A NOTE ON *I*-ULTRAFILTERS AND *P*-POINTS

JANA FLAŠKOVÁ

ABSTRACT. We consider the question whether P-points can be characterized as \mathscr{I} -ultrafilters for \mathscr{I} an ideal on ω and show that (consistently) it is not possible if \mathscr{I} is an F_{σ} -ideal or a P-ideal.

1. INTRODUCTION

Definition 1.1 (Baumgartner [2]). Let \mathscr{I} be a family of subsets of a set X such that \mathscr{I} contains all singletons and is closed under subsets. An ultrafilter \mathscr{U} on ω is called an \mathscr{I} -ultrafilter if for any $F: \omega \to X$ there is $A \in \mathscr{U}$ such that $F[A] \in \mathscr{I}$.

Several classes of \mathscr{I} -ultrafilters for $X = 2^{\omega}$ were defined by Baumgartner [2], e.g. discrete or nowhere dense ultrafilters, and some other classes were defined by Brendle [4] and Barney [1]. All those ultrafilters exist under some additional set-theoretic assumptions, but they cannot be constructed in ZFC because they are nowhere dense and Shelah proved in [10] that it is consistent with ZFC that there are no nowhere dense ultrafilters. For $X = \omega_1$ ordinal ultrafilters were introduced by Baumgartner [2] as \mathscr{I} -ultrafilters for $\mathscr{I} = \{A \subseteq \omega_1 : \text{ order type of } A \leq \alpha\}$ for some indecomposable ordinal $\alpha < \omega_1$.

In this paper, we consider \mathscr{I} -ultrafilters for $X = \omega$ and the situation is slightly different here since \mathscr{I} -ultrafilters exist for some particular families \mathscr{I} in ZFC (see Proposition 2.1). Though most of the results in the paper remain consistency results.

Throughout the article we assume that the family \mathscr{I} is an ideal on ω which contains all finite subsets of ω . We can do this without loss of generality because if we replace an arbitrary family \mathscr{I} in the

²⁰⁰⁰ Mathematics Subject Classification. 03E05 (03E35, 54H05).

Key words and phrases. \mathscr{I} -ultrafilter, P-point, P-ideal, F_{σ} -ideal.

definition of \mathscr{I} -ultrafilter by the ideal generated by \mathscr{I} , we get the same concept (first noticed in [1]).

An ideal $\mathscr{I} \subseteq \mathscr{P}(\omega)$ is called *tall* if every $A \notin \mathscr{I}$ contains an infinite subset that belongs to the ideal \mathscr{I} . (Some authors call ideals with this property dense.)

For $A, B \subseteq \omega$ we say that A is almost contained in B and we write $A \subseteq^* B$ if $A \setminus B$ is finite. Let us also recall that an ideal \mathscr{I} is called a *P*-ideal if whenever $A_n \in \mathscr{I}$, $n \in \omega$, then there is $A \in \mathscr{I}$ such that $A_n \subseteq^* A$ for every n.

As additional set-theoretic assumptions we will use two instances of Martin's Axiom — Martin's Axiom for countable posets and Martin's Axiom for σ -centered posets which is equivalent to the assumption $\mathfrak{p} = \mathfrak{c}$. Let us recall that the *pseudointersection number* p is defined by:

$$\mathfrak{p} = \min\{|\mathscr{F}| : \mathscr{F} \subseteq [\omega]^{\omega} \text{centered}, \neg (\exists A \in [\omega]^{\omega}) (\forall F \in \mathscr{F}) A \subseteq^* F\}$$

2. The existence of \mathscr{I} -ultrafilters

For some ideals on ω the existence of \mathscr{I} -ultrafilters can be established in ZFC in contrast to the above mentioned result of Shelah. We shall recall that the *character of* \mathscr{I} , $\chi(\mathscr{I})$, is the minimal cardinality of a base for \mathscr{I} , i.e.

 $\chi(\mathscr{I}) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathscr{I} \land (\forall I \in \mathscr{I}) (\exists B \in \mathcal{B}) \ I \subseteq^* B\}.$

Proposition 2.1. If \mathscr{I} is a maximal ideal on ω such that $\chi(\mathscr{I}) = \mathfrak{c}$ then *I*-ultrafilters exist.

Proof. It is an immediate consequence of Theorem in [5].

