
Description of some ultrafilters via I-ultrafilters

Jana Flašková
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Abstract
We give a description of several classes of ultrafilters on ω in terms

of I-ultrafilters. For example, we characterize Q-points as weak thin
ultrafilters and P -points as Fin×Fin-ultrafilters.

1 Introduction

The definition of I-ultrafilter was given by Baumgartner: Let I be a family
of subsets of a set X such that I contains all singletons and is closed under
subsets. Given an ultrafilter U on ω, we say that U is an I-ultrafilter if for
every function F : ω → X there is A ∈ U such that F [A] ∈ I.

If only finite-to-one functions F are considered then we refer to the cor-
responding ultrafilters as weak I-ultrafilters. If only one-to-one functions F
are considered then we refer to the corresponding ultrafilters as I-friendly
ultrafilters.

Obviously, every I-ultrafilter is a weak I-ultrafilter and every weak I-
ultrafilter is an I-friendly ultrafilter. The reverse implications in general
need not be true.

In [1], Baumgartner studied I-ultrafilters for X = 2ω and X = ω1. He
proved that P -points can be described as I-ultrafilters: If X = 2ω then
P -points are precisely the I-ultrafilters for I consisting of all finite and
converging sequences, if X = ω1 then P -points are precisely the I-ultrafilters
for I = {A ⊆ ω1 : A has order type ≤ ω}.

We study I-ultrafilters, weak I-ultrafilters and I-friendly ultrafilters in
the setting X = ω (or another countable set) and I is an ideal on X which
contains all finite subsets of ω. We will use these concepts to describe
rapid ultrafilters, Q-points, P -points and selective ultrafilters. Every class
of ultrafilters is discussed in one section of the paper.

In this introduction we will recall some definitions used in the subsequent
sections (however, notions used only in one particular section are recalled
at the beginning of the respective section). We also mention some tools we
used to translate some known results in terms of I-ultrafilters.

Since we deal with ultrafilters on ω let us first recall two (quasi)orderings
defined on ω∗, the remainder of the Čech-Stone compactification of ω:
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Rudin-Keisler order ≤RK . For U , V ∈ βω we write U ≤RK V iff there
exists a function f : ω → ω such that (∀U ∈ U) f−1[U ] ∈ V.

Rudin-Blass order ≤RB. For U , V ∈ βω we write U ≤RB V iff there is a
finite-to-one function f : ω → ω such that (∀U ∈ U) f−1[U ] ∈ V.

Katětov order ≤K is an extension of the Rudin-Keisler order to arbitrary
filters or ideals. We write F ≤K G if there exists a function f : ω → ω such
that f−1[U ] ∈ G for every U ∈ F . It is easy to check that F ≤K G if and
only if F∗ ≤K G∗ (where F∗ denotes the dual ideal to filter F or the dual
filter to ideal F according to the situation).

Katětov-Blass order ≤KB is an extension of the Rudin-Blass order to
arbitrary filters or ideals. We write F ≤KB G if there exists a finite-to-one
function f : ω → ω such that f−1[U ] ∈ G for every U ∈ F .

Some known results may be restated in terms of I-ultrafilters using the
following lemma from [3]:

Lemma 1.1. Let I be an ideal on ω. For ultrafilter U ∈ ω∗ the following
assertions are equivalent:

(i) U is an I-ultrafilter

(ii) V 6≤RK U for every ultrafilter V ⊇ I∗

(iii) I∗ 6≤K U
Proof. (i) ⇒ (ii) Assume there exists an ultrafilter V ⊇ I∗ such that V ≤RK

U . Since there exists f : ω → ω such that f [U ] ∈ V for every U ∈ U we have
f [U ] 6∈ I for every U ∈ U . Hence U is not an I-ultrafilter.

(ii) ⇒ (iii) If I∗ ≤K U then there is a function f : ω → ω such that
f−1[A] ∈ U for every A ∈ I∗. Put V = {B ⊆ ω : (∃U ∈ U)f [U ] ⊆ B}. It is
easy to see that I∗ ⊆ V, V is an ultrafilter and V ≤RK U .

(iii) ⇒ (i) If I∗ 6≤K U then for every f : ω → ω there is A ∈ I∗ such
that f−1[A] 6∈ U . Since U is an ultrafilter we get ω \ f−1[A] ∈ U and we
have also f [ω \ f−1[A]] ⊆ ω \A ∈ I. Hence U is an I-ultrafilter.

