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Introduction

Ultrafilters on natural numbers have been receiving much attention over the
years and many results and constructions of special types of ultrafilters be-
came part of mathematical folklore. There have been several attempts to
connect ultrafilters with families of “small” sets. For our purposes two of
them are important — Gryzlov’s 0-points and I -ultrafilters introduced by
Baumgartner. Both notions denote ultrafilters that contain “small” sets
where “smallness” is defined by zero asymptotic density in the first case and
a prescribed family I in the second case. Not only the ultrafilter itself con-
tains such a set, but also many other ultrafilters, images under permutations
in the first case and under all functions in the second case.

Gryzlov defined 0-points in his talk during the 12th Winter School on
Abstract Analysis in Srńı and he constructed such ultrafilters in ZFC (see
[17], [18]). His investigation was stimulated by a question of van Douwen.

The definition of I -ultrafilter which was given by Baumgartner in [2]:
Let I be a family of subsets of a set X such that I contains all singletons
and is closed under subsets. Given a free ultrafilter U on ω, we say that U
is an I -ultrafilter if for any F : ω → X there is A ∈ U such that F [A] ∈ I .

Baumgartner defined in his article discrete ultrafilters, scattered ultra-
filters, measure zero ultrafilters and nowhere dense ultrafilters which he ob-
tained by taking X = 2ω, the Cantor set, and I the collection of discrete
sets, scattered sets, sets with closure of measure zero, nowhere dense sets
respectively. If we let I be the collection of sets with countable closure then
we obtain countably closed ultrafilters which were introduced by Brendle
[6]. Yet another class of I -ultrafilters was introduced by Barney in [1] by
taking I to be the sets with σ-compact closure. All these classes of ultra-
filters are proved to be pairwise distinct under some additional set-theoretic
assumptions (Continuum Hypothesis or some form of Martin’s Axiom). It
seems that some additional set-theoretic assumptions cannot be avoided com-
pletely when speaking about I -ultrafilters because Shelah [25] proved that
it is consistent with ZFC that there are no nowhere dense ultrafilters, which
implies that the existence of any of these ultrafilters (being a subclass of
nowhere dense ultrafilters) is not provable in ZFC. (These “topologically”
defined ultrafilters are of certain importance, e.g., in the forcing theory, as
the result of B laszczyk and Shelah [4] shows).

Another example of I -ultrafilters are ordinal ultrafilters which were de-
fined also in [2] by taking X = ω1 and I = {A ⊆ ω1 : A has order type ≤
α} for an indecomposable ordinal α. It was also Baumgartner [2] and Brendle
[6] who studied I -ultrafilters in this setting and presented several interesting
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results, but it remains an open question whether these “ordinal” ultrafilters
exist in ZFC. The ambition of this thesis, however, is not to solve this intrigu-
ing question whose solution probably requires advanced forcing techniques.

We study in this thesis I -ultrafilters in the setting X = ω and I is
an ideal on ω or another family of “small” subsets of natural numbers that
contains finite sets and is closed under subsets. So we consider as I the
family of sets with asymptotic density zero, the summable ideal or the family
of thin sets or (SC)-sets. We prove that it is consistent with ZFC that such
ultrafilters exist and investigate sums and product of these ultrafilters.

We investigate also relationships of such ultrafilters to other well-known
classes of ultrafilters among others to P -points which can be described as
I -ultrafilters in two ways: If X = 2ω then P -points are precisely the
I -ultrafilters for I consisting of all finite and converging sequences, if
X = ω1 then P -points are precisely the I -ultrafilters for I = {A ⊆ ω1 :
A has order type ≤ ω} (see [2]). It seems that there is no family I of sub-
sets of natural numbers such that P -points are precisely the I -ultrafilters,
but we can relate all the introduced classes of I -ultrafilters to P -points.

Finally, we approach the position of Gryzlov. We weaken the notion
of I -ultrafilter so that we restrict the functions considered in definition of
an I -ultrafilter to finite-to-one functions at first and then to one-to-one
functions and we construct in ZFC such an ultrafilter with the summable
ideal chosen for I , which strengthens Gryzlov’s result.

The structure of the dissertation is as follows: After reviewing basic no-
tions we introduce in chapter 1 several collections of “small” subsets that we
use to define corresponding classes of I -ultrafilters. Chapter 2 is devoted
entirely to I -ultrafilters and the relationship of various classes of ultrafilters
and it contains, for instance, a construction of a hereditarily rapid ultrafilter
that is not a Q-point. Sums and products are studied in chapter 3. The
thesis ends with chapter 4 in which we adopt Gryzlov’s approach. We focus
on weaker forms of I -ultrafilters and construct a summable ultrafilter.

Some parts of this thesis have been already published or accepted for pub-
lication. Some results from section 2.3 can be found in [13] or [14] (eventually
under different set-theoretic assumptions); section 4.2 is based on [15].
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Basic notions

Given a non-empty set X we will denote by P(X) the power set of X, i.e.,
the set of all subsets of X. The set of all natural numbers is ω and we denote

�
= ω \ {0}. We will denote by c the cardinality of the continuum or the

cardinality of P(ω).
The set of all finite subsets of ω is denoted by [ω]<ω, the set of all infinite

subsets of ω by [ω]ω as usual. We denote the set of all functions from ω to ω
by ωω. Let us recall the quasiorder ≤∗ on ωω: for f, g ∈ ωω we write f ≤∗ g
if and only if there is n ∈ ω such that f(m) ≤ g(m) for every m ≥ n. A
family F ⊆ ωω is called a dominating family in (ωω,≤∗) if for every g ∈ ωω
there exists f ∈ F with g ≤∗ f .

Continuum Hypothesis and Martin’s Axiom

It was already stated in the introduction that some additional set-theoretic
assumptions seem to be necessary when speaking about I -ultrafilters. We
mention here two of them: the Continuum Hypothesis and Martin’s Axiom.

The Continuum Hypothesis (CH in abbreviation), 2ω = ω1, enables us
for example enumerate all functions from ω to ω by countable ordinals. MA
stands for Martin’s Axiom, which is implied by CH, but not equivalent to it
(see [20]).

We deal mostly with Martin’s Axiom for countable posets (in abbreviation
MActble), which is a weaker form of Martin’s Axiom. However, before we say
what MActble is, let us recall some definitions concerning posets.

Let (P,≤P ) be a poset. A set D ⊆ P is dense in P if (∀p ∈ P ) (∃q ≤P p)
q ∈ D. A set G ⊆ P is a filter in P if (∀p, q ∈ G ) (∃r ∈ G ) r ≤P p & r ≤P q
and (∀p ∈ G ) (∀q ∈ P ) p ≤P q implies q ∈ G .

MActble is the statement: Whenever (P,≤P ) is a non-empty countable
poset, and D is a family of < c dense subsets of P , then there is a filter G
(called a D-generic filter) in P such that (∀D ∈ D) G ∩ D 6= ∅.

Filters and ideals

Let X be a nonempty set and F ⊆ P(X), F 6= ∅. We say that F is
a k-linked family if F0 ∩ F1 ∩ · · · ∩ Fk is infinite whenever Fi ∈ F , i ≤ k.
a centered system if F is k-linked for every k.
a filter base if F 6= ∅ for every F ∈ F and if F1, F2 ∈ F then there is

F ∈ F such that F ⊆ F1 ∩ F2.
a filter (on X) if F is a filter base and whenever F ∈ F and F ⊆ G ⊆ X

then G ∈ F .
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an ultrafilter (on X) if F is a filter and for every M ⊆ X either M or
X \ M belongs to F , i.e., F is a maximal filter on X.

Observe that a filter on X is precisely a filter in the poset (P(X),⊆).
If F is a centered system then the smallest filter (base) that contains

F is called the filter (base) generated by F and we denote it by 〈〈F 〉〉
(〈F 〉). To obtain a filter base we have to add all finite intersections of sets
from F and we have to add all supersets of sets in the filter base to get a
filter. An example: if F ⊆ P(X) is a filter base that is closed under finite
intersections and A ⊆ X such that F ∪ {A} is a centered system (we say
that A is compatible with F ) then 〈F ∪ A〉 = F ∪ {A} ∪ {F ∩ A : F ∈ F}
and 〈〈F 〉〉 = {M ⊆ X : (∃F ∈ F )F ∩ A ⊆ M}.

An (ultra)filter F is called free if
⋂
{U : U ∈ F} = ∅ and it is called

fixed (or principal) if
⋂
{U : U ∈ F} 6= ∅.

The character of F is the minimal cardinality of a subfamily of F that
generates F , we write χ(F ) = min{|B| : B ⊆ F , 〈〈B〉〉 = F}.

An ideal is a dual notion to filter. Hence I ⊆ P(X) is an ideal on X if
it is a non-empty proper subset of P(X) and it is closed under subsets and
finite unions.

If F ⊆ P(X) is a filter then F ∗ = {X \ F : F ∈ F} is the dual ideal
to F and if I ⊆ P(X) is an ideal then I ∗ = {X \ A : A ∈ I } is the dual
filter to I .

A basic example of an ideal is the principal ideal IA = {B ⊆ X : B ⊆ A}
for a given A ⊆ X or the Fréchet ideal, the family of all finite subsets of the
given set. The dual filter is called the Fréchet filter and consists of cofinite
subsets. Dual ideals to ultrafilters are called maximal ideals.

The smallest ideal that contains a family A ⊆ P(ω) is the ideal generated
by A, denoted 〈A〉. A family A that generates an ideal I is the base of I
and the character of I is the minimal cardinality of a base of the ideal, i.e.,
χ(I ) = min{|A| : (∀I ∈ I )(∃k ∈ ω)(∃A1, . . . , Ak ∈ A) I ⊆ A1 ∪ · · · ∪ Ak}.

The following definition is crucial for our future considerations:
An ideal I ⊆ P(ω) is called tall if every A 6∈ I contains an infinite

subset that belongs to the ideal I .
For every A, B ⊆ ω we say that A is almost contained in B and we write

A ⊆∗ B if A \ B is finite. Using this notation we recall the definition of the
pseudointersection number :
p = min{|F | : F ⊆ P(ω) is centered,¬((∃A ∈ [ω]ω)(∀F ∈ F )A ⊆∗ F )}

It is not difficult to prove that χ(I ) ≥ p for every tall ideal I .

We say that an ideal I is a P -ideal if whenever An ∈ I , n ∈ ω, then
there is A ∈ I such that An ⊆∗ A for every n.
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Rudin-Keisler order and Katětov order

The Čech-Stone compactification of ω, denoted by βω, is the unique (up to
homeomorphism) compact space that contains ω as a dense subset and such
that for every compact space K and every continuous function f : ω → K
there is a continuous extension βf : βω → K called the Stone extension. It
implies that every function f : ω → ω has its Stone extension βf : βω → βω.

We identify points of βω with ultrafilters on ω. The points of the remain-
der ω∗ = βω \ω correspond to the free ultrafilters on ω, the fixed ultrafilters
are identified with points of ω.

Let U , V ∈ βω. Observe that B = {f [U ] : U ∈ U } is a filter base.
We denote by βf(U ) the filter generated by B and it is easy to check that
βf(U ) is indeed an ultrafilter. It is easily verified that βf(U ) = V iff
(∀U ∈ U ) f [U ] ∈ V iff (∀V ∈ V ) f−1[V ] ∈ U .

We write U ≈ V if there exists a permutation π of ω such that βπ(V ) =
U . It is clear that the relation ≈ is an equivalence relation on βω.

For U , V ∈ βω we write U ≤RK V iff there is f ∈ ωω such that
βf(V ) = U . The relation ≤RK is a quasiorder since the relation is not
antisymmetric, but we get the Rudin-Keisler order if we consider the quotient
relation defined by ≤RK on βω/≈.

Katětov order ≤K is an extension of the Rudin-Keisler order to arbitrary
filters or ideals. We write F ≤K G if there exists a function f : ω → ω such
that f−1[U ] ∈ G for every U ∈ F . It is easy to check that F ≤K G if and
only if F ∗ ≤K G ∗.

We say that C ⊆ βω is closed downward under ≤RK if U ∈ C and
V ≤RK U implies V ∈ C.

Some well-known ultrafilters

We will investigate relations between some classes of I -ultrafilters and sev-
eral well-known classes of ultrafilters in chapter 2. We summarize in this
section the definitions and equivalent descriptions of ultrafilters on ω that
we will consider. Two types of ultrafilters, hereditarily Q-points and heredi-
tarily rapid ultrafilters namely, are newly introduced.

A free ultrafilter U is called a P -point if for all partitions of ω, {Ri : i ∈
ω}, either for some i, Ri ∈ U , or (∃U ∈ U ) (∀i ∈ ω) |U ∩ Ri| < ω. An
equivalent combinatorial description is: a free ultrafilter U is a P -point if
and only if whenever Un ∈ U , n ∈ ω, there is U ∈ U such that U ⊆∗ Un

for each n (i.e. P -points are dual filters to maximal P -ideals). The class of
P -points is downward closed under Rudin-Keisler order (see e.g. [11]).
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A free ultrafilter U is called a selective ultrafilter (or a Ramsey ultrafilter)
if for all partitions of ω, {Ri : i ∈ ω}, either for some i, Ri ∈ U , or (∃U ∈ U )
(∀i ∈ ω) |U ∩ Ri| ≤ 1. We will profit also from the following equivalent
characterization of selective ultrafilters: if U is a selective ultrafilter on ω
then for every f ∈ ωω there is U ∈ U such that f � U is either one-to-one
or constant (see [11]). It is also proved in [11] that selective ultrafilters are
minimal in Rudin-Keisler order on ultrafilters.

Every selective ultrafilter is a P -point, but the converse is not true.

A free ultrafilter U is called a Q-point if for every partition {Qn : n ∈ ω}
of ω into finite sets there exists U ∈ U such that |U ∩ Qn| ≤ 1 for every
n ∈ ω. The notion of Q-point was introduced by Choquet [10]. An equivalent
description of Q-points, known also as rare ultrafilters, was given by Mathias
in [21]: an ultrafilter U is a Q-point if every finite-to-one function is one-to-
one on a set in U .

It folows from the definition that every selective ultrafilter is a Q-point. A
Q-point need not be a selective ultrafilter, but it is selective if the ultrafilter
is also a P -point.

A free ultrafilter U is called a rapid ultrafilter if the enumeration functions
of its sets form a dominating family in (ωω,≤∗) where enumeration function
of a set A is the unique strictly increasing function eA from ω onto A. Rapid
ultrafilters (called also semi-Q-points by some authors) are due to Choquet
[10] resp. Mokobodzki [23].

We say that a free ultrafilter U is a hereditarily Q-point (rapid ultrafil-
ter) if it is a Q-point (rapid ultrafilter) such that for every V ≤RK U the
ultrafilter V is again a Q-point (rapid ultrafilter).

It is known that every Q-point is a rapid ultrafilter and, obviously, ev-
ery hereditarily Q-point is then a hereditarily rapid ultrafilter. Bukovský,
Copláková showed in [7] under additional set-theoretic assumptions that
rapid ultrafilter need not be a Q-point. This result is strengthened in Proposi-
ton 2.4.6 in chapter 2 where we construct a hereditarily rapid ultrafilter which
is not a Q-point assuming Martin’s Axiom for countable posets.

