Some ultrafilters on natural numbers

Jörg Brendle¹ Jana Flašková²

¹Graduate School of Engineering Kobe University

²Department of Mathematics University of West Bohemia in Pilsen

Winter School on Abstract Analysis – section Topology February 2009

Selective ultrafilters and P-points

Definition A.

A free ultrafilter \mathcal{U} is called a selective ultrafilter (or a Ramsey ultrafilter) if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) \ (\forall i \in \omega) \ |U \cap R_i| \le 1$.

A free ultrafilter \mathcal{U} is called a *P*-point if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) \ (\forall i \in \omega) | U \cap R_i | < \omega$.

Selective ultrafilters and P-points

Definition A.

A free ultrafilter \mathcal{U} is called a selective ultrafilter (or a Ramsey ultrafilter) if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) \ (\forall i \in \omega) \ |U \cap R_i| \le 1$.

A free ultrafilter \mathcal{U} is called a *P*-point if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some *i*, $R_i \in \mathcal{U}$, or $(\exists U \in \mathcal{U}) \ (\forall i \in \omega) | U \cap R_i | < \omega$.

Theorem (Shelah)

It is consistent that there are no *P*-points.

Ultrafilter sums and products

Definition B.

Let \mathcal{U} and \mathcal{V}_n , $n \in \omega$, be ultrafilters on ω . \mathcal{U} -sum of ultrafilters \mathcal{V}_n , $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$, is an ultrafilter on $\omega \times \omega$ defined by $M \in \sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}_n\} \in \mathcal{U}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ultrafilter sums and products

Definition B.

Let \mathcal{U} and \mathcal{V}_n , $n \in \omega$, be ultrafilters on ω . \mathcal{U} -sum of ultrafilters \mathcal{V}_n , $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$, is an ultrafilter on $\omega \times \omega$ defined by $M \in \sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}_n\} \in \mathcal{U}$.

The product of ultrafilters \mathcal{U} and \mathcal{V} , denoted by $\mathcal{U} \cdot \mathcal{V}$, is a \mathcal{U} -sum of ultrafilters \mathcal{V}_n , where $\mathcal{V}_n = \mathcal{V}$ for every $n \in \omega$.

うして 山田 マイボマ エリア しょうくしゃ

Ultrafilter sums and products

Definition B.

Let \mathcal{U} and \mathcal{V}_n , $n \in \omega$, be ultrafilters on ω . \mathcal{U} -sum of ultrafilters \mathcal{V}_n , $\sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$, is an ultrafilter on $\omega \times \omega$ defined by $M \in \sum_{\mathcal{U}} \langle \mathcal{V}_n : n \in \omega \rangle$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}_n\} \in \mathcal{U}$.

The product of ultrafilters \mathcal{U} and \mathcal{V} , denoted by $\mathcal{U} \cdot \mathcal{V}$, is a \mathcal{U} -sum of ultrafilters \mathcal{V}_n , where $\mathcal{V}_n = \mathcal{V}$ for every $n \in \omega$.

- $\mathcal{U}\cdot\mathcal{U}$ is usually abbreviated as \mathcal{U}^2
- \mathcal{U}^{n+1} for n > 1 is defined recursively as $\mathcal{U} \cdot \mathcal{U}^n$
- $\mathcal{U}^{\omega} = \sum_{\mathcal{U}} \langle \mathcal{U}^{n} : n \in \omega \rangle$

\mathcal{I} -ultrafilters

Definition C. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every

 $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

\mathcal{I} -ultrafilters

Definition C. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I} -ultrafilter if for every $F: \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

 \bullet if $\mathcal{I}\subseteq\mathcal{J}$ then every $\mathcal{I}\text{-ultrafilter}$ is a $\mathcal{J}\text{-ultrafilter}$

うして 山田 マイボマ エリア しょうくしゃ

 $\bullet \ensuremath{\mathcal{I}}\xspace$ -ultrafilters and $\langle \ensuremath{\mathcal{I}} \rangle\xspace$ -ultrafilters coincide

where $\langle \mathcal{I} \rangle$ is the ideal generated by \mathcal{I}

family \mathcal{I}

corresponding \mathcal{I} -ultrafilters

converging sequences and finite sets

discrete sets

scattered sets

 $\{\boldsymbol{A}: \boldsymbol{\mu}(\bar{\boldsymbol{A}}) = \boldsymbol{0}\}$

nowhere dense sets

P-points

discrete ultrafilters

scattered ultrafilters

measure zero ultrafilters

nowhere dense ultrafilters

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Baumgartner)

 $(MA_{\sigma-centered})$ 1. There is a nwd ultrafilter which is not measure zero. 2. There is a measure zero ultrafilter which is not scattered.

