Results

Proofs 0000 References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Rapid ultrafilters and summable ideals

Jana Flašková

Department of Mathematics University of West Bohemia in Pilsen

Trends in Set Theory 11. 7. 2012

Introduction • 0 0 0 Results

Proofs 0000 References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} on ω is called rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Results

Proofs 0000 References

イロト イポト イヨト イヨト ヨー のくぐ

Rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} on ω is called rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Theorem (Booth?).

(CH) Rapid ultrafilters exist.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

Results

Proofs 0000 References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Summable ideals

Definition.

Given a function $g:\mathbb{N}\to [0,\infty)$ such that $\sum\limits_{n\in\mathbb{N}}g(n)=+\infty$ then the family

$$\mathcal{I}_g = \{ A \subseteq \mathbb{N} : \sum_{a \in A} g(a) < +\infty \}$$

is a proper ideal which we call summable ideal determined by function g.

A summable ideal is tall (dense) if and only if $\lim_{n\to\infty} g(n) = 0$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- \mathcal{U} is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

イロト イポト イヨト イヨト ヨー のくぐ

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- *U* is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

One can add two more equivalent conditions:

 (∀f: ω → ℕ one-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g

Characterization of rapid ultrafilters

Theorem (Vojtáš).

The following are equivalent for an ultrafilter $\mathcal{U} \in \omega^*$:

- \mathcal{U} is rapid
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g

One can add two more equivalent conditions:

- (∀f: ω → ℕ one-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g
- (∀f: ω → ℕ finite-to-one) (∃U ∈ U) such that f[U] ∈ I_g for every tall summable ideal I_g
 (= U is a weak I_g-ultrafilter for every I_g)

Results		Proof
0000		0000
\mathcal{I}_{c}	y-ultrafilters	

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an \mathcal{I}_g -ultrafilter if for every $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Results 0000	Proofs 0000
\mathcal{I}_{q} -ultrafilters	

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an \mathcal{I}_g -ultrafilter if for every $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

It is not known whether \mathcal{I}_{g} -ultrafilters exist in ZFC.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

Results	Proofs
0000	0000
\mathcal{I}_{q} -ultrafilters	

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called an \mathcal{I}_g -ultrafilter if for every $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

It is not known whether \mathcal{I}_{g} -ultrafilters exist in ZFC.

Theorem 1.

 (MA_{ctble}) There exists $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g .

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Results

Proofs 0000 References

Rapid ultrafilters vs. \mathcal{I}_{q} -ultrafilters

Rapid ultrafilters need not be \mathcal{I}_g -ultrafilters.

Results

Proofs

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Rapid ultrafilters vs. \mathcal{I}_{g} -ultrafilters

Rapid ultrafilters need not be \mathcal{I}_{g} -ultrafilters.

Theorem 2.

 (MA_{ctble}) There is a rapid ultrafilter which is not an \mathcal{I}_g -ultrafilter for any summable ideal \mathcal{I}_g .

References

\mathcal{I}_g -ultrafilters vs. rapid ultrafilters

If $\mathcal{U} \in \omega^*$ is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g then \mathcal{U} is a rapid ultrafilter.

References

\mathcal{I}_{g} -ultrafilters vs. rapid ultrafilters

If $\mathcal{U} \in \omega^*$ is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g then \mathcal{U} is a rapid ultrafilter.

Theorem 3.

(MA_{ctble}) There is an $\mathcal{I}_{\frac{1}{n}}$ -ultrafilter which is not a rapid ultrafilter.

References

うして 山田 マイボマ エリア しょうくしゃ

\mathcal{I}_{g} -ultrafilters vs. rapid ultrafilters

If $\mathcal{U} \in \omega^*$ is an \mathcal{I}_g -ultrafilter for every tall summable ideal \mathcal{I}_g then \mathcal{U} is a rapid ultrafilter.

Theorem 3.

(MA_{ctble}) There is an $\mathcal{I}_{\frac{1}{n}}$ -ultrafilter which is not a rapid ultrafilter.

Theorem 4.

 $(\mathsf{MA}_{\sigma-\mathsf{Centered}})$ For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Possible extension and its limits

Is it possible that an ultrafilter is an \mathcal{I}_g -ultrafilter for "many" tall summable ideals simultaneously and still not a rapid ultrafilter?

References

Possible extension and its limits

Is it possible that an ultrafilter is an \mathcal{I}_g -ultrafilter for "many" tall summable ideals simultaneously and still not a rapid ultrafilter?