It is consistent that all the above mentioned types of ultrafilters exist
under various set-theoretic assumptions (for instance, Booth [5] proved that
selective ultrafilters exist if Martin’s Axiom holds). However, there exist
various models of set theory showing that it is consistent with ZFC that no
such ultrafilters exist. A model with no P -points constructed Shelah [24].
Miller [22] showed that there are no Q-points (or even rapid ultrafilters) in
the Laver model.
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1 Small subsets of natural numbers

Several collections of “small” subsets of ω are presented in this chapter. We
summarize definitions, give some equivalent descriptions in some cases and
show the relationships among the various types of small sets.

The following diagram summarizes inclusions between the classes of thin
sets, (SC)-sets, (S)-sets and (H)-sets which are defined in the following
sections.

?> =<89 :;thin sets

��
??

??
??

����
��

��

?> =<89 :;(S)-sets

����
��

�

?> =<89 :;(SC)-sets

��
??

??
?

?> =<89 :;(H)-sets

Some more ideals on ω are described in the last section of this chapter.
They do not appear in the diagram because their relation to the other classes
is not clear enough.

1.1 Thin and almost thin sets

Definition 1.1.1. An infinite set A ⊆ ω with enumeration A = {an : n ∈
�
}

is called thin (see [3]) if limn→∞
an

an+1
= 0.

An example of a thin set is the set {n! : n ∈ ω}. The family of thin sets
is the smallest subset of P(ω) we will consider. A slightly larger collection
of subsets of ω represent the almost thin sets.

Definition 1.1.2. An infinite set A ⊆ ω with enumeration A = {an : n ∈
�
}

is called almost thin if lim supn→∞
an

an+1
< 1.

It is obvious that every thin set is almost thin. The converse is not true,
see for example the set {2n : n ∈ ω}.

Neither the family of thin sets nor the family of almost thin sets is an
ideal. To see this consider sets A = {n! : n ∈ ω} and B = {n! + 1 : n ∈ ω},
which are thin but the union A ∪ B is not even almost thin.

We will denote the ideal generated by thin sets by T and the ideal gen-
erated by almost thin sets by A . Both ideals extend the Fréchet ideal.
Obviously, A ⊇ T and the following lemma shows that the ideals do not
coincide.

Lemma 1.1.3. A = {2n : n ∈ ω} ∈ A \ T .
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Proof. Since A is almost thin it belongs to the ideal A . Assume for the
contrary that there are thin sets A1, . . . , Ak such that A ⊆ A1 ∪· · ·∪Ak. For
every i = 1, . . . , k there is ni ∈ ω such that whenever a, b are two elements
of Ai with ni < a < b then a

b
< 1

2k . Let n0 = max{ni : i = 1, . . . , k} and
consider the set {2n0 , 2n0+1, . . . , 2n0+k}. Each of its k + 1 elements belongs
to Ai for some i, so there is i0 such that Ai0 contains two of them. For these
elements we have ni0 < a < b and a

b
≥ 2n0

2n0+k = 1
2k — a contradiction.

Lemma 1.1.4. Let A be a subset of ω. If A ∈ T then (∃k ∈ ω) (∀n ∈ ω)
|A ∩ [2n, 2n + n]| < k.

Proof. Assume for the contrary that A ∈ T and (∀k ∈ ω) (∃n ∈ ω) |A ∩
[2n, 2n + n]| ≥ k. It follows from A ∈ T that there are thin sets A1, . . . , Am

such that A =
⋃m

i=1 Ai. For every i = 1, . . . , m there exists ni such that
the ratio of any two successive elements in Ai which are greater than ni is
less than 1

2
. Let n0 = max{m + 1, ni : i = 1, . . . , m}. According to the

assumption there exists n ∈ ω such that |A ∩ [2n, 2n + n]| ≥ n0. Now from
the Pigeon Hole Principle we have |Ai ∩ [2n, 2n + n]| ≥ 2 for some i. Hence
there are two successive elements in Ai greater than ni whose ratio is greater
(or equal to) 2n

2n+n
> 1

2
— a contradiction.

Lemma 1.1.5. Neither A nor T are P -ideals.

Proof. Consider thin sets Ak = {n! + k : n ∈ ω}, k ∈ ω. We want to prove
that whenever A ⊆ ω contains all but finitely many elements of each Ak then
A cannot be written as a finite union of almost thin sets, i.e. A 6∈ A .

Let A =
⋃

j≤l Bj. There exists n0 ≥ l such that the interval [n!, n! + l] is
contained in A for every n ≥ n0. Therefore one of the sets Bj contains two of
its elements. Since there are only finitely many sets Bj, but infinitely many
n ≥ n0 there exists Bj such that |Bj ∩ [n!, n! + l]| ≥ 2 for infinitely many n.
It follows that Bj = {bj

n : n ∈ ω} is not almost thin because

lim sup
n→∞

bj
n

bj
n+1

≥ lim sup
n→∞

n!

n! + l
= 1.

1.2 Sets with property (SC) and (C)

Given A ⊆ ω and k ∈ ω we define A + k = {n : n − k ∈ A}.

Definition 1.2.1. We say that set A ⊆ ω has property (SC), in short, A is
an (SC)-set , if (A + k) ∩ A is finite for all k ∈

�
.
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Lemma 1.2.2. Every almost thin set has property (SC).

Proof. Let A = {an : n ∈
�
}. If there is k ∈

�
such that {n : an + k ∈ A}

is infinite then
lim sup

n→∞

an

an+1
≥ lim sup

n→∞

an

an + k
= 1

and A is not almost thin.

The set of all squares of natural numbers {n2 : n ∈ ω} has property (SC)
and it is not almost thin.

Lemma 1.2.3. Set A = {an : n ∈
�
} ⊆ ω has property (SC) if and only if

for every k ∈
�

there is nk such that an+1 − an > k for every n ≥ nk.

Proof. Assume first that A has property (SC). Then Mi = {n : an + i ∈ A}
is finite for every i ≤ k. Let nk = 1 + max

⋃
i≤k Mi. It is easy to see that

an+1 − an > k whenever n ≥ nk.
On the other hand, if for every k ∈

�
there is nk such that an+1 −an > k

for every n ≥ nk then (A + k) ∩ A ⊆ {a1, a2, . . . , ank
} is finite.

The family of sets with property (SC) is not an ideal, consider, e.g., the
union of sets {n2 : n ∈ ω} and {n2+1 : n ∈ ω} that does not satisfy condition
(SC). But it still satisfies a weaker condition (C).

Definition 1.2.4. We say a set A ⊆ ω has property (C) if (A + k) ∩ A is
finite for all but finitely many k ∈

�
.

However, even the larger family of sets with property (C) is not an ideal.
There exist two thin sets whose union does not fulfil condition (C).

Example 1.2.5. Let us enumerate prime numbers as {pk : k ∈ ω}. Put
A = {n! : n ∈ ω}, B = {(pk

n)! + k : k, n ∈ ω}. We know that A is thin.
If b = (pk

n)! + k ∈ B and b′ ∈ B is the immediate succesor of b in B then
b
b′
≤ (pk

n)!+k

(pk
n+1)!

≤ 2(pk
n)!

(pk
n+1)!

= 2
pk

n+1
. Hence B is thin. Obviously, A ∪ B does not

satisfy condition (C) since ((A∪B) + k)∩ (A ∪B) ⊇ {(pk
n)! + k : n ∈ ω} is

infinite for each k ∈
�

.

It follows from the definition that every set with property (SC) has prop-
erty (C). Although the converse implication is not true it turns out that the
ideals generated by families (SC) and (C) coincide.

Lemma 1.2.6. Families (C) and (SC) generate the same ideal on ω.

11



Proof. It suffices to prove that every set with property (C) belongs to the
ideal generated by sets with property (SC). Assign to every set A with
property (C) finite set KA = {k ∈

�
: (A + k) ∩ A is infinite}. We will

proceed by induction on n = |KA|.
If KA = ∅ then A has property (SC) and it trivially belongs to the ideal.
Now, suppose that every set B with |KB| ≤ n is a finite union of sets with

property (SC) and consider A with |KA| = n + 1. Define k = max KA and
set A0 = (A + k)∩A and A1 = A \A0. We get (A0 + k)∩A0 ⊆ (A + 2k)∩A
which is a finite set, and (A1 + k) ∩ A1 ⊆ (A + k) ∩ A ∩ A1 = ∅ hence
|KA0

| ≤ |KA \ {k}| = n and |KA1
| ≤ |KA \ {k}| = n. According to the

induction assumption A0 and A1 can be written as a finite union of sets with
property (SC), thus the set A = A0 ∪ A1 belongs to the ideal generated by
(SC)-sets.

Lemma 1.2.7. Let A be a subset of ω. Set A belongs to the ideal generated
by (SC)-sets if and only if (∃k) (∀d) (∃nd) (∀n ≥ nd) |[n, n + d] ∩ A| ≤ k.

Proof. If A = A1 ∪ · · · ∪Ak where Ai ∈ (SC) for i = 1, . . . , k then according
to Lemma 1.2.3 there is ni

d, i = 1, . . . , k, such that |[n, n + d] ∩ Ai| ≤ 1 for
every n ≥ ni

d. Let nd = max{ni
d : i = 1, . . . , k}. It is obvious that (∀n ≥ nd)

|[n, n + d] ∩ A| ≤ k.
On the other hand, if (∃k) (∀d) (∃nd) (∀n ≥ nd) |[n, n + d]∩A| ≤ k then

put Ai = {amk+i : m ∈ ω} where {am : m ∈ ω} is an increasing enumeration
of A. Obviously, A = A1 ∪ · · · ∪ Ak and it is easy to see that Ai ∈ (SC) for
every i = 1, . . . , k because |Ai ∩ [n, n + d]| ≤ 1 whenever n ≥ nd.

Lemma 1.2.8. The ideal generated by (SC)-sets is not a P -ideal.

Proof. Consider thin sets Ak = {n! + k : n ∈ ω}, k ∈ ω, as in the proof of
Lemma 1.1.5. They have property (SC) and we prove that whenever A ⊆ ω
contains all but finitely many elements of each Ak then A cannot be written
as finite union of sets with property (SC).

Let A =
⋃

j≤l Bj. There exists n0 ≥ l such that the interval [n!, n! + l]
is contained in A for every n ≥ n0. Therefore one of the sets Bj contains
two of its elements. Since there are only finitely many sets Bj, but infinitely
many n > n0 there exists Bj such that |Bj ∩ [n!, n! + l]| ≥ 2 for infinitely
many n. It follows that Bj does not satisfy condition (SC) because there are
infinitely many elements in Bj with difference i for some i ≤ l.

1.3 Summable ideal

Definition 1.3.1. Summable ideal is the family {A ⊆
�

:
∑

a∈A
1
a

< +∞}.
We call the sets from the summable ideal (S)-sets.
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Although the summable ideal is defined as an ideal on
�

we will often
regard it as an ideal on ω (which is generated by the summable ideal on

�

and {0}).
It follows from the definition that every almost thin set belongs to the

summable ideal. However, there is no inclusion between the summable ideal
and the ideal generated by (SC)-sets.

Example 1.3.2. Consider the set
⋃
{[2n, 2n + n) : n ∈ ω}. It belongs to the

summable ideal because

∞∑

n=0

n−1∑

i=0

1

2n + i
≤

∞∑

n=0

n

2n
< +∞,

but it is obviously not in the ideal generated by (SC)-sets.

Example 1.3.3. Consider a sequence 〈an : n ∈
�
〉 of natural numbers

defined by recursion: a1 = 1 and an+1 = an + k if n ∈ [2k, 2k+1). It is easy
to see that the set A = {an : n ∈

�
} has property (SC). To check that it

does not belong to the summable ideal observe first that for elements of A
we have a2k < k · (2k − 1) for every k ≥ 2. So we get for k ≥ 2

2k+1−1∑

n=2k

1

an

≥
1

a2k

+
1

a2k + k
+ · · · +

1

a2k + k(2k − 1)
>

2k

a2k + k(2k − 1)
>

1

2k

It follows that

∞∑

n=1

1

an

≥
∞∑

k=2

2k+1−1∑

n=2k

1

an

≥
∞∑

k=2

1

2k
= +∞

and set A is not in the summable ideal.

It is a known fact that summable ideal is a P -ideal, but we give the proof
for the sake of completeness.

Lemma 1.3.4. Summable ideal is a P -ideal.

Proof. Let Ak, k ∈ ω, be (S)-sets. For every k there is nk such that

∑

a∈Ak∩[nk,+∞)

1

a
<

1

2k
.

Set A =
⋃
{Ak ∩ [nk, +∞) : k ∈ ω}. It is easy to check that A belongs to the

summable ideal and Ak ⊆∗ A for every k ∈ ω.

13



Lemma 1.3.5. If A = {an : n ∈
�
} is an (S)-set then limn→∞

n
an

= 0.

Proof. We will show that if lim supn→∞
n
an

= c > 0 then A is not in the

summable ideal. Take n0 ∈
�

such that n0

an0

> c
2
. Then

∑n0

n=1
1
an

≥ n0

an0

> c
2
.

By induction construct a sequence 〈nk〉k∈ω such that
∑nk

n=1
1

an
≥ (k + 2) c

4
for

every k. Assume we know already n0, . . . , nk. Since lim supn→∞
n
an

= c > 0

we can choose nk+1 > 2nk such that nk+1

ank+1

> c
2
. We get nk+1−nk

ank+1

> 1
2
· nk+1

ank+1

and
∑nk+1

n=1
1
an

=
∑nk

n=1
1
an

+
∑nk+1

n=nk+1
1
an

≥ (k + 2) c
4

+ 1
2
· c

2
= (k + 3) c

4
.

Finally,
∑

n∈ �
1

an
is minorized by a divergent series, hence it diverges.

1.4 Density ideal

Definition 1.4.1. We say that upper asymptotic density of set A ⊆ ω is
d∗(A) = lim supn→∞

|A∩n|
n

. If d∗(A) = 0 then A has asymptotic density zero,
in short, A is an (H)-set.

Notice that B ⊆∗ A implies d∗(B) ≤ d∗(A).

Lemma 1.4.2. For A = {an : n ∈
�
} ⊆ ω we have

d∗(A) = lim sup
n→∞

n

an + 1

Proof. Set αk = sup{ |A∩n|
n

: n ≥ k} and βk = sup{ n
an+1

: n ≥ k}. Obviously,
βk ≤ αak+1. If n ≥ ak+1 then there exists a unique m ≥ k such that am+1 ≤

n < am+1 + 1 and we have |A∩n|
n

= m
n
≤ m

am+1
≤ βk. Hence βk ≥ αak+1. So

〈βk〉k∈ω is a subsequence of 〈αk〉k∈ω and limk→∞ βk = limk→∞ αk.

It follows from the definition that the collection of sets with asymptotic
density zero is closed under subsets and under finite unions. Hence it is an
ideal and we call the ideal density ideal.

Lemma 1.4.3. Every (S)-set has asymptotic density zero.

Proof. If A = {an : n ∈
�
} belongs to the summable ideal then according to

Lemma 1.3.5 limn→∞
n
an

= 0. Then also limn→∞
n

an+1
= 0 and from Lemma

1.4.2 we conclude that A has asymptotic density zero.

Lemma 1.4.4. Every (SC)-set has asymptotic density zero.

Proof. Assume A = {an : n ∈
�
} has property (SC) and that an+1 − an > k

whenever n ≥ nk. Define Ak = {an : n > nk}. For every k we have
d∗(Ak) = lim supm→∞

m
ank+m+1

≤ lim supm→∞
m

ank
+km+1

≤ 1
k
. Since A ⊆∗ Ak

for every k, it follows that d∗(A) = 0.
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Lemma 1.4.5. Density ideal is a P -ideal.

