Uniformity of the van der Waerden ideal

Jörg Brendle ${ }^{1}$ Jana Flašková ${ }^{2}$

${ }^{1}$ Graduate School of Engineering
Kobe University
${ }^{2}$ Department of Mathematics University of West Bohemia in Pilsen

Winter School on Abstract Analysis - section Set Theory January 2011, Hejnice

AP-sets and van der Waerden theorem

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem.
If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

AP-sets and van der Waerden theorem

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem.
If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on \mathbb{N} - van der Waerden ideal denoted by \mathcal{W}

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- a tall ideal - because every infinite $A \subseteq \mathbb{N}$ contains an infinite subset with no arithmetic progressions of length 3

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- a tall ideal - because every infinite $A \subseteq \mathbb{N}$ contains an infinite subset with no arithmetic progressions of length 3
- F_{σ}-ideal - because $\mathcal{W}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{n}$ where

$$
\mathcal{W}_{n}=\{A \subseteq \mathbb{N}: A \text { contains no a. p. of length } n\}
$$

Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- a tall ideal - because every infinite $A \subseteq \mathbb{N}$ contains an infinite subset with no arithmetic progressions of length 3
- F_{σ}-ideal - because $\mathcal{W}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{n}$ where

$$
\mathcal{W}_{n}=\{A \subseteq \mathbb{N}: A \text { contains no a. p. of length } n\}
$$

- not a P-ideal — consider for example the sets

$$
A_{k}=\left\{2^{n}+k: n \in \omega\right\} \text { for } k \in \omega
$$

Van der Waerden ideal \mathcal{W}

Szemerédi Theorem.

$$
\mathcal{W} \subseteq \mathcal{Z} \text { where } \mathcal{Z}=\left\{A \subseteq \mathbb{N}: \limsup _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\}
$$

Van der Waerden ideal \mathcal{W}

Szemerédi Theorem.

$$
\mathcal{W} \subseteq \mathcal{Z} \text { where } \mathcal{Z}=\left\{A \subseteq \mathbb{N}: \limsup _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\}
$$

Erdős Conjecture.

$$
\mathcal{W} \subseteq \mathcal{I}_{1 / n} \text { where } \mathcal{I}_{1 / n}=\left\{A \subseteq \mathbb{N}: \sum_{a \in A} \frac{1}{a}<\infty\right\}
$$

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).
Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :
$\operatorname{add}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(A \not \Phi^{*} I\right)\right\}$

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).
Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :
$\operatorname{add}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(A \not \mathbb{Z}^{*} I\right)\right\}$
$\operatorname{cov}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge\left(\forall X \in[\omega]^{\aleph_{0}}\right)(\exists A \in \mathcal{A})\left(|A \cap X|=\aleph_{0}\right)\right\}$

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).
Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets. Define the following cardinals associated with \mathcal{I} :
$\operatorname{add}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(A \not \mathbb{Z}^{*} I\right)\right\}$
$\operatorname{cov}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge\left(\forall X \in[\omega]^{\aleph_{0}}\right)(\exists A \in \mathcal{A})\left(|A \cap X|=\aleph_{0}\right)\right\}$
$\operatorname{cof}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(I \subseteq{ }^{*} A\right)\right\}$

Cardinal invariants of ideals on ω

Definition (Hernández-Hernández, Hrušák).
Let \mathcal{I} be a tall ideal on ω containing the ideal of finite sets.
Define the following cardinals associated with \mathcal{I} :
$\operatorname{add}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(A \not \mathbb{E}^{*} I\right)\right\}$
$\operatorname{cov}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge\left(\forall X \in[\omega]^{\aleph_{0}}\right)(\exists A \in \mathcal{A})\left(|A \cap X|=\aleph_{0}\right)\right\}$
$\operatorname{cof}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(I \subseteq^{*} A\right)\right\}$
$\operatorname{non}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq[\omega]^{\aleph_{0}} \wedge(\forall I \in \mathcal{I})(\exists A \in \mathcal{A})\left(|A \cap I|<\aleph_{0}\right)\right\}$

Cardinal invariants of ideals on ω

The inequalities holding among these cardinals are summarized in the following diagram:

Lower bound for non* (\mathcal{W})

Theorem 1. $\operatorname{non}^{*}(\mathcal{W}) \geq \operatorname{cov}(\mathcal{M})$

Lower bound for non* (\mathcal{W})

Theorem 1. $\operatorname{non}^{*}(\mathcal{W}) \geq \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ s.t. $\left.\left(\forall g \in \omega^{\omega}\right)(\exists f \in \mathcal{F})\left(\forall^{\infty} n\right) f(n) \neq g(n)\right\}$

