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Abstract. We consider the question whether P -points can
be characterized as I -ultrafilters for I an ideal on ω and
show that (consistently) it is not possible if I is an Fσ-ideal
or a P -ideal.

1. Introduction

Definition 1.1 (Baumgartner [2]). Let I be a family of subsets
of a set X such that I contains all singletons and is closed under
subsets. An ultrafilter U on ω is called an I -ultrafilter if for any
F : ω → X there is A ∈ U such that F [A] ∈ I .

Several classes of I -ultrafilters for X = 2ω were defined by
Baumgartner [2], e.g. discrete or nowhere dense ultrafilters, and
some other classes were defined by Brendle [4] and Barney [1]. All
those ultrafilters exist under some additional set-theoretic assump-
tions, but they cannot be constructed in ZFC because they are
nowhere dense and Shelah proved in [10] that it is consistent with
ZFC that there are no nowhere dense ultrafilters. For X = ω1 ordi-
nal ultrafilters were introduced by Baumgartner [2] as I -ultrafilters
for I = {A ⊆ ω1 : order type of A ≤ α} for some indecomposable
ordinal α < ω1.

In this paper, we consider I -ultrafilters for X = ω and the
situation is slightly different here since I -ultrafilters exist for some
particular families I in ZFC (see Proposition 2.1). Though most
of the results in the paper remain consistency results.

Throughout the article we assume that the family I is an ideal
on ω which contains all finite subsets of ω. We can do this without
loss of generality because if we replace an arbitrary family I in the
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definition of I -ultrafilter by the ideal generated by I , we get the
same concept (first noticed in [1]).

An ideal I ⊆ P(ω) is called tall if every A 6∈ I contains an
infinite subset that belongs to the ideal I . (Some authors call
ideals with this property dense.)

For A,B ⊆ ω we say that A is almost contained in B and we
write A ⊆∗ B if A \ B is finite. Let us also recall that an ideal I

is called a P -ideal if whenever An ∈ I , n ∈ ω, then there is A ∈ I

such that An ⊆∗ A for every n.
As additional set-theoretic assumptions we will use two instances

of Martin’s Axiom — Martin’s Axiom for countable posets and
Martin’s Axiom for σ-centered posets which is equivalent to the
assumption p = c. Let us recall that the pseudointersection number
p is defined by:

p = min{|F | : F ⊆ [ω]ωcentered,¬(∃A ∈ [ω]ω)(∀F ∈ F )A ⊆∗ F}

2. The existence of I -ultrafilters

For some ideals on ω the existence of I -ultrafilters can be estab-
lished in ZFC in contrast to the above mentioned result of Shelah.
We shall recall that the character of I , χ(I ), is the minimal car-
dinality of a base for I , i.e.

χ(I ) = min{|B| : B ⊆ I ∧ (∀I ∈ I )(∃B ∈ B) I ⊆∗ B}.
Proposition 2.1. If I is a maximal ideal on ω such that χ(I ) = c

then I -ultrafilters exist.

Proof. It is an immediate consequence of Theorem in [5]. �
There are of course many interesting ideals on ω to which we

cannot apply Proposition 2.1. It seems that in general some ad-
ditional set-theoretic assumptions are again necessary to construct
the corresponding I -ultrafilters. The next proposition states that
for some ideals there are no I -ultrafilters at all.

Proposition 2.2. If I is not tall then I -ultrafilters do not exist.

Proof. Suppose that for A ∈ [ω]ω \ I we have I ∩P(A) = [A]<ω

and let eA : ω → A be an increasing enumeration of the set A.
Now assume for the contrary that there exists an I -ultrafilter

U ∈ ω∗. According to the definition of an I -ultrafilter there exists
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U ∈ U such that eA[U ] ∈ I . Since eA[U ] ⊆ A the set eA[U ]
is finite. It follows that U is finite because eA is one-to-one — a
contradiction to the assumption that U is a free ultrafilter. �

It turns out that under Martin’s Axiom for σ-centered posets the
necessary condition from Proposition 2.2 is also sufficient.

