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IDEALS AND SEQUENTIALLY COMPACT SPACES

JANA FLAŠKOVÁ

Abstract. We say that a topological space X is an I1/n-
space if for every sequence 〈xn〉n∈N in X there exists a con-
verging subsequence 〈xnk 〉k∈N with

∑
k∈ω

1
nk

= ∞. Every

I1/n-space is sequentially compact, but not every sequentially
compact space is I1/n-space.
Assuming Martin’s axiom for σ-centered posets we construct
a van der Waerden space that is not an I1/n-space and an
I1/n-space that is not Hindman.

1. Introduction

A Hausdorff topological space X is sequentially compact if for
every sequence 〈xn〉n∈N in X there exists a converging subsequence
〈xnk

〉k∈N. Is it possible to require that the converging subsequence
has some additional properties? One could for example require
that the set of indices of the converging subsequence is large with
respect to some ideal on ω. In particular, if we consider the van
der Waerden ideal consisting of subsets of natural numbers which
are not AP-sets (a set of natural numbers is called an AP-set if it
contains arithmetic progressions of arbitrary length) then we obtain
the following notion introduced by Kojman in [2]:

Definition 1.1. A topological space X is called van der Waer-
den if for every sequence 〈xn〉n∈N in X there exists a converging
subsequence 〈xnk

〉k∈N so that {nk : k ∈ N} is an AP-set.
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Every van der Waerden space is according to the definition se-
quentially compact and Kojman proved in [2] that the converse is
not true.

Before we give a definition of another subclass of sequentially
compact spaces let us recall that a set A ⊆ N is an IP-set if there
exists an infinite set B ⊆ N such that FS(B) ⊆ A where FS(B)
denotes the set of all finite sums of elements of B. A sequence
〈xn〉n∈FS(B) in a topological space X IP-converges to a point x ∈ X
if for every neighborhood U of the point x there exists m ∈ N so
that {xn : n ∈ FS(D \m)} ⊆ U .

Definition 1.2. A topological space X is called Hindman if for
every sequence 〈xn〉n∈N in X there exists an infinite set D ⊆ N
such that 〈xn〉n∈FS(D) IP-converges to some x ∈ X.

Again, every Hindman space is from definition sequentially com-
pact and in [3] Kojman proved that there exists a sequentially com-
pact space which is not a Hindman space.

Kojman proved that compact metric spaces are both van der
Waerden and Hindman space and he raised the question whether
the two subclasses of sequentially compact spaces coincide [3]. In
[4], however, he constructed together with Shelah assuming CH a
van der Waerden space which is not Hindman. Jones [1] obtained
the same result assuming MA and he posed the question whether
it is consistent that there is a Hindman space which is not van der
Waerden.

The main goal of this article is to strengthen the result of Jones
and give a partial answer to his question. In order to do so we will
generalize the definition of a van der Waerden space by replacing
the van der Waerden ideal by another suitable (possibly smaller)
ideal on natural numbers.

1.1. Ideals on natural numbers. Let us recall that a family I ⊂
P(N) is an ideal on ω if it 1) contains the empty set, 2) with every
set contains all its subsets and 3) contains the union of any two sets
from I.

According to van der Waerden Theorem sets which are not AP-
sets form an ideal which we refer to as van der Waerden ideal.
Hindman Theorem implies that sets which are not IP-sets form an
ideal called here Hindman ideal. Another example of an ideal is
the summable ideal I1/n = {A ⊂ N :

∑
a∈A

1
a < ∞}.
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These three ideals differ in many ways. For example, the sum-
mable ideal is (unlike the other two) a P -ideal, i.e. whenever An,
n ∈ N, are sets from the ideal there exists A in the ideal such that
|An \A| < ω for every n.

If we identify a subset of N with its characteristic function we
may regard ideals as subsets of the Cantor set 2N. Hence Borel
hierarchy on the Cantor set induces Borel hierarchy on ideals and
so we may speak about Borel ideals or analytic ideals.

In the sequel the following characterization of Fσ-ideals due to
Mazur [5] will be important: For every Fσ-ideal I there is a lower
semicontinuous submeasure ϕ : P(N) → [0,∞] so that I = Fin(ϕ)
= {A ⊆ N : ϕ(A) < ∞}. Remember that a submeasure ϕ is called
lower semicontinuous (lsc in short) if ϕ(A) = lim

n→∞ϕ(A ∩ n).
Both van der Waerden and summable ideals I1/n are Fσ-ideals,

whereas the Hindman ideal is of higher Borel complexity.