Lower bound for non* (\mathcal{W})

Theorem 1. $\operatorname{non}^{*}(\mathcal{W}) \geq \operatorname{cov}(\mathcal{M})$

Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ s.t. $\left.\left(\forall g \in \omega^{\omega}\right)(\exists f \in \mathcal{F})\left(\forall^{\infty} n\right) f(n) \neq g(n)\right\}$
2. $\omega=\bigcup_{n \in \omega} I_{n}$ where $I_{n}=\left[2^{n} ; 2^{n+1}\right)$

Lower bound for non* (\mathcal{W})

Theorem 1. $\quad \operatorname{non}^{*}(\mathcal{W}) \geq \operatorname{cov}(\mathcal{M})$
Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ s.t. $\left.\left(\forall g \in \omega^{\omega}\right)(\exists f \in \mathcal{F})\left(\forall^{\infty} n\right) f(n) \neq g(n)\right\}$
2. $\omega=\bigcup_{n \in \omega} I_{n}$ where $I_{n}=\left[2^{n} ; 2^{n+1}\right)$
3. For every $A \in \mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ define $f_{A}: \omega \rightarrow \omega$

$$
f_{A}= \begin{cases}\min \left(I_{n} \cap A\right) & \text { if } I_{n} \cap A \neq \emptyset \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Lower bound for non* (\mathcal{W})

Theorem 1. $\quad \operatorname{non}^{*}(\mathcal{W}) \geq \operatorname{cov}(\mathcal{M})$
Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ s.t. $\left.\left(\forall g \in \omega^{\omega}\right)(\exists f \in \mathcal{F})\left(\forall^{\infty} n\right) f(n) \neq g(n)\right\}$
2. $\omega=\bigcup_{n \in \omega} I_{n}$ where $I_{n}=\left[2^{n} ; 2^{n+1}\right)$
3. For every $A \in \mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ define $f_{A}: \omega \rightarrow \omega$

$$
f_{A}= \begin{cases}\min \left(I_{n} \cap A\right) & \text { if } I_{n} \cap A \neq \emptyset \\ \text { undefined } & \text { otherwise }\end{cases}
$$

4. If $|\mathcal{A}|<\operatorname{cov}(\mathcal{M})$ then $\left(\exists g \in \omega^{\omega}\right)(\forall A \in \mathcal{A})\left(\exists^{\infty} n\right) f_{A}(n)=g(n)$

Lower bound for non* (\mathcal{W})

Theorem 1. $\quad \operatorname{non}^{*}(\mathcal{W}) \geq \operatorname{cov}(\mathcal{M})$
Sketch of the proof:

1. $\operatorname{cov}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F}\right.$ s.t. $\left.\left(\forall g \in \omega^{\omega}\right)(\exists f \in \mathcal{F})\left(\forall^{\infty} n\right) f(n) \neq g(n)\right\}$
2. $\omega=\bigcup_{n \in \omega} I_{n}$ where $I_{n}=\left[2^{n} ; 2^{n+1}\right)$
3. For every $A \in \mathcal{A} \subseteq[\omega]^{\aleph_{0}}$ define $f_{A}: \omega \rightarrow \omega$

$$
f_{A}= \begin{cases}\min \left(I_{n} \cap A\right) & \text { if } I_{n} \cap A \neq \emptyset \\ \text { undefined } & \text { otherwise }\end{cases}
$$

4. If $|\mathcal{A}|<\operatorname{cov}(\mathcal{M})$ then $\left(\exists g \in \omega^{\omega}\right)(\forall A \in \mathcal{A})\left(\exists^{\infty} n\right) f_{A}(n)=g(n)$
5. $I=\{g(n): n \in \omega\} \in \mathcal{W}$ and $|I \cap A|=\aleph_{0}$ for every $A \in \mathcal{A}$

Upper bound for non*(\mathcal{W})

Theorem 2. $\operatorname{non}^{*}(\mathcal{W}) \leq \mathfrak{r}$

Upper bound for non* (\mathcal{W})

Theorem 2. non $^{*}(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

1. Identify \mathbb{N} with $\Delta=\{\langle m, n\rangle \in \omega \times \omega: n \leq m\}$

Upper bound for non* (\mathcal{W})

Theorem 2. non $^{*}(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

1. Identify \mathbb{N} with $\Delta=\{\langle m, n\rangle \in \omega \times \omega: n \leq m\}$
2. Let \mathcal{R} be a hereditarily reaping family of size \mathfrak{r}

