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Abstract. Two classes of ultrafilters on natural numbers are presented which are
determined by the summable ideal and the density ideal. The relationship between
these two classes is shown and also the relationship to the well-known class of
P -points. Under some additional set-theoretic assumptions (Continuum Hypothesis
or Martin’s Axiom for countable posets) we construct several examples of these
ultrafilters.

Introduction

The notion of I -ultrafilter was introduced in Baumgartner [1995]: Let I be a family of
subsets of a set X such that I contains all singletons and is closed under subsets. Given a free
ultrafilter U on ω, we say that U is an I -ultrafilter if for any F : ω → X there is A ∈ U such
that F [A] ∈ I .

Baumgartner defined in his article discrete ultrafilters, scattered ultrafilters, measure zero
ultrafilters and nowhere dense ultrafilters which he obtained by taking X = 2ω, the Cantor set,
and I the collection of discrete sets, scattered sets, sets with closure of measure zero, nowhere
dense sets respectively. If we let I be the collection of sets with countable closure then we
obtain countably closed ultrafilters which were introduced in Brendle [1999]. Yet another class
of I -ultrafilters was introduced in Barney [2003] by taking I to be the sets with σ-compact
closure. All these classes of ultrafilters are proved to be pairwise distinct under some additional
set-theoretic assumptions (Continuum Hypothesis or some form of Martin’s Axiom). It seems
that some additional set-theoretic assumptions cannot be avoided completely when speaking
about I -ultrafilters because Shelah [1998] proved that it is consistent with ZFC that there are
no nowhere dense ultrafilters, which implies that the existence of any of these ultrafilters (being
a subclass of nowhere dense ultrafilters) is not provable in ZFC.

Another example of I -ultrafilters are ordinal ultrafilters which were introduced also in
Baumgartner [1995] by taking X = ω1 and I = {A ⊆ ω1 : A has order type ≤ α} for some
(indecomposable) ordinal α.

Although in general the ultrafilters defined for X = 2ω and the ultrafilters defined for
X = ω1 do not have much in common, P -points can be described in both ways for a suitable
collection I . If X = 2ω then P -points are precisely the I -ultrafilters for I consisting of all
finite and converging sequences, if X = ω1 then P -points are precisely the I -ultrafilters for
I = {A ⊆ ω1 : A has order type ≤ ω}.

In this article we define two special classes of I -ultrafilters for X = ω and I the summable
and the density ideal on ω which we refer to as (S)-ultrafilters and (H)-ultrafilters. The double
characterization of P -points in terms of I -ultrafilters inspired our investigation of the relation-
ship between P -points and the class of (S)-ultrafilters and (H)-ultrafilters.

Preliminaries and definitions

Given A,B ⊆ ω we write A ⊆∗ B if A \B is finite and we use the symbol ωω to denote the
set of all functions from ω to ω.

Ultrafilters and ideals on ω

A free ultrafilter U is called a P -point if for all partitions of ω, {Ri : i ∈ ω}, either for
some i, Ri ∈ U , or (∃U ∈ U ) (∀i ∈ ω) |U ∩Ri| < ω. Equivalent combinatorial description is:
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a free ultrafilter U is a P -point if and only if whenever Un ∈ U , n ∈ ω, there is U ∈ U such
that U ⊆∗ Un for each n.

A free ultrafilter U is called a selective ultrafilter if for all partitions of ω, {Ri : i ∈ ω},
either for some i, Ri ∈ U , or (∃U ∈ U ) (∀i ∈ ω) |U ∩ Ri| ≤ 1. In the proof of Proposition
6. we will profit from the following equivalent characterization of selective ultrafilters: if U is
a selective ultrafilter on a countable set then for every f ∈ ωω there is U ∈ U such that f � U
is either one-to-one or constant (see Comfort, Negrepontis [1974]).

Family I from the definition of an I -ultrafilter need not be an ideal in general. However,
I -ultrafilters and 〈I 〉-ultrafilters coincide, where 〈I 〉 is the ideal generated by I . Therefore
without loss of generality only ideals can be chosen as I . Observe that if I ⊆ J then any
I -ultrafilter is a J -ultrafilter.