Proof. Assume Ak, k ∈
�

, are sets with asymptotic density zero. We may
assume that Ak ⊆ Ak+1 for every k ∈ ω (otherwise we can switch to sets

Bk =
⋃

i≤k Ai). Fix nk such that |Ak∩n|
n

< 1
k

whenever n ≥ nk and let

A =
⋃

k∈ � (Ak ∩ [nk, nk+1)). For n ∈ [nk, nk+1) we have |A∩n|
n

≤ |Ak∩n|
n

< 1
k

and we get

lim sup
n→∞

|A ∩ n|

n
≤ lim

k→∞

1

k
= 0.

Hence A belongs to the density ideal and obviously Ak ⊆∗ A for every k.

1.5 More ideals on ω

We say that A ⊆ ω contains an arithmetic progression of length n if there
exist a ∈ ω and d > 0 such that all the members of arithmetic progression
a + j · d for j = 0, . . . , n − 1 belong to the set A.

Definition 1.5.1. Van der Waerden ideal is the family W = {A ⊆ ω : A
does not contain arithmetic progressions of arbitrary length}.

It is obvious that the family W is closed under subsets and that ω 6∈ W .
It follows from the van der Waerden Theorem that W is closed under finite
unions and hence an ideal. We mention here two different formulations of
this well-known theorem. The proof of the van der Waerden Theorem can
be found for example in [16] or [9].

Theorem 1.5.2 (van der Waerden).

1. If A = A1 ∪ · · · ∪ Ar is a subset of natural numbers that contains
arithmetic progressions of arbitrary length then at least one of the sets
A1, . . . , Ar has the same property.

2. For every k, l ∈ ω there exists N(k, l) ∈ ω such that for every colouring
of the set {1, 2, . . . , N(k, l)} with k colours there is a homogeneous set
that contains an arithmetic progression of length l.

It is easy to see that W contains all finite sets. The set {2n : n ∈ ω} is an
infinite set that belongs to W because it contains no arithmetic progression
of length 3. Another example of an infinite set in W is the set {n2 : n ∈ ω}
which contains no arithmetic progression of length 4 (an observation made
already by L. Euler). These two examples show also that sets in W need not
be thin or almost thin. However, every almost thin set belongs to the van
der Waerden ideal.
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Lemma 1.5.3. If A = {an : n ∈
�
} ⊆ ω is an almost thin set then A ∈ W .

Proof. We want to prove that lim supn→∞
an

an+1
= 1 if A = {an : n ∈

�
} ⊆

ω contains arithmetic progressions of arbitrary length. In such a case for
every k ∈ ω there are bk ∈ ω and dk > 0 such that bk + j · dk ∈ A for
j = 0, 1, . . . , k − 1. Actually, there are infinitely many pairs bk and dk for
every k. So there are infinitely many n ∈

�
such that an = bk + (k − 2)dk

and bk + (k − 1)dk ∈ A. For such indices we get:

an

an+1
≥

bk + (k − 2)dk

bk + (k − 1)dk

≥
(k − 2)dk

(k − 1)dk

=
k − 2

k − 1

It follows from limk→∞
k−2
k−1

= 1 that lim supn→∞
an

an+1
= 1 and the set A is

not almost thin.

Now, we can conclude that the set from Example 1.2.5 belongs to the
ideal W while it does not belong to the ideal generated by (SC)-sets. In
fact, there is no inclusion between the latter ideal and W . Remember the
(SC)-set from Example 1.3.3 that obviously does not belong to the ideal W .

Surprisingly, there is an inclusion between the van der Waerden ideal and
the density ideal. Szemeredi [26] proved that every set from the van der
Waerden ideal has asymptotic density zero. To see that the density ideal is
strictly greater consider the set {[n3, n3+n) : n ∈ ω} or {[2n, 2n+n) : n ∈ ω}.

The latter set belongs not only to the density ideal, but also to the
summable ideal. Hence the van der Waerden ideal and the summable ideal
differ, but it is still not known whether there is an inclusion between these
two ideals, which is a famous conjecture of Paul Erdös.

Conjecture 1.5.4 (Erdös). If A is a subset of natural numbers such that∑
a∈A

1
a

= +∞ then A contains arithmetic progressions of arbitrary length.

The last collection of small subsets of natural numbers that we introduce
is inspired by the summable ideal and it can be found for example in [12].

Definition 1.5.5. For any function g :
�

→ (0, +∞) we define a generalized
summable ideal Ig as the family {A ⊆

�
:
∑

a∈A g(a) < +∞}.

It is obvious that every generalized summable ideal extends the Fréchet
ideal. If

∑
n∈ � g(n) < +∞ then Ig = P(

�
). If limn→∞ g(n) > 0 then

Ig consists precisely of all finite sets. Therefore we assume in the following
that

∑
n∈ � g(n) = +∞ and limn→∞ g(n) = 0 to obtain a proper ideal that

is strictly greater than the Fréchet filter.

Lemma 1.5.6. Ideal Ig is a P -ideal for any function g.

Proof. The proof is analogous to the proof of Lemma 1.3.4.
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2 I-ultrafilters

In the first section of this chapter we present several general results about I -
ultrafilters. We recall the definition of I -ultrafilter and give some necessary
conditions on the existence of I -ultrafilters. We show also that I -ultrafilters
exist in ZFC for every maximal ideal I with χ(I ) = c and it is consistent
with ZFC that I -ultrafilters exist for any tall ideal I .

Since all the ideals defined in chapter 1 are tall it is consistent with ZFC
that I -ultrafilters for these families exist. We speak about (almost) thin
ultrafilters, (SC)-ultrafilters, (S)-ultrafilters, (H)-ultrafilters, etc. and we
focus in the rest of the chapter on these particular classes of ultrafilters. So we
prove in the second section that thin ultrafilters and almost thin ultrafilters
coincide; in the third and fourth section we study the relationships between
the above mentioned classes of I -ultrafilters and some well-known classes
of ultrafilters; the fifth section contains three results on W -ultrafilters and
Ig-ultrafilters that are not included in the previous sections.

2.1 General results

Definition 2.1.1. Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets. Given an ultrafilter U
on ω, we say that U is an I -ultrafilter if for any F : ω → X there is A ∈ U
such that F [A] ∈ I .

In the following we will always consider X = ω although some results are
true for arbitrary X.

The family I need not be an ideal in general, but it is enough to consider
ideals on ω if we want to study the classes of I -ultrafilters because replacing
f [U ] ∈ I by f [U ] ∈ 〈I 〉 in the definition of I -ultrafilter, where 〈I 〉 is
the ideal generated by I , we get the same concept (noticed in [2]). The
following lemma shows that I -ultrafilters and 〈I 〉-ultrafilters coincide.

Lemma 2.1.2. For an ultrafilter U the following are equivalent:

(i) U is an I -ultrafilter

(ii) U is an 〈I 〉-ultrafilter

Proof. It suffices to prove that (ii) implies (i) since (i) implies (ii) trivially.
Therefore assume that U is an 〈I 〉-ultrafilter and let f ∈ ωω. There exists
V ∈ U such that f [V ] ∈ 〈I 〉 so there are for some k ∈ ω sets A1, . . . , Ak ∈ I
such that f [V ] ⊆ A1 ∪ · · ·∪Ak. Now f−1[A1]∪ · · ·∪ f−1[Ak] = f−1[A1 ∪ · · ·∪
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Ak] ⊇ V ∈ U . So f−1[Ai] ∈ U for some i ≤ k. Put U = f−1[Ai]. Then
U ∈ U and f [U ] = Ai ∈ I . It follows that U is an I -ultrafilter.

Let I be an ideal on ω. If an ultrafilter U extends the dual filter of I ,
i.e., U ∩I = ∅, then U is not an I -ultrafilter. However, the converse does
not hold.

Example 2.1.3. Take V ∈ ω∗, V ∩ I = ∅. Let A = {an : n ∈ ω} be
an infinite set from the ideal I . Define f : ω → ω so that f(an) = n + 1
and f(k) = 0 for any k 6∈ A. Now let U be the ultrafilter generated by
{f−1[V ] : V ∈ V }. Then U ∩ I 6= ∅ since A = f−1[ω \ {0}] ∈ U ∩ I but
U is not an I -ultrafilter since (∀U ∈ U ) f [U ] ∈ V , i.e., f [U ] 6∈ I .

Baumgartner noticed in [1] that the class of I -ultrafilters is closed down-
ward under the Rudin-Keisler order ≤RK . Recall that U ≤RK V if there is
a function f : ω → ω whose Stone extension βf : βω → βω maps V on U
(see [5]).

Lemma 2.1.4. If C is a class of ultrafilters closed downward under ≤RK and
I an ideal on ω then the following are equivalent:

(i) There exists U ∈ C which is not an I -ultrafilter

(ii) There exists V ∈ C which extends I ∗, the dual filter to I

Proof. No ultrafilter extending I ∗ is an I -ultrafilter, so (ii) implies (i) triv-
ially. To prove (i) implies (ii) assume that U ∈ C is not an I -ultrafilter.
Hence there is a function f ∈ ωω such that (∀A ∈ I ) f−1[A] 6∈ U . Let
V = {V ⊆ ω : f−1[V ] ∈ U }. Obviously V extends I ∗ and V ≤RK U .
Since C is closed downward under ≤RK and U ∈ C we get V ∈ C.

If we consider two ideals I , J we may ask whether the classes of I -
ultrafilters and J -ultrafilters coincide or not. The following corollary of the
lemma above suggests in what form we can find ultrafilters demonstrating
that the two classes are distinct.

Corollary 2.1.5. Let I , J be ideals on ω. If there is an J -ultrafilter that
is not an I -ultrafilter then there is an J -ultrafilter that extends I ∗. �

Let us recall the definition of Katětov order ≤K on ideals on ω. We say
that I ≤K J if there is a function f : ω → ω such that f−1[A] ∈ J for
every A ∈ I . For filters F , G is the Katětov order defined analogously: we
write F ≤K G if there is a function f : ω → ω such that f−1[F ] ∈ G for
every F ∈ F .
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Lemma 2.1.6. An ultrafilter U is an I -ultrafilter if and only if I ∗ 6≤K U .

Proof. If I ∗ ≤K U then there exists f : ω → ω such that f−1[A] ∈ U for
every A ∈ I ∗. Since U ⊆ f−1[f [U ]] ∈ U for every U ∈ U and U is a filter
we get f [U ] 6∈ I for every U ∈ U and U is not an I -ultrafilter.

If I ∗ 6≤K U then for every f : ω → ω there is A ∈ I ∗ such that
f−1[A] 6∈ U . Since U is an ultrafilter we get ω \ f−1[A] ∈ U and we have
also f [ω \ f−1[A]] ⊆ ω \ A ∈ I . Hence U is an I -ultrafilter.

Lemma 2.1.7. Let F be a filter on ω and U a (free) ultrafilter on ω. Then
F ≤K U if and only there is an ultrafilter V such that V ≤RK U and
V ⊇ F .

Proof. If F ≤K U then there is a function f : ω → ω such that f−1[F ] ∈ U
for every F ∈ F . Put V = {A ⊆ ω : (∃U ∈ U )f [U ] ⊆ A}. It is easy to see
that F ⊆ V , V is an ultrafilter and βf(U ) = V . Hence V ≤RK U .

If V ≤RK U then there exists f : ω → ω such that f−1[V ] ∈ U for
every V ∈ V . In particular, f−1[F ] ∈ U for every F ∈ F ⊆ V and we have
F ≤K U .

Putting together Lemma 2.1.6 and Lemma 2.1.7 we have proved the fol-
lowing proposition characterizing I -ultrafilters for an ideal I .

Proposition 2.1.8. Let I be an ideal on ω. For an ultrafilter U ∈ ω∗ the
following are equivalent:

(i) U is an I -ultrafilter

(ii) I ∗ 6≤K U

(iii) V 6≤RK U for every ultrafilter V ⊇ I ∗ �

As an immediate consequence of the previous proposition we get a result
that generalizes the obvious fact that if I ⊆ J then every I -ultrafilter is
a J -ultrafilter.

Corollary 2.1.9. If I ≤K J then each I -ultrafilter is a J -ultrafilter. �

There are many ultrafilters that are not I -ultrafilters for a given ideal I
because any ultrafilter extending the dual filter of I ∗ is not an I -ultrafilter.
So there are, for instance, no I -ultrafilters where I is the Fréchet ideal.
However, the Fréchet ideal is not the only one ideal for which I -ultrafilters
do not exist. The following proposition provides a necessary condition on I
for the existence of I -ultrafilters.
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Proposition 2.1.10. There are no I -ultrafilters for an ideal I which is
not tall.

Proof. Suppose that for A ∈ [ω]ω \ I we have I ∩ P(A) = [A]<ω and let
eA : ω → A be an increasing enumeration of the set A.

Now assume for the contrary that there exists an I -ultrafilter U ∈ ω∗.
According to the definition of an I -ultrafilter there exists U ∈ U such that
eA[U ] ∈ I . Since eA[U ] ⊆ A the set eA[U ] is finite. It follows that U is finite
because eA is one-to-one — a contradiction to the assumption that no set in
U is finite.

The next proposition provides a sufficient condition for the existence of
I -ultrafilters.

Proposition 2.1.11. If I is a maximal ideal on ω such that χ(I ) = c then
I -ultrafilters exist.

Proof. Enumerate all functions from ω to ω as {fα : α < c}. By transfinite
induction on α < c we will construct filter bases Fα satisfying

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ I
Suppose we know already Fα. If there is a set F ∈ Fα such that fα[F ] ∈

I then put Fα+1 = Fα. Hence we may assume that fα[F ] 6∈ I . Then
ω \ fα[F ] ∈ I for every F ∈ Fα and since χ(I ) = c > |Fα| we can find
M ∈ I such that M ∩ fα[F ] is infinite for every F ∈ Fα. To complete the
induction step let Fα+1 be the filter base generated by Fα and f−1

α [M ].
It is obvious that any ultrafilter that extends the filter base F =

⋃
α<c Fα

is an I -ultrafilter.

Proposition 2.1.11 may be considered as a special case of a result proved
by Butkovičová in [8] not using the terminology of I -ultrafilters. We present
here the theorem reformulated in terms of I -ultrafilters.

Theorem 2.1.12 (Butkovičová). Let I be a maximal ideal on ω such
that χ(I ) = c and assume κ is a cardinal, κ < c. There exist 2κ (distinct)
I -ultrafilters.

The last two results in this section are consistency results. Proposition
2.1.13 states that I -ultrafilters exist for every tall ideal I under the as-
sumption p = c (this is a slightly stronger assumption than MActble). Finally,
it turns out in Proposition 2.1.14 that I -ultrafilters need not be P -points if
we assume Continuum Hypothesis and I is a tall P -ideal.
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Proposition 2.1.13. (p= c) If I is a tall ideal then I -ultrafilters exist.

Proof. Enumerate all functions from ω to ω as {fα : α < c}. By transfinite
induction on α < c we will construct filter bases Fα satisfying

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ I
Suppose we know already Fα. If there is a set F ∈ Fα such that fα[F ] ∈

I then put Fα+1 = Fα. Hence we may assume that fα[F ] 6∈ I , in particular
fα[F ] is infinite, for every F ∈ Fα.

Since |Fα| < c = p there exists M ∈ [ω]ω such that M ⊆∗ fα[F ] for every
F ∈ Fα. The ideal I is tall, so there is A ∈ I which is an infinite subset of
M and we have A ⊆∗ fα[F ] and f−1

α [A] ∩ F is infinite for every F ∈ Fα. It
follows that f−1

α [A] is compatible with Fα. To complete the induction step
let Fα+1 be the filter base generated by Fα and f−1

α [A].
It is easy to see that every ultrafilter that extends F =

⋃
α<c Fα is an

I -ultrafilter.