Upper bound for non* (\mathcal{W})

Theorem 2. $\operatorname{non}^{*}(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

1. Identify \mathbb{N} with $\Delta=\{\langle m, n\rangle \in \omega \times \omega: n \leq m\}$
2. Let \mathcal{R} be a hereditarily reaping family of size \mathfrak{r}
3. For $R \in \mathcal{R}$ and $n \in \omega$ put

$$
A_{R, n}=\{\langle m, n\rangle \in \Delta: m \in R, m \geq n\}
$$

Upper bound for non* (\mathcal{W})

Theorem 2. non $^{*}(\mathcal{W}) \leq \mathfrak{r}$

Sketch of the proof:

1. Identify \mathbb{N} with $\Delta=\{\langle m, n\rangle \in \omega \times \omega: n \leq m\}$
2. Let \mathcal{R} be a hereditarily reaping family of size \mathfrak{r}
3. For $R \in \mathcal{R}$ and $n \in \omega$ put

$$
A_{R, n}=\{\langle m, n\rangle \in \Delta: m \in R, m \geq n\}
$$

4. Show that for every $I \in \mathcal{I}$ there exists $R \in \mathcal{R}, k \in \mathbb{N}$ with

$$
\left|A_{R, k} \cap I\right|<\aleph_{0}
$$

More bounds for non* (\mathcal{W})

If $\mathcal{I} \subseteq \mathcal{J}$ are two tall ideals on \mathbb{N} then non* $(\mathcal{I}) \leq \operatorname{non}^{*}(\mathcal{J})$.

More bounds for non* (\mathcal{W})

If $\mathcal{I} \subseteq \mathcal{J}$ are two tall ideals on \mathbb{N} then non* $(\mathcal{I}) \leq \operatorname{non}^{*}(\mathcal{J})$.

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{non}^{*}(\mathcal{Z}) \leq \max \{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}
$$

More bounds for non*(\mathcal{W})

If $\mathcal{I} \subseteq \mathcal{J}$ are two tall ideals on \mathbb{N} then non* $(\mathcal{I}) \leq \operatorname{non}^{*}(\mathcal{J})$.

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{non}^{*}(\mathcal{Z}) \leq \max \{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}
$$

Corollary 3. $\operatorname{non}^{*}(\mathcal{W}) \leq \max \{\mathfrak{d}, \operatorname{non}(\mathcal{N})\}$

Questions about upper bounds for non*(W)

Question A. Does non* $(\mathcal{W}) \leq \mathfrak{d}$ hold in ZFC?

Questions about upper bounds for non*(W)

Question A. Does non* $(\mathcal{W}) \leq \mathfrak{d}$ hold in ZFC?

NO.

Questions about upper bounds for non* (\mathcal{W})

Question A. Does non* $(\mathcal{W}) \leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d}=\aleph_{1}$ and non $^{*}(\mathcal{W})=\aleph_{2}$.

Questions about upper bounds for non* (\mathcal{W})

Question A. Does non* $(\mathcal{W}) \leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d}=\aleph_{1}$ and non $^{*}(\mathcal{W})=\aleph_{2}$.

Question B. Does non ${ }^{*}(\mathcal{W}) \leq \operatorname{non}(\mathcal{N})$ hold in ZFC?

Questions about upper bounds for non* (\mathcal{W})

Question A. Does non* $(\mathcal{W}) \leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d}=\aleph_{1}$ and non $^{*}(\mathcal{W})=\aleph_{2}$.

Question B. Does non ${ }^{*}(\mathcal{W}) \leq \operatorname{non}(\mathcal{N})$ hold in ZFC?

VERY LIKELY YES.

Questions about upper bounds for non*(W)

Question A. Does non ${ }^{*}(\mathcal{W}) \leq \mathfrak{d}$ hold in ZFC?

NO. In the dual Hechler model $\mathfrak{d}=\aleph_{1}$ and non $^{*}(\mathcal{W})=\aleph_{2}$.

Question B. Does non ${ }^{*}(\mathcal{W}) \leq \operatorname{non}(\mathcal{N})$ hold in ZFC?

VERY LIKELY YES. Because non ${ }^{*}\left(\mathcal{I}_{1 / n}\right) \leq \operatorname{non}(\mathcal{N})$ (H.-H., Hr.) and non $^{*}(\mathcal{W}) \leq$ non $^{*}\left(\mathcal{I}_{1 / n}\right)$ if Erdős Conjecture is true.

