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Sequentially compact spaces
All topological spaces are Hausdorff.

Definition.
A topological spaceX is calledsequentially compact
if for every sequence〈xn〉n∈ω in X there exists
a converging subsequence〈xnk

〉k∈ω.
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Sequentially compact spaces
All topological spaces are Hausdorff.

Definition.
A topological spaceX is calledsequentially compact
if for every sequence〈xn〉n∈ω in X there exists
a converging subsequence〈xnk

〉k∈ω.

Is it possible to choose the subsequence so
that the set of indices is "large"?
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Van der Waerden spaces
A ⊆ N is anAP-setif A contains arithmetic
progressions of arbitrary length.
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Van der Waerden spaces
A ⊆ N is anAP-setif A contains arithmetic
progressions of arbitrary length.

• (van der Waerden theorem)
Sets that are not AP-sets form an ideal

• van der Waerden ideal is anFσ-ideal

Definition A. (Kojman)
A topological spaceX is calledvan der Waerden
if for every sequence〈xn〉n∈ω in X there exists
a converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} is an AP-set.
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Van der Waerden spaces
Theorem (Kojman)
If a Hausdorff spaceX satisfies the following
condition

(∗) The closure of every countable set inX is
compact and first-countable.

ThenX is van der Waerden.
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Van der Waerden spaces
Theorem (Kojman)
If a Hausdorff spaceX satisfies the following
condition

(∗) The closure of every countable set inX is
compact and first-countable.

ThenX is van der Waerden.

For example, compact metric spaces or every succesor
ordinal with the order topology satisfy(∗).
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Van der Waerden spaces
Every van der Waerden space is sequentially compact.
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Van der Waerden spaces
Every van der Waerden space is sequentially compact.

Theorem (Kojman)
There exists a compact, sequentially compact,
separable space which is first-countable at all points
but one, which is not van der Waerden.
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A ⊆ N is anIP-setif A contains all finite sums of
elements of some infinite set.
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A ⊆ N is anIP-setif A contains all finite sums of
elements of some infinite set.

• (Hindman theorem)
Sets that are not IP-sets form an ideal

A topological spaceX is calledHindman
if for every sequence〈xn〉n∈ω in X there exists
a converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} is anIP-set.
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A ⊆ N is anIP-setif A contains all finite sums of
elements of some infinite set.

• (Hindman theorem)
Sets that are not IP-sets form an ideal

A topological spaceX is calledHindman
if for every sequence〈xn〉n∈ω in X there exists
a converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} is anIP-set.

!!! only finite T2 spaces fullfill the condition!!!
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Two Fσ-ideals
I1/n= {A ⊆ N :

∑
a∈A

1

a < ∞}
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1
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Two Fσ-ideals
I1/n= {A ⊆ N :

∑
a∈A

1

a < ∞}

• I1/n is anFσ-ideal andP -ideal

A ⊆ N is anip-rich setif A contains all finite sums of
elements of arbitrarily large finite sets.

• (Folkman-Rado-Sanders)
Sets that are not ip-rich form an ideal
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Two Fσ-ideals
I1/n= {A ⊆ N :

∑
a∈A

1

a < ∞}

• I1/n is anFσ-ideal andP -ideal

A ⊆ N is anip-rich setif A contains all finite sums of
elements of arbitrarily large finite sets.

• (Folkman-Rado-Sanders)
Sets that are not ip-rich form an ideal

• IdealIipr is anFσ-ideal
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I1/n-spaces and Iipr

Definition A. (Kojman)
A topological spaceX is calledvan der Waerden
if for every sequence〈xn〉n∈ω in X there exists
a converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} is an AP-set.
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I1/n-spaces and Iipr

Definition C.
A topological spaceX is calledI1/n-space
if for every sequence〈xn〉n∈ω in X there exists a
converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} does not belong toI1/n.
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I1/n-spaces and Iipr

Definition C.
A topological spaceX is calledI1/n-space
if for every sequence〈xn〉n∈ω in X there exists a
converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} does not belong toI1/n.

Definition D.
A topological spaceX is calledIipr-space
if for every sequence〈xn〉n∈ω in X there exists a
converging subsequence〈xnk

〉k∈ω so that
{nk : k ∈ ω} does not belong toIipr.
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I-spaces
Theorem 1.
If a Hausdorff spaceX satisfies the following
condition

(∗) The closure of every countable set inX is
compact and first-countable.

ThenX is bothI1/n-space andIipr-space.
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I-spaces
Theorem 1.
If a Hausdorff spaceX satisfies the following
condition

(∗) The closure of every countable set inX is
compact and first-countable.

ThenX is bothI1/n-space andIipr-space.

• Theorem 1. is true for an arbitraryFσ-ideal onω.
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Ψ-spaces
For a given maximal almost disjoint (MAD) familyA
of infinite subsets ofN we define the spaceΨ(A) as
follows:
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Ψ-spaces
For a given maximal almost disjoint (MAD) familyA
of infinite subsets ofN we define the spaceΨ(A) as
follows:

• The underlying set isN ∪ {pA : A ∈ A}.

• Every point inN is isolated.

• Every pointpA has neighborhood base of all sets
{pA} ∪ A \ K whereK is a finite subset ofA.

Note:Ψ(A) is regular, first countable and separable.
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I-spaces
Theorem 2.
There exists a compact, sequentially compact,
separable space which is first-countable at all points
but one, which is not anI-space.
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I-spaces
Theorem 2.
There exists a compact, sequentially compact,
separable space which is first-countable at all points
but one, which is not anI-space.

Proof.Consider the one-point compactification of
Ψ(A) for a suitable MAD familyA.
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I1/n & van der Waerden spaces
Erdős-Turán Conjecture.
Every setA 6∈ I1/n is an AP-set.

If Erdős-Turán Conjecture is true then
everyI1/n-space is van der Waerden.
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I1/n & van der Waerden spaces
Erdős-Turán Conjecture.
Every setA 6∈ I1/n is an AP-set.

If Erdős-Turán Conjecture is true then
everyI1/n-space is van der Waerden.

Theorem 3.
(MAσ−cent.) There exists a van der Waerden space
which is not anI1/n-space.

• Theorem 3. is true for an arbitraryFσ P -ideal onω.
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Outline of the proof
Lemma
AssumeA ⊆ N is an AP-set andf : N → N.
There is an AP-setC ⊆ A such that

(1) eitherf is constant onC

(2) orf is finite-to-one onC andf [C] ∈ I1/n.
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Outline of the proof
Lemma
AssumeA ⊆ N is an AP-set andf : N → N.
There is an AP-setC ⊆ A such that

(1) eitherf is constant onC

(2) orf is finite-to-one onC andf [C] ∈ I1/n.

Proposition
(MAσ−cent.) There exists a MAD familyA ⊆ I1/n so
that for every AP-setB ⊆ N and every finite-to-one
functionf : B → N there exists an AP-setC ⊆ B
andA ∈ A so thatf [C] ⊆ A.
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Some questions
Is it consistent that there is a van der Waerden space
which is not anIipr-space?

36th Winter School on abstract Analysis, Hejnice – p. 14/16



Some questions
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(MAσ−cent.) There exists anIipr-space which is not
anI1/n-space.
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Some questions
Is it consistent that there is a van der Waerden space
which is not anIipr-space?

Theorem 4.
(MAσ−cent.) There exists anIipr-space which is not
anI1/n-space.

Is it consistent that there is anIipr-space which is not
van der Waerden?
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Some questions
Proposition (Kojman)

• The product of two van der Waerden spaces is
van der Waerden.

• The product of two Hindman spaces is Hindman.
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