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P-points

All the ultrafilters in this talk are free.

The free ultrafilters on N correspond to the points in the
remainder of the Čech-Stone compactification of N.

Definition.
An ultrafilter p ∈ N∗ is called a P-point if for every family Vi ,
i ∈ ω of open neighborhoods of p there exists an open
neighborhood V such that V ⊆ Vi for every i ∈ ω.

An ultrafilter U is a P-point if for every {Ri : i ∈ ω},
a partition of ω with Ri 6∈ U , there exists U ∈ U such that
(∀i ∈ ω) |U ∩ Ri | < ω.
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Q-points and rapid ultrafilters

Definition.
An ultrafilter U is called a Q-point if for every {Qi : i ∈ ω},
a partition of ω into finite sets, there exists U ∈ U such that
(∀i ∈ ω) |U ∩Qi | ≤ 1.

An ultrafilter U is called rapid if for every {Qi : i ∈ ω},
a partition of ω into finite sets, there exists U ∈ U such that
(∀i ∈ ω) |U ∩Qi | ≤ i .

Alternative definition of rapid ultrafilters:
An ultrafilter U is rapid if the enumeration functions of its sets
form a dominating family in (ωω,≤∗).
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Some facts about ultrafilters

Assuming CH or Martin’s axiom for countable posets all
the above mentioned ultrafilters exist.

Theorem (Shelah).
It is consistent with ZFC that there are no P-points.

Theorem (Miller).
In Laver’s model there are no rapid ultrafilters.
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Some questions about ultrafilters

Problem I.
No model is known in which neither P-points nor Q-points exist.

Every Q-point is rapid, but the converse is not true.

Problem II.
In every model where Q-points are known not to exist,
rapid ultrafilters do not exist either.
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AP-sets and van der Waerden ideal

Definition.
A set A ⊆ ω is called an AP-set if it contains arbitrary long
arithmetic progressions.

Sets which are not AP-sets form a proper ideal on ω.
It is van der Waerden idealW.

The van der Waerden idealW is Fσ-ideal, not a P-ideal.
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Ultrafilters disjoint fromW

Theorem 1.
(MActble) There is a P-point U such that U ∩W = ∅.

Theorem 2.
(MActble) There is a rapid ultrafilter U such that U ∩W = ∅.

Corollary 3.
(MActble) There is a rapid P-point U such that U ∩W = ∅.
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Ultrafilters intersectingW

Lemma 4.
Every Q-point has a nonempty intersection with the idealW.

Proof of Lemma 4.
1. Let ω =

⋃
n∈ω In where In = [2n,2n+1).

2. ∃U0 in the ultrafilter such that |U0 ∩ In| ≤ 1 for every n.
3. Either U1 =

⋃
n odd In or U2 =

⋃
n even In is in the ultrafilter.

4. The set U = U0 ∩ Ui is inW.
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W-ultrafilters

Definition.
An ultrafilter U ∈ ω∗ is called

a weakW-ultrafilter if for every finite-to-one f : ω → ω there
exists U ∈ U such that f [U] ∈ W.
anW-ultrafilter if for every f : ω → ω there exists U ∈ U
such that f [U] ∈ W.

EveryW-ultrafilter is a weakW-ultrafilter.

Every weakW-ultrafilter has a nonempty intersection with the
van der Waerden ideal.
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Q-points andW-ultrafilters

Lemma 5.
Every Q-point is a weakW-ultrafilter.

Proposition 6.
(MActble) There is a Q-point which is not aW-ultrafilter.

(MActble) For every tall ideal I there is a Q-point which is not
an I-ultrafilter.
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W-ultrafilters and other ultrafilters

Theorem 7.
(MActble) There is aW-ultrafilter which is not a Q-point.

Question A.
Does there (consistently) exist aW-ultrafilter which is not a
rapid ultrafilter?

Theorem 8.
(MActble) There is aW-ultrafilter which is not a P-point.
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Algebraic structure on βN

The addition + on N extends in a natural way to (βN,+).

Definition.
An ultrafilter p is called idempotent if p + p = p.

Neither P-points nor Q-points are idempotents.
In fact: p + q is never a P-point or Q-point.

What about the rapid ultrafilters?
Does there consistently exist a rapid ultrafilter which is
idempotent?
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Idempotents in (βN,+)

Proposition (Blass, Krautzberger).
Every strongly summable ultrafilter is rapid.

Strongly summable ultrafilters are idempotent, but far from
being minimal idempotents.

If p is a minimal idempotent, then every A ∈ p is an AP-set.

Are there consistently any rapid minimal idempotents?
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Rapid minimal idempotents

Theorem (Krautzberger)
If there is a rapid ultrafilter then there exists a rapid ultrafilter
which is a minimal idempotent.

The idea of the proof:
1. If p is a rapid ultrafilter then every q ∈ N∗ + p is rapid.
2. N∗ + p is a left ideal, thus intersects a minimal ideal.
3. There are many rapid minimal idempotents.

Corollary
If there is a rapid ultrafilter then there exists a rapid ultrafilter
which contains only AP-sets.
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