The summable and the density ideal

We say that A ⊆ ω is an (S)-set if
∑

a∈A
1
a < +∞ and we call A an (H)-set if d∗(A) =

lim supn
|A∩n|

n = 0, i. e. A has asymptotic density zero.
Every (S)-set has asymptotic density zero. The set of all prime numbers is an example

of an (H)-set that is not an (S)-set. It is known that (S)-sets and (H)-sets form an ideal on
natural numbers. We will denote the corresponding ideal by (S) and (H) respectively. They are
also known as the summable ideal and the density ideal (introduced in a more general setting
in Farah where the author uses a different notation).

Notice that A ⊆∗ B implies d∗(A) ≤ d∗(B).

(S)-ultrafilters and (H)-ultrafilters

The main goal of this section is to show that the existence of (S)-ultrafilters and (H)-
ultrafilters is consistent with ZFC and these classes of ultrafilters do not coicide.

The existence of (S)-ultrafilters under Martin’s Axiom follows from Proposition 6. in the
following section where even more is proved. The proof, however, makes use of a former result
by Booth concerning the existence of selective ultrafilters. Therefore we decided to present in
this section a short direct proof that (S)-ultrafilters exist if Continuum Hypothesis holds.

Similarly, it follows from Proposition 4. and 5. in the following section that it is sufficient
to assume Martin’s Axiom for countable posets to construct an (H)-ultrafilter which is not (S)-
ultrafilter. However, we construct in Proposition 3. such an ultrafilter assuming Continuum
Hypothesis because the construction is straightforward and clear.

Proposition 1. (CH) There is an (S)-ultrafilter.

Proof. Enumerate ωω = {fα : α < ω1}. By transfinite induction on α < ω1 we construct
countable filter bases Fα satisfying

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ (S)
Suppose we have already constructed Fα. If there exists a set F ∈ Fα such that fα[F ] ∈ (S)
then put Fα+1 = Fα. If fα[F ] 6∈ (S) (in particular, fα[F ] is infinite) for every F ∈ Fα then
enumerate Fα = {Fn : n ∈ ω} and construct by induction set U = {un : n ∈ ω} which we can
add to the filter base:

Choose arbitrary u0 ∈ F0 such that fα(u0) > 0 (such an element exists since fα[F0] is
infinite). If u0, u1, . . . , uk−1 are already known we can choose uk ∈

⋂
i≤k Fi so that fα(uk) >

2 · fα(uk−1) (this is again possible because fα[
⋂

i≤k Fi] is infinite).
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For all n ∈ ω we have U ⊆∗ Fn and it is easy to check that fα[U ] ∈ (S):∑
a∈fα[U ]

1
a

=
∑
k∈ω

1
fα(uk)

≤ 1
fα(u0)

·
∑
k∈ω

1
2k

≤ 2 · 1
fα(u0)

< +∞

To complete the induction step let Fα+1 be the countable filter base generated by Fα and
the set U .

It is obvious that any ultrafilter which extends the filter base F =
⋃

α<ω1
Fα is an (S)-

ultrafilter because of condition (iv).

Since (S) ⊆ (H) we get immediately from the definition of I -ultrafilter the following

Fact 2. Every (S)-ultrafilter is an (H)-ultrafilter.

Proposition 3. (CH) There is an (H)-ultrafilter which is not (S)-ultrafilter.

Proof. Enumerate ωω = {fα : α < ω1}. By transfinite induction on α < ω1 we construct
countable filter bases Fα satisfying

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) (∀F ∈ Fα)
∑

a∈F
1
a = +∞, i. e. F 6∈ (S)

(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ (H)
Suppose we have already constructed Fα. If there exists a set F ∈ Fα such that fα[F ] ∈ (H)
then put Fα+1 = Fα. If fα[F ] 6∈ (H) (in particular, fα[F ] 6∈ (S)) for every F ∈ Fα then
enumerate Fα = {Fn : n ≥ 1}. By induction we will construct an increasing sequence of
natural numbers 〈ak〉k∈N which will help us to construct a set U which we can add to the filter
base:

Put a0 = 0. Since F1 6∈ (S) we may choose a1 > a0 such that
∑

a∈F1∩f−1
α [a0,a1)

1
a > 1.

