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Čech-Stone compactification ofω
Definition.
Čech-Stone compactification ofω is a compact
topological spaceβω such that:

• ω is a dense subspace ofβω

• every (continuous) functionf : ω → [0, 1] can be
extended to a continuous function
βf : βω → [0, 1]
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Čech-Stone compactification ofω
Definition.
Čech-Stone compactification ofω is a compact
topological spaceβω such that:

• ω is a dense subspace ofβω

• every (continuous) functionf : ω → [0, 1] can be
extended to a continuous function
βf : βω → [0, 1]

ω∗ = βω \ ω is calledremainder ofβω
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Ultrafilters on ω

Definition.
A family F ⊆ P(ω) is called afilter onω if:

• F 6= ∅ and∅ 6∈ F
• if F1, F2 ∈ F thenF1 ∩ F2 ∈ F
• if F ∈ F andF ⊆ G ⊆ X thenG ∈ F .
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Ultrafilters on ω

Definition.
A family F ⊆ P(ω) is called afilter onω if:

• F 6= ∅ and∅ 6∈ F
• if F1, F2 ∈ F thenF1 ∩ F2 ∈ F
• if F ∈ F andF ⊆ G ⊆ X thenG ∈ F .

If moreoverF satisfies
• for everyM ⊆ ω eitherM ∈ F or ω \ M ∈ F

thenF is called anultrafilter.
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Topology onω
∗

Points inβω may be identified with ultrafilters onω:
points inω ↔ fixed ultrafilters
points inω∗ ↔ free ultrafilters
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Topology onω∗ is generated by clopen sets:
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Topology onω
∗

Points inβω may be identified with ultrafilters onω:
points inω ↔ fixed ultrafilters
points inω∗ ↔ free ultrafilters

Topology onω∗ is generated by clopen sets:
A∗ = {U : A ∈ U}, A ∈ [ω]ω

Some more facts aboutω∗:

• zero-dimensional

• cardinality2c

• dense-in-itself
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Ideals onω

Definition.
An idealonω is a familyI ⊆ P(ω) such that:

• I 6= P(ω) and∅ ∈ I
• if A1, A2 ∈ I thenA1 ∪ A2 ∈ I
• if A ∈ I andB ⊆ A ⊆ ω thenB ∈ I.
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Ideals onω

Definition.
An idealonω is a familyI ⊆ P(ω) such that:

• I 6= P(ω) and∅ ∈ I
• if A1, A2 ∈ I thenA1 ∪ A2 ∈ I
• if A ∈ I andB ⊆ A ⊆ ω thenB ∈ I.

Examples: Fin = finite subsets ofω

Examples: I1/n = {A ⊆ N :
∑
a∈A

1

a < ∞}

Examples: Z0 = {A ⊆ N : lim sup
n→∞

|A∩n|
n = 0}
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Summable ideals
Definition.
Given a functiong : ω → [0,∞) such that∑
n∈ω

g(n) = ∞ then the family

Ig = {A ⊆ ω :
∑

a∈A

g(a) < +∞}

is a proper ideal which we call summable ideal
determined by functiong.
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Summable ideals
Definition.
Given a functiong : ω → [0,∞) such that∑
n∈ω

g(n) = ∞ then the family

Ig = {A ⊆ ω :
∑

a∈A

g(a) < +∞}

is a proper ideal which we call summable ideal
determined by functiong.

We will consider only tall summable ideals.
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Ideals and open sets
Definition.
An idealI onω is tall (dense)if for every infinite set
A ⊆ ω there existsB ∈ [A]ω such thatB ∈ I.
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Ideals and open sets
Definition.
An idealI onω is tall (dense)if for every infinite set
A ⊆ ω there existsB ∈ [A]ω such thatB ∈ I.

A summable ideal is tall if and only iflim
n→∞

g(n) = 0.
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Ideals and open sets
Definition.
An idealI onω is tall (dense)if for every infinite set
A ⊆ ω there existsB ∈ [A]ω such thatB ∈ I.