Questions about lower bounds for non* (\mathcal{W})

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{non}^{*}(\mathcal{Z}) \geq \min \{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\}
$$

Questions about lower bounds for non*(W)

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{non}^{*}(\mathcal{Z}) \geq \min \{\mathfrak{0}, \operatorname{cov}(\mathcal{N})\}
$$

Question C. Does $\operatorname{non}^{*}(\mathcal{W}) \geq \min \{\mathfrak{D}, \operatorname{cov}(\mathcal{N})\}$ hold in ZFC?

Questions about lower bounds for non* (\mathcal{W})

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{non}^{*}(\mathcal{Z}) \geq \min \{\mathfrak{0}, \operatorname{cov}(\mathcal{N})\}
$$

Question C. Does $\operatorname{non}^{*}(\mathcal{W}) \geq \min \{\mathfrak{D}, \operatorname{cov}(\mathcal{N})\}$ hold in ZFC?

What about other small cardinals $-\mathfrak{b}, \mathfrak{h}, \mathfrak{p}$ etc.?

Additivity number of \mathcal{W}

The additivity number of an ideal \mathcal{I} is uncountable if and only if
the ideal \mathcal{I} is a P-ideal.

Additivity number of \mathcal{W}

The additivity number of an ideal \mathcal{I} is uncountable
if and only if
the ideal \mathcal{I} is a P-ideal.

Observation 4.

$$
\operatorname{add}^{*}(\mathcal{W})=\aleph_{0}
$$

Cofinality number of \mathcal{W}

Proposition 5.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Cofinality number of \mathcal{W}

Proposition 5.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq{ }^{\omega} \omega$ such that every $f \in P$ satisfies $f(n+1)>2 f(n)$ for every $n \in \omega$ and whenever $f_{0}, f_{1}, \ldots f_{k} \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\left\{f_{0}(n), f_{1}(n), \ldots f_{k}(n)\right\}$ is a set of $k+1$ successive integers.

Cofinality number of \mathcal{W}

Proposition 5.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq{ }^{\omega} \omega$ such that every $f \in P$ satisfies $f(n+1)>2 f(n)$ for every $n \in \omega$ and whenever $f_{0}, f_{1}, \ldots f_{k} \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\left\{f_{0}(n), f_{1}(n), \ldots f_{k}(n)\right\}$ is a set of $k+1$ successive integers.
2. $A_{f}=\{f(n): n \in \omega\} \in \mathcal{W}$ for every $f \in P$

Cofinality number of \mathcal{W}

Proposition 5.

$$
\operatorname{cof}^{*}(\mathcal{W})=2^{\aleph_{0}}
$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq{ }^{\omega} \omega$ such that every $f \in P$ satisfies $f(n+1)>2 f(n)$ for every $n \in \omega$ and whenever $f_{0}, f_{1}, \ldots f_{k} \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\left\{f_{0}(n), f_{1}(n), \ldots f_{k}(n)\right\}$ is a set of $k+1$ successive integers.
2. $A_{f}=\{f(n): n \in \omega\} \in \mathcal{W}$ for every $f \in P$
3. $\left\{f \in P: A_{f} \subseteq^{*} B\right\}$ is finite for every $B \in \mathcal{W}$

Covering number of \mathcal{W}

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{cov}^{*}(\mathcal{Z}) \geq \min \{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\}
$$

Covering number of \mathcal{W}

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{cov}^{*}(\mathcal{Z}) \geq \min \{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\}
$$

Corollary 6. $\quad \operatorname{cov}^{*}(\mathcal{W}) \geq \min \{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\}$

Covering number of \mathcal{W}

Theorem (Hernández-Hernández, Hrušák).

$$
\operatorname{cov}^{*}(\mathcal{Z}) \geq \min \{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\}
$$

Corollary 6. $\quad \operatorname{cov}^{*}(\mathcal{W}) \geq \min \{\mathfrak{b}, \operatorname{cov}(\mathcal{N})\}$

Conjectures.

1. $\operatorname{cov}^{*}(\mathcal{W}) \leq \operatorname{non}(\mathcal{M})$
2. $\operatorname{cov}^{*}(\mathcal{W}) \geq \mathfrak{s}$
3. $\operatorname{cov}^{*}(\mathcal{W}) \leq \max \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\}$
and many more...

References

F. Hernández-Hernández, M. Hrušák, Cardinal invariants of analytic P-ideals, Canad. J. Math. 59(3), 575 - 595, 2007.
D. Meza Alcántara, Ideals and filters on countable sets, Ph.D. thesis, 2009.

