Uniformity 000 00 Other invariants

References o

イロト イポト イヨト イヨト ヨー のくぐ

Uniformity of the van der Waerden ideal

Jörg Brendle¹ Jana Flašková²

¹Graduate School of Engineering Kobe University

²Department of Mathematics University of West Bohemia in Pilsen

Winter School on Abstract Analysis – section Set Theory January 2011, Hejnice

イロト イポト イヨト イヨト ヨー のくぐ

AP-sets and van der Waerden theorem

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem.

If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

AP-sets and van der Waerden theorem

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem.

If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on $\mathbb N$ — van der Waerden ideal denoted by $\mathcal W$

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal $\ensuremath{\mathcal{W}}$ is

 a tall ideal — because every infinite A ⊆ N contains an infinite subset with no arithmetic progressions of length 3

References o

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal $\ensuremath{\mathcal{W}}$ is

- a tall ideal because every infinite A ⊆ N contains an infinite subset with no arithmetic progressions of length 3
- F_{σ} -ideal because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where $\mathcal{W}_n = \{ A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n \}$

References o

イロト イポト イヨト イヨト ヨー のくぐ

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal $\ensuremath{\mathcal{W}}$ is

 a tall ideal — because every infinite A ⊆ N contains an infinite subset with no arithmetic progressions of length 3

•
$$F_{\sigma}$$
-ideal — because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where
 $\mathcal{W}_n = \{ A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n \}$

not a *P*-ideal — consider for example the sets
 A_k = {2ⁿ + k : n ∈ ω} for k ∈ ω

Uniformit

Other invariants

References o

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Van der Waerden ideal ${\cal W}$

Szemerédi Theorem.

$$\mathcal{W} \subseteq \mathcal{Z}$$
 where $\mathcal{Z} = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$

Uniformi 000 Other invariants

References o

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Van der Waerden ideal ${\cal W}$

Szemerédi Theorem.

$$\mathcal{W} \subseteq \mathcal{Z}$$
 where $\mathcal{Z} = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$

Erdős Conjecture.

$$\mathcal{W} \subseteq \mathcal{I}_{1/n}$$
 where $\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$

イロト イポト イヨト イヨト ヨー のくぐ

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).

Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :

$$\mathsf{add}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(A \not\subseteq^* I)\}$$

イロト イポト イヨト イヨト ヨー のくぐ

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).

Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :

$$\mathsf{add}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(A \not\subseteq^* I)\}$$

$$\mathsf{cov}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^{\aleph_0}) (\exists A \in \mathcal{A}) (|A \cap X| = \aleph_0)\}$$

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).

Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :

$$\mathsf{add}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(A \not\subseteq^* I)\}$$

$$\mathsf{cov}^*(\mathcal{I}) \hspace{.1in} = \hspace{.1in} \mathsf{min}\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^{\aleph_0}) (\exists A \in \mathcal{A}) (|A \cap X| = \aleph_0) \}$$

 $\mathsf{cof}^*(\mathcal{I}) \ = \ \mathsf{min}\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathit{I} \in \mathcal{I})(\exists \mathit{A} \in \mathcal{A})(\mathit{I} \subseteq^* \mathit{A})\}$

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).

Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :

$$\mathsf{add}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(A \not\subseteq^* I)\}$$

$$\mathsf{cov}^*(\mathcal{I}) \hspace{.1in} = \hspace{.1in} \mathsf{min}\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^{\aleph_0}) (\exists A \in \mathcal{A}) (|A \cap X| = \aleph_0) \}$$

$$\mathsf{cof}^*(\mathcal{I}) \ = \ \mathsf{min}\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathit{I} \in \mathcal{I})(\exists \mathit{A} \in \mathcal{A})(\mathit{I} \subseteq^* \mathit{A})\}$$

 $\mathsf{non}^*(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\aleph_0} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(|A \cap I| < \aleph_0)\}$

References o

イロト イポト イヨト イヨト ヨー のくぐ

Cardinal invariants of ideals on ω

The inequalities holding among these cardinals are summarized in the following diagram:

Uniformity

Other invariants

References o

Lower bound for non^{*}(W)

Theorem 1.