A summable ideal is tall if and only iflim
n→∞

g(n) = 0.

To every idealI onω assign an open set

σ(I) =
⋃

{A∗ : A ∈ I}

and a closed set

δ(I) = ω∗ \ σ(I)
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Ideals and (nowhere) dense sets
σ(I) = {U ∈ ω∗ : U ∩ I 6= ∅}
δ(I) = {U ∈ ω∗ : U ∩ I = ∅} = {U ∈ ω∗ : I∗ ⊆ U}
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Ideals and (nowhere) dense sets
σ(I) = {U ∈ ω∗ : U ∩ I 6= ∅}
δ(I) = {U ∈ ω∗ : U ∩ I = ∅} = {U ∈ ω∗ : I∗ ⊆ U}

Lemma.
For an idealI onω the following are equivalent:

• I is tall

• σ(I) is dense inω∗

• δ(I) is nowhere dense inω∗
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Ideals and (nowhere) dense sets
σ(I) = {U ∈ ω∗ : U ∩ I 6= ∅}
δ(I) = {U ∈ ω∗ : U ∩ I = ∅} = {U ∈ ω∗ : I∗ ⊆ U}

Lemma.
For an idealI onω the following are equivalent:

• I is tall

• σ(I) is dense inω∗

• δ(I) is nowhere dense inω∗

If I ⊆ J thenσ(I) ⊆ σ(J ) andδ(I) ⊇ δ(J ).
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The problem
Problem S.4. (van Douwen [1978])
Is it true in ZFC that

⋃
π∈Sω

βπ[A] 6= ω∗ whenever
A ⊆ ω∗ is nowhere dense? What ifA = δ(Z0) or
A = δ(I1/n)?
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The problem
Problem S.4. (van Douwen [1978])
Is it true in ZFC that

⋃
π∈Sω

βπ[A] 6= ω∗ whenever
A ⊆ ω∗ is nowhere dense? What ifA = δ(Z0) or
A = δ(I1/n)?

Problem 235. (Hart, van Mill [1990])
For what nowhere dense setsA ⊆ ω∗ do we have⋃

π∈Sω

βπ[A] 6= ω∗?
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The problem
Problem S.4. (van Douwen [1978])
Is it true in ZFC that

⋃
π∈Sω

βπ[A] 6= ω∗ whenever
A ⊆ ω∗ is nowhere dense? What ifA = δ(Z0) or
A = δ(I1/n)?

Problem 235. (Hart, van Mill [1990])
For what nowhere dense setsA ⊆ ω∗ do we have⋃

π∈Sω

βπ[A] 6= ω∗?

Theorem (Gryzlov)
ForA = δ(Z0) we have

⋃
π∈Sω

βπ[A] 6= ω∗.
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Results
Theorem 1.
ForA = δ(I1/n) we have

⋃
π∈Sω

βπ[A] 6= ω∗.
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Results
Theorem 1.
ForA = δ(I1/n) we have

⋃
π∈Sω

βπ[A] 6= ω∗.

If U ∈ ω∗ \ ⋃
π∈Sω

βπ[A] then for allπ ∈ Sω there
exists setU ∈ U with π[U ] ∈ I1/n.
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Results
Theorem 1.
ForA = δ(I1/n) we have

⋃
π∈Sω

βπ[A] 6= ω∗.

If U ∈ ω∗ \ ⋃
π∈Sω

βπ[A] then for allπ ∈ Sω there
exists setU ∈ U with π[U ] ∈ I1/n.

Definition A.
An ultrafilterU onω is called asummable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ I1/n.
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Results
Theorem 1.
ForA = δ(I1/n) we have

⋃
π∈Sω

βπ[A] 6= ω∗.

If U ∈ ω∗ \ ⋃
π∈Sω

βπ[A] then for allπ ∈ Sω there
exists setU ∈ U with π[U ] ∈ I1/n.

