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Abstract

This note answers a question raised in [3]: Is it consistent that
for an arbitrary tall summable ideal Ig there exists an Ig-ultrafilter
which is not rapid? Assuming CH we construct such ultrafilters for
every tall summable ideal Ig.

1 Introduction

This note follows up the author’s paper “I -ultrafilters and summable ideals”
[3] in which the connections between rapid ultrafilters and Ig-ultrafilters
have been studied. We will use the same notation and recall the most
important definitions and facts in this introduction.

An ultrafilter U is called a rapid ultrafilter if the enumeration functions
of sets in U form a dominating family in (ωω,≤∗), where the enumeration
function of a set A is the unique strictly increasing function eA from ω onto
A. An ultrafilter U is called a Q-point if for every partition {Qn : n ∈ ω}
of ω into finite sets there is A ∈ U such that |A ∩Qn| ≤ 1 for every n ∈ ω.
Clearly, every Q-point is a rapid ultrafilter, but the converse is not true (see
e.g. [5]).

For a function g : ω → (0,∞) such that
∑
n∈ω

g(n) = +∞ the family

Ig = {A ⊆ ω :
∑
a∈A

g(a) < +∞}

is an ideal on ω, which we call the summable ideal determined by function
g. A summable ideal is tall if and only if lim

n→∞
g(n) = 0.

The following description of rapid ultrafilters can be found in [6]:

Theorem 1.1. For an ultrafilter U ∈ ω∗ the following are equivalent:

1. U is rapid
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tially supported from the European Science Foundation in the realm of the activity entitled
’New Frontiers of Infinity: Mathematical, Philosophical and Computational Prospects’.
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2. U ∩ Ig 6= ∅ for every tall summable ideal Ig

The definition of an I -ultrafilter was given by Baumgartner in [1]: Let
I be a family of subsets of a set X such that I contains all singletons and
is closed under subsets. Given an ultrafilter U on ω, we say that U is an
I -ultrafilter if for every function F : ω → X there exists A ∈ U such that
F [A] ∈ I .

We say that an ultrafilter U is a hereditarily rapid ultrafilter if it is a
rapid ultrafilter such that for every V ≤RK U the ultrafilter V is again a
rapid ultrafilter. Since every hereditarily rapid ultrafilter is obviously a rapid
ultrafilter, the existence of hereditarily rapid ultrafilters is not provable in
ZFC because Miller proved in [5] that there are no rapid ultrafilters in Laver
model. On the other hand, every selective ultrafilter is hereditarily rapid,
thus the existence of hereditarily rapid ultrafilters is consistent with ZFC.

The following characterization of hereditarily rapid ultrafilters follows
from the definition, Theorem 1.1 and from the fact that the class of I -
ultrafilters is downwards closed with respect to the Rudin-Keisler order on
ultrafilters.

Theorem 1.2. For an ultrafilter U ∈ ω∗ the following are equivalent:

1. U is hereditarily rapid

2. U is an I -ultrafilter for every tall summable ideal I

It was proved in [3] that Q-points (and consequently rapid ultrafilters)
need not be Ig-ultrafilters in a strong sense.

Theorem 1.3. (MActble) There is a Q-point which is not an Ig-ultrafilter
for any summable ideal Ig.

Corollary 1.4. (MActble) For an arbitrary summable ideal Ig there exists
a rapid ultrafilter which is not an Ig-ultrafilter.

We also showed in [3] that Ig-ultrafilters need not be Q-points by the
following counterpart of Theorem 1.3.

Theorem 1.5. (MActble) There exists U ∈ ω∗ such that U is an Ig-
ultrafilter for every tall summable ideal Ig and U is not a Q-point.

However, we did not prove a counterpart for Corollary 1.4. Asssuming
Martin‘s axiom for countable posets an I1/n-ultrafilter which is not rapid
was constructed in [2], but the question remained open for an arbitrary tall
summable ideal Ig.

The aim of this note is to provide a construction of an Ig-ultrafilter
which is not rapid for an arbitrary tall summable ideal Ig.
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2 Katětov order and summable ideals

Let us first recall the definition of Katětov order ≤K for ideals on ω: For I

and J ideals on ω we write I ≤K J if there is a function f : ω → ω such
that f−1[A] ∈J for all A ∈ I .