Proposition 2.1.14. (CH) If I is a tall P -ideal on ω then there is an
I -ultrafilter which is not a P -point.

Proof. Fix a partition {Rn : n ∈ ω} of ω into infinite sets and enumerate
ωω = {fα : α < ω1}. By transfinite induction on α < ω1 we will construct
countable filter bases Fα satisfying

(i) F0 is generated by the Fréchet filter and {ω \ Rn : n ∈ ω}
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) (∀F ∈ Fα) {n : |F ∩ Rn| = ω} is infinite
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ I
Suppose we know already Fα. If there is a set F ∈ Fα such that fα[F ] ∈

I then put Fα+1 = Fα. If (∀F ∈ Fα) fα[F ] 6∈ I then one of the following
cases occurs.

Case A. (∀F ∈ Fα) {n : |fα[F ∩ Rn]| = ω} is infinite
Fix an enumeration {Fk : k ∈ ω} of Fα. According to the assumption

the set Mk = {n : |fα[Fk ∩ Rn]| = ω} is infinite for all k ∈ ω. For every
k ∈ ω, n ∈ Mk we can find an infinite set Ik,n ⊆ fα[Fk ∩ Rn] with Ik,n ∈ I
because I is tall. Since I is a P -ideal there exist I ∈ I such that Ik,n ⊆∗ I
for every k ∈ ω and n ∈ Mk. It is easy to see that for every Fk ∈ Fα the
set {n : |f−1

α [I] ∩ Fk ∩ Rn| = ω} ⊇ Mk is infinite. To complete the induction
step let Fα+1 be the countable filter base generated by Fα and f−1

α [I].
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Case B. (∃F0 ∈ Fα) {n : |fα[F0 ∩ Rn]| = ω} is finite
Enumerate Fα \ {F0} = {Fk : k > 0}. For every k > 0 the set Mk = {n :

|F0 ∩ Fk ∩Rn| = ω and |fα[Fk ∩ F0 ∩Rn]| < ω} is infinite. For every n ∈ Mk

define un = max{u ∈ fα[Fk ∩ F0 ∩ Rn] : |f−1
α {u} ∩ Fk ∩ F0 ∩ Rn| = ω}.

Let Ak = {un : n ∈ Mk}. If Ak is finite for some k then let Fα+1 be the
filter base generated by Fα and f−1

α [Ak]. Otherwise, we can choose for every
k an infinite set Ik ∈ I such that Ik ⊆ Ak. Note that for every u ∈ Ik we
have |f−1

α {u} ∩ Fk ∩ F0 ∩ Rn| = ω} for some n ∈ Mk. Since I is a P -ideal
there exists I ∈ I such that Ik ⊆∗ I for every k. It is easy to see that
{n : |f−1

α [I] ∩ Fk ∩ F0 ∩ Rn| = ω} is infinite for every k. To complete the
induction step let Fα+1 be the countable filter base generated by Fα and
f−1

α [I].

Finally, let F =
⋃

α<ω1
Fα. It is clear that every ultrafilter which extends

F is an I -ultrafilter because of condition (v). The filter base F satisfies
also condition (iv) and the following claim shows that such a filter base can
be extended to an ultrafilter that is not a P -point.

Claim: If F is a filter base satisfying (iv) and A ⊆ ω then either 〈F∪{A}〉
or 〈F ∪ {ω \ A}〉 satisfies (iv).

Whenever F is a filter base satisfying (iv) and A ⊆ ω then either for
every F ∈ F exist infinitely many n ∈ ω such that |A∩ F ∩Rn| = ω, so the
filter base generated by F and A satisfies (iv) or there is F0 ∈ F such that
for all but finitely many n ∈ ω we have |A ∩ F0 ∩ Rn| < ω. Then since for
every F ∈ F exist infinitely many n ∈ ω for which |F ∩ F0 ∩ Rn| = ω the
filter base generated by F and ω \A satisfies (iv). Hence for every subset of
ω we may extend F either by the set itself or its complement. Consequently,
F may be extended to an ultrafilter satisfying (iv).

2.2 Thin and almost thin ultrafilters

Let us recall that an ultrafilter U ∈ ω∗ is an (almost) thin ultrafilter if for
every f ∈ ωω there exists U ∈ U such that f [U ] is (almost) thin.

Every thin ultrafilter is an almost thin ultrafilter because the correspond-
ing families of subsets of ω are in inclusion. The following proposition states
that thin ultrafilters and almost thin ultrafilters actually coincide.

Proposition 2.2.1. Every almost thin ultrafilter is a thin ultrafilter.

Proof. Because of the Corollary 2.1.5 it suffices to prove that every almost
thin ultrafilter contains a thin set. So assume that U is an almost thin
ultrafilter and U0 ∈ U is an almost thin set with an increasing enumeration
U0 = {un : n ∈ ω}. If U0 is not thin then we have lim supn→∞

un

un+1
= q0 < 1.

22



We may assume that the set of even numbers belongs to U (otherwise the
roles of even and odd numbers exchange).

Define g : ω → ω so that g(un) = 2n, g[ω \ U0] = {2n + 1 : n ∈ ω}.
Since U is an almost thin ultrafilter there exists U1 ∈ U such that g[U1]

is almost thin. Let U = U0 ∩U1 = {unk
: k ∈ ω}. Almost thin sets are closed

under subsets, therefore g[U ] = {g(unk
) : k ∈ ω} ⊆ g[U1] is almost thin and

1 > lim supk→∞
g(unk

)

g(unk+1
)

= lim supk→∞
2nk

2nk+1
.

We know that there is n0 such that (∀n ≥ n0) un

un+1
≤ q0+1

2
and that there

is k0 such that (∀k ≥ k0) nk ≥ n0. Hence for k ≥ k0 we have

unk

unk+1

=
unk

unk+1
· · · · ·

unk+1−1

unk+1

≤

(
q0 + 1

2

)nk+1−nk

It follows from lim supk→∞
nk

nk+1
< 1 that limk→∞(nk+1 − nk) = +∞. Hence

lim
k→∞

unk

unk+1

≤ lim
k→∞

(
q0 + 1

2

)nk+1−nk

= 0

and the set U ∈ U is thin.

2.3 Connections to selective ultrafilters and P -points

We know from the definition that every selective ultrafilter is a P -point.
From the inclusion of coresponding ideals we obtain inclusions for the classes
of thin ultrafilters, (SC)-ultrafilters, (S)-ultrafilters and (H)-ultrafilters.

The following diagram shows all inclusions between these classes of ultra-
filters (an arrow stands for inclusion).

?> =<89 :;selective ultfs

��
??

??
??

����
��

��

?> =<89 :;thin ultfs

��
??

??
??

����
��

��

?> =<89 :;(S)-ultfs

����
��

�

?> =<89 :;P -points

��
??

??
??

?> =<89 :;(SC)-ultfs

��
??

??
?

?> =<89 :;(H)-ultfs

We will show that assuming Martin’s Axiom for countable posets none of
the arrows reverses and no arrow can be added.

Proposition 2.3.1. Every selective ultrafilter is a thin ultrafilter.
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Proof. Consider the partition of ω, {Rn : n ∈ ω}, where R0 = {0} and
Rn = [n!, (n + 1)!) for n > 0. If U is a selective ultrafilter then there exists
U0 ∈ U such that |U0 ∩ Rn| ≤ 1 for every n ∈ ω. Since U is an ultrafilter
either A0 =

⋃
{Rn : n is even} or A1 =

⋃
{Rn : n is odd} belongs to U .

Without loss of generality, assume A0 ∈ U . Enumerate U = U0 ∩ A0 ∈ U
as {uk : k ∈ ω}. If uk ∈ [(2mk)!, (2mk + 1)!) then uk+1 ≥ (2mk + 2)! and we

have uk

uk+1
≤ (2mk+1)!

(2mk+2)!
= 1

2mk+2
≤ 1

2k+2
. Hence U is thin and we have proved

that every selective ultrafilter contains a thin set. Selective ultrafilters are
minimal points in Rudin-Keisler ordering, hence the class is downward closed
under ≤RK and we may apply Lemma 2.1.4 to conclude that every selective
ultrafilter is thin.

Corollary 2.3.2. A free ultrafilter is selective if and only if it is a P -point
and thin ultrafilter.

Proof. Every selective ultrafilter is according to the previous proposition a
thin ultrafilter and it is also known to be a P -point. Every thin ultrafilter is
a Q-point (see Proposition 2.4.1), so every ultrafilter that is thin and P -point
is selective.

Proposition 2.3.3. Every P -point is an (SC)-ultrafilter.

Proof. Let U be a P -point. Consider an arbitrary function f : ω → ω. Our
aim is to find U ∈ U such that f [U ] ∈ (SC).

Take arbitrary U0 ∈ U . If f [U0] ∈ (SC) then set U = U0. Otherwise, we
will proceed by induction. Suppose we know already Ui ∈ U , i = 0, 1, . . . , k−
1, such that Ui ⊆ Ui−1 for i > 0 and the difference of two successive elements
of f [Ui] is greater or equal to 2i for every i < k. Enumerate f [Uk−1] =
{un : n ∈ ω}. Since U is an ultrafilter either f−1[{u2n : n ∈ ω}] ∩ Uk−1

or f−1[{u2n+1 : n ∈ ω}] ∩ Uk−1 belongs to U . Denote this set by Uk. If
f [Uk] ∈ (SC) then let U = Uk. If f [Uk] 6∈ (SC) then we may continue the
induction because the difference of two successive elements of f [Uk] is greater
or equal to 2 · 2k−1 = 2k.

If we obtain an infinite sequence of sets Un ∈ U such that Un ⊇ Un+1

and the difference of two succesive elements of f [Un] is greater or equal to
2n for every n then since U is a P -point there is U ∈ U such that U ⊆∗ Un

for every n ∈ ω. For this U we have f [U ] ⊆∗ f [Un] for every n ∈ ω. Thus
for every k ∈ ω all but finitely many pairs of succesive elements in f [U ] have
difference greater or equal to 2k and it follows that f [U ] ∈ (SC).

Notice the following interesting consequence of the previous proposition:
Since every (SC)-ultrafilter is an (H)-ultrafilter we obtain as a corollary
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of this proposition that every P -point is an (H)-ultrafilter. In particular, it
means that every P -point contains a set with asymptotic density zero. Hence
the dual filter to the density ideal is an example of a P -filter (filter dual to
a P -ideal) that cannot be extended to a P -point.

In Proposition 2.1.14 we constructed under CH for a given tall P -ideal on
ω an I -ultrafilter which is not a P -point. We cannot apply the proposition
to obtain a thin ultrafilter that is not a P -point because the ideal T is not
a P -ideal (see Proposition 1.1.5. Nevertheless, we construct a thin ultrafilter
which is not a P -point even under a strictly weaker assumption MActble.

Proposition 2.3.4. (MActble) There exists a thin ultrafilter which is not a
P -point.

Proof. Enumerate ωω = {fα : α < c} and fix a partition {Rn : n ∈ ω} of ω
into infinite sets. Our aim is to construct a filter base F such that for every
F ∈ F there are infinitely many n such that |F ∩ Rn| = ω.

By transfinite induction on α < c we will construct filter bases Fα, α < c,
so that the following conditions are satisfied:

(i) F0 is generated by the Fréchet filter and {ω \ Rn : n ∈ ω}
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα) {n : |F ∩ Rn| = ω} is infinite
(vi) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ T

Suppose we know already Fα. If there is a set F ∈ Fα such that fα[F ] ∈
T then put Fα+1 = Fα. So we may assume that (∀F ∈ Fα) fα[F ] 6∈ T , in
particular, fα[F ] is infinite.

If there exists K ∈ [ω]<ω such that f−1
α [K]∩F ∩Rn is infinite for infinitely

many n for every F ∈ Fα then we let Fα+1 be the filter base generated by
Fα and f−1

α [K]. In the following we will assume that no such set exists, i.e.,
(♣) for every K ∈ [ω]<ω there is FK ∈ Fα such that f−1

α [K] ∩ FK ∩ Rn is
infinite for only finitely many n.

Case I. (∀F ∈ Fα) {n ∈ ω : |fα[F ∩ Rn]| = ω} is infinite
Set IF = {n ∈ ω : fα[F ∩ Rn] is infinite}. Consider poset P = {K ∈

[ω]<ω : v > u2 whenever [u, v] ∩ fα[K] = {u, v}} with partial order given by
K ≤P L if K = L or K ⊃ L and min(K \ L) > max L. For every F ∈ Fα,
n ∈ IF and k ∈ ω define DF,n,k = {K ∈ P : |K ∩ F ∩ Rn| ≥ k}.

Claim 1: DF,n,k is dense in P for every F ∈ Fα, n ∈ IF , k ∈ ω.
Take L ∈ P arbitrary. Since F ∩ Rn and fα[F ∩ Rn] are infinite sets we

may choose L′ ⊆ F ∩ Rn such that |L′| = k, min L′ > max L, fα[min L′] >

25



(max fα[L])2 and fα(u) > (fα(v))2 whenever u, v ∈ L′, u > v. Let K = L∪L′.
It is obvious that K ∈ DF,n,k and K ≤P L.

The family D = {DF,n,k : F ∈ Fα, n ∈ IF , k ∈ ω} consists of less than c

many dense sets in P . By Martin’s Axiom for countable posets there exists
a D-generic filter G . Let U =

⋃
{K : K ∈ G }.

Now it is easy to check that U satisfies the following
• (∀F ∈ Fα) {n ∈ ω : |U ∩ F ∩ Rn| = ω} is infinite

Given F ∈ Fα for every n ∈ IF and every k ∈ ω there is K ∈ G ∩DF,n,k.
So |U ∩ F ∩ Rn| ≥ |K ∩ F ∩ Rn| ≥ k and it implies that |U ∩ F ∩ Rn| = ω
for every n ∈ IF .

• fα[U ] ∈ T
Enumerate fα[U ] = {un : n ∈ ω}. For every n ∈ ω there is Kn ∈ G such

that un, un+1 ∈ fα[Kn]. Since Kn ∈ P we have un+1 > (un)2 and un

un+1
< 1

un
.

Thus limn→∞
un

un+1
≤ limn→∞

1
un

= 0.
To complete the induction step let Fα+1 be the filter base generated by

Fα and U .

Case II. (∃F0 ∈ Fα) {n ∈ ω : |fα[F0 ∩ Rn]| = ω} is finite
For every F ∈ Fα let IF = {n ∈ ω : F ∩ F0 ∩ Rn is infinite and fα[F ∩

F0 ∩Rn] is finite}. Observe that IF is infinite for every F ∈ Fα according to
the assumption. For every n ∈ IF define h(n) = max{m ∈ fα[F ∩ F0 ∩ Rn] :
|f−1

α {m}∩F ∩F0 ∩Rn| = ω}. The latter set is non-empty and finite, whence
the definition is correct.