A weak I-ultrafilter can be characterized analogously, it is sufficient to
replace in Lemma 1.1 6≤RK by 6≤RB and 6≤K by 6≤KB.

Lemma 1.2. Let I be an ideal on ω. For ultrafilter U ∈ ω∗ the following
are equivalent:

(i) U is a weak I-ultrafilter

(ii) V 6≤RB U for every ultrafilter V ⊇ I∗
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(iii) I∗ 6≤KB U ¤

As an immediate consequence of preceding lemmas we can generalize the
obvious fact that if I ⊆ J then every I-ultrafilter is a J -ultrafilter.

Observation 1.3. Assume I, J are two ideals on ω.

• If I ≤K J then every I-ultrafilter is a J -ultrafilter.

• If I ≤KB J then every weak I-ultrafilter is a weak J -ultrafilter.

• If there is a one-to-one function f : ω → ω such that f−1[A] ∈ J for
every A ∈ I then every I-friendly ultrafilter is a J -friendly ultrafilter.

An ideal I on ω is called tall (dense) if for every infinite A ⊆ ω there
exists infinite B ⊆ A such that B ∈ I.

2 Rapid ultrafilters

Definition 2.1. An ultrafilter U ∈ ω∗ is called a rapid ultrafilter if the
enumeration functions of its sets form a dominating family in (ωω,≤∗).

For an alternative description of rapid ultrafilters summable ultrafilters
are useful. Whenever f : ω → (0,∞) is a function such that

∑
n∈ω f(n) = ∞

then the family If = {A ⊆ ω :
∑

a∈A f(a) < +∞} is an ideal on ω and it
is called a summable ideal . It is known (see e.g. [2]) that every summable
ideal is an Fσ P -ideal and that a summable ideal If is tall if and only if
f ∈ c0 where c0 = {f : ω → [0,∞)| limn→∞ f(n) = 0}.

The connection between rapid ultrafilters and summable ideals was first
mentioned by Vojtáš in [9]:

Theorem 2.2 (Vojtáš). For U ∈ ω∗ the following are equivalent:

1) U is rapid

2) (∀f ∈ c0)(∃U ∈ U) U ∈ If i.e. U ∩If 6= ∅ for each summable ideal If

Another characterization of rapid ultrafilters is due to Hrušák [5]:

Theorem 2.3 (Hrušák). For U ∈ ω∗ the following are equivalent:

1) U is rapid

2) I 6≤KB U∗ for every tall analytic P-ideal I
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3) I 6≤KB U∗ for every tall Fσ P-ideal I
4) I 6≤KB U∗ for every tall summable ideal I
Both results are included in the following theorem:

Theorem 2.4. For an ultrafilter U ∈ ω∗ the following are equivalent:

1) U is rapid

2) U is a weak I-ultrafilter for every tall analytic P-ideal I
3) U is a weak I-ultrafilter for every tall Fσ P-ideal I
4) U is a weak I-ultrafilter for every tall summable ideal I
5) U is an I-friendly ultrafilter for every tall analytic P-ideal I
6) U is an I-friendly ultrafilter for every tall Fσ P-ideal I
7) U is an I-friendly ultrafilter for every tall summable ideal I
8) U ∩ I 6= ∅ for every tall analytic P-ideal I
9) U ∩ I 6= ∅ for every tall Fσ P-ideal I

10) U ∩ I 6= ∅ for every tall summable ideal I
Proof. It is sufficient to prove 1) ⇒ 2) and 10) ⇒ 1).

1) ⇒ 2) Assume U is a rapid ultrafilter and I is a tall analytic P -ideal.
By Solecki’s characterization in [8] there exists a lsc submeasure ϕ such that
I = Exh(ϕ). It is known that I is tall if and only limn→∞ ϕ({n}) = 0.