There are of course many interesting ideals on ω to which we cannot apply Proposition 2.1. It seems that in general some additional set-theoretic assumptions are again necessary to construct the corresponding \mathscr{I} -ultrafilters. The next proposition states that for some ideals there are no *I*-ultrafilters at all.

Proposition 2.2. If \mathscr{I} is not tall then \mathscr{I} -ultrafilters do not exist.

Proof. Suppose that for $A \in [\omega]^{\omega} \setminus \mathscr{I}$ we have $\mathscr{I} \cap \mathscr{P}(A) = [A]^{<\omega}$ and let $e_A: \omega \to A$ be an increasing enumeration of the set A.

Now assume for the contrary that there exists an *I*-ultrafilter $\mathscr{U} \in \omega^*$. According to the definition of an \mathscr{I} -ultrafilter there exists

 $\mathbf{2}$

 $U \in \mathscr{U}$ such that $e_A[U] \in \mathscr{I}$. Since $e_A[U] \subseteq A$ the set $e_A[U]$ is finite. It follows that U is finite because e_A is one-to-one — a contradiction to the assumption that \mathscr{U} is a free ultrafilter. \Box

It turns out that under Martin's Axiom for σ -centered posets the necessary condition from Proposition 2.2 is also sufficient.

Proposition 2.3. $(\mathfrak{p} = \mathfrak{c})$ If \mathscr{I} is tall then \mathscr{I} -ultrafilters exist.

Proof. Enumerate all functions from ω to ω as $\{f_{\alpha} : \alpha < \mathfrak{c}\}$. By transfinite induction on $\alpha < \mathfrak{c}$ we will construct filter bases \mathscr{F}_{α} satisfying:

(i) \mathscr{F}_0 is the Fréchet filter (ii) $\mathscr{F}_{\alpha} \subseteq \mathscr{F}_{\beta}$ whenever $\alpha \leq \beta$ (iii) $\mathscr{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathscr{F}_{\alpha}$ for γ limit (iv) $(\forall \alpha) |\mathscr{F}_{\alpha}| \leq |\alpha| \cdot \omega$

(v) $(\forall \alpha) \ (\exists F \in \mathscr{F}_{\alpha+1}) \ f_{\alpha}[F] \in \mathscr{I}$

Suppose we already know \mathscr{F}_{α} . If there is a set $F \in \mathscr{F}_{\alpha}$ such that $f_{\alpha}[F] \in \mathscr{I}$ then put $\mathscr{F}_{\alpha+1} = \mathscr{F}_{\alpha}$. Hence we may assume that $f_{\alpha}[F] \notin \mathscr{I}$, in particular $f_{\alpha}[F]$ is infinite, for every $F \in \mathscr{F}_{\alpha}$.

Since $|\mathscr{F}_{\alpha}| < \mathfrak{c} = \mathfrak{p}$ there exists $M \in [\omega]^{\omega}$ such that $M \subseteq^* f_{\alpha}[F]$ for every $F \in \mathscr{F}_{\alpha}$. The ideal \mathscr{I} is tall, so there is $A \in \mathscr{I}$ which is an infinite subset of M, hence $A \subseteq^* f_{\alpha}[F]$, in particular $f_{\alpha}^{-1}[A] \cap F$ is infinite for every $F \in \mathscr{F}_{\alpha}$. It follows that $f_{\alpha}^{-1}[A]$ is compatible with \mathscr{F}_{α} . To complete the induction step let $\mathscr{F}_{\alpha+1}$ be the filter base generated by \mathscr{F}_{α} and $f_{\alpha}^{-1}[A]$.

It is easy to see that every ultrafilter that extends the filter base $\mathscr{F} = \bigcup_{\alpha < \mathfrak{c}} \mathscr{F}_{\alpha}$ is an \mathscr{I} -ultrafilter. \Box

3. \mathscr{I} -ultrafilters and P-points

A free ultrafilter \mathscr{U} is called a *P*-point if for all partitions of ω , $\{R_i : i \in \omega\}$, either for some $i, R_i \in \mathscr{U}$, or $(\exists U \in \mathscr{U}) \ (\forall i \in \omega) | U \cap R_i | < \omega$.

