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Selective ultrafilters and P-points

Definition A.
A free ultrafilter U is called a selective ultrafilter (or a Ramsey
ultrafilter) if for all partitions of ω, {Ri : i ∈ ω}, either for some i ,
Ri ∈ U , or (∃U ∈ U) (∀i ∈ ω) |U ∩ Ri | ≤ 1.

A free ultrafilter U is called a P-point if for all partitions of ω,
{Ri : i ∈ ω}, either for some i , Ri ∈ U , or (∃U ∈ U) (∀i ∈ ω)
|U ∩ Ri | < ω.

Theorem (Shelah)
It is consistent that there are no P-points.
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Ultrafilter sums and products

Definition B.
Let U and Vn, n ∈ ω, be ultrafilters on ω.
U-sum of ultrafilters Vn,

∑
U 〈Vn : n ∈ ω〉, is an ultrafilter on

ω × ω defined by M ∈
∑
U 〈Vn : n ∈ ω〉 if and only if

{n : {m : 〈n,m〉 ∈ A} ∈ Vn} ∈ U .

The product of ultrafilters U and V, denoted by U · V, is a U-sum
of ultrafilters Vn, where Vn = V for every n ∈ ω.

- U · U is usually abbreviated as U2

- Un+1 for n > 1 is defined recursively as U · Un

- Uω =
∑
U 〈Un : n ∈ ω〉
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I-ultrafilters

Definition C. (Baumgartner)
Let I be a family of subsets of a set X such that I contains all
singletons and is closed under subsets.
An ultrafilter U on ω is called an I-ultrafilter if for every
F : ω → X there exists A ∈ U such that F [A] ∈ I.

• if I ⊆ J then every I-ultrafilter is a J -ultrafilter
• I-ultrafilters and 〈I〉-ultrafilters coincide
where 〈I〉 is the ideal generated by I
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I-ultrafilters for X = 2ω

family I corresponding I-ultrafilters

converging sequences
and finite sets P-points

discrete sets discrete ultrafilters

scattered sets scattered ultrafilters

{A : µ(Ā) = 0} measure zero ultrafilters

nowhere dense sets nowhere dense ultrafilters



I-ultrafilters for X = 2ω

Theorem (Baumgartner)
(MAσ−centered )
1. There is a nwd ultrafilter which is not measure zero.
2. There is a measure zero ultrafilter which is not scattered.

Theorem (Baumgartner)
1. For every free ultrafilter U on ω, Uω is not discrete.
2. If U is a scattered ultrafilter then Uω is scattered.
3. If U is a P-point then Un is discrete for all n ∈ ω.
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I-ultrafilters for X = 2ω

If I is the family of subsets of 2ω with countable closure then
the corresponding I-ultrafilters are called countable closed
ultrafilters (Brendle).

- Every P-point is countable closed.
- Every countable closed ultrafilter is both measure zero and
scattered.
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Between P-points and nowhere dense ultrafilters
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I-ultrafilters for X = 2ω

Theorem (Brendle)
(MAσ−centered ) There is a discrete ultrafilter which is not
measure zero.

Theorem (Brendle)
If U is a P-point then Uω is countable closed.
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Between P-points and nowhere dense ultrafilters
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Some forcing results

Theorem (Shelah)
1. It is consistent that there are no nowhere dense ultrafilters.
2. It is consistent that there are no P-points, but there is a
nowhere dense ultrafilters.

Theorem (Brendle)
1. It is consistent that there are no measure zero ultrafilters, but
there is a nowhere dense ultrafilter.
2. It is consistent that there are no countable closed ultrafilters,
but there is a measure zero ultrafilter.
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Small subsets of ω

Let A be a subset of ω with an increasing enumeration
A = {an : n ∈ ω}. We say that A is

thin if limn→∞
an

an+1
= 0

(SC)-set if limn→∞ an+1 − an =∞

I1/n= {A ⊆ N :
∑

a∈A
1
a <∞}

Z0= {A ⊆ N : lim supn→∞
|A∩n|

n = 0}

The corresponding I-ultrafilters are called thin ultrafilters,
(SC)-ultrafilters, I1/n-ultrafilters, Z0-ultrafilters.
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I-ultrafilters for X = ω

It follows from the inclusion between appropriate families of
subsets of ω that:
- every thin ultrafilter is both (SC)-ultrafilter and I1/n-ultrafilter
- every (SC)-ultrafilter and I1/n-ultrafilter as well is Z0-ultrafilter

Theorem (Flašková)
1. Every P-point is (SC)-ultrafilter.
2. Every selective ultrafilter is thin.
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I-ultrafilters for X = ω

Theorem (Flašková)
(MActble)
1. There exists a P-point which is not I1/n-ultrafilter.
2. There exists a thin ultrafilter which is not a P-point.

Theorem (Flašková)
1. For every U ∈ ω∗, U2 is neither thin nor (SC)-ultrafilter.
2. Assume I is a P-ideal on ω.
If U and Vn, n ∈ ω, are I-ultrafilters then U-sum of ultrafilters Vn
is I-ultrafilter.
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Two diagrams in one
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Some recent results

Theorem 1.
(MActble) There exists a thin ultrafilter which is not a nowhere
dense ultrafilter.

Theorem 2.
Every measure zero ultrafilter is a Z0-ultrafilter.
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Complete(?) picture
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Open Problem

Conjecture.
(MAσ−centered ) There exists a discrete ultrafilter which is not a
Z0-ultrafilter.

Theorem (Brendle)
(MAσ−centered ) There exists a discrete ultrafilter which is not a
measure zero ultrafilter.
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