Fix a strictly increasing sequence 〈nk〉k∈ω such that for every n ≥ nk one
has ϕ({n}) < 1

2k . Given a finite-to-one function f : ω → ω define recursively
h : ω → ω by h(0) = n0 and h(i + 1) = 1 + max{h(i), max f−1[0, ni+1]}.
Since U is a rapid ultrafilter, there exists U ∈ U such that h ≤∗ eU . Hence
there is i0 ∈ ω such that for every i ≥ i0 the i-th element of the set ui ≥ h(i).
According to the definition of h(i) we have f(ui) ≥ ni for every i ≥ i0 and

ϕ(f [U ] \ [0, max{f(uj) : j < i}]) ≤
∑

j≥i

ϕ({f(uj)}) ≤
∑

j≥i

1
2j

=
1

2i−1

and it follows that f [U ] ∈ Exh(ϕ) = I and U is a weak I-ultrafilter.
10) ⇒ 1). Assume for contrary that U ∈ ω∗ is not rapid. Then there

exists a function h : ω → ω such that h 6≤∗ eU for every U ∈ U . We may
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assume that h is strictly increasing (and h(n + 1) ≥ h(n) + n + 1). Define
f ∈ c0 by f(k) = 1 if k ≤ h(0) and f(k) = 1

n+1 if k ∈ (h(n), h(n+1)], n ∈ ω.
We will show that U ∩ If = ∅.

For every U ∈ U there are infinitely many n with |U ∩ [0, h(n)]| ≥ n.
Hence we can choose a sequence 〈ni〉i∈ω such that |U ∩ [0, h(ni)]| ≥ ni and
ni+1 ≥ 2ni for every i ∈ ω. We get

∑

u∈U

f(u) ≥
∑

i∈ω

∑

u∈(h(ni),h(ni+1)]

f(u) ≥
∑

i∈ω

(ni+1 − ni)
1

ni+1
≥

∑

i∈ω

ni+1

2
· 1
ni+1

and the set U does not belong to If .

3 Q-points

Definition 3.1. An ultrafilter U ∈ ω∗ is called a Q-point if for every par-
tition {Qn : n ∈ ω} of ω into finite sets there exists U ∈ U such that
|U ∩Qn| ≤ 1 for every n ∈ ω.

One alternative description of Q-points was presented by Hrušák in his
talk [5] at set theory seminar in Prague. In accordance with [4] let us recall
that family ED = {A ⊆ ω × ω : (∃m)(∃n)(∀k ≥ n){l : 〈k, l〉 ∈ A} ≤ m} is
an ideal on ω×ω generated by graphs of functions and vertical sections and
its restriction on the set L = {〈k, l〉 ∈ ω × ω : l ≤ k} is denoted by EDfin.

Theorem 3.2 (Hrušák). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is Q-point

2) EDfin 6≤KB U∗

We will translate this result in terms of weak I-ultrafilters making use
of Lemma 1.2 and provide some other equivalent descriptions for Q-points
as well. For this we have to introduce two more ideals on ω.

Let A be a subset of ω with an increasing enumeration A = {an : n ∈ ω}.
We say that A is thin if limn→∞ an

an+1
= 0 and we call A almost thin if

lim supn→∞
an

an+1
< 1. As T we denote the ideal generated by all finite and

thin sets, as A we denote the ideal generated by all finite and almost thin
sets.

It follows from definition that T ⊆ A. Both ideals are comparable with
EDfin in Katětov-Blass order.
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Lemma 3.3. T ≤KB EDfin ≤KB A.

Proof. Let K = {A ⊆ ω : (∃p ∈ ω) (∀n ∈ ω)|A ∩ [2n, 2n+1)| ≤ p}. It is easy
to see that T ⊆ K ⊆ A. Define f : L → ω by 〈n, k〉 7→ 2n + k. Check that
for every A ∈ K we have f−1[A] ∈ EDfin, so K ≤KB EDfin. Since ≤KB is
a transitive relation we get also T ≤KB EDfin.

Now, define g : ω → L by m 7→ 〈2n, k〉 where n is the unique integer for
which m ∈ [2n, 2n+1) and m = 2n + k. It is not difficult to check that for
every A ∈ EDfin the preimage f−1[A] is almost contained in some set from
K. However, A is an ideal generated by finite sets and almost thin sets and
K ⊆ A, so f−1[A] ∈ A and we get EDfin ≤KB A.