Assume we already know ai for i = 1, 2, . . . , k − 1. Since
⋂

i≤k Fi 6∈ (S) and f [
⋂

i≤k Fi] 6∈ (S)
the set

⋂
i≤k Fi \ f−1

α [0, ak−1) does not belong to (S). Hence we can choose ak ∈ ω such that
ak ≥ ak−1 + k3 and ∑

a∈
T

i≤k Fi∩f−1
α [ak−1,ak)

1
a

> k .

Now we decompose the kth interval [ak−1, ak) into k disjoint sets modulo k and denote
E

(k)
i = {n ∈ [ak−1, ak) : (∃d ∈ ω) n = d · k + i} for i = 0, 1, . . . , k − 1. We get∑

a∈
T

j≤k Fj∩f−1
α [E

(k)
i ]

1
a

> 1 for some i < k .

Choose such a set E
(k)
i and denote it by Ak. Let U =

⋃∞
k=1

(
f−1

α [Ak] ∩
⋂

j≤k Fj

)
. It remains

to check that
• (∀F ∈ Fα) U ∩ F 6∈ (S)

For every F ∈ Fα we have U ∩ F ⊇
⋃∞

k=j

(
f−1

α [Ak] ∩
⋂

i≤k Fi

)
for some j ≥ 1. It follows that∑

a∈U∩F
1
a ≥

∑∞
k=j 1 = +∞.

• fα[U ] ∈ (H)
Since fα[U ] ⊆

⋃∞
k=1 fα[f−1

α [Ak]] =
⋃∞

k=1 Ak it is sufficient to show that the set A =
⋃∞

k=1 Ak

has asymptotic density zero. The latter follows from the fact that A ⊆∗ An and d∗(An) < 2
n for

every n where An =
⋃∞

k=n Ak.
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To complete the induction step let Fα+1 be the countable filter base generated by Fα and
the set U .

Because of condition (iv) the filter base F =
⋃

α<ω1
Fα can be extended into an ultrafil-

ter disjoint from (S) which cannot be an (S)-ultrafilter and it is obvious that any ultrafilter
extending F is an (H)-ultrafilter because of condition (v).

Connections to P-points

We investigate the relationship of (S)-ultrafilters and (H)-ultrafilters to P -points in this
section. We prove that any P -point is an (H)-ultrafilter and that there is no inclusion between
the class of P -points and (S)-ultrafilters. Assuming Martin’s Axiom for countable posets we
construct a P -point which is not an (S)-ultrafilter and an (S)-ultrafilter which is not a P -point.

Proposition 4. Every P -point is an (H)-ultrafilter.

Proof. Let U be a P -point and let f ∈ ωω be an arbitrary function. Our aim is to find U ∈ U

such that f [U ] ∈ (H).
Take arbitrary U0 ∈ U . If f [U0] ∈ (H) then set U = U0. Otherwise, we will proceed by

induction. Suppose we already know Ui ∈ U , i = 0, 1, . . . , k − 1, such that Ui ⊆ Ui−1 for i > 0
and 0 < d∗(f [Ui]) ≤ 1

2i · d∗(f [U0]) for every i < k. Enumerate f [Uk−1] = {uk−1
n : n ∈ ω}. Since

U is an ultrafilter either f−1[{uk−1
2n : n ∈ ω}] ∩ Uk−1 or f−1[{uk−1

2n+1 : n ∈ ω}] ∩ Uk−1 belongs
to U . Denote this set by Uk. If d∗(f [Uk]) = 0 then let U = Uk. If f [Uk] 6∈ (H) then we may
continue the induction because 0 < d∗(f [Uk]) ≤ 1

2 · d
∗(f [Uk−1]) ≤ 1

2k · d∗(f [U0]).
If we obtain an infinite sequence of sets Un ∈ U such that Un ⊇ Un+1 and 0 < d∗(f [Un]) ≤

1
2n · d∗(f [U0]) for every n ∈ ω then since U is a P -point there is U ∈ U such that U ⊆∗
Un for every n ∈ ω. For this set we have f [U ] ⊆∗ f [Un] for every n ∈ ω. It follows from
limn→∞ d∗(f [Un]) = 0 that d∗(f [U ]) = 0, i. e. f [U ] ∈ (H).

