Introduction	Summable ideals	Proofs	Questions	References
0000	000 0000	000	00	0

Remarks on *Q*-points and rapid ultrafilters

Jana Flašková

Department of Mathematics University of West Bohemia in Pilsen

Winter School on Abstract Analysis – section Topology 31. 1. 2010

Summable ideals

Proof:

Questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References o

Q-points and rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a *Q*-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) | U \cap Q_i | \leq 1$.

Summable ideals

Proofs 000 Questions

References o

Q-points and rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a *Q*-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) | U \cap Q_i | \leq 1$.

A free ultrafilter \mathcal{U} is called rapid if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \le i$.

Summable ideals

Proof:

Questions

References o

Q-points and rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a *Q*-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) | U \cap Q_i | \leq 1$.

A free ultrafilter \mathcal{U} is called rapid if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \le i$.

Alternative definition of an rapid ultrafilter:

A free ultrafilter \mathcal{U} is called rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Introduction	Summable ideals	Proofs	Questions	References
0000	000	000	00	0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Every *Q*-point is rapid, but the converse is not true.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Every *Q*-point is rapid, but the converse is not true.

Theorem (Booth?). (CH) *Q*-points exist.

イロト イポト イヨト イヨト ヨー のくぐ

Every *Q*-point is rapid, but the converse is not true.

Theorem (Booth?). (CH) *Q*-points exist.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

Every *Q*-point is rapid, but the converse is not true.

Theorem (Booth?). (CH) *Q*-points exist.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

In every model where *Q*-points are known not to exist, rapid ultrafilters do not exist either.

イロト イポト イヨト イヨト ヨー のくぐ

Summable idea

Proofs

Questions

イロト イポト イヨト イヨト ヨー のくぐ

References o

Generic existence

Definition (Canjar).

We say that *Q*-points (respectively rapid ultrafilters) exist generically if every filter of character $< \vartheta$ is included in a *Q*-point (respectively rapid ultrafilter).

Summable idea

Proofs

Questions

イロト イポト イヨト イヨト ヨー のくぐ

References

Generic existence

Definition (Canjar).

We say that *Q*-points (respectively rapid ultrafilters) exist generically if every filter of character $< \mathfrak{d}$ is included in a *Q*-point (respectively rapid ultrafilter).

Theorem (Canjar).

The following are equivalent:

- $\operatorname{cov}(\mathcal{M}) = \mathfrak{d},$
- Q-points exist generically,
- Rapid ultrafilters exist generically.

Proof

Generic existence – questions

Definition.

We say that *Q*-points (respectively rapid ultrafilters) exist generically if every filter of character < c is included in a *Q*-point (respectively rapid ultrafilter).

Summable ideal

Proof

Questions

イロト イポト イヨト イヨト ヨー のくぐ

References

Generic existence – questions

Definition.

We say that *Q*-points (respectively rapid ultrafilters) exist generically if every filter of character < c is included in a *Q*-point (respectively rapid ultrafilter).

Question 1. Which equality of cardinal invariants describes the generic existence of *Q*-points (rapid ultrafilters) if we consider the modified definition?

Question 2. Are general existence of *Q*-points and general existence of rapid ultrafilters equivalent also in this new definition?

Summable ideals Pro

Questions

イロト イポト イヨト イヨト ヨー のくぐ

References o

Product of ultrafilters

Definition.

Introduction

Let \mathcal{U} and \mathcal{V} , $n \in \omega$, be ultrafilters on ω . The product of ultrafilters \mathcal{U} and \mathcal{V} , denoted by $\mathcal{U} \times \mathcal{V}$, is an ultrafilter on $\omega \times \omega$ defined by $A \in \mathcal{U} \times \mathcal{V}$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}\} \in \mathcal{U}$.

Questions

References

Product of ultrafilters

Definition.

Introduction

Let \mathcal{U} and \mathcal{V} , $n \in \omega$, be ultrafilters on ω . The product of ultrafilters \mathcal{U} and \mathcal{V} , denoted by $\mathcal{U} \times \mathcal{V}$, is an ultrafilter on $\omega \times \omega$ defined by $A \in \mathcal{U} \times \mathcal{V}$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}\} \in \mathcal{U}$.

