Rapid ultrafilters

ℓ^p-hierarchy

Some consequences

References

イロト イポト イヨト イヨト ヨー のくぐ

Ultrafilters and divergent series

Jana Blobner¹ Peter Vojtáš²

¹Department of Mathematics University of West Bohemia in Pilsen

²Department of Software Engineering Faculty of Mathematics and Physics Charles University

Winter School, 31 January 2017, Hejnice

ction	Rapid ultrafilters	ℓ ^p -hierarchy	Some conseque
	0000	000	00

Ultrafilters on ω

Definition.

Introdu • 0000

 $\mathcal{U} \subseteq \mathcal{P}(\omega)$ is an ultrafilter if

- $\mathcal{U} \neq \emptyset$ and $\emptyset \notin \mathcal{U}$
- if $U_1, U_2 \in \mathcal{U}$ then $U_1 \cap U_2 \in \mathcal{U}$
- if $U \in \mathcal{U}$ and $U \subseteq V \subseteq \omega$ then $V \in \mathcal{U}$.
- for every $M \subseteq \omega$ either M or $\omega \setminus M$ belongs to \mathcal{U}

Example. fixed (or principal) ultrafilter $\{A \subseteq \omega : n \in A\}$

Free ultrafilters may be viewed as points in the remainder ω^* of the Čech-Stone compactification $\beta\omega$.

Rapid ultrafilters

ℓ^p-hierarchy

Some consequences

References o

Divergent series

The harmonic series

 $\sum_{n=1}^{\infty} \frac{1}{n}$

ntroduction	Rapid ultrafilters	ℓ ^p -hierarchy 000	Some consequences	References o			
Divergent series							
The harmonic series		$\sum_{n=1}^{\infty} \frac{1}{n}$					

Some divergent series grow to infinity slowlier:

$$\sum_{n \in \mathbb{N}} \frac{1}{2n}, \quad \sum_{n \in \mathbb{N}} \frac{1}{n \cdot \ln n}, \quad \sum_{n \in \mathbb{N}} \frac{1}{n \cdot \ln n \cdot \ln \ln n}$$

Some divergent series grow to infinity faster:

$$\sum_{n \in \mathbb{N}} \frac{\ln n}{n}, \quad \sum_{n \in \mathbb{N}} \frac{1}{\sqrt{n}}, \quad \sum_{n \in \mathbb{N}} \frac{1}{\ln n}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rapid ultrafilters

ℓ^p-hierarchy

Some consequences

References

うして 山田 マイボマ エリア しょうくしゃ

Summable ideals

Definition.

For a given a divergent series $\sum_{n\in\mathbb{N}}g(n)=+\infty$ such that $\lim_{n\to\infty}g(n)=0$ the family

 $\mathcal{I}_g = \{A \subseteq \mathbb{N} : \sum_{n \in A} g(n) < +\infty\}$

is a tall proper ideal which we call summable ideal determined by the series $\sum_{n \in \mathbb{N}} g(n)$ (by the function g).

Rapid ultrafilters

ℓ^p-hierarchy 000 Some consequences

References

イロト イポト イヨト イヨト ヨー のくぐ

Summable ideals

Lemma.

Assume g_1 and g_2 are two sequences of positive real numbers such that $\sum_{n \in \mathbb{N}} g_i(n) = +\infty$ and $\lim_{n \to \infty} g_i(n) = 0$ for i = 1, 2. Then

1. If
$$g_1 \leq^* g_2$$
 then $\mathcal{I}_{g_1} \supset \mathcal{I}_{g_2}$.

2. If
$$\lim_{n o \infty} rac{g_1(n)}{g_2(n)} \in \mathbb{R}$$
, then $\mathcal{I}_{g_1} \supset \mathcal{I}_{g_2}$.

Rapid ultrafilters

ℓ^p-hierarchy 000 Some consequences

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} on ω is called rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Rapid ultrafilters

ℓ^p-hierarchy 000 Some consequences

References

イロト イポト イヨト イヨト ヨー のくぐ

Rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} on ω is called rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Theorem (Booth?).

(CH) Rapid ultrafilters exist.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- \mathcal{U} is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

イロト イポト イヨト イヨト ヨー のくぐ

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- *U* is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

One can add two more equivalent conditions:

 (∀f: ω → ℕ one-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- *U* is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

One can add two more equivalent conditions:

- (∀f: ω → ℕ one-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g
- (∀f: ω → ℕ finite-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g
 (= U is a weak I_g-ultrafilter for every I_g)

ℓ^p-hierarchy 000 Some consequences

References o

イロト イポト イヨト イヨト ヨー のくぐ

How many summable ideals decide?

Proposition.

There is a family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| = \mathfrak{d}$ and an ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if it has a nonempty intersection with every tall summable ideal in \mathcal{D} .

ℓ^p-hierarchy 000 Some consequences

References o

イロト イポト イヨト イヨト ヨー のくぐ

How many summable ideals decide?

Proposition.

There is a family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| = \mathfrak{d}$ and an ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if it has a nonempty intersection with every tall summable ideal in \mathcal{D} .

Is it possible that an ultrafilter has a nonempty intersection with "many" tall summable ideals simultaneously and it is not a rapid ultrafilter?

ℓ^p-hierarchy 000 Some consequences

イロト イポト イヨト イヨト ヨー のくぐ

How many summable ideals decide?

Proposition (Cancino Manríquez).

For any family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| < \mathfrak{d}$ there is an ultrafilter $\mathcal{U} \in \omega^*$ which meets all ideals $\mathcal{I} \in \mathcal{D}$, but \mathcal{U} is not a rapid ultrafilter.

