Introduction	Ultrafilters and \mathcal{W}	W-ultrafilters	Algebra	References
00000	00	000	000	0

Ultrafilters on $\ensuremath{\mathbb{N}}$ and van der Waerden ideal

Jana Flašková

Department of Mathematics University of West Bohemia in Pilsen

25th Summer Conference on Topology and its Applications 28. 7. 2010, Kielce, Poland

All the ultrafilters in this talk are free.

The free ultrafilters on \mathbb{N} correspond to the points in the remainder of the Čech-Stone compactification of \mathbb{N} .

Definition.

An ultrafilter $p \in \mathbb{N}^*$ is called a *P*-point if for every family V_i , $i \in \omega$ of open neighborhoods of *p* there exists an open neighborhood *V* such that $V \subseteq V_i$ for every $i \in \omega$.

An ultrafilter \mathcal{U} is a *P*-point if for every $\{R_i : i \in \omega\}$, a partition of ω with $R_i \notin \mathcal{U}$, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap R_i| < \omega$.

Ultrafilters and W

W-ultrafilters

Algebra 000 References

Q-points and rapid ultrafilters

Definition.

An ultrafilter \mathcal{U} is called a Q-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) | U \cap Q_i | \leq 1$.

An ultrafilter \mathcal{U} is called rapid if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \le i$.

Alternative definition of rapid ultrafilters:

An ultrafilter \mathcal{U} is rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Ultrafilters and W

W-ultrafilters

Algebra 000 References

Some facts about ultrafilters

Assuming CH or Martin's axiom for countable posets all the above mentioned ultrafilters exist.

Theorem (Shelah).

It is consistent with ZFC that there are no *P*-points.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

Ultrafilters and W

N-ultrafilters

Algebra 000 References

Some questions about ultrafilters

Problem I.

No model is known in which neither *P*-points nor *Q*-points exist.

Every *Q*-point is rapid, but the converse is not true.

Problem II.

In every model where *Q*-points are known not to exist, rapid ultrafilters do not exist either.



AP-sets and van der Waerden ideal

Definition.

A set $A \subseteq \omega$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Sets which are not AP-sets form a proper ideal on ω . It is van der Waerden ideal \mathcal{W} .

The van der Waerden ideal W is F_{σ} -ideal, not a P-ideal.

Ultrafilters and W

W-ultrafilters

Algebra 000 References

Ultrafilters disjoint from $\ensuremath{\mathcal{W}}$

Theorem 1.

 $(\mathsf{MA}_{\mathsf{ctble}}) \text{ There is a } P\text{-point } \mathcal{U} \text{ such that } \mathcal{U} \cap \mathcal{W} = \emptyset.$

Theorem 2.

 $(\mathsf{MA}_{ctble}) \text{ There is a rapid ultrafilter } \mathcal{U} \text{ such that } \mathcal{U} \cap \mathcal{W} = \emptyset.$

Corollary 3. (MA_{ctble}) There is a rapid *P*-point \mathcal{U} such that $\mathcal{U} \cap \mathcal{W} = \emptyset$.

Ultrafilters intersecting $\ensuremath{\mathcal{W}}$

Lemma 4.

Every Q-point has a nonempty intersection with the ideal W.

Proof of Lemma 4.

- 1. Let $\omega = \bigcup_{n \in \omega} I_n$ where $I_n = [2^n, 2^{n+1})$.
- 2. $\exists U_0$ in the ultrafilter such that $|U_0 \cap I_n| \le 1$ for every *n*.
- 3. Either $U_1 = \bigcup_{n \text{ odd}} I_n$ or $U_2 = \bigcup_{n \text{ even}} I_n$ is in the ultrafilter.
- 4. The set $U = U_0 \cap U_i$ is in \mathcal{W} .

Ultrafilters and V

W-ultrafilters

Algebra 000 References

W-ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called

a weak \mathcal{W} -ultrafilter if for every finite-to-one $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{W}$.

an \mathcal{W} -ultrafilter if for every $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{W}$.

Every \mathcal{W} -ultrafilter is a weak \mathcal{W} -ultrafilter.

Every weak $\ensuremath{\mathcal{W}}\xspace$ -ultrafilter has a nonempty intersection with the van der Waerden ideal.

Ultrafilters and *W*

W-ultrafilters

Algebra 000 References

Q-points and W-ultrafilters

Lemma 5. Every Q-point is a weak W-ultrafilter.

Proposition 6.

 (MA_{ctble}) There is a *Q*-point which is not a *W*-ultrafilter.

 (MA_{ctble}) For every tall ideal $\mathcal I$ there is a $\mathit{Q}\text{-point}$ which is not an $\mathcal I\text{-ultrafilter}.$

$\operatorname{\mathcal{W}}$ -ultrafilters and other ultrafilters

Theorem 7.

 (MA_{ctble}) There is a \mathcal{W} -ultrafilter which is not a Q-point.

Question A.

Does there (consistently) exist a $\mathcal{W}\text{-ultrafilter}$ which is not a rapid ultrafilter?

Theorem 8.

 (MA_{ctble}) There is a \mathcal{W} -ultrafilter which is not a P-point.

Ultrafilters and W

W-ultrafilters

Algebra •00 References

Algebraic structure on $\beta \mathbb{N}$

The addition + on \mathbb{N} extends in a natural way to $(\beta \mathbb{N}, +)$.

Definition. An ultrafilter p is called idempotent if p + p = p.

Neither *P*-points nor *Q*-points are idempotents. In fact: p + q is never a *P*-point or *Q*-point.

What about the rapid ultrafilters? Does there consistently exist a rapid ultrafilter which is idempotent?

Ultrafilters and W

W-ultrafilters

Algebra

References

Idempotents in $(\beta \mathbb{N}, +)$

Proposition (Blass, Krautzberger).

Every strongly summable ultrafilter is rapid.

Strongly summable ultrafilters are idempotent, but far from being minimal idempotents.

If p is a minimal idempotent, then every $A \in p$ is an AP-set.

Are there consistently any rapid minimal idempotents?

duction	Ultrafilters and \mathcal{W}	W-ultrafilters	Algebra	References
000	00	000	000	0

Rapid minimal idempotents

Theorem (Krautzberger)

If there is a rapid ultrafilter then there exists a rapid ultrafilter which is a minimal idempotent.

The idea of the proof:

- 1. If p is a rapid ultrafilter then every $q \in \mathbb{N}^* + p$ is rapid.
- 2. $\mathbb{N}^* + p$ is a left ideal, thus intersects a minimal ideal.
- 3. There are many rapid minimal idempotents.

Corollary

If there is a rapid ultrafilter then there exists a rapid ultrafilter which contains only AP-sets.

J. Flašková, The relation of rapid ultrafilters and *Q*-points to van der Waerden ideal, *to appear*. arXiv:1004.1879v2

A. Miller, There are no *Q*-points in Laver's model for the Borel conjecture, *Proc. Amer. Math. Soc.* **78** (1980), 498 – 502.

S. Shelah, *Proper forcing*, Lecture Notes in Mathematics, 940. Springer-Verlag, Berlin-New York, 1982.