There exist two characterizations of P-points as \mathscr{I} -ultrafilters: If $X = 2^{\omega}$ then P-points are precisely the \mathscr{I} -ultrafilters for the family \mathscr{I} consisting of all finite and converging sequences; if $X = \omega_1$ then P-points are precisely the \mathscr{I} -ultrafilters for $\mathscr{I} = \{A \subseteq \omega_1 : A \text{ has order type } \leq \omega\}$ (see [2]). Is there an ideal $\mathscr{I} \subseteq \mathscr{P}(\omega)$ such that *P*-points are precisely the \mathscr{I} -ultrafilters? In the next two propositions we prove (under additional set-theoretic assumptions) that such an ideal can be neither an F_{σ} -ideal nor a *P*-ideal.

The following description of F_{σ} -ideals is due to Mazur [9]: For every F_{σ} -ideal \mathscr{I} there exists a lower semicontinuous submeasure $\varphi : \mathscr{P}(\omega) \to [0, \infty]$ such that $\mathscr{I} = \operatorname{Fin}(\varphi) = \{A \subseteq \omega : \varphi(A) < \infty\}$. Remember that a submeasure φ is called *lower semicontinuous* (*lsc* in short) if $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n)$.

Theorem 3.1. (MA_{ctble}) For every F_{σ} -ideal $\mathscr{I} \subseteq \mathscr{P}(\omega)$ there exists a *P*-point that is not an \mathscr{I} -ultrafilter.

Proof. Let φ be the lsc submeasure for which $\mathscr{I} = \operatorname{Fin}(\varphi)$. Enumerate all partitions of ω (into infinite sets) as $\{\mathscr{R}_{\alpha} : \alpha < \mathfrak{c}\}$. By transfinite induction on $\alpha < \mathfrak{c}$ we will construct filter bases \mathscr{F}_{α} , $\alpha < \mathfrak{c}$, so that the following conditions are satisfied:

(i) \mathscr{F}_{0} is the Fréchet filter (ii) $\mathscr{F}_{\alpha} \subseteq \mathscr{F}_{\beta}$ whenever $\alpha \leq \beta$ (iii) $\mathscr{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathscr{F}_{\alpha}$ for γ limit (iv) $(\forall \alpha) |\mathscr{F}_{\alpha}| \leq |\alpha| \cdot \omega$ (v) $(\forall \alpha) (\forall F \in \mathscr{F}_{\alpha}) \varphi(F) = \infty$ (vi) $(\forall \alpha) (\exists F \in \mathscr{F}_{\alpha+1})$ either $(\exists R \in \mathscr{R}_{\alpha}) F \subseteq R$ or $(\forall R \in \mathscr{R}_{\alpha}) |F \cap R| < \omega$

Assume we already know \mathscr{F}_{α} and we should define $\mathscr{F}_{\alpha+1}$.

<u>Case A.</u> $(\exists R \in \mathscr{R}_{\alpha}) \ (\forall F \in \mathscr{F}_{\alpha}) \ \varphi(F \cap R) = \infty$

Let $\mathscr{F}_{\alpha+1}$ be the filter base generated by \mathscr{F}_{α} and such a set R.

<u>Case B.</u> $(\forall R \in \mathscr{R}_{\alpha}) \ (\exists F \in \mathscr{F}_{\alpha}) \ \varphi(F \cap R) < \infty$

Enumerate \mathscr{R}_{α} as $\{R_n : n \in \omega\}$. The assumption of Case B. implies that $(\forall K \in [\omega]^{<\omega}) (\exists F_K \in \mathscr{F}_{\alpha}) \varphi(F_K \cap \bigcup_{n \in K} R_n) < \infty$. Consider $P = \{\langle K, n \rangle \in [\omega]^{<\omega} \times \omega : K \subseteq \bigcup_{i \leq n} R_i, K \cap R_n \neq \emptyset\}$

Consider $P = \{\langle K, n \rangle \in [\omega]^{<\omega} \times \omega : K \subseteq \bigcup_{i \leq n} R_i, K \cap R_n \neq \emptyset \}$ and define order \leq_P by $\langle K, n \rangle \leq_P \langle L, m \rangle$ if $\langle K, n \rangle = \langle L, m \rangle$ or $K \supset L, \min(K \setminus L) > \max L, n > m$ and $(K \setminus L) \cap \bigcup_{i \leq m} R_i = \emptyset$. Obviously, (P, \leq_P) is a countable poset. Now, for $F \in \mathscr{F}_{\alpha}$ and $k, j \in \omega$ define $D_{F,k} = \{\langle K, n \rangle \in P : \varphi(K \cap F) \geq k\}$ and $D_j = \{\langle K, n \rangle \in P : n \geq j\}.$

Claim: $D_{F,k}$ is dense in (P, \leq_P) for every $F \in \mathscr{F}_{\alpha}$ and $k \in \omega$; D_j is dense in (P, \leq_P) for every $j \in \omega$.

