following
condition

(x) The closure of every countable setXnis
compact and first-countable.

ThenX Is bothZ, ,,-space and;,-space.
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Z-spaces

Theorem 1.

If a Hausdorff spac&X satisfies the following
condition

(x) The closure of every countable setXnis
compact and first-countable.

ThenX Is bothZ, ,,-space and;,-space.

e Theorem 1. is true for an arbitrafy,-ideal onw.
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W -spaces

For a given maximal almost disjoint (MAD) family
of infinite subsets oN we define the spacé as
follows:
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W -spaces

For a given maximal almost disjoint (MAD) family
of infinite subsets oN we define the spacé as
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The underlying set i U {p4: A € A}
Every point inN is isolated.

Every pointp4 has neighborhood base of all sets
{psa} UA\ K whereK is a finite subset ofl.

36th Winter School on abstract Analvsis. Heinice — . 10/16



\If-spaces
For a given maximal almost disjoint (MAD) family
of infinite subsets oN we define the spacé as
follows:
The underlying set i U {p4: A € A}

Every point inN is isolated.

Every pointp4 has neighborhood base of all sets
{psa} UA\ K whereK is a finite subset ofl.

Note: W(.A) is regular, first countable and separable.
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Z-spaces

Theorem 2.

There exists a compact, sequentially compact,
separable space which is first-countable at all points
but one, which iIs not af-space.
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Z-spaces

Theorem 2.

There exists a compact, sequentially compact,

separable space which is first-countable at all points
but one, which iIs not af-space.

Proof. Consider the one-point compactification of
U (A) for a suitable MAD familyA.
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71 m & van der Waer den spaces

Erdos-Turan Conjecture.
Every setd € 7, , Is an AP-set.

If ErdOs-Turan Conjecture is true then
everyZ, ,-space Is van der Waerden.
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71 m & van der Waer den spaces

Erdos-Turan Conjecture.
Every setd € 7, , Is an AP-set.

If ErdOs-Turan Conjecture is true then
everyZ, ,,-space Is van der Waerden.

Theorem 3.

(MA,_cnt.) There exists a van der Waerden space
which is not ariZ, ,,,-space.

e Theorem 3. Is true for an arbitrafy, P-ideal onw.
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Outline of the proof

Lemma

AssumeA C Nisan AP-setand : N — N.
There is an AP-sat’ C A such that

(1) eitherf Is constant o
(2) or f isfinite-to-one orC' and f|C] € I ,,.
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Outline of the proof

Lemma

AssumeA C Nisan AP-setand : N — N.
There is an AP-sat’ C A such that

(1) eitherf Is constant o
(2) or f isfinite-to-one orC' and f|C] € I ,,.

Proposition
(MA ;_cens.) There exists a MAD familyd C 7, /, so

that for every AP-seB C N and every finite-to-one
function f : B — N there exists an AP-sét C B

andA € A so thatf|C] C A.
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Some questions

Is it consistent that there is a van der Waerden space
which iIs not ari;,-space?
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Some questions
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Theorem 4.

(MA,_cent.) There exists afd;,.-space which is not
anz,,,-space.
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Some questions

Is it consistent that there is a van der Waerden space
which is not ari;,-space?

Theorem 4.

(MA,_cent.) There exists afd;,.-space which is not
anz,,,-space.

s It consistent that there Is dR,,-space which Is not
van der Waerden?
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Some questions

Proposition (Kojman)

e The product of two van der Waerden spaces Is
van der Waerden.

e The product of two Hindman spaces is Hindman.
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