The structure of the summable ideals ordered by Katětov order was
investigated by Meza [4]. We are particularly interested how the compara-
bility of two ideals in Katětov order reflects to the corresponding classes of
I -ultrafilters.

Obviously, if I ≤K J then every I -ultrafilter is a J -ultrafilter. This
implication cannot be reversed in general. However, in Theorem 3.2 we
prove that assuming CH the converse is also true whenever I and J are
tall summable ideals.

Lemma 2.1. Assume Ig is a tall summable ideal determined by a monotone
function g and h(n) = g(2n) for every n ∈ ω. Then Ih = Ig.

Proof. Since the function g is monotone, g(2k)+g(2k+1) ≤ 2g(2k) = 2h(k)
and g(2k − 1) + g(2k) ≥ 2g(2k) = 2h(k) for every k. From the inequalities∑

n∈ω
2h(n) ≤ g(0) +

∑
n∈ω

g(n) ≤ g(0) +
∑
n∈ω

2h(n)

then follows that Ih = Ig.

Lemma 2.2. Assume f ∈ ωω, Ig, Ih are tall summable ideals and Ig 6≤K
Ih. If H is an infinite subset of ω such that H 6∈ Ih and f [H] 6∈ Ig then
there exists A ⊆ f [H] such that A ∈ Ig and f−1[A] ∩H 6∈ Ih.

Proof. We may assume that both g and h are monotone functions because
every tall summable ideal is isomorphic to one determined by monotone
function. Enumerate f [H] = {hn : n ∈ ω} and define f̃ : ω → ω by

f̃(n) =

{
2hn for n ∈ H
2hn + 1 for n 6∈ H

Notice that f̃ [H]∩ f̃ [ω \H] = ∅ and use Lemma 2.1 to show that f̃ [H] 6∈ Ig.
Since Ig 6≤K Ih we have Ig � f̃ [H] 6≤K Ih, so there is Ã ∈ Ig � f̃ [H]

such that f̃−1[Ã] 6∈ Ih. Now, define A = {hn : 2hn ∈ Ã}. As in Lemma 2.1,
one can verify that A ∈ Ig because Ã ∈ Ig.

Finally. observe that f−1[A] ∩H ⊇ f̃−1[Ã] 6∈ Ih.
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3 Main result

We will use the fact that rapid ultrafilters are precisely those ultrafilters
which have nonempty interesection with every tall summable ideal. Thus in
order to construct an Ig-ultrafilter which is not rapid, we want to construct
an Ig-ultrafilter which has an empty intersection with some other summable
ideal Ih.

Lemma 3.1. Assume Ig and Ih are two tall summable ideals such that
Ig 6≤K Ih. Assume F is a countable filter base such that F ∩ Ih = ∅ and
a function f ∈ ωω is given. Then there exists G ⊆ ω such that f [G] ∈ Ig

and G ∩ F 6∈ Ih for every F ∈ F .

Proof. Since F is countable we can enumerate F = {Fn : n ∈ ω}. We may
also assume that Fn ⊇ Fn+1 for every n. The family {Fn : n ∈ ω} is a
countable collection of Ih-positive sets, therefore there is an Ih-positive set
H such that |H \ Fn| < ω for every n ∈ ω.

If there f [H] ∈ Ig then put G = H and we are done.
If f [H] 6∈ Ig we may apply Lemma 2.2. So there exists A ⊆ f [H] such

that A ∈ Ig and f−1[A] ∩H 6∈ Ih. Let G = f−1[A].
• f [G] = A ∈ Ig

• Since G∩H 6∈ Ih and (G∩H) \ F is finite for every F ∈ F it follows
that G ∩ F 6∈ Ih for every F ∈ F .

Theorem 3.2. (CH) For arbitrary tall summable ideals Ig and Ih such
that Ig 6≤K Ih there is an Ig-ultrafilter which is not an Ih-ultrafilter.

