Van der Waerden spaces and some other subclasses of sequentially compact spaces

Jana Flašková
flaskova@kma.zcu.cz
University of West Bohemia, Pilsen
Czech Republic

Sequentially compact spaces

All topological spaces are Hausdorff.

Definition.

A topological space X is called sequentially compact if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$.

Sequentially compact spaces

All topological spaces are Hausdorff.

Definition.

A topological space X is called sequentially compact if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$.

Is it possible to choose the subsequence so that the set of indices is "large"?

Van der Waerden spaces

$A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

Van der Waerden spaces

$A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

- (van der Waerden theorem)

Sets that are not AP-sets form an ideal

Van der Waerden spaces

$A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

- (van der Waerden theorem) Sets that are not AP-sets form an ideal
- van der Waerden ideal is an F_{σ}-ideal

Van der Waerden spaces

$A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

- (van der Waerden theorem) Sets that are not AP-sets form an ideal
- van der Waerden ideal is an F_{σ}-ideal

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ is an AP-set.

Van der Waerden spaces

Theorem (Kojman)
If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is van der Waerden.

Van der Waerden spaces

Theorem (Kojman)
If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is van der Waerden.

For example, compact metric spaces or every succesor ordinal with the order topology satisfy ($*$).

Van der Waerden spaces

Every van der Waerden space is sequentially compact.

Van der Waerden spaces

Every van der Waerden space is sequentially compact.

Theorem (Kojman)
There exists a compact, sequentially compact, separable space which is first-countable at all points but one, which is not van der Waerden.

$A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

$A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

- (Hindman theorem)

Sets that are not IP-sets form an ideal
$A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

- (Hindman theorem)

Sets that are not IP-sets form an ideal

A topological space X is called Hindman if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ is an IP-set.
$A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

- (Hindman theorem)

Sets that are not IP-sets form an ideal
A topological space X is called Hindman if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ is an IP-set.
!!! only finite T_{2} spaces fullfill the condition!!!

Two \boldsymbol{F}_{σ}-ideals

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

Two \boldsymbol{F}_{σ}-ideals

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

- $\mathcal{I}_{1 / n}$ is an F_{σ}-ideal and P-ideal

Two F_{σ}-ideals

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

- $\mathcal{I}_{1 / n}$ is an F_{σ}-ideal and P-ideal
$A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.

Two \boldsymbol{F}_{σ}-ideals

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

- $\mathcal{I}_{1 / n}$ is an F_{σ}-ideal and P-ideal
$A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.
- (Folkman-Rado-Sanders) Sets that are not ip-rich form an ideal

Two \boldsymbol{F}_{σ}-ideals

$$
\mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

- $\mathcal{I}_{1 / n}$ is an F_{σ}-ideal and P-ideal
$A \subseteq \mathbb{N}$ is an ip-rich set if A contains all finite sums of elements of arbitrarily large finite sets.
- (Folkman-Rado-Sanders)

Sets that are not ip-rich form an ideal

- Ideal $\mathcal{I}_{i p r}$ is an F_{σ}-ideal

$\mathcal{I}_{1 / \mathrm{n}}$-spaces and $\mathcal{I}_{\mathrm{ipr}}$

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ is an AP-set.

$\mathcal{I}_{1 / \mathrm{n}}$-Spaces and $\mathcal{I}_{\mathrm{ipr}}$

Definition C.

A topological space X is called $\mathcal{I}_{1 / n}$-space if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ does not belong to $\mathcal{I}_{1 / n}$.

$\mathcal{I}_{1 / \mathrm{n}}$-spaces and $\mathcal{I}_{\mathrm{ipr}}$

Definition C.

A topological space X is called $I_{1 / n}$-space if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ does not belong to $\mathcal{I}_{1 / n}$.

Definition D.

A topological space X is called $\mathcal{I}_{i p r}$-space if for every sequence $\left\langle x_{n}\right\rangle_{n \in \omega}$ in X there exists a converging subsequence $\left\langle x_{n_{k}}\right\rangle_{k \in \omega}$ so that $\left\{n_{k}: k \in \omega\right\}$ does not belong to $\mathcal{I}_{i p r}$.

\mathcal{I}-spaces

Theorem 1.

If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is both $\mathcal{I}_{1 / n}$-space and $\mathcal{I}_{i p r}$-space.

\mathcal{I}-spaces

Theorem 1.

If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is both $\mathcal{I}_{1 / n}$-space and $\mathcal{I}_{i p r}$-space.

- Theorem 1. is true for an arbitrary F_{σ}-ideal on ω.

Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup\left\{p_{A}: A \in \mathcal{A}\right\}$.

Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup\left\{p_{A}: A \in \mathcal{A}\right\}$.
- Every point in \mathbb{N} is isolated.

Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup\left\{p_{A}: A \in \mathcal{A}\right\}$.
- Every point in \mathbb{N} is isolated.
- Every point p_{A} has neighborhood base of all sets $\left\{p_{A}\right\} \cup A \backslash K$ where K is a finite subset of A.

Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup\left\{p_{A}: A \in \mathcal{A}\right\}$.
- Every point in \mathbb{N} is isolated.
- Every point p_{A} has neighborhood base of all sets $\left\{p_{A}\right\} \cup A \backslash K$ where K is a finite subset of A.

Note: $\Psi(\mathcal{A})$ is regular, first countable and separable.

\mathcal{I}-spaces

Theorem 2.

There exists a compact, sequentially compact, separable space which is first-countable at all points but one, which is not an \mathcal{I}-space.

\mathcal{I}-spaces

Theorem 2.
There exists a compact, sequentially compact, separable space which is first-countable at all points but one, which is not an \mathcal{I}-space.

Proof. Consider the one-point compactification of $\Psi(\mathcal{A})$ for a suitable MAD family \mathcal{A}.

$\mathcal{I}_{1 / \mathrm{n}} \&$ van der Waerden spaces

Erdős-Turán Conjecture.
Every set $A \notin \mathcal{I}_{1 / n}$ is an AP-set.
If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1 / n}$-space is van der Waerden.

$\mathcal{I}_{1 / \mathrm{n}} \boldsymbol{\&}$ van der Waerden spaces

Erdős-Turán Conjecture.
Every set $A \notin \mathcal{I}_{1 / n}$ is an AP-set.
If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1 / n}$-space is van der Waerden.

Theorem 3.

($\mathrm{MA}_{\sigma-\text { cent. }}$) There exists a van der Waerden space which is not an $\mathcal{I}_{1 / n}$-space.

- Theorem 3. is true for an arbitrary $F_{\sigma} P$-ideal on ω.

Outline of the proof

Lemma

Assume $A \subseteq \mathbb{N}$ is an AP-set and $f: \mathbb{N} \rightarrow \mathbb{N}$. There is an AP-set $C \subseteq A$ such that
(1) either f is constant on C
(2) or f is finite-to-one on C and $f[C] \in \mathcal{I}_{1 / n}$.

Outline of the proof

Lemma

Assume $A \subseteq \mathbb{N}$ is an AP-set and $f: \mathbb{N} \rightarrow \mathbb{N}$. There is an AP-set $C \subseteq A$ such that
(1) either f is constant on C
(2) or f is finite-to-one on C and $f[C] \in \mathcal{I}_{1 / n}$.

Proposition

($\mathrm{MA}_{\sigma-\text { cent. }}$) There exists a MAD family $\mathcal{A} \subseteq \mathcal{I}_{1 / n}$ so that for every AP-set $B \subseteq \mathbb{N}$ and every finite-to-one function $f: B \rightarrow \mathbb{N}$ there exists an AP-set $C \subseteq B$ and $A \in \mathcal{A}$ so that $f[C] \subseteq A$.

Some questions

Is it consistent that there is a van der Waerden space which is not an $\mathcal{I}_{i p r}$-space?

Some questions

Is it consistent that there is a van der Waerden space which is not an $\mathcal{I}_{i p r}$-space?

Theorem 4.
(MA ${ }_{\sigma-\text { cent. }}$) There exists an $\mathcal{I}_{i p r}$-space which is not an $\mathcal{I}_{1 / n \text {-space. }}$

Some questions

Is it consistent that there is a van der Waerden space which is not an $\mathcal{I}_{i p r}$-space?

Theorem 4.
(MA ${ }_{\sigma-\text { cent. }}$) There exists an $\mathcal{I}_{i p r}$-space which is not an $\mathcal{I}_{1 / n \text {-space. }}$

Is it consistent that there is an $\mathcal{I}_{i p r}$-space which is not van der Waerden?

Some questions

Proposition (Kojman)

- The product of two van der Waerden spaces is van der Waerden.
- The product of two Hindman spaces is Hindman.

Some questions

Proposition (Kojman)

- The product of two van der Waerden spaces is van der Waerden.
- The product of two Hindman spaces is Hindman.

Is the product of two $\mathcal{I}_{1 / n}$-spaces an $\mathcal{I}_{1 / n}$-space?

Some questions

Proposition (Kojman)

- The product of two van der Waerden spaces is van der Waerden.
- The product of two Hindman spaces is Hindman.

Is the product of two $\mathcal{I}_{1 / n}$-spaces an $\mathcal{I}_{1 / n}$-space?
Is the product of two $\mathcal{I}_{i p r}$-spaces an $\mathcal{I}_{i p r}$-space?

References

Kojman, M., Van der Waerden spaces, Proc. Amer. Math. Soc. 130, no. 3, 631 - 635 (electronic), 2002.

Kojman, M., Shelah, S., Van der Waerden spaces and Hindman spaces are not the same, Proc. Amer. Math. Soc. 131, no. 5, 1619-1622 (electronic), 2003.

Jones, A., A brief remark on van der Waerden spaces, Proc. Amer. Math. Soc. 132, no. 8, 2457 - 2460 (electronic), 2004.

