## Nowhere dense sets corresponding to summable ideals

Jana Flašková

flaskova@kma.zcu.cz

University of West Bohemia, Pilsen Czech Republic

# Čech-Stone compactification of $\omega$

- Definition.
- Čech-Stone compactification of  $\omega$  is a compact topological space  $\beta \omega$  such that:
  - $\omega$  is a dense subspace of  $\beta \omega$
  - every (continuous) function  $f: \omega \to [0, 1]$  can be extended to a continuous function  $\beta f: \beta \omega \to [0, 1]$

# Čech-Stone compactification of $\omega$

- Definition.
- Čech-Stone compactification of  $\omega$  is a compact topological space  $\beta \omega$  such that:
  - $\omega$  is a dense subspace of  $\beta \omega$
  - every (continuous) function  $f: \omega \to [0, 1]$  can be extended to a continuous function  $\beta f: \beta \omega \to [0, 1]$

 $\omega^* = \beta \omega \setminus \omega$  is called remainder of  $\beta \omega$ 



## Ultrafilters on $\omega$

Definition.

A family  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is called a filter on  $\omega$  if:

- $\mathcal{F} \neq \emptyset$  and  $\emptyset \not\in \mathcal{F}$
- if  $F_1, F_2 \in \mathcal{F}$  then  $F_1 \cap F_2 \in \mathcal{F}$
- if  $F \in \mathcal{F}$  and  $F \subseteq G \subseteq X$  then  $G \in \mathcal{F}$ .

## Ultrafilters on $\omega$

Definition.

A family  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is called a filter on  $\omega$  if:

- $\mathcal{F} \neq \emptyset$  and  $\emptyset \not\in \mathcal{F}$
- if  $F_1, F_2 \in \mathcal{F}$  then  $F_1 \cap F_2 \in \mathcal{F}$
- if  $F \in \mathcal{F}$  and  $F \subseteq G \subseteq X$  then  $G \in \mathcal{F}$ .

If moreover  $\mathcal{F}$  satisfies

• for every  $M \subseteq \omega$  either  $M \in \mathcal{F}$  or  $\omega \setminus M \in \mathcal{F}$ then  $\mathcal{F}$  is called an ultrafilter.



# Topology on $\omega^*$

#### Points in $\beta \omega$ may be identified with ultrafilters on $\omega$ : points in $\omega \leftrightarrow$ fixed ultrafilters points in $\omega^* \leftrightarrow$ free ultrafilters



## Topology on $\omega^*$

Points in  $\beta \omega$  may be identified with ultrafilters on  $\omega$ : points in  $\omega \leftrightarrow$  fixed ultrafilters points in  $\omega^* \leftrightarrow$  free ultrafilters

Topology on  $\omega^*$  is generated by clopen sets:  $A^* = \{ \mathcal{U} : A \in \mathcal{U} \}, \quad A \in [\omega]^{\omega}$ 

## Topology on $\omega^*$

Points in  $\beta \omega$  may be identified with ultrafilters on  $\omega$ : points in  $\omega \leftrightarrow$  fixed ultrafilters points in  $\omega^* \leftrightarrow$  free ultrafilters

Topology on  $\omega^*$  is generated by clopen sets:  $A^* = \{ \mathcal{U} : A \in \mathcal{U} \}, \quad A \in [\omega]^{\omega}$ 

Some more facts about  $\omega^*$ :

- zero-dimensional
- cardinality 2<sup>c</sup>
- dense-in-itself



## **Ideals on** $\omega$

Definition.

An ideal on  $\omega$  is a family  $\mathcal{I} \subseteq \mathcal{P}(\omega)$  such that:

- $\mathcal{I} \neq \mathcal{P}(\omega)$  and  $\emptyset \in \mathcal{I}$
- if  $A_1, A_2 \in \mathcal{I}$  then  $A_1 \cup A_2 \in \mathcal{I}$
- if  $A \in \mathcal{I}$  and  $B \subseteq A \subseteq \omega$  then  $B \in \mathcal{I}$ .



## **Ideals on** $\omega$

Definition.

An ideal on  $\omega$  is a family  $\mathcal{I} \subseteq \mathcal{P}(\omega)$  such that:

• 
$$\mathcal{I} \neq \mathcal{P}(\omega)$$
 and  $\emptyset \in \mathcal{I}$ 

- if  $A_1, A_2 \in \mathcal{I}$  then  $A_1 \cup A_2 \in \mathcal{I}$
- if  $A \in \mathcal{I}$  and  $B \subseteq A \subseteq \omega$  then  $B \in \mathcal{I}$ .