Proposition 2.3. (p= c) If I is tall then I -ultrafilters exist.

Proof. Enumerate all functions from ω to ω as {fα : α < c}. By
transfinite induction on α < c we will construct filter bases Fα

satisfying:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ I

Suppose we already know Fα. If there is a set F ∈ Fα such
that fα[F ] ∈ I then put Fα+1 = Fα. Hence we may assume that
fα[F ] 6∈ I , in particular fα[F ] is infinite, for every F ∈ Fα.

Since |Fα| < c = p there exists M ∈ [ω]ω such that M ⊆∗ fα[F ]
for every F ∈ Fα. The ideal I is tall, so there is A ∈ I which is
an infinite subset of M , hence A ⊆∗ fα[F ], in particular f−1

α [A]∩F
is infinite for every F ∈ Fα. It follows that f−1

α [A] is compatible
with Fα. To complete the induction step let Fα+1 be the filter base
generated by Fα and f−1

α [A].
It is easy to see that every ultrafilter that extends the filter base

F =
⋃
α<c Fα is an I -ultrafilter. �

3. I -ultrafilters and P -points

A free ultrafilter U is called a P -point if for all partitions of ω,
{Ri : i ∈ ω}, either for some i, Ri ∈ U , or (∃U ∈ U ) (∀i ∈ ω)
|U ∩Ri| < ω.

There exist two characterizations of P -points as I -ultrafilters:
If X = 2ω then P -points are precisely the I -ultrafilters for the
family I consisting of all finite and converging sequences; ifX = ω1

then P -points are precisely the I -ultrafilters for I = {A ⊆ ω1 :
A has order type ≤ ω} (see [2]).
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Is there an ideal I ⊆P(ω) such that P -points are precisely the
I -ultrafilters? In the next two propositions we prove (under addi-
tional set-theoretic assumptions) that such an ideal can be neither
an Fσ-ideal nor a P -ideal.

The following description of Fσ-ideals is due to Mazur [9]: For
every Fσ-ideal I there exists a lower semicontinuous submeasure
ϕ : P(ω) → [0,∞] such that I = Fin(ϕ) = {A ⊆ ω : ϕ(A) < ∞}.
Remember that a submeasure ϕ is called lower semicontinuous (lsc
in short) if ϕ(A) = lim

n→∞ϕ(A ∩ n).

Theorem 3.1. (MActble) For every Fσ-ideal I ⊆ P(ω) there exists
a P -point that is not an I -ultrafilter.

Proof. Let ϕ be the lsc submeasure for which I = Fin(ϕ). Enu-
merate all partitions of ω (into infinite sets) as {Rα : α < c}. By
transfinite induction on α < c we will construct filter bases Fα,
α < c, so that the following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα) ϕ(F ) =∞
(vi) (∀α) (∃F ∈ Fα+1) either (∃R ∈ Rα) F ⊆ R

or (∀R ∈ Rα) |F ∩R| < ω

Assume we already know Fα and we should define Fα+1.

Case A. (∃R ∈ Rα) (∀F ∈ Fα) ϕ(F ∩R) =∞
Let Fα+1 be the filter base generated by Fα and such a set R.

Case B. (∀R ∈ Rα) (∃F ∈ Fα) ϕ(F ∩R) <∞
Enumerate Rα as {Rn : n ∈ ω}. The assumption of Case B.

implies that (∀K ∈ [ω]<ω) (∃FK ∈ Fα) ϕ(FK ∩
⋃
n∈K Rn) <∞.

Consider P = {〈K,n〉 ∈ [ω]<ω × ω : K ⊆ ⋃i≤nRi, K ∩Rn 6= ∅}
and define order ≤P by 〈K,n〉 ≤P 〈L,m〉 if 〈K,n〉 = 〈L,m〉 or
K ⊃ L, min(K \ L) > maxL, n > m and (K \ L) ∩⋃i≤mRi = ∅.
Obviously, (P,≤P ) is a countable poset. Now, for F ∈ Fα and
k, j ∈ ω define DF,k = {〈K,n〉 ∈ P : ϕ(K ∩ F ) ≥ k} and Dj =
{〈K,n〉 ∈ P : n ≥ j}.

