Some remarks concerning van der Waerden ideal

Jana Flašková¹

¹Department of Mathematics University of West Bohemia in Pilsen

Winter School on Abstract Analysis – section Set Theory January 2013, Hejnice

Arithmetic progressions and van der Waerden theorem

An arithmetic progression of length I is the finite sequence $\{a+id: i=0,1,\ldots,I-1\}$ where $a,d\in\mathbb{N}$.

Van der Waerden Theorem (finite version).

For any given natural numbers k and l, there is some natural number W(k, l) such that if the integers $\{1, 2, ..., W(k, l)\}$ are colored, each with one of k different colors, then there exists an arithmetic progression of length at least l, all of which elements are of the same color.

Van der Waerden theorem and AP-sets

Definition.

A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem (infinite version).

If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on $\mathbb N$ — van der Waerden ideal denoted by $\mathcal W$

Van der Waerden ideal and other ideals

Szemerédi Theorem.

$$\mathcal{W} \subseteq \mathcal{Z}$$
 where $\mathcal{Z} = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$

Erdős Conjecture.

$$\mathcal{W} \subseteq \mathcal{I}_{1/n}$$
 where $\mathcal{I}_{1/n} = \{A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty\}$

What sets belong to W?

Example A. $\{n! : n \in \omega\}$ or $\{2^n : n \in \omega\}$ do not contain arithmetic progressions of length 3.

What sets belong to W?

Example A. $\{n! : n \in \omega\}$ or $\{2^n : n \in \omega\}$ do not contain arithmetic progressions of length 3.

Example B. $\{n^2 : n \in \omega\}$ contains infinitely many arithmetic progressions of length 3 (known by Pythagoras), but no arithmetic progression of length 4 (proved by Euler).

What sets belong to W?

Example A. $\{n!:n\in\omega\}$ or $\{2^n:n\in\omega\}$ do not contain arithmetic progressions of length 3.

Example B. $\{n^2 : n \in \omega\}$ contains infinitely many arithmetic progressions of length 3 (known by Pythagoras), but no arithmetic progression of length 4 (proved by Euler).

Example C. The set of the prime numbers does not belong to the van der Waerden ideal (Green-Tao).

Van der Waerden ideal ${\cal W}$

The van der Waerden ideal \mathcal{W} is

- a tall ideal because every infinite $A \subseteq \mathbb{N}$ contains an infinite subset with no arithmetic progressions of length 3
- not a P-ideal consider for example the sets

$$A_k = \{2^n + k : n \in \omega\} \text{ for } k \in \omega$$

Van der Waerden ideal ${\cal W}$

The van der Waerden ideal W is

• F_{σ} -ideal — because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where

$$W_n = \{A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n\}$$

Van der Waerden ideal ${\cal W}$

The van der Waerden ideal W is

• F_{σ} -ideal — because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where

$$\mathcal{W}_n = \{ A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n \}$$

The family W_n

- is not an ideal for every $n \in \mathbb{N}$
- generates a proper ideal $\langle \mathcal{W}_n \rangle$

The ideal $\langle W_n \rangle$ is a tall F_{σ} -ideal for every $n \geq 3$.

Fact.

$$\mathcal{W} = \bigcup_{n \geq 3} \langle \mathcal{W}_n \rangle$$

and $\langle \mathcal{W}_n \rangle \subseteq \langle \mathcal{W}_{n+1} \rangle$ for every $n \in \mathbb{N}$.

Proposition 1.

For every $n \geq 3$ there exists $A \subset \mathbb{N}$ such that

$$\textbf{\textit{A}} \in \mathcal{W}_{n+1} \setminus \langle \mathcal{W}_{n} \rangle$$

Proposition 1.

For every n > 3 there exists $A \subset \mathbb{N}$ such that

$$\textit{A} \in \mathcal{W}_{n+1} \setminus \langle \mathcal{W}_{n} \rangle$$

Proof. Consider

$$A = \left\{ \sum_{i=0}^{k} c_i \cdot n^{2i} : k \in \omega, c_i = 0, \dots, n-1, c_k \neq 0 \right\}$$

Claim 1. Show $A \in \mathcal{W}_{n+1}$ (straightforward calculation)

Claim 2. Show $A \notin \langle \mathcal{W}_n \rangle$ (use Hales-Jewett theorem)

Claim 1. Show $A \in \mathcal{W}_{n+1}$ (straightforward calculation)

Claim 2. Show $A \notin \langle \mathcal{W}_n \rangle$ (use Hales-Jewett theorem)

Let L(n) ... be the set of finite words in the alphabet $\{0, 1, ..., n-1\}$.