Proof of the claim. Consider $\langle L, m \rangle \in P$ arbitrary. Since L is finite there exists $p \geq m$ such that $[0, \max L] \subseteq \bigcup_{i \leq p} R_i$. According to the assumption there is $F_p \in \mathscr{F}_\alpha$ such that $\varphi(F_p \cap \bigcup_{i \leq p} R_i) < \infty$. It follows that $\varphi((F_p \cap F) \setminus \bigcup_{i \leq p} R_i) = \infty$. We can choose a finite set $L' \subseteq (F_p \cap F) \setminus \bigcup_{i \leq p} R_i$ such that $\varphi(L') \geq k$ because φ is lower semicontinuous. Let $n = \max\{i : L' \cap R_i \neq \emptyset\}$ and $K = L \cup L'$. Note that the choice of p implies $\min L' > \max L$. It follows that $\langle K, n \rangle \leq_P \langle L, m \rangle$ and $\langle K, n \rangle \in D_{F,k}$. So $D_{F,k}$ is dense. For $j \leq m$ we have $\langle L, m \rangle \in D_j$ and for any j > m we can choose arbitrary $r \in R_j$ such that $r > \max L$. Let $K' = L \cup \{r\}$. Of course, $\langle K', j \rangle \leq_P \langle L, m \rangle$ and $\langle K', j \rangle \in D_j$. So D_j is dense. \Box

The family $\mathscr{D} = \{D_{F,k} : F \in \mathscr{F}_{\alpha}, k \in \omega\} \cup \{D_j : j \in \omega\}$ consists of dense subsets in P and $|\mathscr{D}| < \mathfrak{c}$. Therefore there is a \mathscr{D} -generic filter \mathscr{G} . Let $U = \bigcup \{K : (\exists n) \langle K, n \rangle \in \mathscr{G}\}$. It remains to check that:

• $(\forall F \in \mathscr{F}_{\alpha}) \varphi(U \cap F) = \infty$ Take $k \in \omega$ arbitrary. For every $\langle K, n \rangle \in \mathscr{G} \cap D_{F,k}$ we have $U \supseteq K$ and $k \leq \varphi(K \cap F) \leq \varphi(U \cap F)$ (submeasure φ is monotone). Hence

and $k \leq \varphi(K \cap F) \leq \varphi(U \cap F)$ (submeasure φ is monotone). Hence $\varphi(U \cap F) = \infty$.

• $(\forall R_n \in \mathscr{R}_\alpha) | U \cap R_n | < \omega$

Fix $\langle K_n, j_n \rangle \in \mathscr{G} \cap D_n$. Observe that $j_n \geq n$ and for $\langle K, m \rangle \in \mathscr{G}$ we have $K \cap R_n = \emptyset$ if m < n and that $K \cap R_n = K_n \cap R_n$ if $m \geq n$. To see the latter consider $\langle L, m' \rangle \in \mathscr{G}$ such that $\langle L, m' \rangle \leq_P \langle K, m \rangle$ and $\langle L, m' \rangle \leq_P \langle K_n, j_n \rangle$ (such a condition exists because \mathscr{G} is a filter) for which we get $L \cap R_n = K \cap R_n$ and $L \cap R_n = K_n \cap R_n$. It follows that $U \cap R_n = K_n \cap R_n$ is finite.

To complete the induction step let $\mathscr{F}_{\alpha+1}$ be the filter base generated by \mathscr{F}_{α} and the set U.

It follows from condition (vi) that every ultrafilter which extends the filter base $\mathscr{F} = \bigcup_{\alpha < \mathfrak{c}} \mathscr{F}_{\alpha}$ is a *P*-point. Because of condition (v) there exists an ultrafilter extending \mathscr{F} which extends also the dual filter to $\operatorname{Fin}(\varphi) = \mathscr{I}$, in particular it is not an \mathscr{I} -ultrafilter. \Box

Theorem 3.2. $(\mathfrak{p=c})$ If \mathscr{I} is a tall *P*-ideal on ω then there is an \mathscr{I} -ultrafilter which is not a *P*-point.