Claim 2: {h(n) : n ∈ IF} is infinite.
Assume for the contrary that there is h ∈ ω such that h(n) ≤ h for

every n ∈ IF . We know from (♣) that there is Fh ∈ Fα such that {n :
|f−1

α [0, h]∩Fh∩Rn| = ω} is finite. Hence {n : |f−1
α [0, h]∩F∩F0∩Fh∩Rn| = ω}

is finite. Since IF∩Fh
is infinite and IF∩Fh

⊆∗ IF there are infinitely many
n ∈ IF such that |(F ∩F0∩Fh∩Rn)\f−1

α [0, h]| = ω while fα[F ∩F0∩Fh∩Rn]
is finite. It follows that we can find m ∈ fα[F ∩ F0 ∩ Fh ∩ Rn] \ [0, h] such
that |f−1

α {m} ∩ F ∩ F0 ∩ Fh ∩ Rn| = ω. We have m > h — a contradiction
to the definition of h(n).

Choose a sequence HF = 〈hi : i ∈ ω〉 ⊆ {h(n) : n ∈ IF} such that
hi+1 > (hi)

2 for every i. It is obvious that HF is thin and infinite. Remember
that for every hi ∈ HF there is ni ∈ IF such that f−1

α {hi} ∩ F ∩ F0 ∩ Rni
is

infinite. Note that ni 6= nj for i 6= j, so |f−1
α [HF ] ∩ F ∩ F0 ∩ Rn| = ω for

infinitely many n.
Consider poset P = {K ∈ [ω]<ω : v > u2 whenever [u, v] ∩ K = {u, v}}

with partial order given by K ≤P L if K = L or K ⊃ L and min(K \ L) >
max L. For F ∈ Fα and k ∈ ω define DF,k = {K ∈ P : |K ∩ HF | ≥ k}.
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Claim 3: DF,k is dense in P for every F ∈ Fα and k ∈ ω.
Take L ∈ P arbitrary. There is L′ ⊆ HF \ [0, (max L)2] such that |L′| = k.

Let K = L ∪ L′. Obviously, K ∈ DF,k and K ≤P L.

The family D = {DF,k : F ∈ Fα, k ∈ ω} consists of less than c many
dense sets in P . By Martin’s Axiom for countable posets there exists a
D-generic filter G . Let H =

⋃
{K : K ∈ G }.

Now it remains to check that the filter base generated by Fα and f−1
α [H]

satisfies conditions (v) and (vi).
• (∀F ∈ Fα) {n ∈ ω : |f−1

α [H] ∩ F ∩ Rn| = ω} is infinite
For every F ∈ Fα and for every k ∈ ω there exists K ∈ G ∩ DF,k. It

follows that |{n : |f−1
α [H]∩F∩Rn| = ω}| ≥ |{n : |f−1

α [K]∩F∩Rn| = ω}| ≥ k.

• fα[f−1
α [H]] = H ∈ T

Enumerate H = {un : n ∈ ω}. For every n ∈ ω there is K ∈ G such
that un, un+1 ∈ K. Since K ∈ P we have un+1 > (un)2 and un

un+1
< 1

un
. Thus

limn→∞
un

un+1
≤ limn→∞

1
un

= 0.

To complete the induction step let Fα+1 be the filter base generated by
Fα and f−1

α [H].
Finally, let F =

⋃
α<c Fα. The filter base F has the property that for

every F ∈ F there are infinitely many n such that F ∩Rn is infinite therefore
it can be extended to an ultrafilter which is not a P -point (see the proof of
Proposition 2.1.14). It is obvious that every ultrafilter extending F is a thin
ultrafilter because of condition (vi).

The following proposition implies that under Martin’s Axiom for count-
able posets there are: P -points which are not thin, (SC)-ultrafilters which are
not thin, (SC)-ultrafilters which are not (S)-ultrafilters and (H)-ultrafilters
which are not (S)-ultrafilters.

Proposition 2.3.5. (MActble) There exists a P -point which is not an (S)-
ultrafilter.

Proof. Enumerate all infinite partitions of ω (into infinite sets) as {Rα : α <
c}. By transfinite induction on α < c we will construct filter bases Fα, α < c,
so that the following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα)

∑
a∈F

1
a

= +∞
(vi) (∀α) (∃F ∈ Fα+1) either (∃Rα

n ∈ Rα) F ⊆ Rα
n or (∀Rα

n ∈ Rα)
|F ∩ Rα

n| < ω
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Induction step: Suppose we know already Fα and we construct Fα+1.

Case A. (∃K ∈ [ω]<ω) (∀F ∈ Fα) F ∩
⋃

n∈K Rα
n 6∈ (S)

For some n0 ∈ K the filter base generated by Rα
n0

and Fα satisfies condi-
tion (v). Otherwise, there would be for every n ∈ K a set Fn ∈ Fα such that
Fn ∩Rα

n ∈ (S). We would have
⋂

n∈K Fn ∩
⋃

n∈K Rα
n ∈ (S) — a contradiction

to the assumption of Case A. So we let Fα+1 be the filter base generated by
Fα and the set Rα

n0
.

Case B. (∀K ∈ [ω]<ω) (∃FK ∈ Fα) FK ∩
⋃

n∈K Rα
n ∈ (S)

Consider P = {〈K, n〉 ∈ [ω]<ω × ω : K ⊆
⋃

i≤n Rα
i , K ∩ Rα

n 6= ∅}
with ordering given by 〈K, n〉 ≤P 〈L, m〉 if 〈K, n〉 = 〈L, m〉 or K ⊃ L,
min(K \ L) > max L, n > m and (K \ L) ∩

⋃
i≤m Rα

i = ∅. For every

F ∈ Fα and k ∈ ω define DF,k = {〈K, n〉 ∈ P :
∑

a∈K∩F
1
a
≥ k} and

Dj = {〈K, n〉 ∈ P : n ≥ j}.

Claim: DF,k is dense in P for every F ∈ Fα and k ∈ ω; Dj is dense in P
for every j ∈ ω.

Take 〈L, m〉 ∈ P arbitrary. According to the assumption there is Fm ∈
Fα such that Fm ∩

⋃
i≤m Rα

i ∈ (S). It follows that (Fm ∩ F ) \
⋃

i≤m Rα
i 6∈

(S). Hence we can choose a finite set L′ ⊆ (Fm ∩ F ) \
⋃

i≤m Rα
i such that∑

a∈L′
1
a
≥ k. Let n = max{i : L′ ∩ Rα

i 6= ∅} and K = L ∪ L′. It is easy to
see that 〈K, n〉 ≤P 〈L, m〉 and 〈K, n〉 ∈ DF,k. So DF,k is dense. For j ≤ m
we have 〈L, m〉 ∈ Dj and for any j > m we can choose arbitrary r ∈ Rα

j

such that r > max L. Let K ′ = L ∪ {r}. Of course, 〈K ′, j〉 ≤P 〈L, m〉 and
〈K ′, j〉 ∈ Dj. So Dj is dense.

The family D = {DF,k : F ∈ Fα, k ∈ ω} ∪ {Dj : j ∈ ω} consists of dense
subsets in P and |D | < c. Therefore there is a D-generic filter G .

Let U =
⋃
{K : 〈K, n〉 ∈ G }. It remains to check that:

• (∀F ∈ Fα)
∑

a∈U∩F
1
a

= +∞
We have U ∩ F 6∈ (S) for every F ∈ Fα because for every k ∈ ω there

exists 〈K, n〉 ∈ G ∩ DF,k and we get
∑

a∈U∩F
1
a
≥

∑
a∈K∩F

1
a
≥ k.

• (∀Rα
n ∈ Rα) |U ∩ Rα

n| < ω
Take 〈Kn, jn〉 ∈ G ∩ Dn where jn = min{j : (∃K ∈ [ω]<ω)〈K, j〉 ∈

G ∩ Dn}. Now observe that for 〈K, m〉 ∈ G we have K ∩ Rα
n = ∅ if m < n

and that K ∩Rα
n = Kn ∩Rα

n if m ≥ n. To see the latter consider 〈L, m′〉 ∈ G
such that 〈L, m′〉 ≤P 〈K, m〉 and 〈L, m′〉 ≤P 〈Kn, jn〉 (such a condition exists
because G is a filter) for which we get L∩Rα

n = K∩Rα
n and L∩Rα

n = Kn∩Rα
n.

It follows that U ∩ Rα
n = Kn ∩ Rα

n is finite.

To complete the induction step let Fα+1 be the filter base generated by
Fα and U .
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It is clear from condition (vi) that every ultrafilter which extends F =⋃
α<c Fα is a P -point. Because of condition (v) there exists ultrafilter ex-

tending F which extends the dual filter of (S). So there exists a P -point
which is not an (S)-ultrafilter.

Proposition 2.3.6. If an (S)-ultrafilter exists then there is an (S)-ultrafilter
which is not an (SC)-ultrafilter.

Proof. We shall prove in Proposition 3.2.1 that the class of (S)-ultrafilters
is closed under products (for the definition of products of ultrafilters see the
first paragraph of chapter 3). Hence if U is an (S)-ultrafilter then U ·U is
an (S)-ultrafilter too. But the ultrafilter U ·U cannot be an (SC)-ultrafilter
according to Proposition 3.2.2.

Corollary 2.3.7. (MActble) There is an (S)-ultrafilter which is not an (SC)-
ultrafilter.

Proof. If Martin’s Axiom holds then selective ultrafilters exist. Every selec-
tive ultrafilter is a thin ultrafilter (see Proposition 2.3.1) and hence an (S)-
ultrafilter. So (S)-ultrafilters exist under Martin’s Axiom and from the previ-
ous proposition we get an (S)-ultrafilter which is not an (SC)-ultrafilter.

2.4 Connections to Q-points and rapid ultrafilters

The following diagram shows all inclusions between the classes of (hered-
itarily) Q-points, (hereditarily) rapid ultrafilters, thin ultrafilters and (S)-
ultrafilters (an arrow stands for inclusion). No arrow can be reversed or
added if we assume Martin’s Axiom for countable posets.

?> =<
89 :;

her. Q-points
= thin ultfs

����
��

�

��
??

??
?

?> =<89 :;her. rapid ultfs

����
��

�

��
??

??
?

?> =<89 :;(S)-ultfs

?> =<89 :;Q-points

��
??

??
??

?> =<89 :;rapid ultfs

Proposition 2.4.1. Every thin ultrafilter is a Q-point.

Proof. Let U be a thin ultrafilter and Q = {Qn : n ∈ ω} a partition of ω
into finite sets. Enumerate Qn = {qn

i : i = 0, . . . , kn} (where kn = |Qn| − 1).
We want to find U ∈ U such that |U ∩ Qn| ≤ 1 for every n ∈ ω.

Define a strictly increasing function f : ω → ω in the following way:
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f(q0
0) = 0, f(qn+1

0 ) = (n + 2) · max{f(qn
kn

), kn+1} for n ∈ ω and f(qn
i ) =

f(qn
0 ) + i for i ≤ kn, n ∈ ω.
Since U is a thin ultrafilter there exists U0 ∈ U such that f [U0] = {vm :

m ∈ ω} is a thin set. Hence there is m0 ∈ ω such that vm

vm+1
< 1

2
for every

m ≥ m0.
Function f is one-to-one and Q a partition of ω into finite sets so we can

find K ⊆ ω of size at most m0 such that {f−1(vi) : i < m0} ⊆
⋃

n∈K Qn.
The latter set is finite, which implies U = U0 \

⋃
n∈K Qn ∈ U .

From the definition we have U ∩ Qn = ∅ for n ∈ K and it remains to
check that
• (∀n 6∈ K) |U ∩ Qn| ≤ 1

Assume for the contrary that for some n 6∈ K there are two distinct el-
ements u1, u2 ∈ U ∩ Qn, u1 < u2. Then f(u1) = vm for some m ≥ m0 and

f(u2) = vn for some n ≥ m + 1. We get vm

vm+1
≥ vm

vn
= f(u1)

f(u2)
≥

f(qn
0
)

f(qn
0
)+kn

≥
(n+1)·M

(n+1)·M+M
= n+1

n+2
where M = max{f(qn−1

kn−1
), kn}. But n+1

n+2
≥ 1

2
— a contra-

diction.

Lemma 2.4.2. Every Q-point contains a thin set.

Proof. It follows from the proof of Proposition 2.3.1 that every Q-point con-
tains a thin set because the partition considered in the proof consists of finite
sets.

Corollary 2.4.3. A free ultrafilter on ω is thin if and only if it is a heredi-
tarily Q-point.

Proof. If U is a thin ultrafilter then every V ≤RK U is also a thin ultrafilter
because thin ultrafilters are downward closed under Rudin-Keisler order and
Proposition 2.4.1 implies that U is a hereditarily Q-point.

If U is a hereditarily Q-point then for every function f the ultrafilter
βf(U ) is a Q-point and hence contains according to Lemma 2.4.2 a thin set.
It follows from the definition of βf(U ) that there exists U ∈ U such that
f [U ] is thin and U is a thin ultrafilter.

Lemma 2.4.4. Every rapid ultrafilter contains an (S)-set.

Proof. If U is a rapid ultrafilter then there is U = {un : n ∈ ω} ∈ U such
that 2n ≤ eU(n) = un for all but finitely many n. So

∑

n∈ω

1

un

≤
∑

n≤n0

1

un

+
∑

n>n0

1

2n
< +∞.

We see that the set U is an (S)-set.
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Corollary 2.4.5. Every hereditarily rapid ultrafilter is an (S)-ultrafilter.

Proof. If U is a hereditarily rapid ultrafilter then for every function f the ul-
trafilter βf(U ) is a rapid ultrafilter and hence contains according to Lemma
2.4.4 an (S)-set. It follows from the definition of βf(U ) that there exists
U ∈ U such that f [U ] belongs to the summable ideal and U is an (S)-
ultrafilter.

Proposition 2.4.6. (MActble) There is a hereditarily rapid ultrafilter which
is not a Q-point.

Proof. Enumerate ωω × ωω = {〈fα, gα〉 : α < c} and fix a partition of ω into
finite sets {Qn : n ∈ ω} (such that lim supn→∞ |Qn| = +∞). By transfinite
induction on α < c we will construct filter bases Fα, α < c, so that the
following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα) (∀k ∈ ω) (∃n ∈ ω) |F ∩ Qn| ≥ k
(vi) (∀α) (∃U ∈ Fα+1) such that gα ≤∗ efα[U ] or fα[U ] is finite

Let us first prove that any filter base satisfying condition (v) can be
extended to an ultrafilter which is not a Q-point.

Claim 1. Let F be a filter base on ω such that (∀F ∈ F ) (∀k ∈ ω)
(∃n ∈ ω) |F ∩Qn| ≥ k. For every A ⊆ ω either 〈F ∪ {A}〉 or 〈F ∪ {ω \A}〉
has the same property.

If 〈F ∪ {A}〉 does not have the required property then there is F0 ∈ F
and k0 ∈ ω such that |F0 ∩ A ∩ Qn| < k0 for every n ∈ ω. Since F ∩ F0 ∈ F
we know that for every k ∈ ω there is nk such that |F ∩ F0 ∩ Qnk

| ≥ k + k0.
It follows that |F ∩ (ω \ A) ∩ Qnk

| ≥ k for every F ∈ F and 〈F ∪ {ω \ A}〉
has the required property.

Induction step: Suppose we know already Fα. If there is U ∈ Fα such
that gα ≤∗ efα[U ] then simply put Fα+1 = Fα. If there is not such a set U
we will construct a suitable set eventually making use of Martin’s Axiom.

Case A. (∃K ∈ [ω]<ω) (∀F ∈ Fα) (∀k) (∃n) |f−1
α [K] ∩ F ∩ Qn| ≥ k

Let Fα+1 be the filter base generated by Fα and U = f−1
α [K]. Then for

every ultrafilter U which extends the filter base Fα+1 the ultrafilter βfα(U )
is principal. It is easy to see that there is V ∈ U such that gα ≤∗ efα[V ].