Examples: Fin = finite subsets of  $\omega$  $\mathcal{I}_{1/n} = \{A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty\}$  $\mathcal{Z}_0 = \{A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0\}$ 

## **Summable ideals**

#### Definition.

Given a function  $g:\omega\to [0,\infty)$  such that  $\sum\limits_{n\in\omega}g(n)=\infty$  then the family

$$\mathcal{I}_g = \{A \subseteq \omega : \sum_{a \in A} g(a) < +\infty\}$$

is a proper ideal which we call summable ideal determined by function g.

## **Summable ideals**

#### Definition.

Given a function  $g:\omega\to [0,\infty)$  such that  $\sum\limits_{n\in\omega}g(n)=\infty$  then the family

$$\mathcal{I}_g = \{A \subseteq \omega : \sum_{a \in A} g(a) < +\infty\}$$

is a proper ideal which we call summable ideal determined by function g.

We will consider only tall summable ideals.

## **Ideals and open sets**

#### Definition.

- An ideal  ${\mathcal I}$  on  $\omega$  is tall (dense) if for every infinite set
- $A \subseteq \omega$  there exists  $B \in [A]^{\omega}$  such that  $B \in \mathcal{I}$ .

## **Ideals and open sets**

#### Definition.

An ideal  $\mathcal{I}$  on  $\omega$  is tall (dense) if for every infinite set  $A \subseteq \omega$  there exists  $B \in [A]^{\omega}$  such that  $B \in \mathcal{I}$ .

A summable ideal is tall if and only if  $\lim_{n\to\infty} g(n) = 0$ .

## **Ideals and open sets**

#### Definition.

An ideal  $\mathcal{I}$  on  $\omega$  is tall (dense) if for every infinite set  $A \subseteq \omega$  there exists  $B \in [A]^{\omega}$  such that  $B \in \mathcal{I}$ .

A summable ideal is tall if and only if  $\lim_{n \to \infty} g(n) = 0$ .

To every ideal  ${\mathcal I}$  on  $\omega$  assign an open set

$$\sigma(\mathcal{I}) = \bigcup \{A^* : A \in \mathcal{I}\}$$

and a closed set

$$\delta(\mathcal{I}) = \omega^* \setminus \sigma(\mathcal{I})$$



## **Ideals and (nowhere) dense sets**

 $\sigma(\mathcal{I}) = \{ \mathcal{U} \in \omega^* : \mathcal{U} \cap \mathcal{I} \neq \emptyset \} \\ \delta(\mathcal{I}) = \{ \mathcal{U} \in \omega^* : \mathcal{U} \cap \mathcal{I} = \emptyset \} = \{ \mathcal{U} \in \omega^* : \mathcal{I}^* \subseteq \mathcal{U} \}$ 

## **Ideals and (nowhere) dense sets**

 $\sigma(\mathcal{I}) = \{ \mathcal{U} \in \omega^* : \mathcal{U} \cap \mathcal{I} \neq \emptyset \} \\ \delta(\mathcal{I}) = \{ \mathcal{U} \in \omega^* : \mathcal{U} \cap \mathcal{I} = \emptyset \} = \{ \mathcal{U} \in \omega^* : \mathcal{I}^* \subseteq \mathcal{U} \}$ 

#### Lemma.

For an ideal  $\mathcal{I}$  on  $\omega$  the following are equivalent:

- $\mathcal{I}$  is tall
- $\sigma(\mathcal{I})$  is dense in  $\omega^*$
- $\delta(\mathcal{I})$  is nowhere dense in  $\omega^*$

## **Ideals and (nowhere) dense sets**

- $\sigma(\mathcal{I}) = \{ \mathcal{U} \in \omega^* : \mathcal{U} \cap \mathcal{I} \neq \emptyset \} \\ \delta(\mathcal{I}) = \{ \mathcal{U} \in \omega^* : \mathcal{U} \cap \mathcal{I} = \emptyset \} = \{ \mathcal{U} \in \omega^* : \mathcal{I}^* \subseteq \mathcal{U} \}$
- Lemma.
- For an ideal  $\mathcal I$  on  $\omega$  the following are equivalent:
  - $\mathcal{I}$  is tall
  - $\sigma(\mathcal{I})$  is dense in  $\omega^*$
  - $\delta(\mathcal{I})$  is nowhere dense in  $\omega^*$

If  $\mathcal{I} \subseteq \mathcal{J}$  then  $\sigma(\mathcal{I}) \subseteq \sigma(\mathcal{J})$  and  $\delta(\mathcal{I}) \supseteq \delta(\mathcal{J})$ .