Proof. Enumerate all functions in ωω as {fα : α < ω1}. By transfinite
induction on α < ω1 we will construct filter bases Fα such that the following
conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊇ Fβ whenever α ≥ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ ω
(v) (∀α) Fα ∩ Ih = ∅
(vi) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ Ig

Conditions (i)–(iii) allow us to start the induction and keep it going.
Moreover (iii) ensures that (iv)–(vi) are satisfied at limit stages of the con-
struction, so it is necessary to verify conditions (iv)–(vi) only at non-limit
steps.

Induction step: Suppose we already know Fα.
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Due to (iv) and (v) we may apply Lemma 3.1 to fα and Fα. Let Fα+1

be the filter base generated by Fα and G. The filter base Fα+1 satisfies
(iv)–(vi).

Finally, let F =
⋃
α<ω1

Fα. Every ultrafilter which extends F is an
Ig-ultrafilter because of condition (vi). Because of condition (v) F has
empty intersection with Ih and thus can be extended to an ultrafilter U

with U ∩ Ih = ∅. It follows that U is not an Ih-ultrafilter.

Proposition 3.3. For every tall summable ideal Ig there is a tall summable
ideal Ih such that Ig 6≤K Ih.

Proof. Since Ig is a tall summable ideal we may fix a partition of ω into
finite consecutive intervals In, n ∈ ω such that

(i) I0 6= ∅
(ii) |In+1| ≥ n|

⋃
j≤n Ij | for every n ∈ ω

(iii) for every n > 0 if m ∈ In then g(m) < 1
2n

Now define h : ω → (0,∞) by

h(m) =

{
1 for m ∈ I0
1
n for m ∈ In with n ≥ 1

It remains to verify that Ig 6≤K Ih. We will show that for every f : ω → ω
there exists A ∈ Ig such that f−1[A] 6∈ Ih.

Consider f : ω → ω arbitrary. For every n ∈ ω define

Bn = {m ∈ In : f(m) < min In} Cn = {m ∈ In : f(m) ≥ min In}

Case I. A0 = {n ∈ ω : |Bn| ≥ |Cn|} is infinite

Since Bn ∪Cn = In we have |Bn| ≥ 1
2 |In| ≥

n
2 |
⋃
j<n Ij | =

n
2 (min In− 1).

Thus for every n ∈ A0 there existsmn ∈ f [Bn] such that |f−1(mn)∩Bn| ≥ n
2 .

If A = {mn : n ∈ A0} is finite then, of course A ∈ Ig. Otherwise there
exists an infinite set A ⊆ {mn : n ∈ A0} such that A ∈ Ig because Ig is a
tall ideal. In both cases Ã0 = {n ∈ A0 : mn ∈ A} is infinite and f−1[A] 6∈ Ih

because∑
a∈f−1[A]

h(a) ≥
∑
n∈Ã0

∑
a∈f−1[A]∩In

h(a) ≥
∑
n∈Ã0

|f−1(mn)∩In| ·
1

n
≥
∑
n∈Ã0

1

2
=∞

Case II. A0 = {n ∈ ω : |Bn| ≥ |Cn|} is finite

According to the assumption there is n0 ∈ ω such that |Bn| < |Cn| for
every n ≥ n0. Pick mn ∈ Cn for every n ≥ n0. Put M = {mn : n ≥ n0}
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and A = f [M ]. Since mn ∈ Cn one has f(mn) ≥ min In and therefore
g(f(mn)) ≤ 1

2n . It is easy to see that A ∈ Ig because∑
a∈A

g(a) ≤
∑
n≥n0

g(f(mn)) ≤
∑
n≥n0

1

2n
=

1

2n0−1 .

It remains to verify that f−1[A] 6∈ Ih. To see this notice that∑
a∈f−1[A]

h(a) ≥
∑
a∈M

h(a) =
∑
n≥n0

h(mn) =
∑
n≥n0

1

n
=∞.

Theorem 3.4. (CH) For an arbitrary tall summable ideal Ig there is an
Ig-ultrafilter which is not rapid.

Proof. This is an immediate consequence of Theorem 3.2, Proposition 3.3
and the characterization of rapid ultrafilters in Theorem 1.1.