1.2. Ψ-spaces. A Hausdorff, compact, sequentially compact and
separable space which is first-countable at all points but one, which
is not van der Waerden (resp. Hindman), was constructed in [2] and
[3] respectively. Let us recall here the definition of a Ψ-space which
is crucial for both examples and also for examples in this paper.

Given a maximal almost disjoint (MAD) family A of infinite
subsets of N we define the space Ψ(A) as follows: N∪{pA : A ∈ A}
is the underlying set. Every point in N is isolated and every point pA

has neighborhood base of sets {pA}∪A\F where F is a finite subset
of A. The space Ψ(A) is regular, first countable and separable.

2. I-spaces

We may define a new subclass of sequentially compact spaces if
we replace van der Waerden ideal in Definition 1.1 by an arbitrary
ideal I on ω. Unfortunately, it may happen that the corresponding
class of topological spaces contains only finite spaces (see [3] for
Hindman ideal).

It turns out that infinite I-spaces according to the definition
exist for every Fσ-ideal I that contains all finite sets. In particular,
we obtain the following definition for the summable ideal I1/n.

Definition 2.1. A topological space X is called an I1/n-space if for
every sequence 〈xn〉n∈N in X there exists a converging subsequence
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〈xnk
〉k∈N with

∑
k∈N

1
nk

= ∞, i.e. {nk : k ∈ N} is not in the
summable ideal I1/n.

As van der Waerden or Hindman spaces, I1/n-spaces form a
proper subclass of sequentially compact spaces.

Proposition 2.2. There exists a Hausdorff, compact, sequentially
compact, separable space which is first-countable at all points but
one, which is not I1/n-space.

Proof. Consider the one-point compactification of the space Ψ(A)
where A is a maximal almost disjoint family consisting exclusively
of sets from I1/n. ¤

Notice that Proposition 2.2 remains true also if I1/n is replaced
by an arbitrary Fσ-ideal.

Kojman formulated in [2] a sufficient condition on a Hausdorff
space X to be van der Waerden (and Hindman):
(∗) The closure of every countable set in X is compact and first-
countable.

It turns out that it is also sufficient for X to be I1/n-space (or
I-space for arbitrary Fσ-ideal I). We give here only the proof for
I1/n-spaces, the more general case of arbitrary Fσ-ideal is left to
the reader since it is a straightforward modification of the presented
proof (using Mazur’s characterization of Fσ-ideals).

Theorem 2.3. If a Hausdorff space X satisfies the following con-
dition
(∗) The closure of every countable set in X is compact and first-
countable.
then X is an I1/n-space.

Proof. Suppose that 〈xn〉n∈N ⊆ X is given. Let U be an ultrafilter
which extends the dual filter of I1/n. Let D = clX{xn : n ∈ N} and
define an ultrafilter V over D by A ∈ V if and only if {n : xn ∈
A} ∈ U . Since D is compact (and Hausdorff), there is a unique
point x ∈ D such that x ∈ ⋂

V (every neighborhood of x belongs
to V ). There is also a decreasing neighborhood base 〈Uk : k ∈ N〉
at x because D is first-countable. Notice that {n : xn ∈ Uk} ∈ U

for every k ∈ N and remember that U consists of sets not in I1/n.
So

∑
xn∈Uk

1
n = ∞. We can choose finite sets Ck ⊆ {n : xn ∈ Uk}
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so that
∑

n∈Ck

1
n ≥ k. It is obvious that B =

⋃
k∈NCk is not in

I1/n and 〈xn〉n∈B converges to x. ¤

3. Van der Waerden spaces need not be I1/n-spaces

Erdős-Turán conjecture states that every set A 6∈ I1/n is an AP-
set. Hence if Erdős-Turán conjecture is true then every I1/n-space
is van der Waerden. In this section we prove that it is consistent
with ZFC that the class of van der Waerden spaces is strictly larger
than the class of I1/n-spaces. To do so we will need a rather tech-
nical Lemma 3.1 and a MAD family with special properties which
is constructed in Proposition 3.2 assuming Martin’s axiom for σ-
centered posets.

Lemma 3.1. Let A ⊆ N be an AP-set, i.e. A contains arithmetic
progressions of arbitrary length, and let f : N → N. There exists
an AP-set C ⊆ A such that

(1) either f is constant on C
(2) or f is finite-to-one on C and f [C] ∈ I1/n.