Proof. It was proved in Proposition 2.3 that assuming $\mathfrak{p} = \mathfrak{c}$ there exist \mathscr{I} -ultrafilters for every tall ideal \mathscr{I} . We will show that if \mathscr{I} is a tall *P*-ideal then the square of an \mathscr{I} -ultrafilter is again an \mathscr{I} -ultrafilter and it is not a *P*-point.

JANA FLAŠKOVÁ

So let us first recall the definition of the product of ultrafilters (see [6]): If \mathscr{U} and \mathscr{V} are ultrafilters on ω then $\mathscr{U} \cdot \mathscr{V} = \{A \subseteq \omega \times \omega : \{n : \{m : \langle n, m \rangle \in A\} \in \mathscr{V}\} \in \mathscr{U}\}$ is an ultrafilter on $\omega \times \omega$ which is isomorphic to (and can be identified with) an ultrafilter on ω . By the square of ultrafilter \mathscr{U} we mean the ultrafilter $\mathscr{U} \cdot \mathscr{U}$.

Notice that the partition $\{\{n\} \times \omega : n \in \omega\}$ of $\omega \times \omega$ witnesses the fact that no product of free ultrafilters on ω is a *P*-point. Hence to complete the proof it remains to check that if \mathscr{U} is an \mathscr{I} -ultrafilter then $\mathscr{U} \cdot \mathscr{U}$ is again an \mathscr{I} -ultrafilter, i. e. for every $f : \omega \times \omega \to \omega$ there is $U \in \mathscr{U} \cdot \mathscr{U}$ such that $f[U] \in \mathscr{I}$.

To this end define for arbitrary function $f: \omega \times \omega \to \omega$ and for every $n \in \omega$ a function $f_n: \omega \to \omega$ by $f_n(m) = f(\langle n, m \rangle)$. If \mathscr{U} is an \mathscr{I} -ultrafilter then there exists $V_n \in \mathscr{U}$ such that $f_n[V_n] \in \mathscr{I}$ for every n. Now we can find a set $A \in \mathscr{I}$ such that $f_n[V_n] \subseteq^* A$ for every n because \mathscr{I} is a P-ideal. It is obvious that $f_n^{-1}[f_n[V_n]] \in \mathscr{U}$ for every $n \in \omega$. Hence either $f_n^{-1}[f_n[V_n] \cap A]$ or $f_n^{-1}[f_n[V_n] \setminus A]$ belongs to \mathscr{U} . Let $I_0 = \{n \in \omega : f_n^{-1}[f_n[V_n] \cap A] \in \mathscr{U}\}$ and $I_1 = \{n \in \omega : f_n^{-1}[f_n[V_n] \setminus A] \in \mathscr{U}\}$. Since \mathscr{U} is an ultrafilter it contains one of the sets I_0, I_1 .

<u>Case A.</u> $I_0 \in \mathscr{U}$

Put $U = \{\{n\} \times f_n^{-1}[f_n[V_n] \cap A] : n \in I_0\}$. It is easy to see that $U \in \mathscr{U} \cdot \mathscr{U}$ and $f[U] = \bigcup_{n \in I_0} f_n[V_n] \cap A \subseteq A \in \mathscr{I}$.

<u>Case B.</u> $I_1 \in \mathscr{U}$

Since $f_n[V_n] \setminus A$ is finite and \mathscr{U} is an ultrafilter, there exists $k_n \in f_n[V_n] \setminus A$ such that $f_n^{-1}\{k_n\} \in \mathscr{U}$ for every $n \in I_1$. Fix arbitrary $g: \omega \to \omega$ such that $g(n) = k_n$ for each $n \in I_1$. Since \mathscr{U} is an \mathscr{I} -ultrafilter there exists $V \in \mathscr{U}$ such that $g[V] \in \mathscr{I}$. Now put $U = \{\{n\} \times f_n^{-1}\{k_n\} : n \in I_1 \cap V\}$. It is easy to check that $U \in \mathscr{U} \cdot \mathscr{U}$ and $f[U] \subseteq g[V] \in \mathscr{I}$.