Proposition 5. (MActble) There is a P -point which is not an (S)-ultrafilter.

Proof. Enumerate all infinite partitions of ω as {Rα : α < c}. By transfinite induction on α < c

we will construct filter bases Fα, α < c, so that the following conditions are satisfied:
(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα)

∑
a∈F

1
a = +∞

(vi) (∀α) (∃F ∈ Fα+1) such that either (∃Rα
n ∈ Rα) F ⊆ Rα

n or (∀Rα
n ∈ Rα) |F ∩Rα

n| < ω
Induction step: Suppose we already know Fα and we want to construct Fα+1.

Case A. (∃K ∈ [ω]<ω) (∀F ∈ Fα) F ∩
⋃

n∈K Rα
n 6∈ (S)

For some n0 ∈ K the filter base generated by Rα
n0

and Fα does not meet (S). Hence
Fα+1 may be obtained as the filter base generated by Fα and the set Rα

n0
. Because otherwise,

there would be for every n ∈ K a set Fn ∈ Fα such that Fn ∩ Rα
n ∈ (S) and we would have⋂

n∈K Fn ∩
⋃

n∈K Rα
n ∈ (S) – a contradiction to the assumption of Case A.

Case B. (∀K ∈ [ω]<ω) (∃FK ∈ Fα) FK ∩
⋃

n∈K Rα
n ∈ (S)

We consider a countable poset P = {(K, n) ∈ [ω]<ω × ω : K ⊆
⋃

i≤n Rα
i , K ∩ Rα

n 6=
∅} with ordering given by (K, n) <P (L,m) if K ⊃ L, min(K \ L) > max L, n > m and
(K \ L) ∩

⋃
i≤m Rα

i = ∅. Enumerate Fα = {Fλ : λ ∈ Λα} and define Dλ,k = {(K, n) ∈ P :∑
a∈K∩Fλ

1
a > k} and Dj = {(K, n) ∈ P : n ≥ j}.

Claim: Dλ,k is dense in P for every λ ∈ Λα and k ∈ ω; Dj is dense in P for every j ∈ ω.
Take (L,m) ∈ P arbitrary. According to the assumptions there is Fm ∈ Fα such that

Fm ∩
⋃

i≤m Rα
i ∈ (S). It follows that (Fm ∩ Fλ) \ (

⋃
i≤m Rα

i ∪ [0,max L]) 6∈ (S). Therefore we
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can choose a finite set L′ ⊆ (Fm ∩ Fλ) \ (
⋃

i≤m Rα
i ∪ [0,max L]) such that

∑
a∈L′

1
a > k. Let

n = max{i : L′ ∩ Rα
i 6= ∅} and K = L ∪ L′. Obviously, (K, n) <P (L,m) and (K, n) ∈ Dλ,k.

So Dλ,k is dense. For any j > m we can choose arbitrary r ∈ ω \ (
⋃

i<j Rα
i ∪ [0,max L]). Let

K ′ = L ∪ {r}. If r ∈ Rα
l then (K ′, l) <P (L,m) and (K ′, l) ∈ Dj . So Dj is dense.

The family D = {Dλ,k : λ ∈ Λα, k ∈ ω} ∪ {Dj : j ∈ ω} consists of dense sets in P and
|D | < c. Since we assume MActble there is a D-generic filter G.

Let U =
⋃
{K : (∃n)(K, n) ∈ G}. It remains to check that:

• (∀Fλ ∈ Fα)
∑

a∈U∩Fλ

1
a = +∞

We have U ∩ Fλ 6∈ (S) for every λ because for every k ∈ ω there exists (K, n) ∈ G ∩Dλ,k and
we get

∑
a∈U∩Fλ

1
a ≥

∑
a∈K∩Fλ

1
a > k.