It is known that $\mathcal{U} \times \mathcal{V}$ is never a *Q*-point.

References o

Product of ultrafilters

Definition.

Introduction

Let \mathcal{U} and \mathcal{V} , $n \in \omega$, be ultrafilters on ω . The product of ultrafilters \mathcal{U} and \mathcal{V} , denoted by $\mathcal{U} \times \mathcal{V}$, is an ultrafilter on $\omega \times \omega$ defined by $\mathbf{A} \in \mathcal{U} \times \mathcal{V}$ if and only if $\{n : \{m : \langle n, m \rangle \in \mathbf{A}\} \in \mathcal{V}\} \in \mathcal{U}$.

It is known that $\mathcal{U} \times \mathcal{V}$ is never a *Q*-point.

Theorem (Miller).

 $\mathcal{U}\times\mathcal{V}$ is a rapid ultrafilter if and only if \mathcal{V} is rapid.

Summable ideals

Proofs

Questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References

Summable ideals

Definition.

Given a function $g: \omega \to [0, \infty)$ such that $\sum_{n \in \omega} g(n) = \infty$ then the family

$$\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}$$

is a proper ideal which we call summable ideal determined by function *g*.

Summable ideals

Proofs

Questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References

Summable ideals

Definition.

Given a function $g: \omega \to [0, \infty)$ such that $\sum_{n \in \omega} g(n) = \infty$ then the family

$$\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}$$

is a proper ideal which we call summable ideal determined by function *g*.

A summable ideal is tall if and only if $\lim_{n\to\infty} g(n) = 0$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- \mathcal{U} is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

イロト イポト イヨト イヨト ヨー のくぐ

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- U is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

One can add two more equivalent conditions:

 (∀f: ω → ω one-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- *U* is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

One can add two more equivalent conditions:

- (∀f: ω → ω one-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g
- (∀f : ω → ω finite-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an \mathcal{I}_g -ultrafilter if for every $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

\mathcal{I}_g -ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an \mathcal{I}_g -ultrafilter if for every $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

Rapid ultrafilters need not be \mathcal{I}_g -ultrafilters.

\mathcal{I}_g -ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an \mathcal{I}_g -ultrafilter if for every $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

Rapid ultrafilters need not be \mathcal{I}_{g} -ultrafilters.

 If U and V are I_g-ultrafilters then the ultrafilter product U × V is also an I_g-ultrafilter.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Summable ideals

Proof

Questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References

\mathcal{I}_g -ultrafilters and Q-points

Theorem 4.

 (MA_{ctble}) For every tall ideal $\mathcal I$ there is a $\mathit{Q}\text{-point}$ which is not an $\mathcal I\text{-ultrafilter}.$

Summable ideals

Proof: 000 Questions

イロト イポト イヨト イヨト ヨー のくぐ

References

\mathcal{I}_g -ultrafilters and Q-points

Theorem 4.

 (MA_{ctble}) For every tall ideal $\mathcal I$ there is a $\mathit{Q}\text{-point}$ which is not an $\mathcal I\text{-ultrafilter}.$

Theorem 5.

 (MA_{ctble}) Assume $\{\mathcal{I}_{\alpha} : \alpha < \mathfrak{c}\}$ is a family of tall ideals. There is a *Q*-point which is not an \mathcal{I}_{α} -ultrafilter for any $\alpha < \mathfrak{c}$.

Proof: 000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References o

\mathcal{I}_g -ultrafilters and Q-points

Theorem 4.

 (MA_{ctble}) For every tall ideal $\mathcal I$ there is a $\mathit{Q}\text{-point}$ which is not an $\mathcal I\text{-ultrafilter}.$

Theorem 5.

 (MA_{ctble}) Assume $\{\mathcal{I}_{\alpha} : \alpha < \mathfrak{c}\}$ is a family of tall ideals. There is a *Q*-point which is not an \mathcal{I}_{α} -ultrafilter for any $\alpha < \mathfrak{c}$.

Corollary 6.

 (MA_{ctble}) There is a *Q*-point which is not an \mathcal{I}_g -ultrafilter for any summable ideal \mathcal{I}_g .

Summable ideals

Proof

Questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References

 \mathcal{I}_g -ultrafilters and Q-points

Theorem 7.