 $\mathsf{non}^*(\mathcal{W}) \ge \mathsf{cov}(\mathcal{M})$

Uniformity

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Lower bound for non^{*}(W)

Theorem 1. $\operatorname{non}^*(\mathcal{W}) \ge \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M}) = \min\{|\mathcal{F}| : \mathcal{F} \text{ s.t. } (\forall g \in \omega^{\omega})(\exists f \in \mathcal{F})(\forall^{\infty} n)f(n) \neq g(n)\}$

Uniformity
000
00

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Lower bound for non^{*}(W)

Theorem 1. $\operatorname{non}^*(\mathcal{W}) \ge \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M}) = \min\{|\mathcal{F}| : \mathcal{F} \text{ s.t. } (\forall g \in \omega^{\omega})(\exists f \in \mathcal{F})(\forall^{\infty} n)f(n) \neq g(n)\}$

2.
$$\omega = \bigcup_{n \in \omega} I_n$$
 where $I_n = [2^n; 2^{n+1})$

Uniformity

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Lower bound for non^{*}(W)

Theorem 1. $\operatorname{non}^*(\mathcal{W}) \ge \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M}) = \min\{|\mathcal{F}| : \mathcal{F} \text{ s.t. } (\forall g \in \omega^{\omega})(\exists f \in \mathcal{F})(\forall^{\infty} n)f(n) \neq g(n)\}$

2.
$$\omega = \bigcup_{n \in \omega} I_n$$
 where $I_n = [2^n; 2^{n+1})$

3. For every $A \in \mathcal{A} \subseteq [\omega]^{\aleph_0}$ define $f_A : \omega \to \omega$

$$f_{A} = \begin{cases} \min(I_{n} \cap A) & \text{if } I_{n} \cap A \neq \emptyset \\ \text{undefined} & \text{otherwise} \end{cases}$$

Uniformity

Other invariants

References o

Lower bound for non^{*}(W)

Theorem 1. $\operatorname{non}^*(\mathcal{W}) \ge \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M}) = \min\{|\mathcal{F}| : \mathcal{F} \text{ s.t. } (\forall g \in \omega^{\omega})(\exists f \in \mathcal{F})(\forall^{\infty} n)f(n) \neq g(n)\}$

2.
$$\omega = \bigcup_{n \in \omega} I_n$$
 where $I_n = [2^n; 2^{n+1})$

3. For every $A \in \mathcal{A} \subseteq [\omega]^{\aleph_0}$ define $f_A : \omega \to \omega$

$$f_{A} = \begin{cases} \min(I_{n} \cap A) & \text{if } I_{n} \cap A \neq \emptyset \\ \text{undefined} & \text{otherwise} \end{cases}$$

4. If $|\mathcal{A}| < \operatorname{cov}(\mathcal{M})$ then $(\exists g \in \omega^{\omega})(\forall A \in \mathcal{A})(\exists^{\infty} n)f_{A}(n) = g(n)$

・ロト・日本・山下・ 山下・ 人口・

Uniformity

Other invariants

References o

Lower bound for non^{*}(\mathcal{W})

Theorem 1. $\operatorname{non}^*(\mathcal{W}) \ge \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M}) = \min\{|\mathcal{F}| : \mathcal{F} \text{ s.t. } (\forall g \in \omega^{\omega})(\exists f \in \mathcal{F})(\forall^{\infty} n)f(n) \neq g(n)\}$

2.
$$\omega = \bigcup_{n \in \omega} I_n$$
 where $I_n = [2^n; 2^{n+1})$

3. For every $A \in \mathcal{A} \subseteq [\omega]^{\aleph_0}$ define $f_A : \omega \to \omega$

$$f_{A} = \begin{cases} \min(I_{n} \cap A) & \text{if } I_{n} \cap A \neq \emptyset \\ \text{undefined} & \text{otherwise} \end{cases}$$

4. If |A| < cov(M) then (∃g ∈ ω^ω)(∀A ∈ A)(∃[∞]n)f_A(n) = g(n)
5. I = {g(n) : n ∈ ω} ∈ W and |I ∩ A| = ℵ₀ for every A ∈ A

Uniformity

Other invariants

References o

Upper bound for non^{*}(\mathcal{W})

Theorem 2.

 $\mathsf{non}^*(\mathcal{W}) \leq \mathfrak{r}$

Uniformity	
000	
00	

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Upper bound for non^{*}(W)

Theorem 2. $\operatorname{non}^*(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

1. Identify \mathbb{N} with $\Delta = \{ \langle m, n \rangle \in \omega \times \omega : n \leq m \}$

Uniformity	
000	
00	

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Upper bound for non^{*}(\mathcal{W})

Theorem 2. $\operatorname{non}^*(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

- 1. Identify \mathbb{N} with $\Delta = \{ \langle m, n \rangle \in \omega \times \omega : n \leq m \}$
- 2. Let ${\mathcal R}$ be a hereditarily reaping family of size ${\mathfrak r}$

ι	Iniformity	
C	00	
	0	

Other invariants

References o

Upper bound for non^{*}(\mathcal{W})

Theorem 2. $\operatorname{non}^*(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

- 1. Identify \mathbb{N} with $\Delta = \{ \langle m, n \rangle \in \omega \times \omega : n \leq m \}$
- 2. Let $\mathcal R$ be a hereditarily reaping family of size $\mathfrak r$
- **3**. For $R \in \mathcal{R}$ and $n \in \omega$ put

$$A_{R,n} = \{ \langle m, n \rangle \in \Delta : m \in R, m \ge n \}$$

ι	Iniformity	
C	00	
	0	

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Upper bound for non^{*}(\mathcal{W})

