Van der Waerden spaces and some other subclasses of sequentially compact spaces

Jana Flašková

flaskova@kma.zcu.cz

University of West Bohemia, Pilsen Czech Republic

36th Winter School on abstract Analysis, Hejnice – p. 1/16

Sequentially compact spaces

All topological spaces are Hausdorff.

Definition.

A topological space X is called sequentially compact if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists

a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$.

Sequentially compact spaces

All topological spaces are Hausdorff.

Definition.

A topological space X is called sequentially compact if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$.

Is it possible to choose the subsequence so that the set of indices is "large"?

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

• (van der Waerden theorem) Sets that are not AP-sets form an ideal

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

- (van der Waerden theorem) Sets that are not AP-sets form an ideal
- van der Waerden ideal is an F_{σ} -ideal

 $A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

- (van der Waerden theorem) Sets that are not AP-sets form an ideal
- van der Waerden ideal is an F_{σ} -ideal

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an AP-set.

Theorem (Kojman)

If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is van der Waerden.

Theorem (Kojman)

If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is van der Waerden.

For example, compact metric spaces or every succesor ordinal with the order topology satisfy (*).

Every van der Waerden space is sequentially compact.

Every van der Waerden space is sequentially compact.

Theorem (Kojman)

There exists a compact, sequentially compact, separable space which is first-countable at all points but one, which is not van der Waerden.

- (Hindman theorem)
 - Sets that are not IP-sets form an ideal

• (Hindman theorem) Sets that are not IP-sets form an ideal

A topological space X is called Hindman if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an IP-set.

• (Hindman theorem) Sets that are not IP-sets form an ideal

A topological space X is called Hindman if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an IP-set.

!!! only finite T_2 spaces fullfill the condition!!!

Two F_{σ} -ideals

$$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$

• $\mathcal{I}_{1/n}$ is an F_{σ} -ideal and P-ideal

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

Two F_{σ} -ideals

$$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$

• $\mathcal{I}_{1/n}$ is an F_{σ} -ideal and P-ideal

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

• (Folkman-Rado-Sanders) Sets that are not ip-rich form an ideal

Two F_{σ} -ideals

$$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$

• $\mathcal{I}_{1/n}$ is an F_{σ} -ideal and P-ideal

 $A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

- (Folkman-Rado-Sanders)
 Sets that are not ip-rich form an ideal
- Ideal \mathcal{I}_{ipr} is an F_{σ} -ideal

$\mathcal{I}_{1/n}\text{-}\text{spaces} \text{ and } \mathcal{I}_{ipr}$

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ is an AP-set.

$\mathcal{I}_{1/n}\text{-}\text{spaces} \text{ and } \mathcal{I}_{ipr}$

Definition C.

- A topological space X is called $\mathcal{I}_{1/n}$ -space
- if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a
- converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that
- $\{n_k : k \in \omega\}$ does not belong to $\mathcal{I}_{1/n}$.

$\mathcal{I}_{1/n}\text{-}\text{spaces}$ and \mathcal{I}_{ipr}

Definition C.

- A topological space X is called $\mathcal{I}_{1/n}$ -space
- if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that
- $\{n_k : k \in \omega\}$ does not belong to $\mathcal{I}_{1/n}$.

Definition D.

A topological space X is called \mathcal{I}_{ipr} -space if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{n_k : k \in \omega\}$ does not belong to \mathcal{I}_{ipr} .

\mathcal{I} -spaces

Theorem 1.

- If a Hausdorff space X satisfies the following condition
 - (*) The closure of every countable set in X is compact and first-countable.
- Then X is both $\mathcal{I}_{1/n}$ -space and \mathcal{I}_{ipr} -space.

\mathcal{I} -spaces

Theorem 1.

- If a Hausdorff space X satisfies the following condition
 - (*) The closure of every countable set in X is compact and first-countable.
- Then X is both $\mathcal{I}_{1/n}$ -space and \mathcal{I}_{ipr} -space.

• Theorem 1. is true for an arbitrary F_{σ} -ideal on ω .

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

• The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$
- Every point in \mathbb{N} is isolated.

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$
- Every point in \mathbb{N} is isolated.
- Every point p_A has neighborhood base of all sets $\{p_A\} \cup A \setminus K$ where K is a finite subset of A.

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}.$
- Every point in \mathbb{N} is isolated.
- Every point p_A has neighborhood base of all sets $\{p_A\} \cup A \setminus K$ where K is a finite subset of A.