Proof. If there exists a finite set M ⊆ N such that f−1[M ] ∩ A is
an AP set then f−1(m)∩A is an AP set for some m ∈ M (because
of van der Waerden Theorem) and conclusion (1) holds.

If A ∩ f−1[M ] is not AP for every finite set M ⊆ N then we
construct by induction an AP set C ⊆ A for which conclusion (2)
holds.

We construct for every n ∈ N (finite) sets Cn ⊆ A such that
i) C1 = {minA}

ii) (∀n ∈ N) Cn is an arithmetic progression of length n.
iii) (∀n ∈ N) min f [Cn+1] > 2n+1 ·max f [Cn]

Assume we have already defined Ci as required for i = 1, 2, . . . , n.
Since A \ f−1[0, 2n+1 ·max f [Cn]] is an AP set it contains an arith-
metic progression of length n + 1. Define this subset of A as Cn+1.
It is easy to see that properties ii) and iii) are satisfied.

Finally, let C =
⋃

n∈NCn. The set C ⊆ A is obviously an AP-set
and it follows from the construction that the function f is finite-
to-one on C. So it remains to check that f [C] ∈ I1/n.

To this end notice that
∑

c∈f [Cn+1]

1
c
≤ |Cn+1|

2n+1 ·max f [Cn]
≤ n + 1

2n+1
.
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Hence
∑

c∈f [C]

1
c
≤

∞∑

n=0

∑

c∈f [Cn+1]

1
c
≤

∞∑

n=0

n + 1
2n+1

< ∞

and f [C] ∈ I1/n. ¤

Proposition 3.2. (MAσ−centered) There exists a maximal almost
disjoint family A ⊆ I1/n so that for every AP-set B ⊆ N and every
finite-to-one function f : B → N there exists an AP-set C ⊆ B and
A ∈ A so that f [C] ⊆ A.

Proof. Let us enumerate as {〈fα, Bα〉 : ω ≤ α ≤ 2ω} all pairs 〈f, B〉
where B ⊆ N is an AP-set and f : B → N a finite-to-one function.
By transfinite induction on α < 2ω we construct almost disjoint
families Aα ⊆ I1/n, ω ≤ α < 2ω, so that the following conditions
are satisfied:

(i) Aω = {An : n ∈ N} ⊆ I1/n is a partition of N
(ii) Aα ⊆ Aβ whenever α ≤ β
(iii) Aγ =

⋃
α<γ Aα for γ limit

(iv) (∀α) |Aα| ≤ |α|
(v) (∀α) (∃A ∈ Aα+1) (∃C ⊆ Bα) C is an AP-set and fα[C] ⊆ A

Suppose we already know Aα.

Case A. (∃A ∈ Aα) f−1
α [A] is an AP-set

Let C = f−1
α [A] and Aα+1 = Aα.

Case B. (∀A ∈ Aα) f−1[A] is not an AP-set
Enumerate Aα as {Aδ : δ ∈ Iα} where Iα is an index set of size

less or equal to |α|. Let P = [Bα]<ω × [Iα]<ω and define order
≤P by 〈K, D〉 ≤P 〈L,E〉 if K ⊇ L and D ⊇ E and K \ L ⊆
Bα \ f−1

α [
⋃

ε≤E Aε]. It is easy to see that (P,≤P ) is a σ-centered
poset. For k ∈ ω and δ ∈ Iα define Dk = {〈K,D〉 ∈ P : K contains
arithmetic progression of length k} and Dδ = {〈K,D〉 ∈ P : δ ∈
D}.

Claim 1: Dk is dense in (P,≤P ) for every k ∈ ω.

Proof of Claim 1. Consider 〈L,E〉 ∈ P arbitrary. If L contains
arithmetic progression of length k then 〈L,E〉 ∈ Dk. Otherwise,
remember that the set Fα = Bα \ f−1

α

[⋃
ε∈E Aε

]
is an AP-set,

so it contains arithmetic progression M ⊆ Fα of length k. Put
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K = L∪M . Obviously, 〈K, E〉 ∈ Dk and 〈K, E〉 ≤P 〈L,E〉. Hence
the set Dk is dense in P . ¤

Claim 2: Dδ are dense in (P,≤P ) for every δ ∈ Iα.