Case B. (∀K ∈ [ω]<ω) (∃FK ∈ Fα) (∃kK) (∀n) |f−1
α [K]∩ FK ∩Qn| < kK

Consider P = {〈L, m〉 ∈ [ω]<ω × ω : L ⊆
⋃

i≤m Qi, L ∩ Qm 6= ∅, efα[L] >
gα � |L|} with partial ordering given by 〈K, n〉 ≤P 〈L, m〉 if 〈K, n〉 = 〈L, m〉
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or n > m, K ⊃ L, min(K \ L) > max L and (K \ L) ∩
⋃

i≤m Qi = ∅. For
every F ∈ Fα and k ∈ ω let DF,k = {〈L, m〉 ∈ P : (∃n)|L ∩ F ∩ Qn| ≥ k}.

Claim 2. DF,k is a dense subset of (P,≤P ) for every F ∈ Fα and k ∈ ω.
Let 〈L, m〉 ∈ P be arbitrary. Set M0 = max{gα(n) : n ≤ |L| + k}, M1 =

max fα[L] and M2 = 1 + max
⋃

i≤m Qi. Finally, let M = max{M0, M1, M2}.
Interval [0, M ] is finite so there exist FM ∈ Fα and kM ∈ ω such that for
every n we have |f−1

α [0, M ] ∩ FM ∩ Qn| < kM . According to condition (v)
there exists n (we may assume n > m) such that |F ∩FM ∩Qn| ≥ M +kM +k.
Since |F ∩FM ∩Qn ∩ f−1

α [0, M ]| < kM we can choose L′ ⊆ F ∩FM ∩Qn such
that |L′| = k and fα(a) > M . Let K = L∪L′. It is not difficult to check that
〈K, n〉 ∈ P and then it is obvious that 〈K, n〉 ∈ DF,k and 〈K, n〉 ≤P 〈L, m〉.
So DF,k is dense in P .

The family D = {DF,k : F ∈ Fα, k ∈ ω} consists of dense subsets of P
and has cardinality less than c. Therefore there exists a D-generic filter G
on P according to Martin’s Axiom for countable posets.

Let U =
⋃
{L : (∃m)〈L, m〉 ∈ G } and verify that the set U satisfies the

following conditions:
• (∀F ∈ Fα) (∀k ∈ ω) (∃n ∈ ω) |U ∩ F ∩ Qn| ≥ k

For every 〈K, m〉 ∈ G ∩ DF,k we have U ⊇ K and there is n such that
|K ∩ F ∩ Qn| ≥ k.

• gα ≤∗ efα[U ]

There exist 〈Kj, mj〉 ∈ G , j ∈ ω, such that 〈Kj+1, mj+1〉 ≤P 〈Kj, mj〉 for
every j ∈ ω and U =

⋃
j∈ω Kj. Since efα[Kj ] > gα � |Kj| for every j we have

gα ≤∗ efα[U ].
To complete the induction step let Fα+1 be the filter base generated by

Fα and U .
It is obvious that every ultrafilter which extends F =

⋃
α<c Fα is a

hereditarily rapid ultrafilter because of condition (vi) and it can be extended
to a non-Q-point because of condition (v).

Proposition 2.4.7. (MActble) For any (tall) ideal I on ω, there is a Q-point
which is not an I -ultrafilter.

Proof. Enumerate all partitions of ω into finite sets as {Qα : α < c} and
fix a partition {Rn : n ∈ ω} of ω into infinite sets. By transfinite induction
on α < c we will construct filter bases Fα, α < c, so that the following
conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
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(v) (∀α) (∀F ∈ Fα) (∀n ∈ ω) |F ∩ Rn| = ω
(vi) (∀α) (∃F ∈ Fα+1) (∀Q ∈ Qα) |F ∩ Q| ≤ 1

Induction step: Suppose we know already Fα. If there is a set F ∈ Fα

such that |F ∩ Q| ≤ 1 for every Q ∈ Qα then put Fα+1 = Fα. If this is not
the case, we can construct such a set using Martin’s Axiom.

Consider P = {K ∈ [ω]<ω : (∀Q ∈ Qα)|K ∩ Q| ≤ 1} with partial order
defined by K2 ≤P K1 if K2 = K1 or K2 ⊃ K1 and min(K2 \ K1) > max K1.
For every F ∈ Fα and n, k ∈ ω let DF,n,k = {K ∈ P : |K ∩ F ∩ Rn| ≥ k}.

Claim: DF,n,k is a dense subset of (P,≤P ) for every F ∈ Fα, n, k ∈ ω.
Whenever we take L ∈ P there is a finite set S ⊆ ω such that L ⊆

⋃
i∈S Qi.

Since (F ∩ Rn) \ [0, max
⋃

i∈S Qi] is infinite we can choose for j = 1, 2, . . . , k
distinct nj ∈ ω\S and elements qj ∈ F∩Rn∩Qnj

. Let K = L∪{q1, q2, . . . qk}.
Obviously, K ≤P L and K ∈ DF,n,k.

The family D = {DF,n,k : F ∈ Fα, n, k ∈ ω} consists of dense subsets of
P and has cardinality less than c. So there exists a D-generic filter G on P .

Let U =
⋃
{K : K ∈ G }. The set U satisfies the following conditions:

• (∀F ∈ Fα) (∀n ∈ ω) U ∩ F ∩ Rn is infinite
For every k ∈ ω and every K ∈ G ∩DF,n,k we have U ⊃ K and |K ∩ F ∩

Rn| ≥ k. Thus U ∩ F ∩ Rn is infinite.

• (∀Q ∈ Qα) |U ∩ Q| ≤ 1
If u, v ∈ U then there is K ∈ G such that u, v ∈ K and according to the

definiton of P elements u, v belong to distinct sets from partition Qα.
To complete the induction step let Fα+1 be the filter base generated by

Fα and U .
Finally, let F =

⋃
α<c Fα. It is obvious that each ultrafilter extending

F is a Q-point and F ∩ Rn is infinite for every F ∈ F , n ∈ ω.
Hence the set RA =

⋃
n∈A Rn is compatible with F for every A ⊆ ω. Let

G = {RA : A ∈ I ∗} and observe that any ultrafilter extending F ∪ G is a
Q-point because it extends F and it is not an I -ultrafilter because of the
function f defined by f [Rn] = {n}.

Proposition 2.4.8. (MActble) There is an (S)-ultrafilter which is not a rapid
ultrafilter.

Proof. Enumerate ωω = {fα : α < c}. By transfinite induction on α < c

we will construct filter bases Fα, α < c, so that the following conditions are
satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
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(v) (∀α) (∀F ∈ Fα) (∀k ∈ ω) (∃n ∈ ω) |F ∩ [2n, 2n+1)| ≥ nk

(vi) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ (S), i.e.,
∑

a∈fα[F ]
1
a

< +∞

Claim 1: Let A ⊆ ω. If (∀k ∈ ω) (∃n ∈ ω) |A ∩ [2n, 2n+1)| ≥ nk then
f 6≤∗ eA where f(n) = 2n+1.

It follows from the assumption that there are infinitely many n such that
A ∩ [2n, 2n+1) ≥ n. For such indices n we get an < 2n+1 where an is the nth
element of A. So we have eA(n) < f(n) for infinitely many n and f 6≤∗ eA.

Claim 2: If A is a subset of ω and F is a filter base on ω such that
(∀F ∈ F ) (∀k) (∃n) |F ∩[2n, 2n+1)| ≥ nk then either the filter base generated
by F and A or the filter base generated by F and ω\A has the same property.

If the filter generated by F and A does not have the required property
then it means that there exists F0 ∈ F and k0 ∈ ω such that |F0 ∩ A ∩
[2n, 2n+1)| < nk0 for every n ∈ ω. Since F ∩ F0 ∈ F we know that for every
k ∈ ω there is some n̄ ∈ ω such that |F ∩ F0 ∩ [2n̄, 2n̄+1)| ≥ n̄k+k0. It follows
that |F ∩ (ω \ A) ∩ [2n̄, 2n̄+1)| ≥ n̄k+k0 − n̄k0 > n̄k for every F ∈ F . So the
filter generated by F and ω \ A has the required property.

Induction step: Suppose we know already Fα. If there is F ∈ Fα such
that fα[F ] ∈ (S) then simply put Fα+1 = Fα. If fα[F ] 6∈ (S) (in particular,
fα[F ] is infinite) for every F ∈ Fα we will construct a suitable set eventually
making use of Martin’s Axiom.

If there exists K ∈ [ω]<ω such that for every F ∈ Fα and every k ∈ ω
there is n ∈ ω such that |F ∩ f−1

α [K] ∩ [2n, 2n+1)| ≥ nk then we let Fα+1 be
the filter base generated by Fα and f−1

α [K]. In the following we will assume
that no such set exists, i.e., (♣) for every K ∈ [ω]<ω there is FK ∈ Fα and
kK ∈ ω such that for every n ∈ ω we have |FK ∩ f−1

α [K] ∩ [2n, 2n+1)| < nkK .

Case I. (∀F ∈ Fα) (∀k ∈ ω) (∃n ∈ ω) |fα[F ∩ [2n, 2n+1)]| ≥ nk

Let P = {K ∈ [ω]<ω :
∑

a∈fα[K]
1
a
≤ (2 − 1

2|K| )
1

min fα[K]
} and define a

partial order ≤P on P in the following way: K ≤P L if and only if K = L
or K ⊃ L and min K \ L > max L. For every F ∈ Fα and k ∈ ω define
DF,k = {K ∈ P : (∃n ∈ ω)|K ∩ F ∩ [2n, 2n+1)| ≥ nk}.

Claim 1: DF,k is a dense subset of (P,≤P ) for every F ∈ Fα, k ∈ ω.
Let L ∈ P be arbitrary. According to the assumption of Case I. there ex-

ists n ∈ ω such that |fα[F∩[2n, 2n+1)]| ≥ nk+(|L|+k+1)·max fα[L] (we may assume
that n is large enough so that we have 2n > max L and n(|L|+k+1)·max fα[L] >
max fα[L] · n|L|+k+1).

Since nk+(|L|+k+1)·max fα[L] > nk + n(|L|+k+1)·max fα[L] there exists L′ ⊆ F ∩
[2n, 2n+1) of size nk such that a > max L and fα(a) > n(|L|+k+1)·max fα[L] >
max fα[L] · n|L|+k+1 for every a ∈ L′. Let K = L ∪ L′.

To see that K ∈ P observe that
∑

a∈fα[K]
1
a

=
∑

a∈fα[L]
1
a

+
∑

a∈fα[L′]
1
a
≤
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(2− 1
2|L| )

1
min fα[L]

+ nk

n|L|+k+1·max fα[L]
≤ (2− 1

2|L| )
1

min fα[L]
+ 1

n|L|+1·max fα[L]
≤ (2−

1
2|L| + 1

2|L|+1 ) 1
min fα[L]

= (2 − 1
2|L|+1 ) 1

min fα[L]
. Since min fα[L] = min fα[K] and

|K| ≥ |L| + 1 we get
∑

a∈fα[K]
1
a
≤ (2 − 1

2|K| )
1

min fα[K]
. It is obvious that

K ≤P L and K ∈ DF,k. Therefore DF,k is dense in P .

Since D = {DF,k : F ∈ Fα, k ∈ ω} is a family of dense subsets of a
countable poset and |D | < c there is a D-generic filter G on P .

Let U =
⋃
{K : K ∈ G }. It remains to check that:

• (∀F ∈ Fα) (∀k ∈ ω) (∃n ∈ ω) |U ∩ F ∩ [2n, 2n+1)| ≥ nk

For every K ∈ G ∩ DF,k we have U ⊇ K and there is some n such that
|K ∩ F ∩ [2n, 2n+1)| ≥ nk.

•
∑

a∈fα[U ]
1
a

< +∞, i.e., fα[U ] ∈ (S)

Enumerate fα[U ] = {un : n ∈ ω}. For every n there exists Kn ∈ G such
that un ∈ Kn. Since G is a filter we may assume Kn+1 ≤P Kn for every
n ∈ ω. Obviously, U =

⋃
n∈ω Kn and we get

∑
a∈fα[U ]

1
a
≤ 2

min fα[U ]
because∑

a∈fα[Kn]
1
a
≤ (2 − 1

2|Kn| )
1

min fα[Kn]
for every n.

To complete the induction step let Fα+1 be the filter base generated by
Fα and U .

Case II. (∃F0 ∈ Fα) (∃k0 ∈ ω) (∀n ∈ ω) |fα[F0 ∩ [2n, 2n+1)| < nk0

Let P = {K ∈ [ω]<ω : (∀u, v ∈ K) u < v implies 2u < v} and define a
partial order ≤P on P in the following way: K ≤P L if and only if K = L
or K ⊃ L and min K \ L > max L. For every F ∈ Fα and k ∈ ω define
DF,k = {K ∈ P : (∃n ∈ ω)|F ∩ f−1

α [K] ∩ [2n, 2n+1)| ≥ nk}.

Claim 2: DF,k is a dense subset of (P,≤P ) for every F ∈ Fα, k ∈ ω.
Let L ∈ P be arbitrary. According to the assumption (♣) there is FL ∈

Fα and kL ∈ ω such that for every n we have |f−1
α [0, 2 max fα[L]] ∩ FL ∩

[2n, 2n+1)| < nkL . From condition (v) we know that there is n ∈ ω such
that |F ∩ FL ∩ F0 ∩ [2n, 2n+1)| ≥ nk+kL+k0 > nk+k0 + nkL. Hence there exists
M ⊆ F ∩FL∩F0∩ [2n, 2n+1) of size nk+k0 such that fα(a) > 2 max L for every
a ∈ M . It follows from the assumption of Case II. that there is h ∈ fα[M ]
such that |f−1

α (h) ∩ M | ≥ nk. Let K = L ∪ {h}. Since h ∈ fα[M ] we have
h > 2 max L and K ∈ P . It is obvious that K ≤P L and K ∈ DF,k. Hence
DF,k is dense.

Since D = {DF,k : F ∈ Fα, k ∈ ω} is a family of dense subsets of a
countable poset and |D | < c there is a D-generic filter G on P .

Let H =
⋃
{K : K ∈ G }. It remains to check that:

• (∀F ∈ Fα) (∀k ∈ ω) (∃n ∈ ω) |F ∩ f−1
α [H] ∩ [2n, 2n+1)| ≥ nk

For every K ∈ G ∩ DF,k we have H ⊇ K and there is some n such that
|F ∩ f−1

α [K] ∩ [2n, 2n+1)| ≥ nk.

• fα[f−1
α [H]] = H ∈ (S)
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Enumerate H = {hn : n ∈ ω}. Since hn+1 > 2hn for every n we get∑
n∈ω

1
hn

≤ 1
h0

∑
n∈ω

1
2n = 2

h0
.

To complete the induction step let Fα+1 be the filter base generated by
Fα and f−1

α [H].
It is obvious that every ultrafilter which extends F =

⋃
α<c Fα is an

(S)-ultrafilter and it can be extended to an ultrafilter that is not a rapid
ultrafilter because of condition (v).

2.5 Some other classes of I-ultrafilters

We know that van der Waerden ideal contains all thin sets therefore every
thin ultrafilters is a W -ultrafilter and it is consistent that W -ultrafilters exist.
Every W -ultrafilter is an (H)-ultrafilter because van der Waerden ideal is a
subideal of the density ideal. We present in this chapter two more results
concerning W -ultrafilters and we show also that it is consistent that Ig-
ultrafilters exist for every generalized summable ideal Ig.