• (∀Rα
n ∈ Rα) |U ∩Rα

n| < ω
Take (Kn, jn) ∈ G ∩Dn where jn = min{j : (∃K ∈ [ω]<ω)(K, j) ∈ G ∩Dn}. Now observe that
for (K, m) ∈ G we have K ∩ Rα

n = ∅ if m < n and that K ∩ Rα
n = Kn ∩ Rα

n if m ≥ jn. To see
the latter consider (L,m′) ∈ G such that (L,m′) <P (K, m) and (L,m′) <P (Kn, jn) (such a
condition exists because G is a filter) for which we get L∩Rα

n = K ∩Rα
n and L∩Rα

n = Kn∩Rα
n.

It follows that U ∩Rα
n = Kn ∩Rα

n is finite.
To complete the induction step let Fα+1 be the filter base generated by Fα and U .
It is obvious that every ultrafilter which extends F =

⋃
α<c Fα is a P -point. Because

of condition (v) there exists an ultrafilter extending F which extends the dual filter of (S)
(therefore is not an (S)-ultrafilter).

Proposition 6. (MActble) There is an (S)-ultrafilter which is not a P -point.

Proof. It is known that under MActble selective ultrafilters exist (see Booth [1970]). We will
show that the square of a selective ultrafilter is an (S)-ultrafilter which is not a P -point.

Let us recall the definition of product of ultrafilters (see e. g. Comfort, Negrepontis [1974]):
If U and V are ultrafilters on ω then U · V = {A ⊆ ω × ω : {n : {m : 〈n, m〉 ∈ A} ∈ V } ∈ U }
is an ultrafilter on ω × ω. By the square of ultrafilter U we mean the ultrafilter U · U .

Notice that the partition {{n} × ω : n ∈ ω} of ω × ω witnesses the fact that no product of
free ultrafilters on ω is a P -point. Hence to complete the proof of Proposition 6. it is sufficient
to check that if U is a selective ultrafilter on ω then U · U is an (S)-ultrafilter, i. e. for every
f ∈ ω×ωω there is U ∈ U · U such that f [U ] ∈ (S).

Let U be a selective ultrafilter on ω and let f : ω × ω → ω be an arbitrary function. For
every n ∈ ω we define fn : ω → ω by fn(m) = f(〈n, m〉). Since U is selective there is Un ∈ U for
every n ∈ ω such that fn � Un is either one-to-one or constant. Let I = {n : fn � Un is constant}
and J = {n : fn � Un is one-to-one}.

Case A. If I ∈ U then V =
⋃
{{n}×Un : n ∈ I} ∈ U ·U and f [V ] =

⋃
{fn[Un] : n ∈ ω}. If

f [V ] ∈ (S) then V is the required set in U ·U . If f [V ] 6∈ (S) then consider π1 : ω → ω defined by
{π1(n)} = fn[Un] for every n. There exists V0 ∈ U such that |π1[V0] ∩ [2n, 2n+1)| ≤ 1 for every
n ∈ ω (such a set exists since π1(U ) is a selective ultrafilter). Let U =

⋃
{{n}×Un : n ∈ I∩V0}.

Obviously, U ∈ U · U and it is not difficult to check that∑
u∈f [U ]

1
u
≤

∑
u∈π1[V0]

1
u

< +∞

Case B. If J ∈ U then for every n ∈ J there is Vn ∈ U such that fn[Vn] ∩ [0, 2n+1) = ∅
and |fn[Vn] ∩ [2k, 2k+1)| ≤ 1 for every k > n. It follows that

∑
u∈fn[Vn]

1
u ≤ 1

2n . Let U =⋃
{{n} × (Un ∩ Vn) : n ∈ J}. It is obvious that U ∈ U · U and it is easy to verify that∑

u∈f [U ]

1
u
≤

∑
n∈ω

∑
u∈fn[Un∩Vn]

1
u
≤

∑
n∈ω

1
2n

< +∞
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Corollary 7. (MActble) There is an (H)-ultrafilter which is not a P -point.

If Martin’s Axiom for countable posets holds then there are both (S)-ultrafilters and (H)-
ultrafilters. We constructed examples which are not P -points and might therefore exist also in
models where no P -points exist. However, we were not able to construct even (H)-ultrafilters
in ZFC, so the folowing question remains open.

Open problem 8. Do (H)-ultrafilters (and (S)-ultrafilters) exist in ZFC?
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