Proof of Claim 2. Consider 〈L,E〉 ∈ P arbitrary. If δ ∈ E then
〈L,E〉 ∈ Dδ. Otherwise, set D = E ∪ {δ}. Obviously, 〈L,D〉 ∈ Dδ

and 〈L,D〉 ≤P 〈L, E〉, thus the set Dδ is dense. ¤
The family D = {Dk : k ∈ ω} ∪ {Dδ : δ ∈ Iα} consists of dense

subsets of P and |D | < 2ω. If Martin’s Axiom for σ-centered posets
holds there is a D-generic filter G . Let H =

⋃{K : (∃D)〈K,D〉 ∈
G }. The set H is an AP-set and fα[H] is almost disjoint with Aα

for every α ∈ Iα.
• H is an AP-set

For every k ∈ ω there exists 〈K, D〉 ∈ G ∩Dk and H ⊇ K contains
arithmetic progression of length k.
• (∀A ∈ Aα) |fα[H] ∩A| < ω

Fix 〈K, D〉 ∈ G ∩ Dδ. For arbitrary 〈L, E〉 ∈ G there is 〈L′, E′〉
such that 〈L′, E′〉 ≤P 〈L,E〉 and 〈L′, E′〉 ≤P 〈K,D〉 (because G is
a filter). Notice that fα[L] ∩ Aδ ⊆ fα[L′] ∩ Aδ = fα[K] ∩ Aδ. It
follows that fα[H] ∩Aδ = fα[K] ∩Aδ is finite.

Now, apply Lemma 3.1 to set H and function fα which is finite-
to-one. Thus conclusion (2) holds and there exists an AP-set C ⊆ H
such that fα[C] ∈ I1/n.

To complete the induction step let Aα+1 = Aα ∪ {fα[C]}.
The family A =

⋃
α<2ω Aα ⊆ I1/n is an almost disjoint family.

To check that A is maximal let M ⊆ N be given and let f : N→ M
be the increasing enumeration of M . Since there is an AP-set C ⊆ N
and A ∈ A such that f [C] ⊆ A it is clear that M ∩A is infinite. ¤

Now we can conclude this section with the construction of a
Hausdorff, compact, sequentially compact and separable space that
is first-countable at all points but one, which is not I1/n-space.

Theorem 3.3. (MAσ−centered) There exists a compact, separable
van der Waerden space that is not an I1/n-space.

Proof. Let A ⊆ I1/n be as in Proposition 3.2 and let X be the
one-point compactification of Ψ(A). It was noticed in Proposition
2.2 that the space X is sequentially compact but not I1/n-space.
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We have yet to see that X is van der Waerden. Suppose f : N→
X is given. Let g : f [N] → N be one-to-one. By Lemma 3.1 we
can find an AP-set B ⊆ N so that (g ◦ f) ¹ B is constant or finite-
to-one, and hence f ¹ B is constant or finite-to-one. In the former
case, the sequence 〈f(n)〉n∈B is constant, and therefore converges.
So assume that f ¹ B is finite-to-one. Since either B ∩ f−1[N] or
B \ f−1[N] is AP, we may assume, by shrinking B to some AP-
subset, that either f [B] ⊆ N or f [B] ⊆ X \ (N ∪ {p}). In the
former case, there is some A ∈ A and an AP-set C ⊆ B such that
f [C] ⊆ A. Since f ¹ B is finite-to-one, 〈f(n)〉n∈C converges to pA.
In the latter case, we claim that the sequence 〈f(n)〉n∈B converges
to p. To see this, let Z be a compact subset of Ψ(A) such that
X \ Z is a basic neighborhood of p. Then Z \ N is finite so, since
f ¹ B is finite-to-one, 〈f(n)〉n∈B is eventually in X \ Z. ¤

Remark. It is not difficult to see that all propositions in this
section remain true if the summable ideal I1/n is replaced by an
arbitrary Fσ ideal I which is also a P -ideal.

4. I1/n-space which is not Hindman

Since it is consistent with ZFC that the class of I1/n-spaces is
strictly smaller than the class of van der Waerden spaces we may
(consistently) strengthen Jones’ result that there is a van der Waer-
den space which is not Hindman if we construct an I1/n-space which
is not Hindman.

Definition 4.1. We say that set A ⊆ N has property (SC), in short,
A is an (SC)-set , if limn→∞(an+1 − an) = ∞ where {an : n ∈ N}
is the increasing enumeration of A.

It is easy to see that every (SC)-set belongs to the Hindman
ideal.

Lemma 4.2. Let A ⊆ N be an I1/n-positive set, i.e.
∑

a∈A
1
a = ∞,

and let f : N → N. There exists an I1/n-positive set C ⊆ A such
that

(1) either f is constant on C
(2) or f is finite-to-one on C and f [C] is an (SC)-set.