Proposition 2.5.1. (MActble) There is a P -point which is not a W -ultrafilter.

Proof. Enumerate all partitions of ω (into infinite sets) as {Rα : α < c}. By
transfinite induction on α < c we will construct filter bases Fα, α < c, so
that the following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα) F 6∈ W
(vi) (∀α) (∃F ∈ Fα+1) either (∃Rα

n ∈ Rα) F ⊆ Rα
n or (∀Rα

n ∈ Rα)
|F ∩ Rα

n| < ω

Induction step: Suppose we already know Fα and we construct Fα+1.

Case A. (∃K ∈ [ω]<ω) (∀F ∈ Fα) F ∩
⋃

n∈K Rα
n 6∈ W

For some n0 ∈ K the filter base generated by Rα
n0

and Fα satisfies condi-
tion (v). Otherwise, there would be for every n ∈ K a set Fn ∈ Fα such that
Fn ∩ Rα

n ∈ W . We would have
⋂

n∈K Fn ∩
⋃

n∈K Rα
n ∈ W — a contradiction

to the assumption of Case A. Now we let Fα+1 be the filter base generated
by Fα and the set Rα

n0
.

Case B. (∀K ∈ [ω]<ω) (∃FK ∈ Fα) FK ∩
⋃

n∈K Rα
n ∈ W

Consider P = {〈K, n〉 ∈ [ω]<ω × ω : K ⊆
⋃

i≤n Rα
i , K ∩ Rα

n 6= ∅} and
define 〈K, n〉 ≤P 〈L, m〉 if 〈K, n〉 = 〈L, m〉 or K ⊃ L, min(K \ L) > max L,
n > m and (K \ L) ∩

⋃
i≤m Rα

i = ∅. For every F ∈ Fα and k ∈ ω let
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DF,k = {〈K, n〉 ∈ P : K ∩ F contains an arithmetic progression of length k}
and Dj = {〈K, n〉 ∈ P : n ≥ j}.

Claim: DF,k is dense in (P,≤P ) for every F ∈ Fα and k ∈ ω; Dj is dense
in (P,≤P ) for every j ∈ ω.

Take 〈L, m〉 ∈ P arbitrary. According to the assumption there is Fm ∈
Fα such that Fm ∩

⋃
i≤m Rα

i ∈ W . It follows that (Fm ∩ F ) \
⋃

i≤m Rα
i 6∈ W .

Hence we can choose an arithmetic progression L′ ⊆ (Fm∩F )\
⋃

i≤m Rα
i such

that min L′ > max L and the length of L′ is k. Let n = max{i : L′ ∩Rα
i 6= ∅}

and K = L ∪ L′. It is easy to see that 〈K, n〉 ≤P 〈L, m〉 and 〈K, n〉 ∈ DF,k.
So DF,k is dense. For j ≤ m we have 〈L, m〉 ∈ Dj and for any j > m we can
choose arbitrary r ∈ Rα

j such that r > max L. Let K ′ = L ∪ {r}. Of course,
〈K ′, j〉 ≤P 〈L, m〉 and 〈K ′, j〉 ∈ Dj. So Dj is dense.

The family D = {DF,k : F ∈ Fα, k ∈ ω} ∪ {Dj : j ∈ ω} consists of dense
subsets in P and |D | < c. Therefore there is a D-generic filter G .

Let U =
⋃
{K : 〈K, n〉 ∈ G }. It remains to check that:

• (∀F ∈ Fα) U ∩ F contains arithmetic progressions of arbitrary length
Take k ∈ ω arbitrary. For every K ∈ G ∩ DF,k we have U ⊇ K and

K ∩F contains an arithmetic progression of length k. Hence U ∩F contains
arithmetic progressions of arbitrary length.

• (∀Rα
n ∈ Rα) |U ∩ Rα

n| < ω
Take 〈Kn, jn〉 ∈ G ∩ Dn where jn = min{j : (∃K ∈ [ω]<ω)〈K, j〉 ∈

G ∩ Dn}. Now observe that for 〈K, m〉 ∈ G we have K ∩ Rα
n = ∅ if m < n

and that K ∩Rα
n = Kn ∩Rα

n if m ≥ n. To see the latter consider 〈L, m′〉 ∈ G
such that 〈L, m′〉 ≤P 〈K, m〉 and 〈L, m′〉 ≤P 〈Kn, jn〉 (such a condition exists
because G is a filter) for which we get L∩Rα

n = K∩Rα
n and L∩Rα

n = Kn∩Rα
n.

It follows that U ∩ Rα
n = Kn ∩ Rα

n is finite.
To complete the induction step let Fα+1 be the filter base generated by

Fα and U .
It is obvious that every ultrafilter which extends F =

⋃
α<c Fα is a P -

point. Because of condition (v) there exists an ultrafilter extending F which
extends the dual filter of W , i.e. it is not a W -ultrafilter.

Proposition 2.5.2. (MActble) There exists an (S)-ultrafilter which is not a
W -ultrafilter.

Proof. Enumerate ωω = {fα : α < c}. By transfinite induction on α < c

we will construct filter bases Fα, α < c, so that the following conditions are
satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit
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(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∀F ∈ Fα) F 6∈ W
(vi) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ (S), i.e.,

∑
a∈fα[F ]

1
a

< +∞

Induction step: Suppose we know already Fα. If there is F ∈ Fα such
that fα[F ] ∈ (S) then simply put Fα+1 = Fα. If fα[F ] 6∈ (S) for every
F ∈ Fα we will construct a suitable set to add.

Case A. (∃M ∈ [ω]<ω) (∀F ∈ Fα) f−1
α [M ] ∩ F 6∈ W

Let Fα+1 be the filter base generated by Fα and f−1
α [M ].

Case B. (∀M ∈ [ω]<ω) (∃FM ∈ Fα) f−1
α [M ] ∩ FM ∈ W (hence FM \

f−1
α [M ] 6∈ W ).

Consider P = {K ∈ [ω]<ω :
∑

a∈fα[K]
1
a
≤ (2 − 1

2|K| )
1

min fα[K]
} and define a

partial order ≤P on P in the following way: K ≤P L if and only if K = L
or K ⊃ L and min K \ L > max L. For every F ∈ Fα and k ∈ ω let
DF,k = {K ∈ P : K ∩ F contains an arithmetic progression of length k}.

Claim: DF,k is a dense subset of (P,≤P ) for every F ∈ Fα, k ∈ ω.
Take L ∈ P arbitrary. For rL = 2|L|+1 · k · max fα[L] we have FrL

∈ Fα

such that FrL
\ f−1

α [0, rL] 6∈ W and we denote ArL
= (F ∩ FrL

) \ f−1
α [0, rL].

Since ArL
6∈ W we can choose an arithmetic progression L′ ⊆ ArL

such that
min L′ > max L and |L′| = k. Let K = L∪L′. To see that K ∈ P notice that∑

a∈fα[K]
1
a

=
∑

a∈fα[L]
1
a

+
∑

a∈fα[L′]
1
a
≤ (2 − 1

2|L| )
1

min fα[L]
+ k

2|L|+1k max fα[L]
≤

(2 − 1
2|L| + 1

2|L|+1 ) 1
min fα[L]

= (2 − 1
2|L|+1 ) 1

min fα[L]
. Since min fα[L] = min fα[K]

and |K| ≥ |L| + 1 we get
∑

a∈fα[K]
1
a
≤ (2 − 1

2|K| )
1

min fα[K]
. It is obvious that

K ≤P L and K ∈ DF,k once we have checked that K ∈ P . Therefore DF,k is
dense in P .

Since D = {DF,k : F ∈ Fα, k ∈ ω} is a family of size less than c consisting
of dense subsets of a countable poset there is a D-generic filter G .

Let U =
⋃
{K : K ∈ G }. It remains to check that:

• (∀F ∈ Fα) U ∩ F contains arithmetic progressions of arbitrary length
Take k ∈ ω arbitrary. For every K ∈ G ∩ DF,k we have U ⊇ K and

K ∩ F contains arithmetic progression of length K. Hence U ∩ F contains
arithmetic progressions of arbitrary length.

•
∑

a∈fα[U ]
1
a

< +∞, i.e., fα[U ] ∈ (S)

Enumerate fα[U ] = {un : n ∈ ω}. For every n there exists Kn ∈ G such
that un ∈ Kn. Since G is a filter we may assume Kn+1 ≤P Kn for every
n ∈ ω. Obviously, U =

⋃
n∈ω Kn and we get

∑
a∈fα[U ]

1
a
≤ 2

min fα[U ]
because∑

a∈fα[Kn]
1
a
≤ (2 − 1

2|Kn| )
1

min fα[Kn]
for every n.

To complete the induction step let Fα+1 be the filter base generated by
Fα and U .
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It is obvious that every ultrafilter which extends F =
⋃

α<c Fα is an
(S)-ultrafilter. Because of condition (v) there exists ultrafilter extending F
which extends the dual filter of W .

The generalized summable ideal Ig is a tall P -ideal on natural numbers so
we can apply Proposition 2.1.13 to show that the existence of Ig-ultrafilters is
consistent with ZFC. From Proposition 2.1.14 we get even an Ig-ultrafilter
that is not a P -point under the assumption that Continuum Hypothesis
holds. The following proposition states that it is sufficient to assume Martin’s
Axiom for countable posets to construct an Ig-ultrafilter (we regard here Ig

as an ideal on ω, which is possible since ω and
�

are isomorphic).

Proposition 2.5.3. (MActble) For every function g : ω → (0, +∞) with
limn→∞ g(n) = 0 there is an Ig-ultrafilter.

Proof. Enumerate ωω = {fα : α < c}. By transfinite induction on α < c

we will construct filter bases Fα, α < c, so that the following conditions are
satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ Ig, i.e.,

∑
a∈fα[F ] g(a) < +∞

Induction step: Suppose we know already Fα. If there is F ∈ Fα such
that fα[F ] ∈ Ig then simply put Fα+1 = Fα. If fα[F ] 6∈ Ig for every
F ∈ Fα we will construct a suitable set to add.

Consider a poset P = {K ∈ [ω]<ω : g(v) ≤ 1
2
g(u) whenever u < v,

u, v ∈ fα[K]} and define a partial order ≤P on P in the following way:
K ≤P L if and only if K ⊇ L. For every F ∈ Fα and m ∈ ω let DF,m =
{K ∈ P : |K ∩ F | ≥ m}.

Claim: DF,m is a dense subset of (P,≤P ) for every F ∈ Fα, m ∈ ω.
Take arbitrary L ∈ (P,≤P ). Since fα[F ] 6∈ Ig the set F \f−1

α [0, max fα[L]]
is infinite. So we can choose x1 ∈ F such that x1 > max L, fα(x1) >
max fα[L] and g(fα(x1)) < 1

2
max{g(u) : u ∈ fα[L]}. Now, we can proceed

by induction and choose elements x2, . . . , xm such that xi ∈ F , xi > xi−1,
fα(xi) > fα(xi−1) and g(fα(xi)) < 1

2
g(fα(xi−1)) for i = 2, . . . , m. Finally,

put K = L ∪ {x1, x2, . . . , xm}. Obviously, K ≤P L and K ∈ DF,m so the set
DF,m is dense in P .

Since the family D = {DF,m : F ∈ Fα, m ∈ ω} consists of dense subsets
of a countable poset and |D | < c there is a D-generic filter G on P .

Let U =
⋃
{K : K ∈ G }. It remains to check that:
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• (∀F ∈ Fα) U ∩ F is infinite
For every m ∈ ω there exists K ∈ G ∩ DF,m. Since U ⊇ K we get

|U ∩ F | ≥ |K ∩ F | ≥ m and the set U ∩ F is infinite.

•
∑

a∈fα[U ] g(a) < +∞, i.e., fα[U ] ∈ Ig

Let fα[U ] = {un : n ∈ ω} be an increasing enumeration of fα[U ]. Ac-
cording to the definition of P we have g(un+1) ≤

1
2
g(un) for every n. Hence∑

n∈ω g(un) ≤ g(u0) ·
∑

n∈ω
1
2n < +∞.

To complete the induction step let Fα+1 be the filter base generated by
Fα and U . It is obvious that every ultrafilter which extends F =

⋃
α<c Fα

is an Ig-ultrafilter.
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3 Sums of I-ultrafilters

Baumgartner in [2] studied closure of I -ultrafilters under ultrafilter sums
for the setting X = � and I a family of subsets of � . We study the closure
of I -ultrafilters under ultrafilter sums for the case X = ω and I is an ideal
on ω. Two general results can be found in the first section and some results
concerning ideals from chapter 1 are in the second section.

Let us recall the definition of ultrafilter sums and products at first:
If U and Vn, n ∈ ω, are ultrafilters on ω then

∑
U
〈Vn : n ∈ ω〉 is

the ultrafilter on ω × ω defined by M ∈
∑

U
〈Vn : n ∈ ω〉 if and only if

{n : {m : 〈n, m〉 ∈ A} ∈ Vn} ∈ U . We often identify isomorphic ultrafilters
so we occasionally regard

∑
U
〈Vn : n ∈ ω〉 as an ultrafilter on ω. Ultrafilter∑

U
〈Vn : n ∈ ω〉 is called the U -sum of ultrafilters Vn, n ∈ ω. If Vn = V for

every n ∈ ω then we write
∑

U
〈Vn : n ∈ ω〉 = U · V and ultrafilter U · V

is called the product of ultrafilters U and V .

3.1 General results

Definition 3.1.1. Let C and D be classes of ultrafilters. We say that C is
closed under D-sums provided that whenever {Vn : n ∈ ω} ⊆ C and U ∈ D
then

∑
U
〈Vn : n ∈ ω〉 ∈ C. In practice we can talk about closure under

Ramsey sums, P -point sums, I -sums, thin sums, (S)-sums, (SC)-sums,
(H)-sums, etc.

Proposition 3.1.2. Let I be an ideal on ω and C a class of ultrafilters on ω.
If there exists an ultrafilter in C which is not an I -ultrafilter then the class
of I -ultrafilters is not closed under C-sums (in other words, if the class of
I -ultrafilters is closed under C-sums then C is a subclass of I -ultrafilters).

Proof. Let Vn, n ∈ ω, be arbitrary I -ultrafilters and let U ∈ C be an
ultrafilter that is not an I -ultrafilter, i.e., there exists g : ω → ω such that
g[V ] 6∈ I for every V ∈ U . Define f : ω × ω → ω so that f(〈n, m〉) = g(n)
for every n, m ∈ ω. For every U ⊆ ω × ω let Un = {m : 〈n, m〉 ∈ U} and

Ũ = {n : Un ∈ Vn}.

For every U ∈
∑

U
〈Vn : n ∈ ω〉 we have {n : (∃m) 〈n, m〉 ∈ U} ⊇ Ũ ∈ U .

Hence f [U ] ⊇ g[Ũ ] 6∈ I and
∑

U
〈Vn : n ∈ ω〉 is not an I -ultrafilter.

Proposition 3.1.3. If I is a P -ideal on ω then the class of I -ultrafilters
is closed under I -sums.

Proof. Suppose U and Vn, n ∈ ω, are I -ultrafilters. Let f : ω × ω → ω
be an arbitrary function. We want to find U ∈

∑
U
〈Vn : n ∈ ω〉 such that

f [U ] ∈ I .
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Define function fn : ω → ω by fn(m) = f(〈n, m〉) for every n ∈ ω.
Since Vn is an I -ultrafilter there exists Un ∈ Vn such that fn[Un] ∈ I

for every n. Now we can find a set A ∈ I such that fn[Un] ⊆∗ A for every
n because we assumed that I is a P -ideal.