 (MA_{ctble}) There exists $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g and \mathcal{U} is not a Q-point.

Summable ideals

Proof

Questions

References

\mathcal{I}_g -ultrafilters and Q-points

Theorem 7.

 (MA_{ctble}) There exists $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g and \mathcal{U} is not a Q-point.

The idea of the proof:

1. Take \mathcal{V} which is \mathcal{I}_g -ultrafilter for every \mathcal{I}_g .

Summable ideals

Proof

Questions

References

\mathcal{I}_g -ultrafilters and Q-points

Theorem 7.

 (MA_{ctble}) There exists $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g and \mathcal{U} is not a Q-point.

The idea of the proof:

- 1. Take \mathcal{V} which is \mathcal{I}_g -ultrafilter for every \mathcal{I}_g .
- 2. Put $\mathcal{U} = \mathcal{V} \times \mathcal{V}$ where \mathcal{V} .

Proof:

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

\mathcal{I}_{g} -ultrafilters and rapid ultrafilters

Corollary 6.

 (MA_{ctble}) There is a *Q*-point which is not an \mathcal{I}_g -ultrafilter for any summable ideal \mathcal{I}_g .

Corollary 8.

 (MA_{ctble}) There is a rapid ultrafilter which is not an \mathcal{I}_g -ultrafilter for any summable ideal \mathcal{I}_g .

Proof

References o

\mathcal{I}_g -ultrafilters and rapid ultrafilters

Corollary 6.

 (MA_{ctble}) There is a *Q*-point which is not an \mathcal{I}_g -ultrafilter for any summable ideal \mathcal{I}_g .

Corollary 8.

 (MA_{ctble}) There is a rapid ultrafilter which is not an \mathcal{I}_g -ultrafilter for any summable ideal \mathcal{I}_g .

If $\mathcal{U} \in \omega^*$ is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g then \mathcal{U} is a rapid ultrafilter.

Proof:

Questions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References o

\mathcal{I}_g -ultrafilters and rapid ultrafilters

Theorem 9.

(MA_{ctble}) There is an $\mathcal{I}_{\frac{1}{n}}$ -ultrafilter which is not a rapid ultrafilter.

Proof:

Questions

▲□▶▲□▶▲□▶▲□▶ □ のQで

References

\mathcal{I}_g -ultrafilters and rapid ultrafilters

Theorem 9.

(MA_{ctble}) There is an $\mathcal{I}_{\frac{1}{n}}$ -ultrafilter which is not a rapid ultrafilter.

Theorem 10.

(CH) For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

Summable idea

Proofs •00 Questions

イロト イポト イヨト イヨト ヨー のくぐ

References

Q-points need not be \mathcal{I}_g -ultrafilters Proof of Theorem 5.

Theorem 5.

 (MA_{ctble}) Assume $\{\mathcal{I}_{\alpha} : \alpha < \mathfrak{c}\}$ is a family of tall ideals. There is a *Q*-point which is not an \mathcal{I}_{α} -ultrafilter for any $\alpha < \mathfrak{c}$.

Summable idea

Proofs •00 Questions

References

Q-points need not be \mathcal{I}_g -ultrafilters Proof of Theorem 5.

Theorem 5.

 (MA_{ctble}) Assume $\{\mathcal{I}_{\alpha} : \alpha < \mathfrak{c}\}$ is a family of tall ideals. There is a *Q*-point which is not an \mathcal{I}_{α} -ultrafilter for any $\alpha < \mathfrak{c}$.

Definition.

A family $\mathcal{A} = \{A_{\alpha,n} : \alpha \in I, n \in \omega\} \subseteq \mathcal{P}(\omega)$ is called independent with respect to a filter base \mathcal{F} if $\{A_{\alpha,n} : n \in \omega\}$ is a partition of ω into infinite sets for every $\alpha \in I$ and $(\forall B \in \mathcal{F}) \ (\forall M \in [I]^{<\omega})$ $(\forall f : M \to \omega) \ |B \cap \bigcap_{\beta \in M} A_{\beta,f(\beta)}| = \omega.$