Claim: DF,k is dense in (P,≤P ) for every F ∈ Fα and k ∈ ω; Dj

is dense in (P,≤P ) for every j ∈ ω.
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Proof of the claim. Consider 〈L,m〉 ∈ P arbitrary. Since L is finite
there exists p ≥ m such that [0,maxL] ⊆ ⋃i≤pRi. According to
the assumption there is Fp ∈ Fα such that ϕ(Fp ∩

⋃
i≤pRi) < ∞.

It follows that ϕ((Fp ∩ F ) \⋃i≤pRi) =∞. We can choose a finite
set L′ ⊆ (Fp ∩ F ) \⋃i≤pRi such that ϕ(L′) ≥ k because ϕ is lower
semicontinuous. Let n = max{i : L′ ∩ Ri 6= ∅} and K = L ∪ L′.
Note that the choice of p implies minL′ > maxL. It follows that
〈K,n〉 ≤P 〈L,m〉 and 〈K,n〉 ∈ DF,k. So DF,k is dense. For j ≤ m
we have 〈L,m〉 ∈ Dj and for any j > m we can choose arbitrary
r ∈ Rj such that r > maxL. Let K ′ = L ∪ {r}. Of course,
〈K ′, j〉 ≤P 〈L,m〉 and 〈K ′, j〉 ∈ Dj . So Dj is dense. �

The family D = {DF,k : F ∈ Fα, k ∈ ω} ∪ {Dj : j ∈ ω} consists
of dense subsets in P and |D | < c. Therefore there is a D-generic
filter G . Let U =

⋃{K : (∃n)〈K,n〉 ∈ G }. It remains to check that:
• (∀F ∈ Fα) ϕ(U ∩ F ) =∞

Take k ∈ ω arbitrary. For every 〈K,n〉 ∈ G ∩DF,k we have U ⊇ K
and k ≤ ϕ(K∩F ) ≤ ϕ(U ∩F ) (submeasure ϕ is monotone). Hence
ϕ(U ∩ F ) =∞.
• (∀Rn ∈ Rα) |U ∩Rn| < ω

Fix 〈Kn, jn〉 ∈ G ∩Dn. Observe that jn ≥ n and for 〈K,m〉 ∈ G we
have K ∩ Rn = ∅ if m < n and that K ∩ Rn = Kn ∩ Rn if m ≥ n.
To see the latter consider 〈L,m′〉 ∈ G such that 〈L,m′〉 ≤P 〈K,m〉
and 〈L,m′〉 ≤P 〈Kn, jn〉 (such a condition exists because G is a
filter) for which we get L ∩ Rn = K ∩ Rn and L ∩ Rn = Kn ∩ Rn.
It follows that U ∩Rn = Kn ∩Rn is finite.

To complete the induction step let Fα+1 be the filter base gen-
erated by Fα and the set U .

It follows from condition (vi) that every ultrafilter which extends
the filter base F =

⋃
α<c Fα is a P -point. Because of condition (v)

there exists an ultrafilter extending F which extends also the dual
filter to Fin(ϕ) = I , in particular it is not an I -ultrafilter. �
Theorem 3.2. (p=c) If I is a tall P -ideal on ω then there is an
I -ultrafilter which is not a P -point.

Proof. It was proved in Proposition 2.3 that assuming p = c there
exist I -ultrafilters for every tall ideal I . We will show that if
I is a tall P -ideal then the square of an I -ultrafilter is again an
I -ultrafilter and it is not a P -point.
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So let us first recall the definition of the product of ultrafilters
(see [6]): If U and V are ultrafilters on ω then U ·V = {A ⊆ ω×ω :
{n : {m : 〈n,m〉 ∈ A} ∈ V } ∈ U } is an ultrafilter on ω×ω which is
isomorphic to (and can be identified with) an ultrafilter on ω. By
the square of ultrafilter U we mean the ultrafilter U · U .