## The problem

- Problem S.4. (van Douwen [1978])
- Is it true in ZFC that  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$  whenever
- $A \subseteq \omega^*$  is nowhere dense? What if  $A = \delta(\mathcal{Z}_0)$  or  $A = \delta(\mathcal{I}_{1/n})$ ?

## The problem

- Problem S.4. (van Douwen [1978])
- Is it true in ZFC that  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$  whenever
- $A \subseteq \omega^*$  is nowhere dense? What if  $A = \delta(\mathcal{Z}_0)$  or  $A = \delta(\mathcal{I}_{1/n})$ ?

### Problem 235. (Hart, van Mill [1990])

For what nowhere dense sets  $A \subseteq \omega^*$  do we have  $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$ ?

## The problem

- Problem S.4. (van Douwen [1978])
- Is it true in ZFC that  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$  whenever
- $A \subseteq \omega^*$  is nowhere dense? What if  $A = \delta(\mathcal{Z}_0)$  or  $A = \delta(\mathcal{I}_{1/n})$ ?

#### Problem 235. (Hart, van Mill [1990])

For what nowhere dense sets  $A \subseteq \omega^*$  do we have  $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$ ?

## Theorem (Gryzlov) For $A = \delta(\mathcal{Z}_0)$ we have $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$ .



#### Theorem 1.

For  $A = \delta(\mathcal{I}_{1/n})$  we have  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$ .

Theorem 1.

- For  $A = \delta(\mathcal{I}_{1/n})$  we have  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$ .
- If  $\mathcal{U} \in \omega^* \setminus \bigcup_{\pi \in S_\omega} \beta \pi[A]$  then for all  $\pi \in S_\omega$  there exists set  $U \in \mathcal{U}$  with  $\pi[U] \in \mathcal{I}_{1/n}$ .

Theorem 1.

- For  $A = \delta(\mathcal{I}_{1/n})$  we have  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$ .
- If  $\mathcal{U} \in \omega^* \setminus \bigcup_{\pi \in S_\omega} \beta \pi[A]$  then for all  $\pi \in S_\omega$  there exists set  $U \in \mathcal{U}$  with  $\pi[U] \in \mathcal{I}_{1/n}$ .
- Definition A.
- An ultrafilter  $\mathcal{U}$  on  $\omega$  is called a summable ultrafilter if for every one-to-one function  $f: \omega \to \mathbb{N}$  there exists  $U \in \mathcal{U}$  such that  $f[U] \in \mathcal{I}_{1/n}$ .

Theorem 1.

- For  $A = \delta(\mathcal{I}_{1/n})$  we have  $\bigcup_{\pi \in S_{\omega}} \beta \pi[A] \neq \omega^*$ .
- If  $\mathcal{U} \in \omega^* \setminus \bigcup_{\pi \in S_\omega} \beta \pi[A]$  then for all  $\pi \in S_\omega$  there exists set  $U \in \mathcal{U}$  with  $\pi[U] \in \mathcal{I}_{1/n}$ .
- Definition A.

An ultrafilter  $\mathcal{U}$  on  $\omega$  is called a summable ultrafilter if for every one-to-one function  $f: \omega \to \mathbb{N}$  there exists  $U \in \mathcal{U}$  such that  $f[U] \in \mathcal{I}_{1/n}$ .

#### Theorem 1\*.

Summable ultrafilters exist in ZFC.

# **Results** Definition B. An ultrafilter $\mathcal{U}$ on $\omega$ is called a *g*-summable ultrafilter if for every one-to-one function $f: \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_q$ .

#### Definition B.

An ultrafilter  $\mathcal{U}$  on  $\omega$  is called a *g*-summable ultrafilter if for every one-to-one function  $f : \omega \to \mathbb{N}$  there exists  $U \in \mathcal{U}$  such that  $f[U] \in \mathcal{I}_g$ .

#### Corollary 2.

If  $g: \omega \to [0, \infty)$  satisfies  $\frac{1}{n} \gg g(n)$  then *g*-summable ultrafilters exist in ZFC.

#### Definition B.

An ultrafilter  $\mathcal{U}$  on  $\omega$  is called a *g*-summable ultrafilter if for every one-to-one function  $f : \omega \to \mathbb{N}$  there exists  $U \in \mathcal{U}$  such that  $f[U] \in \mathcal{I}_g$ .