イロト イポト イヨト イヨト ヨー のくぐ

Theorem (Baumgartner)

 $(MA_{\sigma-centered})$ 1. There is a nwd ultrafilter which is not measure zero. 2. There is a measure zero ultrafilter which is not scattered.

Theorem (Baumgartner)

1. For every free ultrafilter \mathcal{U} on ω , \mathcal{U}^{ω} is not discrete.

- 2. If \mathcal{U} is a scattered ultrafilter then \mathcal{U}^{ω} is scattered.
- 3. If \mathcal{U} is a *P*-point then \mathcal{U}^n is discrete for all $n \in \omega$.

If \mathcal{I} is the family of subsets of 2^{ω} with countable closure then the corresponding \mathcal{I} -ultrafilters are called countable closed ultrafilters (Brendle).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

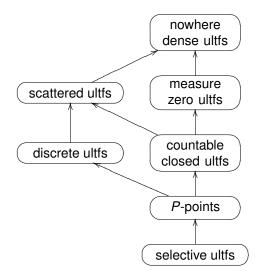
If \mathcal{I} is the family of subsets of 2^{ω} with countable closure then the corresponding \mathcal{I} -ultrafilters are called countable closed ultrafilters (Brendle).

- Every *P*-point is countable closed.

- Every countable closed ultrafilter is both measure zero and scattered.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Between P-points and nowhere dense ultrafilters



・ロト・日本・日本・日本・日本・日本

Theorem (Brendle)

 $(MA_{\sigma-centered})$ There is a discrete ultrafilter which is not measure zero.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

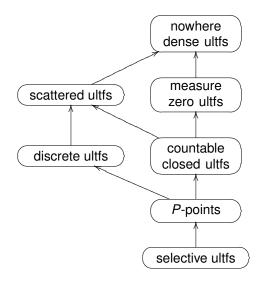
Theorem (Brendle)

 $(MA_{\sigma-centered})$ There is a discrete ultrafilter which is not measure zero.

Theorem (Brendle)

If \mathcal{U} is a *P*-point then \mathcal{U}^{ω} is countable closed.

Between P-points and nowhere dense ultrafilters



assuming (MA_{σ -centered}) no arrow can be added

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○臣 ○のへで

Some forcing results

Theorem (Shelah)

It is consistent that there are no nowhere dense ultrafilters.
It is consistent that there are no *P*-points, but there is a nowhere dense ultrafilters.

イロト イポト イヨト イヨト ヨー のくぐ

Some forcing results

Theorem (Shelah)

It is consistent that there are no nowhere dense ultrafilters.
It is consistent that there are no *P*-points, but there is a nowhere dense ultrafilters.

Theorem (Brendle)

1. It is consistent that there are no measure zero ultrafilters, but there is a nowhere dense ultrafilter.

2. It is consistent that there are no countable closed ultrafilters, but there is a measure zero ultrafilter.

Small subsets of ω

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let *A* be a subset of ω with an increasing enumeration $A = \{a_n : n \in \omega\}$. We say that *A* is

thin if
$$\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$$

(SC)-set if $\lim_{n\to\infty} a_{n+1} - a_n = \infty$

Small subsets of ω

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let *A* be a subset of ω with an increasing enumeration $A = \{a_n : n \in \omega\}$. We say that *A* is

thin if
$$\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$$

(SC)-set if $\lim_{n\to\infty} a_{n+1} - a_n = \infty$

$$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$
$$\mathcal{Z}_0 = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}$$

Small subsets of ω

Let *A* be a subset of ω with an increasing enumeration $A = \{a_n : n \in \omega\}$. We say that *A* is

thin if
$$\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$$

(SC)-set if $\lim_{n\to\infty} a_{n+1} - a_n = \infty$

$$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$
$$\mathcal{Z}_0 = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}$$

The corresponding \mathcal{I} -ultrafilters are called thin ultrafilters, (*SC*)-ultrafilters, $\mathcal{I}_{1/n}$ -ultrafilters, \mathcal{Z}_0 -ultrafilters.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

It follows from the inclusion between appropriate families of subsets of $\boldsymbol{\omega}$ that:

- every thin ultrafilter is both (SC)-ultrafilter and $\mathcal{I}_{1/n}$ -ultrafilter
- every (SC)-ultrafilter and $\mathcal{I}_{1/n}$ -ultrafilter as well is \mathcal{Z}_0 -ultrafilter

うして 山田 マイボマ エリア しょうくしゃ

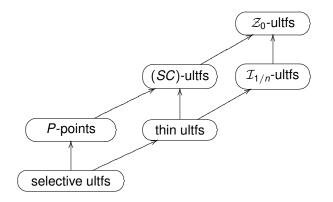
It follows from the inclusion between appropriate families of subsets of $\boldsymbol{\omega}$ that:

- every thin ultrafilter is both (SC)-ultrafilter and $\mathcal{I}_{1/n}$ -ultrafilter
- every (SC)-ultrafilter and $\mathcal{I}_{1/n}$ -ultrafilter as well is \mathcal{Z}_0 -ultrafilter

うして 山田 マイボマ エリア しょうくしゃ

Theorem (Flašková)

- 1. Every *P*-point is (*SC*)-ultrafilter.
- 2. Every selective ultrafilter is thin.