4 One possible generalization and its limits

Once we have proved Theorem 3.4, which so to speak reverses Corollary 1.4,
we may ask whether it is possible that an ultrafilter is an Ig-ultrafilter for
“many” tall summable ideals simultaneously and still not a rapid ultrafilter.
Certainly, “many” cannot mean all tall summable ideals, because of Theo-
rem 1.2. We will show that in fact d many may be too much, but less than
b is not.

Proposition 4.1. There exists a family D of tall summable ideals such that
|D| = d and an ultrafilter U ∈ ω∗ is rapid if and only if it has a nonempty
intersection with every tall summable ideal in D.

Proof. Let us first construct the family D: Assume F ⊆ ωω is a dominating
family and |F| = d. Without loss of generality we may assume that all
functions in F are strictly increasing and f(j + 1) ≥ f(j) + j + 1 for every
j ∈ ω. For every f ∈ F define gf : ω → R

+ by

gf (m) =

{
1 if m < f(0)
1
j+1 if m ∈ [f(j), f(j + 1))

Let D = {Igf : f ∈ F}.
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Now, one implication is clear since every rapid ultrafilter has a nonempty
intersection with all tall summable ideals, in particular it has a nonempty
intersection with every ideal from D.

It remains to verify that if an ultrafilter has nonempty intersection with
every ideal in D, then it has nonempty intersection with all tall summable
ideals and therefore is rapid. To this end, assume Ig is an arbitrary tall
summable ideal. One can define a strictly increasing function fg such that
for every j ∈ ω:

• fg(j + 1) ≥ fg(j) + j + 1

• if m ≥ fg(j) then g(m) ≤ 1
2j

Remember that family F was dominating. Hence there exists f ∈ F and
k0 ∈ ω such that f(k) ≥ fg(k) for every k ≥ k0. For a every n ≥ f(k0) there
exists a unique j ≥ k0 such that n ∈ [f(j), f(j+ 1)). Since n ≥ f(j) ≥ fg(j)
we get g(n) ≤ 1

2j
≤ 1

j+1 = gf (n). From g ≤∗ gf follows that Igf ⊆ Ig. Thus
every ultrafilter U ∈ ω∗ which has a nonempty intersection with all ideals
from D has a nonempty intersection with Ig and since Ig was arbitrary, U

is a rapid ultrafilter,

Proposition 4.2. If D is a family of tall summable ideals and |D| < b then
there exists a tall summable ideal Ig such that Ig ⊆ Ih for every Ih ∈ D.

Proof. For every Ih ∈ D define a strictly increasing function fh ∈ ωω such
that whenever m ≥ fh(j) then h(m) ≤ 1

2j
.

According to the assumptions, the family of functions F = {fh : Ih ∈ D}
is bounded, so there exists f ∈ ωω such that fh ≤∗ f for every fh ∈ F . We
may assume that f is strictly increasing. Define g : ω → R

+ by

g(m) =

{
1 if m < f(0)
1
j+1 if m ∈ [f(j), f(j + 1))

For a given function fh ∈ F there exists kh ∈ ω such that fh(k) ≤ f(k)
for every k ≥ kh. For every n ≥ f(kh) there is exactly one j ≥ kh such that
n ∈ [f(j), f(j+ 1)). Since n ≥ f(j) ≥ fh(j) we get h(n) ≤ 1

2j
≤ 1

j+1 = g(n).
From h ≤∗ g follows that Ig ⊆ Ih.

Corollary 4.3. (CH) If D is a family of tall summable ideals and |D| < ω1

then there exists an ultrafilter U ∈ ω∗ such that U is an I -ultrafilter for
every I ∈ D, but U is not a rapid ultrafilter.

Proof. Combine Theorem 3.4 and Proposition 4.2.
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5 Open questions

Let D be a family of tall summable ideals.

Question 5.1. What is the minimal size of the family D if rapid ultrafilters
can be characterized as those ultrafilters on the natural numbers which have
a nonempty intersection with all ideals in the family D?

Due to Proposition 4.1 the size of such a family is at most d. But is d

really the minimum?

Question 5.2. Is it true that whenever the cardinality of D is less than
d then there exist an ultrafilter on the natural numbers which is an Ig-
ultrafilter for every Ig ∈ D, but not a rapid ultrafilter?
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