Proposition 5.

There is a family \mathcal{D} of tall summable ideals such that $|\mathcal{D}| = \mathfrak{d}$ and an ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if it has a nonempty intersection with every tall summable ideal in \mathcal{D} .

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Possible extension and its limits

Proposition 6.

If \mathcal{D} is a family of tall summable ideals and $|\mathcal{D}| < \mathfrak{b}$ then there exists a tall summable ideal \mathcal{I}_g such that $\mathcal{I}_g \subseteq \mathcal{I}_h$ for every $\mathcal{I}_h \in \mathcal{D}$.

References

Possible extension and its limits

Proposition 6.

If \mathcal{D} is a family of tall summable ideals and $|\mathcal{D}| < \mathfrak{b}$ then there exists a tall summable ideal \mathcal{I}_g such that $\mathcal{I}_g \subseteq \mathcal{I}_h$ for every $\mathcal{I}_h \in \mathcal{D}$.

Corollary 7.

 $(MA_{\sigma-centered})$ If \mathcal{D} is a family of tall summable ideals and $|\mathcal{D}| < \mathfrak{d}$ then there exists an ultrafilter $\mathcal{U} \in \omega^*$ such that \mathcal{U} is an \mathcal{I} -ultrafilter for every $\mathcal{I} \in \mathcal{D}$, but \mathcal{U} is not a rapid ultrafilter.

R	e	sul	lts
0	0)

Proofs •000 References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4.

Theorem 4.

 $(\text{MA}_{\sigma-\text{centered}})$ For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

R	e	sul	lts
0	0)

Proofs •000 References o

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4.

Theorem 4.

 $(MA_{\sigma-Centered})$ For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

Proposition 4a.

For every tall summable ideal \mathcal{I}_g there is a tall summable ideal \mathcal{I}_h such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$.

F	Re	SL	ults	5
(0	0	

Proofs •000 References o

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4.

Theorem 4.

 $(MA_{\sigma-centered})$ For every tall summable ideal \mathcal{I}_g there is an \mathcal{I}_g -ultrafilter which is not rapid.

Proposition 4a.

For every tall summable ideal \mathcal{I}_g there is a tall summable ideal \mathcal{I}_h such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$.

Theorem 4b.

 $(\mathsf{MA}_{\sigma-\mathsf{centered}}) \text{ For arbitrary tall summable ideals } \mathcal{I}_g \text{ and } \mathcal{I}_h \\ \text{ such that } \mathcal{I}_g \not\leq_K \mathcal{I}_h \text{ there is an } \mathcal{I}_g\text{-ultrafilter } \mathcal{U} \text{ with } \mathcal{U} \cap \mathcal{I}_h = \emptyset.$

Results

Proofs

References o

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4. - more details

Theorem 4b.

 $(MA_{\sigma-centered})$ For arbitrary tall summable ideals \mathcal{I}_g and \mathcal{I}_h such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$ there is an \mathcal{I}_g -ultrafilter \mathcal{U} with $\mathcal{U} \cap \mathcal{I}_h = \emptyset$.

R	e	S	u	ŀ	ts	
0	С	C				

Proofs 0000 References o

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4. - more details

Theorem 4b.

 $(MA_{\sigma-centered})$ For arbitrary tall summable ideals \mathcal{I}_g and \mathcal{I}_h such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$ there is an \mathcal{I}_g -ultrafilter \mathcal{U} with $\mathcal{U} \cap \mathcal{I}_h = \emptyset$.

- 1. Enumerate all functions in ${}^{\omega}\omega$ as $\{f_{\alpha}: \alpha < \mathfrak{c}\}$.
- 2. For $\alpha < \mathfrak{c}$ construct filter bases \mathcal{F}_{α} such that for every $\alpha < \mathfrak{c}$:
 - (i) \mathcal{F}_0 is the Fréchet filter

(ii)
$$\mathcal{F}_{\alpha} \supseteq \mathcal{F}_{\beta}$$
 whenever $\alpha \geq \beta$

(iii)
$$\mathcal{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$$
, for γ limit

(iv)
$$(\forall \alpha) |\mathcal{F}_{\alpha}| \leq |\alpha + \mathbf{1}| \cdot \omega$$

(v)
$$(\forall \alpha) \mathcal{F}_{\alpha} \cap \mathcal{I}_{h} = \emptyset$$

(vi) $(\forall \alpha) (\exists F \in \mathcal{F}_{\alpha+1}) f_{\alpha}[F] \in \mathcal{I}_{g}$

Results

Proofs

References

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4. — more details

Lemma 4c.

