A NOTE ON /-ULTRAFILTERS AND P-POINTS

JANA FLASKOVA

ABSTRACT. We consider the question whether P-points can
be characterized as .#-ultrafilters for .# an ideal on w and
show that (consistently) it is not possible if .# is an F,-ideal
or a P-ideal.

1. INTRODUCTION

Definition 1.1 (Baumgartner [2]). Let .# be a family of subsets
of a set X such that .# contains all singletons and is closed under
subsets. An ultrafilter % on w is called an #-ultrafilter if for any
F :w — X there is A € % such that F[A] € 7.

Several classes of #-ultrafilters for X = 2 were defined by
Baumgartner [2], e.g. discrete or nowhere dense ultrafilters, and
some other classes were defined by Brendle [4] and Barney [1]. All
those ultrafilters exist under some additional set-theoretic assump-
tions, but they cannot be constructed in ZFC because they are
nowhere dense and Shelah proved in [10] that it is consistent with
ZFC that there are no nowhere dense ultrafilters. For X = w; ordi-
nal ultrafilters were introduced by Baumgartner [2] as .#-ultrafilters
for # = {A C w; : order type of A < a} for some indecomposable
ordinal o < wq.

In this paper, we consider #-ultrafilters for X = w and the
situation is slightly different here since .#-ultrafilters exist for some
particular families .# in ZFC (see Proposition 2.1). Though most
of the results in the paper remain consistency results.

Throughout the article we assume that the family .# is an ideal
on w which contains all finite subsets of w. We can do this without
loss of generality because if we replace an arbitrary family .# in the
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definition of .#-ultrafilter by the ideal generated by .#, we get the
same concept (first noticed in [1]).

An ideal .# C Z(w) is called tall if every A ¢ .# contains an
infinite subset that belongs to the ideal .#. (Some authors call
ideals with this property dense.)

For A, B C w we say that A is almost contained in B and we
write A C* B if A\ B is finite. Let us also recall that an ideal .#
is called a P-ideal if whenever A, € .#, n € w, then thereis A € .#
such that A, C* A for every n.

As additional set-theoretic assumptions we will use two instances
of Martin’s Axiom — Martin’s Axiom for countable posets and
Martin’s Axiom for o-centered posets which is equivalent to the
assumption p = ¢. Let us recall that the pseudointersection number
p is defined by:

p = min{|#| : F C[w]”centered, (34 € [w]*)(VF € #)A C* F'}

2. THE EXISTENCE OF .#-ULTRAFILTERS

For some ideals on w the existence of .Z-ultrafilters can be estab-
lished in ZFC in contrast to the above mentioned result of Shelah.
We shall recall that the character of %, x(.#), is the minimal car-
dinality of a base for .7, i.e.

X(F)=min{|B|: BC s NNV € #)(IB € B) 1" B}.

Proposition 2.1. If . is a maximal ideal on w such that x(#) = ¢
then & -ultrafilters exist.

Proof. Tt is an immediate consequence of Theorem in [5]. g

There are of course many interesting ideals on w to which we
cannot apply Proposition 2.1. It seems that in general some ad-
ditional set-theoretic assumptions are again necessary to construct
the corresponding .#-ultrafilters. The next proposition states that
for some ideals there are no .#-ultrafilters at all.

Proposition 2.2. If .7 is not tall then #-ultrafilters do not exist.

Proof. Suppose that for A € [w]“\ # we have .# N Z(A) = [A]<¥

and let e4 : w — A be an increasing enumeration of the set A.
Now assume for the contrary that there exists an .#-ultrafilter

% € w*. According to the definition of an #-ultrafilter there exists
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U € % such that e4[U] € .#. Since es[U] C A the set e4[U]
is finite. It follows that U is finite because ¢4 is one-to-one — a
contradiction to the assumption that % is a free ultrafilter. O

It turns out that under Martin’s Axiom for o-centered posets the
necessary condition from Proposition 2.2 is also sufficient.

Proposition 2.3. (p=c¢) If .7 is tall then .7 -ultrafilters exist.

Proof. Enumerate all functions from w to w as {f, : @ < ¢}. By
transfinite induction on o < ¢ we will construct filter bases %,
satisfying:

(i) Fo is the Fréchet filter

(ii) Zo € Z3 whenever a < 3
(iii) 7 = Upery Fa for v limit
(iv) (Va) | 7| < |a] - w

(v) Vo) (3F € Zot1) falF) €5

Suppose we already know %#,. If there is a set F' € %, such
that fo[F] € .# then put Z,41 = Z,. Hence we may assume that
falF] € ., in particular f,[F] is infinite, for every F' € Z,.

Since |#,| < ¢ = p there exists M € [w]* such that M C* f,[F]
for every F' € %,. The ideal .# is tall, so there is A € .# which is
an infinite subset of M, hence A C* f,[F], in particular f,'[A]NF
is infinite for every F' € %,. It follows that f;![A] is compatible
with #,. To complete the induction step let .%,1 be the filter base
generated by .%, and f;![A].