Proof. If there there exists a finite set M ⊆ N such that f−1[M ]∩A
is an I1/n-positive set then f−1(m)∩A is I1/n-positive for some m ∈



IDEALS AND SEQUENTIALLY COMPACT SPACES 9

M (because I1/n-positive sets are partition regular) and conclusion
(1) holds.

If A ∩ f−1[M ] is not I1/n-positive for every finite set M ⊆ N
then we construct by induction an I1/n-positive set C ⊆ A for
which conclusion (2) holds. For every n ∈ N we construct (finite)
sets Cn ⊆ A such that

i) C1 = {minA}
ii) (∀n ∈ N) min f [Cn+1] ≥ 2 ·max f [Cn].

iii) (∀n ∈ N) (∀c, d ∈ f [Cn]) |c− d| ≥ n.
iv) (∀n ∈ N)

∑
c∈f [Cn]

1
c ≥ n

Assume we have already defined Ci as required for i = 1, 2, . . . , n.
Remember that An = A \ f−1[0, 2 ·max f [Cn]) is an I1/n-positive
subset of A. Fix an increasing enumeration f [An] = {ak : k ∈
ω}. For every 0 ≤ r < n + 1 define Br = {ai(n+1)+r : i ∈ ω}.
The set f−1[Br] is I1/n-positive for some r, so there exists a finite
set Cn+1 ⊆ f−1[Br] such that

∑
j∈Cn+1

1
j ≥ n + 1. Observe that

|c− d| ≥ n + 1 whenever c and d are distinct elements of f [Cn+1].
Obviously, condition ii) is also fulfilled.

Finally, let C =
⋃

n∈NCn. It follows from the construction that
C ⊆ A is I1/n-positive, the function f is finite-to-one on C and if
{cn : n ∈ N} is an increasing enumeration of f [C] then lim

n→∞ cn+1−
cn = ∞. ¤
Proposition 4.3. (MAσ−centered) There exists a maximal almost
disjoint family A consisting of (SC)-sets so that for every I1/n-
positive set B ⊆ N and every finite-to-one function f : B → N there
exists an I1/n-positive set C ⊆ B and A ∈ A so that f [C] ⊆ A.

Proof. Let us enumerate as {〈fα, Bα〉 : ω ≤ α ≤ 2ω} all pairs 〈f, B〉
where B ⊆ N is an I1/n-positive set and f : B → N a finite-to-one
function. By transfinite induction on α < 2ω we construct almost
disjoint families Aα, ω ≤ α < 2ω, (consisting of (SC)-sets) so that
the following conditions are satisfied:

(i) Aω is an infinite partition of N
(ii) Aα ⊆ Aβ whenever α ≤ β
(iii) Aγ =

⋃
α<γ Aα for γ limit

(iv) (∀α) |Aα| ≤ |α|
(v) (∀α) (∃A ∈ Aα+1) (∃C ⊆ Bα) fα[C] ⊆ A

Suppose we already know Aα.
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Case A. (∃A ∈ Aα) f−1
α [A] is I1/n-positive

Let C = f−1
α [A] and Aα+1 = Aα.

Case B. (∀A ∈ Aα) f−1
α [A] ∈ I1/n

Enumerate Aα as {Aδ : δ ∈ Iα} where Iα is an index set of size
less or equal |α|. Let P = [Bα]<ω × [Iα]<ω and define order ≤P

by 〈K,D〉 ≤P 〈L,E〉 if K ⊇ L and D ⊇ E and K \ L ⊆ Bα \
f−1

α [
⋃

ε≤E Aε]. It is easy to see that (P,≤P ) is a σ-centered poset.
For k ∈ N and δ ∈ Iα define Dk = {〈K,D〉 ∈ P :

∑
a∈K

1
a ≥ k} and

Dδ = {〈K, D〉 ∈ P : δ ∈ D}.
Claim 1: Dk is dense in (P,≤P ) for every k ∈ N.

Proof of Claim 1. Consider 〈L,E〉 ∈ P arbitrary. If
∑

a∈L
1
a ≥ k

then 〈L,E〉 ∈ Dk. Otherwise, remember that the set Fα = Bα \
f−1

α

[⋃
ε∈E Aε

]
is I1/n-positive, so there exists a finite set M ⊆ Fα

such that
∑

a∈M
1
a ≥ k. Put K = L ∪M . Obviously, 〈K,E〉 ∈ Dk

and 〈K, E〉 ≤P 〈L,E〉. Hence the set Dk is dense in P . ¤
Claim 2: Dδ are dense in (P,≤P ) for every δ ∈ Iα.