Theorem 2. $\operatorname{non}^*(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

- 1. Identify \mathbb{N} with $\Delta = \{ \langle m, n \rangle \in \omega \times \omega : n \leq m \}$
- 2. Let $\mathcal R$ be a hereditarily reaping family of size $\mathfrak r$
- **3**. For $R \in \mathcal{R}$ and $n \in \omega$ put

$$A_{R,n} = \{ \langle m, n \rangle \in \Delta : m \in R, m \ge n \}$$

4. Show that for every $I \in \mathcal{I}$ there exists $R \in \mathcal{R}$, $k \in \mathbb{N}$ with

$$|A_{R,k} \cap I| < \aleph_0$$

Uniformity

Other invariants

References o

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

More bounds for non^{*}(W)

If $\mathcal{I} \subseteq \mathcal{J}$ are two tall ideals on \mathbb{N} then $\mathsf{non}^*(\mathcal{I}) \le \mathsf{non}^*(\mathcal{J})$.

Uniformity

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

More bounds for non^{*}(W)

If $\mathcal{I} \subseteq \mathcal{J}$ are two tall ideals on \mathbb{N} then $\mathsf{non}^*(\mathcal{I}) \le \mathsf{non}^*(\mathcal{J})$.

Theorem (Hernández-Hernández, Hrušák).

 $\mathsf{non}^*(\mathcal{Z}) \leq \mathsf{max}\{\mathfrak{d},\mathsf{non}(\mathcal{N})\}$

Uniformity

Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

More bounds for non^{*}(W)

If $\mathcal{I} \subseteq \mathcal{J}$ are two tall ideals on \mathbb{N} then $\mathsf{non}^*(\mathcal{I}) \le \mathsf{non}^*(\mathcal{J})$.

Theorem (Hernández-Hernández, Hrušák).

 $\mathsf{non}^*(\mathcal{Z}) \leq \mathsf{max}\{\mathfrak{d},\mathsf{non}(\mathcal{N})\}$

Corollary 3. $\operatorname{non}^*(\mathcal{W}) \leq \max\{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}$

References o

Questions about upper bounds for non^{*}(W)

Question A. Does non^{*}(W) $\leq \mathfrak{d}$ hold in ZFC?

References o

Questions about upper bounds for non^{*}(W)

Question A. Does non^{*}(W) $\leq \mathfrak{d}$ hold in ZFC?

NO.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Questions about upper bounds for non^{*}(W)

Question A. Does non^{*}(W) $\leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d} = \aleph_1$ and $\operatorname{non}^*(\mathcal{W}) = \aleph_2$.

Questions about upper bounds for non^{*}(W)

Question A. Does non^{*}(W) $\leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d} = \aleph_1$ and $\operatorname{non}^*(\mathcal{W}) = \aleph_2$.

Question B. Does non^{*}(W) \leq non(N) hold in ZFC?

▲□▶▲□▶▲□▶▲□▶ □ のQで

Questions about upper bounds for non^{*}(W)

Question A. Does non^{*}(W) $\leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d} = \aleph_1$ and $\operatorname{non}^*(\mathcal{W}) = \aleph_2$.

Question B. Does non^{*}(W) \leq non(N) hold in ZFC?

VERY LIKELY YES.

Questions about upper bounds for non^{*}(W)

Question A. Does non^{*}(W) $\leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d} = \aleph_1$ and $non^*(\mathcal{W}) = \aleph_2$.

Question B. Does non^{*}(W) \leq non(N) hold in ZFC?

VERY LIKELY YES. Because non^{*}($\mathcal{I}_{1/n}$) \leq non(\mathcal{N}) (H.-H., Hr.) and non^{*}(\mathcal{W}) \leq non^{*}($\mathcal{I}_{1/n}$) if Erdős Conjecture is true.

Questions about lower bounds for non^{*}(W)

Theorem (Hernández-Hernández, Hrušák).

 $\mathsf{non}^*(\mathcal{Z}) \geq \mathsf{min}\{\mathfrak{d}, \mathsf{cov}(\mathcal{N})\}$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Questions about lower bounds for non^{*}(W)

Theorem (Hernández-Hernández, Hrušák).

 $\mathsf{non}^*(\mathcal{Z}) \geq \mathsf{min}\{\mathfrak{d}, \mathsf{cov}(\mathcal{N})\}$

Question C. Does non^{*}(W) \geq min{ $\mathfrak{d}, cov(\mathcal{N})$ } hold in ZFC?

Questions about lower bounds for non^{*}(W)

Theorem (Hernández-Hernández, Hrušák).