It is easy to see that every ultrafilter that extends the filter base
F = Unce Za is an S-ultrafilter. O

3. Z-ULTRAFILTERS AND P-POINTS

A free ultrafilter % is called a P-point if for all partitions of w,
{R; : i € w}, either for some i, R; € %, or (AU € %) (Vi € w)
‘U N R1| < w.

There exist two characterizations of P-points as .#-ultrafilters:
If X = 2% then P-points are precisely the #-ultrafilters for the
family .# consisting of all finite and converging sequences; if X = wq
then P-points are precisely the .#-ultrafilters for .# = {4 C w; :
A has order type < w} (see [2]).
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Is there an ideal .# C £ (w) such that P-points are precisely the
#-ultrafilters? In the next two propositions we prove (under addi-
tional set-theoretic assumptions) that such an ideal can be neither
an F,-ideal nor a P-ideal.

The following description of Fi-ideals is due to Mazur [9]: For
every Fy-ideal .# there exists a lower semicontinuous submeasure
¢ P(w) — [0,00] such that .« = Fin(p) = {A Cw: p(4) < oco}.
Remember that a submeasure ¢ is called lower semicontinuous (Isc
in short) if p(A) = nlLrgo e(ANmn).

Theorem 3.1. (MA.e) For every Fy-ideal & C 2 (w) there exists
a P-point that is not an & -ultrafilter.

Proof. Let ¢ be the lsc submeasure for which .# = Fin(y). Enu-
merate all partitions of w (into infinite sets) as {#Z, : @ < ¢}. By
transfinite induction on a < ¢ we will construct filter bases %,
a < ¢, so that the following conditions are satisfied:

(i) Fo is the Fréchet filter

(ii) Zo € Z3 whenever a < 3

(iii) 7y = Upery Fa for v limit

(iv) (Va) | Zal < laf-w

(v) (Vo) (VF € Fa) p(F) = oo

(vi) (Va) (IF € Fo41) either (IR € #Zo) F C R
or (VRe %) |[FNR| <w

Assume we already know .%, and we should define %#,;.

Case A. (AR € %) (VF € Z,) ¢(FNR) = 00
Let #,+1 be the filter base generated by %, and such a set R.

Case B. (VR € Z,) (3F € Z,) p(FNR) < o0

Enumerate %, as {R, : n € w}. The assumption of Case B.
implies that (VK € [w]<¥) (3Fk € Fa) ¢(Fx NUpex Bn) < 00

Consider P = {(K,n) € [w|*Y xw: K CJ,.,, Ri, KNR, # 0}
and define order <p by (K,n) <p (L,m) if (K,n) = (L,m) or
K D L, min(K \ L) >maxL, n>m and (K \ L)N,,, Ri =0.
Obviously, (P,<p) is a countable poset. Now, for F' € .%, and
k,j € w define Dpy, = {(K,n) € P: o(KNF) > k} and D; =
{{K,n) e P:n>j}.

Claim: Dy, is dense in (P, <p) for every F' € Z, and k € w; D;
is dense in (P, <p) for every j € w.
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Proof of the claim. Consider (L, m) € P arbitrary. Since L is finite
there exists p > m such that [0,max L] C |J;, Ri- According to
the assumption there is F,, € %, such that ¢(F, N Ui<p Bi) < 00
It follows that ¢((Fp N F) \ U;<, Ri) = co. We can choose a finite
set L' C (F, N F)\ U<, Ri such that ¢(L’) > k because ¢ is lower
semicontinuous. Let n = max{i : L' N R; # 0} and K = LU L'
Note that the choice of p implies min I’ > max L. It follows that
(K,n) <p (L,m) and (K,n) € Dpj. So Dpy, is dense. For j < m
we have (L,m) € D; and for any j > m we can choose arbitrary
r € R; such that » > maxL. Let K’ = LU {r}. Of course,
(K',j) <p (L,m) and (K',j) € D;. So D; is dense. O

The family 9 = {Dpy, : F € Zo,k € w} U{D; : j € w} consists
of dense subsets in P and |2| < ¢. Therefore there is a Z-generic
filter ¢. Let U = |J{K : (3n)(K,n) € ¢}. It remains to check that:

o (VF e Z,) p(UNF) =00
Take k € w arbitrary. For every (K,n) € 4N Dpy, we have U O K
and k < p(KNF) < o(UNF) (submeasure ¢ is monotone). Hence
e(UNF)=o0.

o (VR, € Zy) UNR,| <w
Fix (Ky, jn) € 4N D,. Observe that j, > n and for (K, m) € 4 we
have KN R, =0 if m <n and that K N R, = K, N R, if m > n.
To see the latter consider (L, m') € 4 such that (L,m') <p (K, m)
and (L,m’) <p (K,,jn) (such a condition exists because ¢ is a
filter) for which we get LN R, = KN R, and LN R, = K,, N R,.
It follows that U N R,, = K,, N R, is finite.