▲ロト▲母ト▲ヨト▲ヨト ヨーのへで

Summable idea

Proofs

Questions

イロト イポト イヨト イヨト ヨー のくぐ

References

Proof of Theorem 5

Outline of the construction

- 1. List all partitions of ω into finite sets as $\{Q_{\alpha} : \alpha < \mathfrak{c}\}$.
- 2. For $\alpha < \mathfrak{c}$ construct filter bases \mathcal{F}_{α} and families $\mathcal{A}_{\alpha} = \{ \mathcal{A}_{\beta,n} : \beta \leq \alpha, n \in \omega \}$ such that for every $\alpha < \mathfrak{c}$ the following hold:
 - (i) \mathcal{F}_0 is the Fréchet filter, \mathcal{A}_0 is partition of ω into infinite sets

(ii)
$$\mathcal{F}_{\alpha} \supseteq \mathcal{F}_{\beta}, \mathcal{A}_{\alpha} \supseteq \mathcal{A}_{\beta}$$
 whenever $\alpha \geq \beta$

(iii)
$$\mathcal{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$$
, $\mathcal{A}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{A}_{\alpha}$ for γ limit

(iv) $(\forall \alpha) |\mathcal{F}_{\alpha}| \leq |\alpha| \cdot \omega$ and $|\mathcal{A}_{\alpha}| \leq |\alpha| \cdot \omega$

(v) $(\forall \alpha) \mathcal{A}_{\alpha}$ is independent with respect to \mathcal{F}_{α}

(vi) $(\forall \alpha) (\exists B \in \mathcal{F}_{\alpha+1}) (\forall Q \in \mathcal{Q}_{\alpha}) |B \cap Q| \leq 1$

Summable idea

Proofs 000 Questions 00 References

Proof of Theorem 5

Outline of the construction

1. List all partitions of ω into finite sets as $\{Q_{\alpha} : \alpha < \mathfrak{c}\}.$

- 2. For α < c construct filter bases F_α and families A_α = {A_{β,n} : β ≤ α, n ∈ ω} such that for every α < c the following hold:
 (i) F₀ is the Fréchet filter, A₀ is partition of ω into infinite sets
 (ii) F_α ⊇ F_β, A_α ⊇ A_β whenever α ≥ β
 (iii) F_γ = ⋃_{α<γ} F_α, A_γ = ⋃_{α<γ} A_α for γ limit
 (iv) (∀α) |F_α| ≤ |α| ⋅ ω and |A_α| ≤ |α| ⋅ ω
 (v) (∀α) (∃B ∈ F_{α+1}) (∀Q ∈ Q_α) |B ∩ Q| ≤ 1
- 3. Complete the induction step using two lemmas:

Summable idea

Proofs

Questions

References o

Proof of Theorem 5

Induction step

Lemma 5a.

(MA_{ctble}) Assume \mathcal{F} is a filter base on ω with $|\mathcal{F}| < \mathfrak{c}$ and $\mathcal{A} = \{A_{\beta,n} : \beta \leq \alpha, n \in \omega\}, \alpha < \mathfrak{c}$ is independent w. r. t. \mathcal{F} . Then there exists a partition of ω into infinite sets $\{A_{\alpha+1,n} : n \in \omega\}$ such that $\mathcal{A}' = \mathcal{A} \cup \{A_{\alpha+1,n} : n \in \omega\}$ is independent with respect to \mathcal{F} .

Lemma 5b.

(MA_{ctble}) Let \mathcal{F} be a filter base on ω with $|\mathcal{F}| < \mathfrak{c}$, $\mathcal{A} = \{A_{\beta,n} : \beta \le \alpha, n \in \omega\}, \alpha < \mathfrak{c}$ an independent family w. r. t. to \mathcal{F} and $\mathcal{Q} = \{Q_i : i \in \omega\}$ a partition of ω into finite sets. Then there exists $C \subseteq \omega$ such that $|C \cap Q| \le 1$ for every $Q \in \mathcal{Q}$ and \mathcal{A} is independent with respect to the filter base \mathcal{F}' generated by \mathcal{F} and C.

Summable idea

Proofs

Questions 00

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

References o

\mathcal{I}_{g} -ultrafilters need not be rapid Proof of Theorem 10.

Theorem 10.