 $(MA_{\sigma-\text{centered}})$ Assume \mathcal{I}_g and \mathcal{I}_h are two tall summable ideals such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$. Assume \mathcal{F} is a filter base with $|\mathcal{F}| < \mathfrak{c}$ such that $\mathcal{F} \cap \mathcal{I}_h = \emptyset$ and a function $f \in \omega^{\omega}$ is given. Then there exists $G \subseteq \omega$ such that $f[G] \in \mathcal{I}_g$ and $G \cap F \notin \mathcal{I}_h$ for every $F \in \mathcal{F}$.

Results	
0000	

Proofs

References

うして 山田 マイボマ エリア しょうくしゃ

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4. — more details

Lemma 4c.

 $(MA_{\sigma-\text{centered}})$ Assume \mathcal{I}_g and \mathcal{I}_h are two tall summable ideals such that $\mathcal{I}_g \not\leq_K \mathcal{I}_h$. Assume \mathcal{F} is a filter base with $|\mathcal{F}| < \mathfrak{c}$ such that $\mathcal{F} \cap \mathcal{I}_h = \emptyset$ and a function $f \in \omega^{\omega}$ is given. Then there exists $G \subseteq \omega$ such that $f[G] \in \mathcal{I}_g$ and $G \cap F \notin \mathcal{I}_h$ for every $F \in \mathcal{F}$.

Lemma 4d.

 $(MA_{\sigma-\text{centered}})$ Assume \mathcal{I}_h is a tall summable ideal and \mathcal{F} is a filter base with $|\mathcal{F}| < \mathfrak{c}$ such that $\mathcal{F} \cap \mathcal{I}_h = \emptyset$. Then there exists a set $H \subseteq \omega$ such that $H \notin \mathcal{I}_h$ and $H \setminus F$ is finite for every $F \in \mathcal{F}$.

Results

Proofs 0000 References

イロト イポト イヨト イヨト ヨー のくぐ

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4. - more details

Lemma 4e.

Assume $f \in \omega^{\omega}$, \mathcal{I}_g and \mathcal{I}_h are tall summable ideals with $\mathcal{I}_g \not\leq_K \mathcal{I}_h$. If *H* is an infinite subset of ω such that $H \notin \mathcal{I}_h$ and $f[H] \notin \mathcal{I}_g$ then there exists $A \subseteq f[H]$ such that $A \in \mathcal{I}_g$ and $f^{-1}[A] \cap H \notin \mathcal{I}_h$.

Results

Proofs 0000 References

\mathcal{I}_g -ultrafilters need not be rapid

Proof of Theorem 4. — more details

Lemma 4e.

Assume $f \in \omega^{\omega}$, \mathcal{I}_g and \mathcal{I}_h are tall summable ideals with $\mathcal{I}_g \not\leq_K \mathcal{I}_h$. If *H* is an infinite subset of ω such that $H \notin \mathcal{I}_h$ and $f[H] \notin \mathcal{I}_g$ then there exists $A \subseteq f[H]$ such that $A \in \mathcal{I}_g$ and $f^{-1}[A] \cap H \notin \mathcal{I}_h$.

Lemma 4f.

Assume \mathcal{I}_g is a tall summable ideal determined by a decreasing function g, A is a subset of ω and $B \subseteq A$. Then

- 1. $A \in \mathcal{I}_g$ if and only if $A + 1 \in \mathcal{I}_g$
- 2. $A \in \mathcal{I}_g$ if and only if $B + 1 \cup (A \setminus B) \in \mathcal{I}_g$

Results

Proofs

References

イロト イポト イヨト イヨト ヨー のくぐ

References

J. Flašková, Rapid ultrafilters and summable ideals, *preprint*, http://home.zcu.cz/~flaskova/english/index.html

J. Flašková, *I*-ultrafilters and summable ideals, in: *Proceedings* of the 10th Asian Logic Conference, Kobe 2008.

A. Miller, There are no *Q*-points in Laver's model for the Borel conjecture, *Proc. Amer. Math. Soc.* **78** (1980), 498 – 502.

P. Vojtáš, On ω^* and absolutely divergent series, *Topology Proceedings* **19** (1994), 335 – 348.