 $\mathsf{non}^*(\mathcal{Z}) \geq \mathsf{min}\{\mathfrak{d}, \mathsf{cov}(\mathcal{N})\}$

Question C. Does non^{*}(W) \geq min{ $\mathfrak{d}, cov(\mathcal{N})$ } hold in ZFC?

What about other small cardinals — \mathfrak{b} , \mathfrak{h} , \mathfrak{p} etc.?

Uniformity 000 00 Other invariants

References o

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Additivity number of $\ensuremath{\mathcal{W}}$

The additivity number of an ideal $\ensuremath{\mathcal{I}}$ is uncountable

if and only if

the ideal \mathcal{I} is a *P*-ideal.

Uniformity 000 00 Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Additivity number of $\ensuremath{\mathcal{W}}$

The additivity number of an ideal $\ensuremath{\mathcal{I}}$ is uncountable

if and only if

the ideal \mathcal{I} is a *P*-ideal.

Observation 4.

 $\text{add}^*(\mathcal{W}) = \aleph_0$

Uniformity 000 00 Other invariants

References o

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Cofinality number of $\ensuremath{\mathcal{W}}$

Proposition 5.

$$\operatorname{cof}^*(\mathcal{W}) = 2^{leph_0}$$

Uniformity 000 00 Other invariants

References o

Cofinality number of $\mathcal W$

Proposition 5.
$$\operatorname{cof}^*(\mathcal{W}) = 2^{\aleph_0}$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq {}^{\omega}\omega$ such that every $f \in P$ satisfies f(n+1) > 2f(n) for every $n \in \omega$ and whenever $f_0, f_1, \ldots, f_k \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\{f_0(n), f_1(n), \ldots, f_k(n)\}$ is a set of k + 1 successive integers.

Uniformity 000 00 Other invariants

References o

Cofinality number of $\mathcal W$

Proposition 5.
$$cof^*(W) = 2^{\aleph}$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq {}^{\omega}\omega$ such that every $f \in P$ satisfies f(n+1) > 2f(n) for every $n \in \omega$ and whenever $f_0, f_1, \ldots, f_k \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\{f_0(n), f_1(n), \ldots, f_k(n)\}$ is a set of k + 1 successive integers.

2.
$$A_f = \{f(n) : n \in \omega\} \in \mathcal{W}$$
 for every $f \in P$

Uniformity 000 00 Other invariants

References o

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cofinality number of $\mathcal W$

Proposition 5.
$$cof^*(W) = 2^{\aleph}$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq {}^{\omega}\omega$ such that every $f \in P$ satisfies f(n+1) > 2f(n) for every $n \in \omega$ and whenever $f_0, f_1, \ldots, f_k \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\{f_0(n), f_1(n), \ldots, f_k(n)\}$ is a set of k + 1 successive integers.

2.
$$A_f = \{f(n) : n \in \omega\} \in \mathcal{W}$$
 for every $f \in P$

3. { $f \in P : A_f \subseteq^* B$ } is finite for every $B \in W$

Uniformity 000 00 Other invariants

References o

Covering number of $\ensuremath{\mathcal{W}}$

Theorem (Hernández-Hernández, Hrušák).

 $\text{cov}^*(\mathcal{Z}) \geq \text{min}\{\mathfrak{b}, \text{cov}(\mathcal{N})\}$

Uniformity 000 00 Other invariants

References o

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Covering number of $\ensuremath{\mathcal{W}}$

Theorem (Hernández-Hernández, Hrušák).

 $\text{cov}^*(\mathcal{Z}) \geq \text{min}\{\mathfrak{b}, \text{cov}(\mathcal{N})\}$

Corollary 6.

$$cov^*(\mathcal{W}) \ge min\{\mathfrak{b}, cov(\mathcal{N})\}$$

Uniformity 000 00 Other invariants

References o

Covering number of $\ensuremath{\mathcal{W}}$

Theorem (Hernández-Hernández, Hrušák).

 $\text{cov}^*(\mathcal{Z}) \geq \text{min}\{\mathfrak{b}, \text{cov}(\mathcal{N})\}$

Corollary 6.
$$\operatorname{cov}^*(\mathcal{W}) \ge \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\}$$

Conjectures.

- 1. $cov^*(\mathcal{W}) \leq non(\mathcal{M})$
- 2. $\operatorname{cov}^*(\mathcal{W}) \geq \mathfrak{s}$
- 3. $cov^*(W) \le max\{\mathfrak{b}, non(\mathcal{N})\}\$

and many more ...

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Uniformity

Other invariants

References

イロト イポト イヨト イヨト ヨー のくぐ

References

F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic *P*-ideals, *Canad. J. Math.* **59**(3), 575 – 595, 2007.

D. Meza Alcántara, Ideals and filters on countable sets, *Ph.D. thesis*, 2009.