Proof of Claim 2. Consider 〈L,E〉 ∈ P arbitrary. If δ ∈ E then
〈L,E〉 ∈ Dδ. Otherwise, set D = E ∪ {δ}. Obviously, 〈L,D〉 ∈ Dδ

and 〈L,D〉 ≤P 〈L, E〉, thus the set Dδ is dense. ¤
The family D = {Dk : k ∈ N} ∪ {Dδ : δ ∈ Iα} consists of

dense subsets of P and |D | < 2ω. According to Martin’s axiom for
σ-centered posets there is a D-generic filter G . Let H =

⋃{K :
(∃D)〈K, D〉 ∈ G }. The set H is I1/n-positive and fα[H] is almost
disjoint with Aα for every α ∈ Iα.
• H is an I1/n-positive set (in particular, H is infinite)

For every k ∈ N there exists 〈K,D〉 ∈ G ∩ Dk and
∑

a∈H
1
a ≥∑

a∈K
1
a ≥ k.

• (∀A ∈ Aα) |fα[H] ∩A| < ω
Fix 〈K, D〉 ∈ G ∩ Dδ. For arbitrary 〈L, E〉 ∈ G there is 〈L′, E′〉
such that 〈L′, E′〉 ≤P 〈L,E〉 and 〈L′, E′〉 ≤P 〈K,D〉 (because G is
a filter). Notice that fα[L] ∩ Aδ ⊆ fα[L′] ∩ Aδ = fα[K] ∩ Aδ. It
follows that fα[H] ∩Aδ = fα[K] ∩Aδ is finite.

Now, apply Lemma 4.2 to set H and function fα which is finite-
to-one. Thus conclusion (2) holds and there exists an I1/n-positive
set C ⊆ H such that fα[C] is an (SC)-set.
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To complete the induction step let Aα+1 = Aα ∪ {fα[C]}.
The family A =

⋃
α<2ω Aα is an almost disjoint family of (SC)-

sets. To check that A is maximal let M ⊆ N be given and let
f : N→ M be the increasing enumeration of M . Since there is an
I1/n-positive set C ⊆ N and A ∈ A such that f [C] ⊆ A it is clear
that M ∩A is infinite. ¤

Theorem 4.4. (MAσ−centered) There exists a compact, separable
I1/n-space that is not Hindman.

Proof. Let A be a MAD family as in Proposition 4.3 and let X be
the one-point compactification of Ψ(A). It was shown in [3] and [4]
that the space X is sequentially compact but not Hindman.

We have yet to see that X is an I1/n-space. Suppose f : N→ X
is given. Let g : f [N] → N be one-to-one. By Lemma 4.2 we can find
an I1/n-positive set B ⊆ N so that (g ◦ f) ¹ B is constant or finite-
to-one, and hence f ¹ B is constant or finite-to-one. In the former
case, the sequence 〈f(n)〉n∈B is constant, and therefore converges.
So assume that f ¹ B is finite-to-one. Since either B ∩ f−1[N] or
B \f−1[N] is I1/n-positive, we may assume, by shrinking B to some
I1/n-positive subset, that either f [B] ⊆ N or f [B] ⊆ X \ (N∪ {p}).
In the former case, there is some A ∈ A and an I1/n-positive set
C ⊆ B such that f [C] ⊆ A. Since f ¹ B is finite-to-one, 〈f(n)〉n∈C

converges to pA. In the latter case, we claim that the sequence
〈f(n)〉n∈B converges to p. To see this, let Z be a compact subset
of Ψ(A) such that X \ Z is a basic neighborhood of p. Then Z \N
is finite so, since f ¹ B is finite-to-one, 〈f(n)〉n∈B is eventually in
X \ Z. ¤

Remark. All the proofs in section 4 can be modified for an arbi-
trary Fσ-ideal I.

5. I1/n-spaces and ip-rich sets

We say that A ⊆ N is an ip-rich set if (∀k ∈ N) (∃D ⊆ N) |D| = k
and FS(D) ⊆ A. It is known that ip-rich sets form an ideal and
we denote it as Iipr. Since it is an Fσ-ideal we may replace I1/n

in Definition 2.1 by Iipr and obtain a new subclass of sequentially
compact spaces. We know from section 2 that infinite Iipr-spaces
exist.
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It is obvious that every IP-set is ip-rich, so every Hindman space
is Iipr-space. The converse is (consistently) not true (it follows from
the generalization of Theorem 4.4 to the Fσ-ideal Iipr).