イロト イポト イヨト イヨト ヨー のくぐ

How many summable ideals decide?

Proposition (Cancino Manríquez).

For any family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| < \mathfrak{d}$ there is an ultrafilter $\mathcal{U} \in \omega^*$ which meets all ideals $\mathcal{I} \in \mathcal{D}$, but \mathcal{U} is not a rapid ultrafilter.

Can we find a family of tall summable ideals of cardinality at least \mathfrak{d} such that an ultrafilter has a nonempty intersection with every ideal in the family, but is not a rapid ultrafilter?

Rapid ultrafilters

ℓ^p-hierarchy ●00 Some consequences

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The ℓ^p -hierarchy

For $1 \le p < \infty$ the ℓ^p -space is defined as follows

$$\ell^{p} = \{(x_{n})_{n\in\mathbb{N}}\in {}^{\mathbb{N}}\mathbb{R}: \sum_{n\in\mathbb{N}}|x_{n}|^{p}<\infty\}$$

The ℓ^p -hierarchy

For $1 \le p < \infty$ the ℓ^p -space is defined as follows

$$\ell^{\boldsymbol{\rho}} = \{(\boldsymbol{x}_n)_{n\in\mathbb{N}}\in {}^{\mathbb{N}}\mathbb{R}: \sum_{n\in\mathbb{N}}|\boldsymbol{x}_n|^{\boldsymbol{\rho}}<\infty\}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

The space ℓ^1 is the space of all absolutely convergent series.

The ℓ^p -hierarchy

For $1 \le p < \infty$ the ℓ^p -space is defined as follows

$$\ell^{p} = \{(x_{n})_{n\in\mathbb{N}}\in {}^{\mathbb{N}}\mathbb{R}: \sum_{n\in\mathbb{N}}|x_{n}|^{p}<\infty\}$$

The space ℓ^1 is the space of all absolutely convergent series.

$$\left(\frac{1}{n}\right)_n \in \bigcap_{k \in \mathbb{N}} \ell^{1+\frac{1}{k}} \setminus \ell^1 \text{ and also } \left(\frac{\ln n}{n}\right)_n \in \bigcap_{k \in \mathbb{N}} \ell^{1+\frac{1}{k}} \setminus \ell^1$$

$$\left(\frac{1}{\sqrt{n}}\right)_n \in \bigcap_{k \in \mathbb{N}} \ell^{2+\frac{1}{k}} \setminus \ell^2, \text{ but } \left(\frac{1}{\ln n}\right)_n \notin \ell^p \text{ for any } 1$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Rapid ultrafilters once more

Proposition 1.

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- *U* is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g with $g \not\in \ell^2$
- $U \cap I_g \neq \emptyset$ for every tall summable ideal I_g with $g \notin \ell^k$ for a given k > 2

Rapid ultrafilters

ℓ^p-hierarchy 00● Some consequences

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

The bottom part of the hierarchy

Conjecture 2.

For any $k \in \mathbb{N}$ there is an ultrafilter \mathcal{U} in ZFC such that $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g with $g \in \ell^k$.

Rapid ultrafilters

ℓ^p-hierarchy

Some consequences

References

イロト イポト イヨト イヨト ヨー のくぐ

The bottom part of the hierarchy

Conjecture 2.

For any $k \in \mathbb{N}$ there is an ultrafilter \mathcal{U} in ZFC such that $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g with $g \in \ell^k$.

• if $g \in \ell^k$ and $h \notin \ell^k$ then $h \not\leq^* g$

g-summable ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called *g*-summable ultrafilter if for every one-to-one $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

g-summable ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called *g*-summable ultrafilter if for every one-to-one $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

Rapid ultrafilter is *g*-summable for every \mathcal{I}_g .

g-summable ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called *g*-summable ultrafilter if for every one-to-one $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

Rapid ultrafilter is *g*-summable for every \mathcal{I}_g .

Theorem (J.B.)

There exists $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an $\frac{1}{n}$ -summable ultrafilter.

イロト イポト イヨト イヨト ヨー のくぐ

Rapid ultrafilters

ℓ^p-hierarchy

Some consequences

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

g-summable ultrafilters

Theorem 3.

If Conjecture 2. holds then *g*-summable ultrafilters exist in ZFC for every $k \in \mathbb{N}$ and $g \in \ell^k$.

Rapid ultrafilters

ℓ^p-hierarchy

Some consequences

References

イロト イポト イヨト イヨト ヨー のくぐ

g-summable ultrafilters

Theorem 3.

If Conjecture 2. holds then *g*-summable ultrafilters exist in ZFC for every $k \in \mathbb{N}$ and $g \in \ell^k$.

Open questions:

Do $\frac{1}{\ln n}$ -summable ultrafilters exist in ZFC?

ℓ^p-hierarchy

Some consequences

References

g-summable ultrafilters

Theorem 3.

If Conjecture 2. holds then *g*-summable ultrafilters exist in ZFC for every $k \in \mathbb{N}$ and $g \in \ell^k$.

Open questions:

Do $\frac{1}{\ln n}$ -summable ultrafilters exist in ZFC?

Do weak \mathcal{I}_g -ultrafilters exist in ZFC? (open also for $g(n) = \frac{1}{n}$)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rapid ultrafilters

ℓ^p-hierarchy 000 Some consequences

References

イロト イポト イヨト イヨト ヨー のくぐ

References

P. Vojtáš, On ω^* and absolutely divergent series, *Topology Proceedings* **19**, 335–348, 1994.

J. Flašková, Rapid ultrafilters and summable ideals, *arXiv:1208.3690*

J. Flašková, More than a 0-point, *Comment. Math. Univ. Carolin.* **47**, no. 4, 617–621, 2006.