Theorem 3.4. For an ultrafilter U ∈ ω∗ the following assertions are equiv-
alent:

1) U is a Q-point

2) U is a weak T -ultrafilter

3) U is a weak EDfin-ultrafilter

4) U is a weak A-ultrafilter

5) U is a T -friendly ultrafilter

6) U is an EDfin-friendly ultrafilter

7) U is an A-friendly ultrafilter

Proof. Now, it is sufficient to prove 1) ⇒ 2) and 7) ⇒ 1).
1) ⇒ 2) Let f : ω → ω be an arbitrary finite-to-one function. Then

{f−1[n!, (n + 1)!) : n ∈ ω} is a partition of ω into finite sets. Either U1 =⋃
n odd f−1[n!, (n+1)!) or U2 =

⋃
n even f−1[n!, (n+1)!) belongs to U because

U is an ultrafilter. Since U is a Q-point there exists U3 ∈ U such that
|U3 ∩ f−1[n!, (n + 1)!)| ≤ 1 for every n ∈ ω. Now, assume that U1 ∈ U and
put U = U1 ∩ U3. It is not difficult to check that f [U ] is a thin set (note
that un

un+1
≤ (m+1)!

(m+2)! = 1
m+2 for some m ≥ n).

7) ⇒ 1) Let {Qn : n ∈ ω} be a partition of ω into finite sets. Put
kn = |Qn| − 1, enumerate Qn = {qn

i : i = 0, . . . , kn} and define a strictly
increasing function f : ω → ω as follows: f(q0

0) = 0, f(qn+1
0 ) = (n + 2) ·

max{f(qn
kn

), kn+1} for n ∈ ω and f(qn
i ) = f(qn

0 )+i for i ≤ kn, n ∈ ω. Since U
is an A-friendly ultrafilter there exists U ∈ U such that f [U ] = {vm : m ∈ ω}
is an almost thin set, i.e. lim supm→∞

vm
vm+1

= δ < 1.
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Claim: |U ∩Qn| ≤ 1 for all but finitely many n

Proof. First observe that according to the assumptions there exists m1 ∈
ω such that vm

vm+1
< 1+δ

2 for every m ≥ m1. Notice that there exists m2 ∈ ω

such that m+1
m+2 ≥ 1+δ

2 for every m ≥ m2. Now, assume for the contrary
that there are infinitely many n ∈ ω with |U ∩ Qn| ≥ 2. Then there exists
n ≥ m2 such that n ≥ max{f−1(vm) : m < m1} and |U ∩Qn| ≥ 2. Consider
two distinct elements u1, u2 ∈ U ∩ Qn, u1 < u2. Then f(u1) = vm for
some m ≥ m1 and f(u2) = vn for some n ≥ m + 1. We get vm

vm+1
≥ vm

vn
=

f(u1)
f(u2) ≥

f(qn
0 )

f(qn
0 )+kn

≥ (n+1)·M
(n+1)·M+M = n+1

n+2 where M = max{f(qn−1
kn−1

), kn}. But
n+1
n+2 ≥ 1+δ

2 — a contradiction. ¤
Since U is a uniform ultrafilter it follows from the claim that there exists

V ∈ U such that V ⊆ U , U \ V is finite and |V ∩Qn| ≤ 1 for every n. Thus
U is a Q-point.

A different characterization of Q-points can be found in [9] where Vojtáš
defined for this purpose the following ideals on ω: Assume R is a partition
of ω into finite sets and put IR = {A ⊆ ω : (∃k ∈ ω)(∀R ∈ R)|R ∩A| ≤ k}.
Denote by R the set of all such partitions R ⊆ [ω]<ω.

Theorem 3.5 (Vojtáš). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is a Q-point

2) (∀R ∈ R) (∃U ∈ U) (∃k ∈ ω) (∀R ∈ R) |U ∩R| ≤ k, i.e. U ∈ IR.

Applying lemma 1.2 we may translate and extend this characterization.

Theorem 3.6. For an ultrafilter U ∈ ω∗ the following are equivalent:

1) U is a Q-point

2) U is a weak IR-ultrafilter for every R ∈ R

3) U is an IR-friendly ultrafilter for every R ∈ R

4) U ∩ IR 6= ∅ for every R ∈ R

Proof. We have to prove 1) ⇒ 2) and 4) ⇒ 1).
1) ⇒ 2) Assume f : ω → ω is a finite-to-one function and R is a partition

of ω into finite sets. Put Rf = {f−1[R] : R ∈ R}. It is again a partition
of ω into finite sets. If U is a Q-point then there exists U ∈ U such that
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|U ∩ Q| ≤ 1 for every Q ∈ Rf . So we get |f [U ] ∩ R| ≤ 1 for every R ∈ R,
i.e. U ∈ IR, and U is a weak IR-ultrafilter.