(CH) For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

Summable idea

Proofs

Questions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References o

\mathcal{I}_{g} -ultrafilters need not be rapid Proof of Theorem 10.

Theorem 10.

(CH) For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

Theorem 10a.

(CH) For arbitrary tall summable ideals \mathcal{I}_g and \mathcal{I}_h such that $\mathcal{I}_g \not\leq_{\mathcal{K}} \mathcal{I}_h$ there is an \mathcal{I}_g -ultrafilter \mathcal{U} with $\mathcal{U} \cap \mathcal{I}_h = \emptyset$.

Proofs

Questions

References

\mathcal{I}_{g} -ultrafilters need not be rapid Proof of Theorem 10.

Theorem 10.

(CH) For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

Theorem 10a.

(CH) For arbitrary tall summable ideals \mathcal{I}_g and \mathcal{I}_h such that $\mathcal{I}_g \not\leq_{\mathcal{K}} \mathcal{I}_h$ there is an \mathcal{I}_g -ultrafilter \mathcal{U} with $\mathcal{U} \cap \mathcal{I}_h = \emptyset$.

Proposition 10b.

For every tall summable ideal \mathcal{I}_g there is a tall summable ideal \mathcal{I}_h such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$.

Introduction	Summable ideals
0000	000

Questions • 0

イロト イポト イヨト イヨト ヨー のくぐ

Possible extension and its limits

Is it possible that an ultrafilter is an \mathcal{I}_g -ultrafilter for "many" tall summable ideals simultaneously and still not a rapid ultrafilter?

Summable ideal: 000 0000 Proofs 000 Questions

イロト イポト イヨト イヨト ヨー のくぐ

References o

Possible extension and its limits

Is it possible that an ultrafilter is an \mathcal{I}_g -ultrafilter for "many" tall summable ideals simultaneously and still not a rapid ultrafilter?

Proposition 11.

There is a family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| = \mathfrak{d}$ and an ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if it has a nonempty intersection with every tall summable ideal in \mathcal{D} .

Possible extension and its limits

Is it possible that an ultrafilter is an \mathcal{I}_g -ultrafilter for "many" tall summable ideals simultaneously and still not a rapid ultrafilter?

Proposition 11.

There is a family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| = \mathfrak{d}$ and an ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if it has a nonempty intersection with every tall summable ideal in \mathcal{D} .

Proposition 12.

(CH) If \mathcal{D} is a countable family of tall summable ideals then there is an ultrafilter $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an \mathcal{I} -ultrafilter for every $\mathcal{I} \in \mathcal{D}$, but \mathcal{U} is not a rapid ultrafilter.

Summable ideal

Proofs

Questions

イロト イポト イヨト イヨト ヨー のくぐ

References

Questions

Let $\ensuremath{\mathcal{D}}$ be a family of tall summable ideals.

Question 3.

What is the minimal size of the family \mathcal{D} if rapid ultrafilters can be characterized as those ultrafilters on ω which have a nonempty intersection with all the ideals in the family \mathcal{D} ?

Summable ideal

Proofs

Questions

References

Questions

Let $\ensuremath{\mathcal{D}}$ be a family of tall summable ideals.

Question 3.

What is the minimal size of the family \mathcal{D} if rapid ultrafilters can be characterized as those ultrafilters on ω which have a nonempty intersection with all the ideals in the family \mathcal{D} ?

Question 4.

Is it true that whenever the cardinality of \mathcal{D} is less than \mathfrak{d} then there exist an ultrafilter on the natural numbers which is an \mathcal{I}_g -ultrafilter for every $\mathcal{I}_g \in \mathcal{D}$, but not a rapid ultrafilter?

R. M. Canjar, On the generic existence of special ultrafilters, *Proc. Amer. Math. Soc.* **110** (1990), 233 – 241.

J. Flašková, *I*-ultrafilters and summable ideals, in: *Proceedings* of the 10th Asian Logic Conference, Kobe 2008.

A. Miller, There are no *Q*-points in Laver's model for the Borel conjecture, *Proc. Amer. Math. Soc.* **78** (1980), 498 – 502.

P. Vojtáš, On ω^* and absolutely divergent series, *Topology Proceedings* **19** (1994), 335 – 348.

イロト イポト イヨト イヨト ヨー のくぐ