For ideals which are neither (analytic) P-ideals nor F_{σ} -ideals there is no 'nice' description. So it is rather difficult to prove any general statements about \mathscr{I} -ultrafilters and P-points in this case. We will conclude by one example of such an ideal and show that it cannot be used to characterize P-points via the corresponding \mathscr{I} -ultrafilters.

Definition 3.3. A set $A \in [\omega]^{\omega}$ with an (increasing) enumeration $A = \{a_n : n \in \mathbb{N}\}$ is called *thin* (see [3]) if $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 0$.

Obviously, thin sets do not form an ideal (consider for example the sets $\{n! : n \in \omega\}$ and $\{n! + 1 : n \in \omega\}$), but they generate an ideal which we denote by \mathscr{T} . We refer to \mathscr{T} -ultrafilters as thin ultrafilters. Borel complexity of the ideal \mathscr{T} is $F_{\sigma\delta\sigma}$ since $\mathscr{T} = \bigcup_{r\in\mathbb{N}}\bigcap_{k\in\mathbb{N}}\bigcup_{m\in\mathbb{N}}\bigcap_{n\geq m}\{A\subseteq\omega:\frac{a_n}{a_{n+r}}<\frac{1}{k}\}$ and the ideal \mathscr{T} is not a *P*-ideal (if $A_k = \{n! + k : n \in \omega\}$ then there is no set $A \in \mathscr{T}$ such that $A_k \subseteq^* A$ for each $k \in \omega$). Thus Theorems 3.1 and 3.2 do not apply to thin ultrafilters. However, assuming Martin's Axiom for countable posets it is possible to prove that thin ultrafilters and *P*-points do not coincide.

Theorem 3.4. (MA_{ctble})

- (1) There is a P-point that is not a thin ultrafilter.
- (2) There exists a thin ultrafilter which is not a P-point.

Proof. The ideal generated by thin sets is a part of the F_{σ} -ideal $\mathcal{I}_{1/n} = \{A \subseteq \mathbb{N} : \sum_{n \in A} \frac{1}{n} < \infty\}$. Statement (1) follows from the obvious fact that for $\mathscr{I} \subseteq \mathscr{J}$ every \mathscr{I} -ultrafilter is a \mathscr{J} -ultrafiler and from Theorem 3.1.

As for (2), a thin ultrafilter which is not a P-point was constructed in [8] assuming Martin's Axiom for countable posets (published in [7] as Proposition 4 assuming Continuum Hypothesis). \Box

References

- Barney, C., Ultrafilters on the natural numbers, J. Symbolic Logic 68, no. 3, 764–784, 2003.
- [2] Baumgartner, J., Ultrafilters on $\omega,$ J. Symbolic Logic $\mathbf{60},$ no. 2, 624–639, 1995.
- [3] Blass, A., Frankiewicz, R., Plebanek, G., Ryll-Nardzewski, C., A note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129, 97–103, 2001.
- [4] Brendle, J., Between P-points and nowhere dense ultrafilters, Israel J. Math. 113, 205–230, 1999.
- [5] Butkovičová, E., A remark on incomparable ultrafilters in the Rudin-Keisler order, Proc. Amer. Math. Soc. 112, no. 2, 577 – 578, 1991.
- [6] Comfort, W. W., Negrepontis, S., The Theory of Ultrafilters, Springer, Berlin, New York, 1974.
- [7] Flašková, J., Thin Ultrafilters, Acta Univ. Carolinae Math. et Phys. 46, no. 2, 13 – 19, 2005.
- [8] Flašková, J., Ultrafilters and small sets, Ph.D. Thesis, Charles University, Prague, 2006.
- [9] Mazur, K., F_{σ} -ideals and $\omega_1 \omega_1^*$ -gaps in the Boolean algebra $\mathscr{P}(\omega)/I$, Fund. Math. **138**, 103 – 111, 1991.

JANA FLAŠKOVÁ

[10] Shelah, S., There may be no nowhere dense ultrafilters, in: Proceedings of the logic colloquium Haifa '95, Lecture notes Logic, 11, 305–324, Springer, Berlin, 1998.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WEST BOHEMIA, UNI-VERZITNÍ 22, 306 14 PLZEŇ, CZECH REPUBLIC

 $E\text{-}mail \ address: \verb"flaskova@kma.zcu.cz"$