4) ⇒ 1) According to the assumption for a arbitrary R ∈ R there exists
U ∈ U and k ∈ ω such that |U∩R| ≤ k for every R ∈ R. We can split U into
k sets in such a way that each of them intersects every R ∈ R in at most
one point. Since U is an ultrafilter, one of those sets belongs to U . Hence U
contains a selector for arbitrary partition R ∈ R, i.e. U is a Q-point.

4 P-points

Definition 4.1. An ultrafilter U ∈ ω∗ is called a P -point if for all partitions
of ω, {Ri : i ∈ ω}, either for some i, Ri ∈ U , or (∃U ∈ U) (∀i ∈ ω)
|U ∩Ri| < ω.

A new description of P -points mentioned Hrušák in [5] using the ideal
Fin×Fin = {A ⊆ ω × ω : {n : {m : 〈n,m〉 ∈ A} 6∈ Fin} ∈ Fin}.
Theorem 4.2 (Hrušák). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is a P -point

2) Fin×Fin 6≤K U∗

Lemma 1.1 provides a translation of the previous theorem in terms of
I-ultrafilters.

Theorem 4.3. For an ultrafilter U ∈ ω∗ the following are equivalent:

1) U is a P -point

2) U is a Fin×Fin-ultrafilter

3) U is a weak Fin×Fin-ultrafilter

4) U is a Fin×Fin-friendly ultrafilter

Proof. We will prove only 1) ⇒ 2) and 4) ⇒ 1).
1) ⇒ 2) It is not difficult to check that every P -point is a Fin×Fin-

ultrafilter: For every f : ω → ω × ω consider partition {f−1[{n} × ω] : n ∈
ω} of ω. Since U is a P -point then there exists either U ∈ U such that
U = f−1[{n} × ω] for some n ∈ ω (and hence f [U ] = {n} × ω ∈ Fin×Fin)
or |U ∩ f−1[{n}×ω]| < ω for every n ∈ ω (and so f [U ] ∈ Fin×Fin again).
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4) ⇒ 1) Let {Rn : n ∈ ω} be a partition of ω into infinite sets. Define
a one-to-one function f : ω → ω × ω by f(m) = 〈n, k〉 if m is kth element
of set Rn. Since U is a Fin×Fin-ultrafilter there exists U ∈ U such that
f [U ] ∈ Fin×Fin. So, f [U ] ⊆ V1 ∪V2 where V1 ⊆ [0, n0]×ω for some n0 ∈ ω
and |V2 ∩ {n} × ω| < ω for every n ∈ ω. Either f−1[V1] ∈ U (and then
Rn ∈ U for some n ≤ n0) or f−1[V2] ∈ U (and |f−1[V2] ∩ Rn| < ω for every
n ∈ ω).

For a different characterization of P -points it is important to say that
conv denotes the ideal generated by convergent sequences of rational num-
bers from [0, 1] because P -points may be described as conv-ultrafilters, which
follows from the following theorem:

Theorem 4.4 (Hrušák [5]). For an ultrafilter U ∈ ω∗ the following asser-
tions are equivalent:

1) U is a P -point

2) conv 6≤K U∗

Let us conclude this section with a general combinatorial description of
P -points.

Theorem 4.5 (Hrušák, Thümmel [6]). U is a P -point if and only if for
every tall analytic ideal I such that U ∩ I = ∅ there is an Fσ ideal J ⊇ I
such that U ∩ J = ∅.

5 Selective ultrafilters

Definition 5.1. A free ultrafilter U is called a selective ultrafilter (or a
Ramsey ultrafilter) if for all partitions of ω, {Ri : i ∈ ω}, either for some i,
Ri ∈ U , or (∃U ∈ U) (∀i ∈ ω) |U ∩Ri| ≤ 1.

Several different descriptions of selective ultrafilters were presented by
Hrušák in [5]. Here is one of them with ideal ED (for definition see section
3 of this paper).

Theorem 5.2 (Hrušák). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is selective

2) ED 6≤K U∗
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We will prove the translation of the theorem in terms of I-ultrafilters.

Theorem 5.3. For an ultrafilter U ∈ ω∗ the following are equivalent:

1) U is selective

2) U is an ED-ultrafilter

3) U is a weak ED-ultrafilter

4) U is an ED-friendly ultrafilter

Proof. We will prove 1) ⇒ 2) and 4) ⇒ 1) because all the other implications
follow from definition.

