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Rapid ultrafilters

Definition.
A free ultrafilter U on ω is called rapid if the enumeration
functions of its sets form a dominating family in (ωω,≤∗).

Theorem (Booth?).
(CH) Rapid ultrafilters exist.

Theorem (Miller).
In Laver’s model there are no rapid ultrafilters.
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Summable ideals

Definition.
Given a function g : N→ [0,∞) such that

∑
n∈N

g(n) = +∞ then

the family
Ig = {A ⊆ N :

∑
a∈A

g(a) < +∞}

is a proper ideal which we call summable ideal determined by
function g.

A summable ideal is tall (dense) if and only if lim
n→∞

g(n) = 0.
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Characterization of rapid ultrafilters

Theorem (Vojtáš).
The following are equivalent for an ultrafilter U ∈ ω∗:
• U is rapid
• U ∩ Ig 6= ∅ for every tall summable ideal Ig

One can add two more equivalent conditions:

• (∀f : ω → N one-to-one) (∃U ∈ U) such that f [U] ∈ Ig
for every tall summable ideal Ig

• (∀f : ω → N finite-to-one) (∃U ∈ U) such that f [U] ∈ Ig
for every tall summable ideal Ig
(= U is a weak Ig-ultrafilter for every Ig)
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Ig-ultrafilters

Definition.
An ultrafilter U ∈ ω∗ is called an Ig-ultrafilter
if for every f : ω → N there exists U ∈ U such that f [U] ∈ Ig .

It is not known whether Ig-ultrafilters exist in ZFC.

Theorem 1.
(MActble) There exists U ∈ ω∗ such that U is an Ig-ultrafilter for
every tall summable ideal Ig .
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Rapid ultrafilters vs. Ig-ultrafilters

Rapid ultrafilters need not be Ig-ultrafilters.

Theorem 2.
(MActble) There is a rapid ultrafilter which is not an Ig-ultrafilter
for any summable ideal Ig .
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Ig-ultrafilters vs. rapid ultrafilters

If U ∈ ω∗ is an Ig-ultrafilter for every tall summable ideal Ig
then U is a rapid ultrafilter.

Theorem 3.
(MActble) There is an I 1

n
-ultrafilter which is not a rapid ultrafilter.

Theorem 4.
(MAσ−centered) For every tall summable ideal Ig there is an
Ig-ultrafilter which is not rapid.
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Possible extension and its limits

Is it possible that an ultrafilter is an Ig-ultrafilter for “many" tall
summable ideals simultaneously and still not a rapid ultrafilter?

Proposition 5.
There is a family D of tall summable ideals such that |D| = d

and an ultrafilter U ∈ ω∗ is rapid if and only if it has a nonempty
intersection with every tall summable ideal in D.
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Possible extension and its limits

Proposition 6.
If D is a family of tall summable ideals and |D| < b then there
exists a tall summable ideal Ig such that Ig ⊆ Ih for every
Ih ∈ D.

Corollary 7.
(MAσ−centered) If D is a family of tall summable ideals and
|D| < d then there exists an ultrafilter U ∈ ω∗ such that U is an
I-ultrafilter for every I ∈ D, but U is not a rapid ultrafilter.
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Ig-ultrafilters need not be rapid
Proof of Theorem 4.

Theorem 4.
(MAσ−centered) For every tall summable ideal Ig there is an
Ig-ultrafilter which is not rapid.

Proposition 4a.
For every tall summable ideal Ig there is a tall summable ideal
Ih such that Ig 6≤K Ih.

Theorem 4b.
(MAσ−centered) For arbitrary tall summable ideals Ig and Ih
such that Ig 6≤K Ih there is an Ig-ultrafilter U with U ∩ Ih = ∅.
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Ig-ultrafilters need not be rapid
Proof of Theorem 4. — more details

Theorem 4b.
(MAσ−centered) For arbitrary tall summable ideals Ig and Ih
such that Ig 6≤K Ih there is an Ig-ultrafilter U with U ∩ Ih = ∅.

1. Enumerate all functions in ωω as {fα : α < c}.

2. For α < c construct filter bases Fα
such that for every α < c:

(i) F0 is the Fréchet filter
(ii) Fα ⊇ Fβ whenever α ≥ β
(iii) Fγ =

⋃
α<γ Fα, for γ limit

(iv) (∀α) |Fα| ≤ |α+ 1| · ω
(v) (∀α) Fα ∩ Ih = ∅
(vi) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ Ig
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Ig-ultrafilters need not be rapid
Proof of Theorem 4. — more details

Lemma 4c.
(MAσ−centered) Assume Ig and Ih are two tall summable ideals
such that Ig 6≤K Ih. Assume F is a filter base with |F| < c such
that F ∩Ih = ∅ and a function f ∈ ωω is given. Then there exists
G ⊆ ω such that f [G] ∈ Ig and G ∩ F 6∈ Ih for every F ∈ F .

Lemma 4d.
(MAσ−centered) Assume Ih is a tall summable ideal and F is a
filter base with |F| < c such that F ∩ Ih = ∅. Then there exists a
set H ⊆ ω such that H 6∈ Ih and H \ F is finite for every F ∈ F .
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Ig-ultrafilters need not be rapid
Proof of Theorem 4. — more details

Lemma 4e.
Assume f ∈ ωω, Ig and Ih are tall summable ideals with
Ig 6≤K Ih. If H is an infinite subset of ω such that H 6∈ Ih and
f [H] 6∈ Ig then there exists A ⊆ f [H] such that A ∈ Ig and
f−1[A] ∩ H 6∈ Ih.

Lemma 4f.
Assume Ig is a tall summable ideal determined by a
decreasing function g, A is a subset of ω and B ⊆ A. Then

1. A ∈ Ig if and only if A + 1 ∈ Ig

2. A ∈ Ig if and only if B + 1 ∪ (A \ B) ∈ Ig
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