Notice that the partition {{n}×ω : n ∈ ω} of ω×ω witnesses the
fact that no product of free ultrafilters on ω is a P -point. Hence to
complete the proof it remains to check that if U is an I -ultrafilter
then U · U is again an I -ultrafilter, i. e. for every f : ω × ω → ω
there is U ∈ U · U such that f [U ] ∈ I .

To this end define for arbitrary function f : ω × ω → ω and for
every n ∈ ω a function fn : ω → ω by fn(m) = f(〈n,m〉). If U is
an I -ultrafilter then there exists Vn ∈ U such that fn[Vn] ∈ I for
every n. Now we can find a set A ∈ I such that fn[Vn] ⊆∗ A for
every n because I is a P -ideal. It is obvious that f−1

n [fn[Vn]] ∈ U

for every n ∈ ω. Hence either f−1
n [fn[Vn] ∩ A] or f−1

n [fn[Vn] \ A]
belongs to U . Let I0 = {n ∈ ω : f−1

n [fn[Vn] ∩ A] ∈ U } and
I1 = {n ∈ ω : f−1

n [fn[Vn] \ A] ∈ U }. Since U is an ultrafilter it
contains one of the sets I0, I1.

Case A. I0 ∈ U

Put U = {{n} × f−1
n [fn[Vn] ∩ A] : n ∈ I0}. It is easy to see that

U ∈ U · U and f [U ] =
⋃
n∈I0 fn[Vn] ∩A ⊆ A ∈ I .

Case B. I1 ∈ U

Since fn[Vn] \ A is finite and U is an ultrafilter, there exists
kn ∈ fn[Vn] \ A such that f−1

n {kn} ∈ U for every n ∈ I1. Fix
arbitrary g : ω → ω such that g(n) = kn for each n ∈ I1. Since U

is an I -ultrafilter there exists V ∈ U such that g[V ] ∈ I . Now
put U = {{n} × f−1

n {kn} : n ∈ I1 ∩ V }. It is easy to check that
U ∈ U · U and f [U ] ⊆ g[V ] ∈ I . �

For ideals which are neither (analytic) P -ideals nor Fσ-ideals
there is no ’nice’ description. So it is rather difficult to prove any
general statements about I -ultrafilters and P -points in this case.
We will conclude by one example of such an ideal and show that
it cannot be used to characterize P -points via the corresponding
I -ultrafilters.

Definition 3.3. A set A ∈ [ω]ω with an (increasing) enumeration
A = {an : n ∈ N} is called thin (see [3]) if limn→∞ an

an+1
= 0.
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Obviously, thin sets do not form an ideal (consider for example
the sets {n! : n ∈ ω} and {n! + 1 : n ∈ ω}), but they generate
an ideal which we denote by T . We refer to T -ultrafilters as thin
ultrafilters. Borel complexity of the ideal T is Fσδσ since T =⋃
r∈N

⋂
k∈N

⋃
m∈N

⋂
n≥m{A ⊆ ω : an

an+r
< 1

k} and the ideal T is not
a P -ideal (if Ak = {n! + k : n ∈ ω} then there is no set A ∈ T

such that Ak ⊆∗ A for each k ∈ ω). Thus Theorems 3.1 and 3.2 do
not apply to thin ultrafilters. However, assuming Martin’s Axiom
for countable posets it is possible to prove that thin ultrafilters and
P -points do not coincide.

Theorem 3.4. (MActble)
(1) There is a P -point that is not a thin ultrafilter.
(2) There exists a thin ultrafilter which is not a P -point.

Proof. The ideal generated by thin sets is a part of the Fσ-ideal
I1/n = {A ⊆ N :

∑
n∈A

1
n < ∞}. Statement (1) follows from the

obvious fact that for I ⊆ J every I -ultrafilter is a J -ultrafiler
and from Theorem 3.1.

As for (2), a thin ultrafilter which is not a P -point was con-
structed in [8] assuming Martin’s Axiom for countable posets (pub-
lished in [7] as Proposition 4 assuming Continuum Hypothesis). �
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