1)⇒ 2) Assume U is a selective ultrafilter and f : ω → ω×ω an arbitrary
function. Consider partition {f−1[{n} × ω] : n ∈ ω}. Since U is selective
there exists U ∈ U such that either U = f−1[{n} × ω] for some n ∈ ω and
then f [U ] = {n} × ω ∈ ED, or |U ∩ f−1[{n} × ω]| ≤ 1 for every n ∈ ω and
then f [U ] ∈ ED again.

4) ⇒ 1) Let {Rn : n ∈ ω} be a partition of ω into infinite sets. Define
a one-to-one function f : ω → ω × ω by f(m) = 〈n, k〉 if m is kth element
of set Rn. Since U is an ED-friendly ultrafilter there exists U ∈ U such that
f [U ] ⊆ V1 ∪ V2 where V1 ⊆ [0, n0] × ω for some n0 ∈ ω and there exists
m ∈ ω such that |V2 ∩ {n} × ω| ≤ m for every n ∈ ω. Either f−1[V1] ∈ U or
f−1[V2] ∈ U . If f−1[V1] ∈ U then Rn ∈ U for some n ≤ n0. If f−1[V2] ∈ U
then there exists Ũ ∈ U such that Ũ ⊆ f−1[V2] and |Ũ ∩ Rn| ≤ 1 for every
n ∈ ω.

Here is another characterization of selective ultrafilters:

Theorem 5.4 (Hrušák). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is selective

2) I 6≤K U∗ for every tall Fσ ideal I
Again, we will prove its counterpart in the language of I-ultrafilters.

Theorem 5.5. For an ultrafilter U ∈ ω∗ the following are equivalent:

1) U is selective

2) U is an I-ultrafilter for every tall Fσ ideal I
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3) U is a weak I-ultrafilter for every tall Fσ ideal I
4) U is an I-friendly ultrafilter for every tall Fσ ideal I
5) U ∩ I 6= ∅ for every tall Fσ ideal I

Proof. 1) ⇒ 2) Assume I is a tall Fσ ideal. Mazur in [7] proved that there
exists a lsc submeasure ϕ such that I = Fin(ϕ). It is easy to see that I
is tall if and only limn→∞ ϕ({n}) = 0. So we may fix a strictly increasing
sequence 〈nk〉k∈ω such that for every n ≥ nk one has ϕ({n}) < 1

2k .
Let f : ω → ω be an arbitrary function. Now, consider the partition

{f−1[nk−1, nk) : k ∈ ω} (where n−1 = 0). Since U is a selective ultrafilter
either there exists k ∈ ω such that f−1[nk−1, nk) = U1 ∈ U , or there exists
U2 ∈ U such that |U2 ∩ f−1[nk−1, nk)| ≤ 1 for every k ∈ ω. Observe that
f [U1] is finite, hence f [U1] ∈ I, and for U2 we get

ϕ(f [U2]) ≤ max{ϕ{n} : n < n0}+
∑

k∈ω

1
2k

< ∞

i.e. f [U2] ∈ Fin(ϕ) = I. It follows that U is an I-ultrafilter.
5) ⇒ 1) Let R = {Rn : n ∈ ω} be a partition of ω into infinite sets.

Define an ideal I on ω by A ∈ I if either there exists m ∈ ω such that
A ⊆ ⋃

n≤m Rn or there exists m ∈ ω such that |A ∩ Rn| ≤ m for every
n ∈ ω. It is not difficult to check that such an ideal is a tall Fσ ideal.

Now, assume U is an ultrafilter, U ∩ I 6= ∅ and U ∈ U ∩ I. If U is
covered by a finite union of sets from R then Rn ∈ U for some n ∈ ω. If
|U ∩Rn| ≤ m for every Rn ∈ R then there is Ũ ⊆ U such that |Ũ ∩Rn| ≤ 1
for every n ∈ ω. It follows that U is a selective ultrafilter.

To complete the overview of characterizations of selective ultrafilters, we
present without proofs some more mentioned by Hrušák in [5].

Theorem 5.6 (Hrušák). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is selective

2) I 6≤K U∗ for every tall Borel ideal I
3) I 6≤K U∗ for every tall analytic ideal I
It is also possible to describe selective ultrafilters as R-ultrafilters where

R is the Random Graph Ideal generated by homogeneous subsets of the
countable Random Graph (for more deatils see [6]).
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Theorem 5.7 (Hrušák). For an ultrafilter U ∈ ω∗ the following assertions
are equivalent:

1) U is selective

2) R 6≤K U∗
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