We construct in the following an Iipr-space that is not an I1/n-
space, which might be considered as a very inaccurate approxima-
tion of the desired Hindman not van der Waerden space. The con-
struction follows the same pattern as the constructions in sections
3 and 4 (and as in the proof of Kojman and Shelah).

Lemma 5.1. Let A ⊆ N be an ip-rich set and let f : N→ N. There
exists an ip-rich set C ⊆ A such that

(1) either f is constant on C
(2) or f is finite-to-one on C and

∑
c∈f [C]

1
c < ∞.

In other words, f [C] ∈ I1/n.

Proof. If there exists a finite set M ⊆ N such that f−1[M ] ∩ A is
an ip-rich set then f−1(m) ∩ A is an ip-rich set for some m ∈ M
(because ip-rich sets are partition regular) and conclusion (1) holds.

If A ∩ f−1[M ] is not ip-rich for every finite set M ⊆ N then we
construct by induction an ip-rich set C ⊆ A for which conclusion
(2) holds.

We construct for every n ∈ N (finite) sets Cn ⊆ A and Dn ⊆ A
such that

i) C1 = D1 = {minA}
ii) (∀n ∈ N) |Dn| = n and Cn = FS(Dn)

iii) (∀n ∈ N) min f [Cn+1] > 22n+1 ·max f [Cn]
Assume we have already defined Ci and Di as required for i =

1, 2, . . . , n. The set A∩f−1[0, 22n+1·max f [Cn]] is not ip-rich. Hence
A \ f−1[0, 22n+1 ·max f [Cn]] is ip-rich and there exists a finite set
Dn+1 ⊆ A \ f−1[0, 22n+1 ·max f [Cn]] such that |Dn+1| = n + 1 and
FS(Dn+1) ⊆ A \ f−1[0, 22n+1 ·max f [Cn]]. Put Cn+1 = FS(Dn+1).
It is easy to see that properties ii) and iii) are satisfied.

Finally, let C =
⋃

n∈NCn. The set C ⊆ A is obviously ip-rich and
it follows from the construction that the function f is finite-to-one
on C. So it remains to check that f [C] ∈ I1/n.

To this end notice that
∑

c∈f [Cn+1]

1
c
≤ |Cn+1|

22n+1 ·max f [Cn]
≤ 2n+1

22n+1 ·max f [Cn]
≤ 1

2n
.
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So we get
∑

c∈f [C]

1
c
≤

∑
n∈ω

∑

c∈f [Cn+1]

1
c
≤

∑
n∈ω

1
2n

< ∞

and f [C] ∈ I1/n. ¤
Proposition 5.2. (MAσ−centered) There exists a maximal almost
disjoint family A ⊆ I1/n so that for every ip-rich set B ⊆ N and
every finite-to-one function f : B → N there exists an ip-rich set
C ⊆ B and A ∈ A so that f [C] ⊆ A.

Proof. Let us enumerate as {〈fα, Bα〉 : ω ≤ α ≤ 2ω} all pairs 〈f, B〉
where B ⊆ N is an ip-rich set and f : B → N a finite-to-one
function. By transfinite induction on α < 2ω we construct almost
disjoint families Aα ⊆ I1/n, ω ≤ α < 2ω, so that the following
conditions are satisfied:

(i) Aω = {An : n ∈ N} ⊆ I1/n is a partition of N
(ii) Aα ⊆ Aβ whenever α ≤ β
(iii) Aγ =

⋃
α<γ Aα for γ limit

(iv) (∀α) |Aα| ≤ |α|
(v) (∀α) (∃A ∈ Aα+1) (∃C ⊆ Bα) C is ip-rich and fα[C] ⊆ A

Suppose we already know Aα.

Case A. (∃A ∈ Aα) f−1
α [A] is ip-rich

Let C = f−1
α [A] and Aα+1 = Aα.

Case B. (∀A ∈ Aα) f−1[A] is not ip-rich
Enumerate Aα as {Aδ : δ ∈ Iα} where Iα is an index set of size

less or equal to |α|. Let P = [Bα]<ω × [Iα]<ω and define order
≤P by 〈K, D〉 ≤P 〈L,E〉 if K ⊇ L and D ⊇ E and K \ L ⊆
Bα \ f−1

α [
⋃

ε≤E Aε]. It is easy to see that (P,≤P ) is a σ-centered
poset. For k ∈ N and δ ∈ Iα define Dk = {〈K, D〉 ∈ P : (∃M ∈
[N]<ω)|M | = k and K ⊇ FS(M)} and Dδ = {〈K, D〉 ∈ P : δ ∈ D}.