A variable word w(x) is a finite word in the alphabet $\{0,1,\ldots,n-1,x\}$ in which the variable x occurs at least once.

Hales-Jewett theorem

Hales-Jewett theorem.

For every $n, r \in \mathbb{N}$ there exists a number HJ(n, r) such that if words in L(n) of length HJ(n, r) are colored by r colors then there exists a variable word w(x) such that $w(0), w(1), \ldots, w(n-1)$ have the same color.

The symbol w(i) denotes the word in L(n) which is produced from w(x) by replacing all the occurrences of the variable x by the letter of the alphabet in brackets.

Some questions

Conjecture. $A \in \langle \mathcal{W}_n \rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^k .

Some questions

Conjecture. $A \in \langle \mathcal{W}_n \rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^k .

Question 1. Is it true that whenever a set A does not contain a copy of 3^2 then $A \in \langle W_3 \rangle$?

Some questions

Conjecture. $A \in \langle \mathcal{W}_n \rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^k .

Question 1. Is it true that whenever a set A does not contain a copy of 3^2 then $A \in \langle \mathcal{W}_3 \rangle$?

Question 2. Does the set $\{n^2 : n \in \omega\}$ belong to the ideal $\langle W_3 \rangle$?

Cofinality number of ${\cal W}$

$$\mathsf{cof}^{(*)}(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathit{I} \in \mathcal{I})(\exists \mathit{A} \in \mathcal{A})(\mathit{I} \subseteq^* \mathit{A})\}$$

Proposition 2.
$$\operatorname{cof}^*(\mathcal{W}) = 2^{\aleph_0}$$

Cofinality number of W

$$\mathsf{cof}^{(*)}(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall \mathit{I} \in \mathcal{I})(\exists \mathit{A} \in \mathcal{A})(\mathit{I} \subseteq^* \mathit{A})\}$$

Proposition 2.
$$\operatorname{cof}^*(\mathcal{W}) = 2^{\aleph_0}$$

Sketch of the proof:

1. Show that there exists a perfect set $P \subseteq {}^{\omega}\omega$ such that every $f \in P$ satisfies f(n+1) > 2f(n) for every $n \in \omega$ and whenever $f_0, f_1, \ldots f_k \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\{f_0(n), f_1(n), \ldots f_k(n)\}$ is a set of k+1 successive integers.

Cofinality number of W

$$\mathsf{cof}^{(*)}(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(I \subseteq^* A)\}$$

Proposition 2.
$$\operatorname{cof}^*(\mathcal{W}) = 2^{\aleph_0}$$

Sketch of the proof:

- 1. Show that there exists a perfect set $P \subseteq {}^{\omega}\omega$ such that every $f \in P$ satisfies f(n+1) > 2f(n) for every $n \in \omega$ and whenever $f_0, f_1, \ldots f_k \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\{f_0(n), f_1(n), \ldots f_k(n)\}$ is a set of k+1 successive integers.
- 2. $A_f = \{f(n) : n \in \omega\} \in \mathcal{W} \text{ for every } f \in P$

Cofinality number of ${\cal W}$

$$\mathsf{cof}^{(*)}(\mathcal{I}) = \mathsf{min}\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall I \in \mathcal{I})(\exists A \in \mathcal{A})(I \subseteq^* A)\}$$

Proposition 2.
$$\operatorname{cof}^*(\mathcal{W}) = 2^{\aleph_0}$$

Sketch of the proof:

- 1. Show that there exists a perfect set $P \subseteq {}^{\omega}\omega$ such that every $f \in P$ satisfies f(n+1) > 2f(n) for every $n \in \omega$ and whenever $f_0, f_1, \ldots f_k \in P$ are distinct, there exist infinitely many $n \in \omega$ such that $\{f_0(n), f_1(n), \ldots f_k(n)\}$ is a set of k+1 successive integers.
- 2. $A_f = \{f(n) : n \in \omega\} \in \mathcal{W} \text{ for every } f \in P$
- 3. $\{f \in P : A_f \subseteq^* B\}$ is finite for every $B \in \mathcal{W}$