Note: $\Psi(\mathcal{A})$ is regular, first countable and separable.

\mathcal{I} -spaces

Theorem 2.

There exists a compact, sequentially compact, separable space which is first-countable at all points but one, which is not an \mathcal{I} -space.

\mathcal{I} -spaces

Theorem 2.

There exists a compact, sequentially compact, separable space which is first-countable at all points but one, which is not an \mathcal{I} -space.

Proof. Consider the one-point compactification of $\Psi(\mathcal{A})$ for a suitable MAD family \mathcal{A} .

$\mathcal{I}_{1/n}$ & van der Waerden spaces

Erdős-Turán Conjecture. Every set $A \notin \mathcal{I}_{1/n}$ is an AP-set.

If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1/n}$ -space is van der Waerden.

$\mathcal{I}_{1/n}$ & van der Waerden spaces

Erdős-Turán Conjecture. Every set $A \notin \mathcal{I}_{1/n}$ is an AP-set.

If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1/n}$ -space is van der Waerden.

Theorem 3.

(MA_{σ -cent.}) There exists a van der Waerden space which is not an $\mathcal{I}_{1/n}$ -space.

• Theorem 3. is true for an arbitrary F_{σ} *P*-ideal on ω .

Outline of the proof

Lemma

- Assume $A \subseteq \mathbb{N}$ is an AP-set and $f : \mathbb{N} \to \mathbb{N}$. There is an AP-set $C \subseteq A$ such that
- (1) either f is constant on C
- (2) or *f* is finite-to-one on *C* and $f[C] \in \mathcal{I}_{1/n}$.

Outline of the proof

Lemma

- Assume $A \subseteq \mathbb{N}$ is an AP-set and $f : \mathbb{N} \to \mathbb{N}$. There is an AP-set $C \subseteq A$ such that
 - (1) either f is constant on C
- (2) or f is finite-to-one on C and $f[C] \in \mathcal{I}_{1/n}$.

Proposition

 $(MA_{\sigma-\text{cent.}})$ There exists a MAD family $\mathcal{A} \subseteq \mathcal{I}_{1/n}$ so that for every AP-set $B \subseteq \mathbb{N}$ and every finite-to-one function $f: B \to \mathbb{N}$ there exists an AP-set $C \subseteq B$ and $A \in \mathcal{A}$ so that $f[C] \subseteq A$.

Is it consistent that there is a van der Waerden space which is not an \mathcal{I}_{ipr} -space?

Is it consistent that there is a van der Waerden space which is not an \mathcal{I}_{ipr} -space?

Theorem 4.

(MA_{σ -cent.}) There exists an \mathcal{I}_{ipr} -space which is not an $\mathcal{I}_{1/n}$ -space.

Is it consistent that there is a van der Waerden space which is not an \mathcal{I}_{ipr} -space?

Theorem 4.

(MA_{σ -cent.}) There exists an \mathcal{I}_{ipr} -space which is not an $\mathcal{I}_{1/n}$ -space.

Is it consistent that there is an \mathcal{I}_{ipr} -space which is not van der Waerden?

Proposition (Kojman)

- The product of two van der Waerden spaces is van der Waerden.
- The product of two Hindman spaces is Hindman.

Proposition (Kojman)

- The product of two van der Waerden spaces is van der Waerden.
- The product of two Hindman spaces is Hindman.

Is the product of two $\mathcal{I}_{1/n}$ -spaces an $\mathcal{I}_{1/n}$ -space?

Proposition (Kojman)

- The product of two van der Waerden spaces is van der Waerden.
- The product of two Hindman spaces is Hindman.
- Is the product of two $\mathcal{I}_{1/n}$ -spaces an $\mathcal{I}_{1/n}$ -space?
- Is the product of two \mathcal{I}_{ipr} -spaces an \mathcal{I}_{ipr} -space?

References

- Kojman, M., Van der Waerden spaces, *Proc. Amer. Math. Soc.* **130**, no. 3, 631 – 635 (electronic), 2002.
- Kojman, M., Shelah, S., Van der Waerden spaces and Hindman spaces are not the same, *Proc. Amer. Math. Soc.* **131**, no. 5, 1619 – 1622 (electronic), 2003.
- Jones, A., A brief remark on van der Waerden spaces, *Proc. Amer. Math. Soc.* **132**, no. 8, 2457 – 2460 (electronic), 2004.