Claim 1: Dk is dense in (P,≤P ) for every k ∈ N.

Proof of Claim 1. Consider 〈L,E〉 ∈ P arbitrary. If L contains
Finite sums of a set with k elements then 〈L,E〉 ∈ Dk. Otherwise,
remember that the set Fα = Bα \ f−1

α

[⋃
ε∈E Aε

]
is ip-rich, so it

contains FS(M) for some set M such that |M | = k. Put K =
L∪FS(M). Obviously, 〈K, E〉 ∈ Dk and 〈K,E〉 ≤P 〈L,E〉. Hence
the set Dk is dense in P . ¤
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Claim 2: Dδ are dense in (P,≤P ) for every δ ∈ Iα.

Proof of Claim 2. Consider 〈L,E〉 ∈ P arbitrary. If δ ∈ E then
〈L,E〉 ∈ Dδ. Otherwise, set D = E ∪ {δ}. Obviously, 〈L,D〉 ∈ Dδ

and 〈L,D〉 ≤P 〈L, E〉, thus the set Dδ is dense. ¤

The family D = {Dk : k ∈ N} ∪ {Dδ : δ ∈ Iα} consists of dense
subsets of P and |D | < 2ω. If Martin’s Axiom for σ-centered posets
holds there is a D-generic filter G . Let H =

⋃{K : (∃D)〈K,D〉 ∈
G }. The set H is ip-rich and fα[H] is almost disjoint with Aα for
every α ∈ Iα.
• H is an ip-rich set

For every k ∈ ω there exists 〈K, D〉 ∈ G ∩Dk and H ⊇ K ⊇ FS(M)
where |M | = k.
• (∀A ∈ Aα) |fα[H] ∩A| < ω

Fix 〈K, D〉 ∈ G ∩ Dδ. For arbitrary 〈L, E〉 ∈ G there is 〈L′, E′〉
such that 〈L′, E′〉 ≤P 〈L,E〉 and 〈L′, E′〉 ≤P 〈K,D〉 (because G is
a filter). Notice that fα[L] ∩ Aδ ⊆ fα[L′] ∩ Aδ = fα[K] ∩ Aδ. It
follows that fα[H] ∩Aδ = fα[K] ∩Aδ is finite.

Now, apply Lemma 5.1 to set H and function fα which is finite-
to-one. Thus conclusion (2) holds and there exists an ip-rich set
C ⊆ H such that fα[C] ∈ I1/n.

To complete the induction step let Aα+1 = Aα ∪ {fα[C]}.
The family A =

⋃
α<2ω Aα ⊆ I1/n is an almost disjoint family.

To check that A is maximal let M ⊆ N be given and let f : N→ M
be the increasing enumeration of M . Since there is an ip-rich set
C ⊆ N and A ∈ A such that f [C] ⊆ A it is clear that M ∩ A is
infinite. ¤

Theorem 5.3. (MAσ−centered) There exists a compact, separable
topological space Iipr-space X that is not an I1/n-space.

Proof. Let A ⊆ I1/n be as in Proposition 5.2 and let X be the
one-point compactification of Ψ(A). It was noticed in Proposition
2.2 that the space X is sequentially compact but not I1/n-space.

We have yet to verify that X is an Iipr-space. Suppose f : N→ X
is given. Let g : f [N] → N be one-to-one. By Lemma 5.1 we can
find an ip-rich set B ⊆ N so that (g ◦ f) ¹ B is constant or finite-
to-one, and hence f ¹ B is constant or finite-to-one. In the former
case, the sequence 〈f(n)〉n∈B is constant, and therefore converges.
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So assume that f ¹ B is finite-to-one. Since either B ∩ f−1[N] or
B\f−1[N] is ip-rich, we may assume, by shrinking B to some ip-rich
subset, that either f [B] ⊆ N or f [B] ⊆ X \ (N∪{p}). In the former
case, there is some A ∈ A and an ip-rich set C ⊆ B such that
f [C] ⊆ A. Since f ¹ B is finite-to-one, 〈f(n)〉n∈C converges to pA.
In the latter case, we claim that the sequence 〈f(n)〉n∈B converges
to p. To see this, let Z be a compact subset of Ψ(A) such that
X \ Z is a basic neighborhood of p. Then Z \ N is finite so, since
f ¹ B is finite-to-one, 〈f(n)〉n∈B is eventually in X \ Z. ¤
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