To complete the induction step let .#,41 be the filter base gen-
erated by %, and the set U.

It follows from condition (vi) that every ultrafilter which extends
the filter base .# = J .. Za is a P-point. Because of condition (v)
there exists an ultrafilter extending .# which extends also the dual
filter to Fin(y) = .#, in particular it is not an .#-ultrafilter. O

Theorem 3.2. (p=c) If .¥ is a tall P-ideal on w then there is an
S -ultrafilter which is not a P-point.

Proof. It was proved in Proposition 2.3 that assuming p = ¢ there
exist #-ultrafilters for every tall ideal .#. We will show that if
& is a tall P-ideal then the square of an .#-ultrafilter is again an
S-ultrafilter and it is not a P-point.
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So let us first recall the definition of the product of ultrafilters
(see [6]): If Z and ¥ are ultrafilters on w then - ¥ = {A Cwxw:
{n:{m:(n,m) € A} € ¥} € %} is an ultrafilter on w x w which is
isomorphic to (and can be identified with) an ultrafilter on w. By
the square of ultrafilter Z we mean the ultrafilter % - % .

Notice that the partition {{n} xw : n € w} of w X w witnesses the
fact that no product of free ultrafilters on w is a P-point. Hence to
complete the proof it remains to check that if % is an .#-ultrafilter
then - % is again an #-ultrafilter, i. e. for every f:w X w — w
there is U € % - % such that f[U] € ..

To this end define for arbitrary function f : w X w — w and for
every n € w a function f, : w — w by fn(m) = f((n,m)). If % is
an #-ultrafilter then there exists V,, € % such that f,[V,] € 7 for
every n. Now we can find a set A € .# such that f,[V,] C* A for
every n because .# is a P-ideal. It is obvious that f,1[f.[Vy]] € %
for every n € w. Hence either f; ![f.[Vn] N A] or £, [fn[Vi] \ 4]
belongs to %. Let Iy = {n € w : f'fulVa] N 4] € %} and
IL={ncw: 7 falVa] \ 4] € #}. Since  is an ultrafilter it
contains one of the sets Iy, I;.

Case A. Iy € %
Put U = {{n} x f7 [fulVa] N A] : n € Iy}. It is easy to see that
Ue - % and flU] =U,ep, flVa] NAC A€ 7.

Case B. Iy € %

Since fp[Vn] \ A is finite and % is an ultrafilter, there exists
kn € falVa] \ A such that f,'{k,} € # for every n € ;. Fix
arbitrary ¢ : w — w such that g(n) = k,, for each n € I . Since %
is an #-ultrafilter there exists V' € % such that ¢g[V] € .#. Now
put U = {{n} x f,;{k,} : n € [ NV}. Tt is easy to check that
Ue«-% and flU| Cg[V] e ~. O

For ideals which are neither (analytic) P-ideals nor Fj-ideals
there is no ’nice’ description. So it is rather difficult to prove any
general statements about .Z-ultrafilters and P-points in this case.
We will conclude by one example of such an ideal and show that
it cannot be used to characterize P-points via the corresponding
Z-ultrafilters.

Definition 3.3. A set A € [w]* with an (increasing) enumeration
A = {ay : n € N} is called thin (see [3]) if lim,, oo -*2— = 0.

An+1
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Obviously, thin sets do not form an ideal (consider for example
the sets {n! : n € w} and {n! +1 : n € w}), but they generate
an ideal which we denote by 7. We refer to Z-ultrafilters as thin
ultrafilters. Borel complexity of the ideal 7 is Fjs, since 7 =

Uren Nien UmenNpsm{A Cw: = < 1} and the ideal 7 is not
a P-ideal (if Ay = {n! 4+ k : n € w} then there is no set A € 7
such that Ax C* A for each k € w). Thus Theorems 3.1 and 3.2 do
not apply to thin ultrafilters. However, assuming Martin’s Axiom
for countable posets it is possible to prove that thin ultrafilters and
P-points do not coincide.

Theorem 3.4. (MA.)

(1) There is a P-point that is not a thin ultrafilter.
(2) There ezists a thin ultrafilter which is not a P-point.

Proof. The ideal generated by thin sets is a part of the F,-ideal

Ty ={ACN: > ohed = < oo}. Statement (1) follows from the

obvious fact that for # C ¢ every .-ultrafilter is a _¢-ultrafiler
and from Theorem 3.1.

As for (2), a thin ultrafilter which is not a P-point was con-
structed in [8] assuming Martin’s Axiom for countable posets (pub-
lished in [7] as Proposition 4 assuming Continuum Hypothesis). O
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