イロト イポト イヨト イヨト ヨー のくぐ

Theorem (Flašková)

 $(\mathsf{MA}_{\mathit{ctble}})$

- 1. There exists a *P*-point which is not $\mathcal{I}_{1/n}$ -ultrafilter.
- 2. There exists a thin ultrafilter which is not a P-point.

Theorem (Flašková)

 (MA_{ctble})

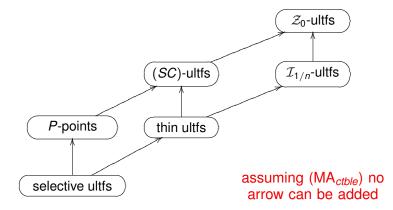
- 1. There exists a *P*-point which is not $\mathcal{I}_{1/n}$ -ultrafilter.
- 2. There exists a thin ultrafilter which is not a P-point.

Theorem (Flašková)

- 1. For every $\mathcal{U} \in \omega^*$, \mathcal{U}^2 is neither thin nor (*SC*)-ultrafilter.
- 2. Assume \mathcal{I} is a *P*-ideal on ω .

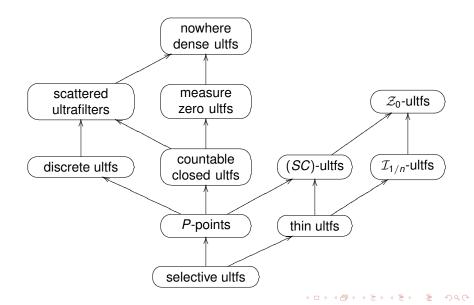
If \mathcal{U} and \mathcal{V}_n , $n \in \omega$, are \mathcal{I} -ultrafilters then \mathcal{U} -sum of ultrafilters \mathcal{V}_n is \mathcal{I} -ultrafilter.

うして 山田 マイボマ エリア しょうくしゃ



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Two diagrams in one



Some recent results

Theorem 1.

 (MA_{ctble}) There exists a thin ultrafilter which is not a nowhere dense ultrafilter.

Theorem 1.

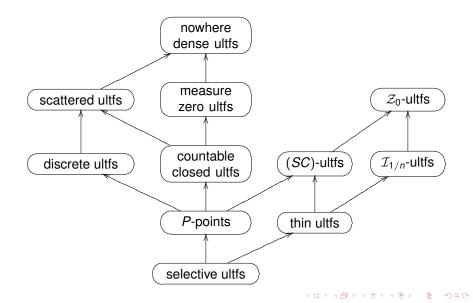
 (MA_{ctble}) There exists a thin ultrafilter which is not a nowhere dense ultrafilter.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

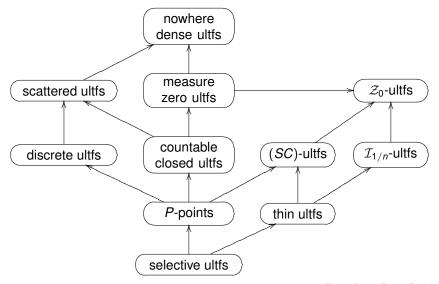
Theorem 2.

Every measure zero ultrafilter is a \mathcal{Z}_0 -ultrafilter.

Two diagrams in one



Complete(?) picture



(ロ)、(型)、(E)、(E)、(E)、(E)、(O)(C)

Conjecture.

 $(MA_{\sigma-centered})$ There exists a discrete ultrafilter which is not a \mathcal{Z}_0 -ultrafilter.

Open Problem

Conjecture.

 $(MA_{\sigma-centered})$ There exists a discrete ultrafilter which is not a \mathcal{Z}_0 -ultrafilter.

Theorem (Brendle)

 $(MA_{\sigma-centered})$ There exists a discrete ultrafilter which is not a measure zero ultrafilter.

イロト イポト イヨト イヨト ヨー のくぐ

References

Baumgartner, J., Ultrafilters on ω , J. Symbolic Logic **60**, no. 2, 624–639, 1995.

Brendle, J., Between *P*-points and nowhere dense ultrafilters, *Israel J. Math.* **113**, 205–230, 1999.

Flašková, J., Ultrafilters and small sets, Ph.D. Thesis, Charles University, Prague, 2006.

Shelah, S., There may be no nowhere dense ultrafilters, in: *Proceedings of the logic colloquium Haifa '95*, Lecture notes Logic, **11**, 305–324, Springer, Berlin, 1998.

・ロト・日本・日本・日本・日本・日本