Definition A.
An ultrafilterU onω is called asummable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ I1/n.

Theorem 1*.
Summable ultrafilters exist in ZFC.
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Results
Definition B.
An ultrafilterU onω is called ag-summable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ Ig.
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Results
Definition B.
An ultrafilterU onω is called ag-summable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ Ig.

Corollary 2.

If g : ω → [0,∞) satisfies1

n � g(n) then
g-summable ultrafilters exist in ZFC.
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Results
Definition B.
An ultrafilterU onω is called ag-summable ultrafilter
if for every one-to-one functionf : ω → N there
existsU ∈ U such thatf [U ] ∈ Ig.

Corollary 2.

If g : ω → [0,∞) satisfies1

n � g(n) then
g-summable ultrafilters exist in ZFC.

Theorem 3.
If g(n) = ln

p n
n , p ∈ ω, theng-summable ultrafilters

exist in ZFC (i.e.δ(Ig) solves Problem 235.).
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More results and questions
Theorem 4.
(MActble) If Ig is a summable ideal andA = δ(Ig)
then

⋃
π∈Sω

βπ[A] 6= ω∗.
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More results and questions
Theorem 4.
(MActble) If Ig is a summable ideal andA = δ(Ig)
then

⋃
π∈Sω

βπ[A] 6= ω∗.

Question.
Do g-summable ultrafilters exist in ZFC for every tall
summable idealIg? What ifg(n) = 1√

n
or 1

lnn?
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More results and questions
Theorem 4.
(MActble) If Ig is a summable ideal andA = δ(Ig)
then

⋃
π∈Sω

βπ[A] 6= ω∗.

Question.
Do g-summable ultrafilters exist in ZFC for every tall
summable idealIg? What ifg(n) = 1√

n
or 1

lnn?

Question.
Is there ag-summable ultrafilter which is not an
h-summable ultrafilter ifIg andIh are two
incomparable summable ultrafilters?
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Construction
Theorem 1*.
Summable ultrafilters exist in ZFC.
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Construction
Theorem 1*.
Summable ultrafilters exist in ZFC.

Definition.
A family F ⊆ P(ω) is called

• ak-linked family if F1 ∩ . . . ∩ Fk is infinite
wheneverFi ∈ F , i ≤ k.

• acentered systemif F is k-linked for everyk
i.e., if any finite subfamily ofF has an infinite
intersection.
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Construction
We say thatF ⊆ P(ω) is asummable familyif for
every one-to-one functionf : ω → N there isA ∈ F
such thatf [A] ∈ I1/n.
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Construction
We say thatF ⊆ P(ω) is asummable familyif for
every one-to-one functionf : ω → N there isA ∈ F
such thatf [A] ∈ I1/n.

Proposition 5.
For everyk ∈ N there exists a summablek-linked
family Fk ⊆ P(ω).
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Construction
Lemma 6.
If Fk ⊆ P(ω) is ak-linked family then

F = {F ⊆ ω : (∀k)(∃Uk ∈ Fk)Uk ⊆∗ F}
is a centered system.
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Construction
Lemma 6.
If Fk ⊆ P(ω) is ak-linked family then

F = {F ⊆ ω : (∀k)(∃Uk ∈ Fk)Uk ⊆∗ F}
is a centered system.

If everyFk is summable thenF is summable.
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Construction
Lemma 6.
If Fk ⊆ P(ω) is ak-linked family then

F = {F ⊆ ω : (∀k)(∃Uk ∈ Fk)Uk ⊆∗ F}
is a centered system.

If everyFk is summable thenF is summable.

More generally, ifI is aP -ideal and for every
one-to-one functionf ∈ ω

N and for everyk ∈ N there
existsUk ∈ Fk such thatf [Uk] ∈ I then there exists
U ∈ F such thatf [U ] ∈ I.
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