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Ultrafilters on ω

Definition.
U ⊆ P(ω) is an ultrafilter if
• U 6= ∅ and ∅ 6∈ U
• if U1,U2 ∈ U then U1 ∩ U2 ∈ U
• if U ∈ U and U ⊆ V ⊆ ω then V ∈ U .
• for every M ⊆ ω either M or ω \M belongs to U

Example. fixed (or principal) ultrafilter {A ⊆ ω : n ∈ A}

Free ultrafilters may be viewed as points in the remainder ω∗ of
the Čech-Stone compactification βω.
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Divergent series

The harmonic series
∞∑

n=1

1
n

Some divergent series grow to infinity slowlier:∑
n∈N
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Some divergent series grow to infinity faster:∑
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Summable ideals

Definition.
For a given a divergent series

∑
n∈N

g(n) = +∞ such that

lim
n→∞

g(n) = 0 the family

Ig = {A ⊆ N :
∑
n∈A

g(n) < +∞}

is a tall proper ideal which we call summable ideal determined
by the series

∑
n∈N

g(n) (by the function g).
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Summable ideals

Lemma.
Assume g1 and g2 are two sequences of positive real numbers
such that

∑
n∈N

gi(n) = +∞ and lim
n→∞

gi(n) = 0 for i = 1,2. Then

1. If g1 ≤∗ g2 then Ig1 ⊃ Ig2 .

2. If lim
n→∞

g1(n)
g2(n)

∈ R, then Ig1 ⊃ Ig2 .
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Rapid ultrafilters

Definition.
A free ultrafilter U on ω is called rapid if the enumeration
functions of its sets form a dominating family in (ωω,≤∗).

Theorem (Booth?).
(CH) Rapid ultrafilters exist.

Theorem (Miller).
In Laver’s model there are no rapid ultrafilters.
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Characterization of rapid ultrafilters

Theorem (Vojtáš).
The following are equivalent for an ultrafilter U ∈ ω∗:
• U is rapid
• U ∩ Ig 6= ∅ for every tall summable ideal Ig

One can add two more equivalent conditions:

• (∀f : ω → N one-to-one) (∃U ∈ U) such that f [U] ∈ Ig
for every tall summable ideal Ig

• (∀f : ω → N finite-to-one) (∃U ∈ U) such that f [U] ∈ Ig
for every tall summable ideal Ig
(= U is a weak Ig-ultrafilter for every Ig)
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How many summable ideals decide?

Proposition.
There is a family D of tall summable ideals such that |D| = d

and an ultrafilter U ∈ ω∗ is rapid if and only if it has a nonempty
intersection with every tall summable ideal in D.

Is it possible that an ultrafilter has a nonempty intersection with
“many" tall summable ideals simultaneously and it is not a rapid
ultrafilter?
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How many summable ideals decide?

Proposition (Cancino Manríquez).
For any family D of tall summable ideals such that |D| < d there
is an ultrafilter U ∈ ω∗ which meets all ideals I ∈ D, but U is not
a rapid ultrafilter.

Can we find a family of tall summable ideals of cardinality at
least d such that an ultrafilter has a nonempty intersection with
every ideal in the family, but is not a rapid ultrafilter?
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The `p-hierarchy

For 1 ≤ p <∞ the `p-space is defined as follows

`p = {(xn)n∈N ∈ NR :
∑
n∈N
|xn|p <∞}

The space `1 is the space of all absolutely convergent series.(
1
n

)
n
∈
⋂
k∈N

`1+
1
k \ `1 and also

(
ln n
n

)
n
∈
⋂
k∈N

`1+
1
k \ `1

(
1√
n
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n
∈
⋂
k∈N

`2+
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k \ `2, but

(
1
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n
6∈ `p for any 1 < p < +∞
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Rapid ultrafilters once more

Proposition 1.
The following are equivalent for an ultrafilter U ∈ ω∗:
• U is rapid

• U ∩ Ig 6= ∅ for every tall summable ideal Ig

• U ∩ Ig 6= ∅ for every tall summable ideal Ig with g 6∈ `2

• U ∩ Ig 6= ∅ for every tall summable ideal Ig with g 6∈ `k for
a given k > 2
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The bottom part of the hierarchy

Conjecture 2.
For any k ∈ N there is an ultrafilter U in ZFC such that
U ∩ Ig 6= ∅ for every tall summable ideal Ig with g ∈ `k .

• if g ∈ `k and h 6∈ `k then h 6≤∗ g
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g-summable ultrafilters

Definition.
An ultrafilter U ∈ ω∗ is called g-summable ultrafilter
if for every one-to-one f : ω → N there exists U ∈ U such that
f [U] ∈ Ig .

Rapid ultrafilter is g-summable for every Ig .

Theorem (J.B.)
There exists U ∈ ω∗ such that U is an 1

n -summable ultrafilter.
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g-summable ultrafilters

Theorem 3.
If Conjecture 2. holds then
g-summable ultrafilters exist in ZFC for every k ∈ N and g ∈ `k .

Open questions:

Do 1
ln n -summable ultrafilters exist in ZFC?

Do weak Ig-ultrafilters exist in ZFC? (open also for g(n) = 1
n )
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