#### Corollary 2.

If  $g: \omega \to [0, \infty)$  satisfies  $\frac{1}{n} \gg g(n)$  then *g*-summable ultrafilters exist in ZFC.

#### Theorem 3.

If  $g(n) = \frac{\ln^p n}{n}$ ,  $p \in \omega$ , then *g*-summable ultrafilters exist in ZFC (i.e.  $\delta(\mathcal{I}_g)$  solves Problem 235.).

## More results and questions

#### Theorem 4.

(MA<sub>ctble</sub>) If  $I_g$  is a summable ideal and  $A = \delta(\mathcal{I}_g)$ then  $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$ .

## More results and questions

#### Theorem 4.

(MA<sub>ctble</sub>) If  $I_g$  is a summable ideal and  $A = \delta(\mathcal{I}_g)$ then  $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$ .

#### Question.

Do *g*-summable ultrafilters exist in ZFC for every tall summable ideal  $\mathcal{I}_g$ ? What if  $g(n) = \frac{1}{\sqrt{n}}$  or  $\frac{1}{\ln n}$ ?

## More results and questions

#### Theorem 4.

(MA<sub>ctble</sub>) If  $I_g$  is a summable ideal and  $A = \delta(\mathcal{I}_g)$ then  $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$ .

#### Question.

Do *g*-summable ultrafilters exist in ZFC for every tall summable ideal  $\mathcal{I}_g$ ? What if  $g(n) = \frac{1}{\sqrt{n}}$  or  $\frac{1}{\ln n}$ ?

#### Question.

Is there a g-summable ultrafilter which is not an h-summable ultrafilter if  $I_g$  and  $I_h$  are two incomparable summable ultrafilters?



Theorem 1\*.

Summable ultrafilters exist in ZFC.



- Theorem 1\*.
- Summable ultrafilters exist in ZFC.

Definition.

- A family  $\mathcal{F}\subseteq \mathcal{P}(\omega)$  is called
  - a k-linked family if  $F_1 \cap \ldots \cap F_k$  is infinite whenever  $F_i \in \mathcal{F}, i \leq k$ .
  - a centered system if  $\mathcal{F}$  is k-linked for every k i.e., if any finite subfamily of  $\mathcal{F}$  has an infinite intersection.

We say that  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a summable family if for every one-to-one function  $f : \omega \to \mathbb{N}$  there is  $A \in \mathcal{F}$ such that  $f[A] \in \mathcal{I}_{1/n}$ .

We say that  $\mathcal{F} \subseteq \mathcal{P}(\omega)$  is a summable family if for every one-to-one function  $f : \omega \to \mathbb{N}$  there is  $A \in \mathcal{F}$ such that  $f[A] \in \mathcal{I}_{1/n}$ .

#### Proposition 5.

For every  $k \in \mathbb{N}$  there exists a summable k-linked family  $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ .



Lemma 6.

- If  $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$  is a *k*-linked family then
- $\mathcal{F} = \{ F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) \, U^k \subseteq^* F \}$

is a centered system.

Lemma 6.

- If  $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$  is a *k*-linked family then
- $\mathcal{F} = \{ F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) \, U^k \subseteq^* F \}$

is a centered system.

If every  $\mathcal{F}_k$  is summable then  $\mathcal{F}$  is summable.

Lemma 6.

- If  $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$  is a *k*-linked family then
- $\mathcal{F} = \{ F \subseteq \omega : (\forall k) (\exists U^k \in \mathcal{F}_k) \ U^k \subseteq^* F \}$

is a centered system.

If every  $\mathcal{F}_k$  is summable then  $\mathcal{F}$  is summable.

More generally, if  $\mathcal{I}$  is a P-ideal and for every one-to-one function  $f \in {}^{\omega}\mathbb{N}$  and for every  $k \in \mathbb{N}$  there exists  $U^k \in \mathcal{F}_k$  such that  $f[U^k] \in \mathcal{I}$  then there exists  $U \in \mathcal{F}$  such that  $f[U] \in \mathcal{I}$ .

## References

van Douwen, E., Problem S.4. (Problem Section), *Topology Proceedings* **3**, 538, 1978.

Hart, K.P., van Mill, J., Open problems on  $\beta\omega$ , *Open problems in topology*, 97–125, North-Holland, Amsterdam, 1990.

Flašková, J., More than a 0-point, *Comment. Math. Univ. Carolinae* **47**, no. 4, 617–621, 2006.

**Gryzlov, A. A., K teorii prostranstva**  $\beta N$ , *Obshchaya topologiya*, Mosk. Univ., Moskva, 20–33, 1986.