It is obvious that f−1
n [fn[Un]] ∈ Vn. Therefore either f−1

n [fn[Un] ∩ A] or
f−1

n [fn[Un] \ A] belongs to Vn. Let I0 = {n ∈ ω : f−1
n [fn[Un] ∩ A] ∈ Vn} and

I1 = {n ∈ ω : f−1
n [fn[Un] \A] ∈ Vn}. Since U is an ultrafilter one of the sets

I0, I1 belongs to the ultrafilter U .

Case A. I0 ∈ U
Put U = {{n} × f−1

n [fn[Un] ∩ A] : n ∈ I0}. It is easy to see that U ∈∑
U
〈Vn : n ∈ ω〉 and f [U ] =

⋃
n∈I0

fn[Un] ∩ A ⊆ A ∈ I .

Case B. I1 ∈ U
Since fn[Un]\A is finite and Vn is an ultrafilter, there exists kn ∈ fn[Un]\A

such that f−1
n {kn} ∈ Vn. Define g : ω → ω by g(n) = kn. Since U is an

I -ultrafilter there exists V ∈ U such that g[V ] ∈ I . It remains to put U =
{{n} × f−1

n {kn} : n ∈ I1 ∩ V }. It is easy to check that U ∈
∑

U
〈Vn : n ∈ ω〉

and f [U ] ⊆ g[V ] ∈ I .

3.2 Special classes

Proposition 3.2.1. The class of (S)-ultrafilters is closed under (S)-sums,
the class of (H)-ultrafilters is closed under (H)-sums and the class of Ig-
ultrafilters is closed under Ig-sums.

Proof. Since (S), (H) and Ig are P -ideals it is an immediate consequence of
Proposition 3.1.3.

Ideals generated by thin sets and (SC)-sets are not P -ideals (see Propo-
sition 1.1.5 and Proposition 1.2.8) and it turns out that thin ultrafilters and
(SC)-ultrafilters are not closed even under products which are special cases
of sums.

Proposition 3.2.2. U ·U is neither a thin ultrafilter nor an (SC)-ultrafilter
for every U ∈ ω∗.

Proof. Assume U is a free ultrafilter on ω. Let us recall that U · U =∑
U
〈Vn : n ∈ ω〉 where Vn = U for every n ∈ ω. For every U ⊆ ω × ω let

Un = {m : 〈n, m〉 ∈ U} and Ũ = {n : Un ∈ U }.
Consider f : ω × ω → ω defined by f(〈n, m〉) = n + m. For every

n ∈ ω define fn : ω → ω by fn(m) = f(〈n, m〉). Notice that that fn is
one-to-one for every n and f is finite-to-one. For every A ⊆ ω we have
fn[A] = A + n = {a + n : a ∈ A} according to the definition of fn. We
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will show in the following that f [U ] is not thin and f [U ] 6∈ (SC) for every
U ∈ U · U .

Fix U ∈ U ·U and let {an : n ∈ ω} be an increasing enumeration of f [U ].

Since U ∈ U · U we have Ũ ∈ U , in particular Ũ is infinite. Choose two
distinct elements n1, n2 ∈ Ũ and denote V = Un1

∩Un2
. The set V is infinite

because U is a free ultrafilter. We get f [U ] =
⋃

n∈ω fn[Un] ⊇ fn1
[Un1

] ∪
fn2

[Un2
] ⊇ (V +n1)∪(V +n2). It follows that |f [U ]∩[v, v+max{n1, n2}]| ≥ 2

for every v ∈ V .
If u ≥ max{n1, n2} then for an, an+1 ∈ [u, u + max{n1, n2}] we have

an

an+1
≥ u

u+max{n1,n2}
≥ 1

2
and an+1 − an ≤ max{n1, n2}.

There are infinitely many u ∈ V with u ≥ max{n1, n2}. It follows that the
set f [U ] is not thin because lim supn→∞

an

an+1
≥ 1

2
and f [U ] does not belong

to (SC) either because there is j ≤ max{n1, n2} such that (f [U ] + j) ∩ f [U ]
is infinite.
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4 Weaker forms of I-ultrafilters

In the first section of this chapter we present several results concerning weak
I -ultrafilters which we define analogously to I -ultrafilters with the only
difference that functions considered in the definition are finite-to-one.

In the second section we restrict further the family of functions considered
in the definition of an I -ultrafilter to one-to-one functions and focus on the
summable ideal to get an example of such an ultrafilter in ZFC.

4.1 Weak I-ultrafilters

Definition 4.1.1. Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets. Given an ultrafilter U on
ω, we say that U is a weak I -ultrafilter if for every finite-to-one mapping
F : ω → X there is U ∈ U such that F [U ] ∈ I .

Obviously, every I -ultrafilter is a weak I -ultrafilter.
In the following we concentrate on weak I -ultrafilters, where X = ω and

I is again a collection of small subsets of ω and we are especially interested
in the ideals introduced in chapter 1.

Lemma 4.1.2. If I is a tall P -ideal and Un, n ∈ ω, weak I -ultrafilters
then every accumulation point of the set {Un : n ∈ ω} is a weak I -ultrafilter.

Proof. Assume f is a finite-to-one function. There exists Un ∈ Un such that
f [Un] ∈ I for every n ∈ ω. Since I is a P -ideal there exists an infinite
set A ∈ I such that f [Un] ⊆∗ A for every n. It implies Un ⊆∗ f−1[A]
because f is finite-to-one. If U is an accumulation point of {Un : n ∈ ω}
then U = f−1[A] ∈ U because ω \ f−1[A] 6∈ Un for every n. Of course,
f [U ] = A ∈ I and it follows that U is a weak I -ultrafilter.

Weak thin ultrafilters provide a new description of Q-points.

Proposition 4.1.3. An ultrafilter on ω is a weak thin ultrafilter if and only
if it is a Q-point.

Proof. It follows from the proof of Proposition 2.4.1 that every weak thin
ultrafilter is a Q-point.

Now, assume U is a Q-point and f : ω → ω is a finite-to-one mapping.
Define Qn = f−1[n!, (n + 1)!) for every n ∈ ω. The family {Qn : n ∈ ω} is a
partition of ω into finite sets. So there exists V ∈ U such that |V ∩Qn| ≤ 1
for every n. Since U is an ultrafilter either V0 =

⋃
{Q2n : n ∈ ω}, or
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V1 =
⋃
{Q2n+1 : n ∈ ω} belongs to the ultrafilter U . We may assume that

V0 ∈ U . Let U = V ∩ V0. It is easy to verify that f [U ] is a thin set:
If an, an+1 ∈ f [U ] then there is kn ∈ ω such that an ∈ [(2kn)!, (2kn + 1)!)

and an+1 ≥ (2kn + 2)!. We get lim supn→∞
an

an+1
≤ lim supn→∞

(2kn+1)!
(2kn+2)!

=

lim supn→∞
1

2kn+2
≤ lim supn→∞

1
2n+2

= 0.

Corollary 4.1.4. It is consistent that there are no weak thin ultrafilters. �

It follows from Proposition 2.4.7 that there are rapid ultrafilters which
are not (S)-ultrafilters, but there are no rapid ultrafilters which are not weak
(S)-ultrafilters.

Proposition 4.1.5. Every rapid ultrafilter is a weak (S)-ultrafilter.

Proof. Assume U is a rapid ultrafilter and f : ω → ω a finite-to-one function.
Define g(n) = max f−1[0, 2n] + 1. Since U is rapid there is U ∈ U such that
g ≤∗ eU . So we have un ≥ g(n) (where un denotes the nth element of U) for
every n ≥ n0. The definition of function g gives f(un) > 2n. It follows that

∑

a∈f [U ]

1

a
≤

∑

n<n0

1

f(un)
+

∑

n≥n0

1

f(un)
≤

∑

n<n0

1

f(un)
+

∑

n≥n0

1

2n
< +∞.

Hence f [U ] belongs to the summable ideal and U is a weak I -ultrafilter.

4.2 0-points and summable ultrafilters

Let us recall that an ultrafilter U ∈
� ∗ is called a 0-point if for every one-

to-one function f :
�

→
�

there exists a set U ∈ U such that f [U ] has
asymptotic density zero. Gryzlov constructed such ultrafilters in ZFC (see
[17], [18]).

We strengthen Gryzlov’s result and construct a summable ultrafilter that
we define as an ultrafilter U ∈

� ∗ such that for every one-to-one function
f :

�
→

�
there exists U ∈ U with f [U ] in the summable ideal. Our proof

was motivated by Gryzlov’s original construction as it was written down by
K. P. Hart [19].

Let us call a family F ⊆ P(
�

) summable if for every one-to-one function
f :

�
→

�
there is A ∈ F such that f [A] belongs to the summable ideal.

During the construction we make use of the following upper bound for
partial sums of the harmonic series:

Fact 4.2.1. 1 + 1
2

+ · · · + 1
N

≤ 1 + ln N ≤ 1 + log2 N for every N ∈
�

.
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Lemma 4.2.2 is fairly general, but it enables us to construct a summable
centered system by applying Proposition 4.2.3 to get summable k-linked fam-
ilies for every k. The summable centered system may then be extended to a
summable ultrafilter.

Lemma 4.2.2. If Fk is a k-linked family of infinite subsets of
�

for every
k ∈

�
then F = {F ⊆

�
: (∀k)(∃Uk ∈ Fk) Uk ⊆∗ F} is a centered system.

If moreover, I is a P -ideal, f ∈ � �
a one-to-one function and for every

k ∈
�

there exists Uk ∈ Fk such that f [Uk] ∈ I then there exists U ∈ F
such that f [U ] ∈ I . In particular, if Fk is summable for every k then F is
summable.

Proof. Take F1, F2, . . . , Fn ∈ F and for every j = 1, . . . , n choose U k
j ∈ Fk

such that Uk
j ⊆∗ Fj for every k. For every k ≥ n family Fk is n-linked, hence⋂n

j=1 Uk
j is an infinite set. We have

n⋂

j=1

Uk
j ⊆∗

n⋂

j=1

Fj

for every k ≥ n and it follows that family F is centered.
For the moreover part, consider A ∈ I such that f [U k] ⊆∗ A for every

k ∈
�

. We get Uk ⊆∗ f−1[A] for every k ∈
�

. According to the definition
set U = f−1[A] belongs to F and f [U ] = A ∈ I .

Proposition 4.2.3. Let A be an infinite subset of
�

. For every k ∈
�

there
exists a summable k-linked family Fk ⊆ P(A).

Proof. Fix k ∈
�

. We divide A into disjoint finite blocks, A =
⋃

n∈ � Bn,

and for every n enumerate Bn, faithfully, as {b(ϕ) : ϕ ∈
∏k

j=0 Q(j, n)} where

Q(j, n) is defined by Q(j, n) = 2n·2j

. Notice that for every i ≤ k we have
|Q(i, n)| = 2n · |

∏i−1
j=0 Q(j, n)|.

For every i ≤ k, x ∈ Q(i, n) and s ∈
∏k

j=i+1 Q(j, n) define Bn(i, x, s) =

{b(ϕa〈x〉as) : ϕ ∈
∏i−1

j=0 Q(j, n)}. For every one-to-one function f :
�

→
�

let mf
x = min f [Bn(i, x, s)]. Finally, let x(f, s) ∈ Q(i, n) be that x for which

mf
x is maximal, i.e., mf

x(f,s) = max{mf
x : x ∈ Q(i, n)}. Now, we may define

Af ⊆ A block by block as the union Af =
⋃

n∈ � Bf
n, where Bf

n ⊆ Bn is

defined in two stages: first Bf
n =

⋃k
i=0 Bf

n(i) and second Bf
n(i) =

⋃
{Bf

n(i, s) :

s ∈
∏k

j=i+1 Q(j, n)}, where Bf
n(i, s) = Bn(i, x(f, s), s).

Claim 1. The family Fk = {Af : f ∈ � �
one-to-one } is k-linked.
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Consider f0, f1, . . . , fk distinct one-to-one functions from
�

to
�

. Since

k⋂

j=0

Afj ⊇
∞⋃

n=1

k⋂

j=0

Bfj
n

it suffices to show that
⋂k

j=0 B
fj
n 6= ∅ for every n ∈

�
. To see this fix n and

define ϕ ∈
∏k

j=0 Q(j, n) recursively: put s0 = ∅ and set ϕ(k) = x(f0, s0),
next s1 = 〈ϕ(k)〉 and ϕ(k − 1) = x(f1, s1), and so on. It follows that b(ϕ) ∈⋂k

j=0 B
fj
n (k − j, sj) ⊆

⋂k

j=0 B
fj
n (k − j) ⊆

⋂k

j=0 B
fj
n .

Claim 2. For every one-to-one function f the set f [Af ] belongs to the
summable ideal.

Our aim is to bound the sum
∑

a∈B
f
n

1
f(a)

from above by elements of a

convergent series because f [Af ] =
⋃

n∈ � f [Bf
n]. At first, we estimate the

sum of the reciprocals of elements in f [Bf
n(i, s)] for every i ≤ k and s ∈∏k

j=i+1 Q(j, n).

Since |f [Bf
n(i, s)]| = |

∏i−1
j=0 Q(j, n)| we have

∑

a∈B
f
n(i,s)

1

f(a)
≤

∣∣∣
i−1∏

j=0

Q(j, n)
∣∣∣ ·

1

min f [Bf
n(i, s)]

=
2n·(2i−1)

mf

x(f,s)

(1)

Put qi,n = |
∏k

j=i+1 Q(j, n)| and enumerate {mf

x(f,s) : s ∈
∏k

j=i+1 Q(j, n)}

increasingly as {ml : l = 1, . . . , qi,n}. It is easy to see that ml ≥ l ·Q(i, n) for
every l and it follows that

qi,n∑

l=1

1

ml

≤
1

Q(i, n)
·

qi,n∑

l=1

1

l
≤

1 + log2 qi,n

Q(i, n)
=

1 +
∑k

j=i+1 log2 Q(j, n)

Q(i, n)
(2)

where we used Fact 4.2.1.
Now, observe that

1 +

k∑

j=i+1

log2 Q(j, n) ≤ 1 + n

k∑

j=0

2j = 1 + n(2k+1 − 1) ≤ n2k+1 (3)

and putting together (1), (2) and (3) we obtain

∑

a∈B
f
n(i)

1

f(a)
≤

∣∣∣
i−1∏

j=0

Q(j, n)
∣∣∣ ·

1 +
∑k

j=i+1 log2 Q(j, n)

Q(i, n)
=

n2k+1

2n
. (4)
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Thus we get for every n

∑

a∈B
f
n

1

f(a)
≤

k∑

i=0

n2k+1

2n
=

n(k + 1)2k+1

2n
(5)

and finally
∑

a∈Af

1

f(a)
≤

∞∑

n=1

n(k + 1)2k+1

2n
≤ 2(k + 1)2k+1, (6)

i.e., the set f [Af ] belongs to the summable ideal.

While constructing a 0-point Gryzlov made use of function Q(j, n) = n2j

.
We cannot use this function for our purpose because it “grows too slowly”.
Its polynomial growth with respect to n provides in formula (4) (or (5))
a divergent series as an upper bound for

∑
a∈B

f
n

1
f(a)

. So it seems to be

necessary that Q(j, n) depends exponentially on n. In formula (4) occurs
|
∏i−1

j=0 Q(j, n)| ·Q(i, n)−1, which excludes functions of type 2n · p(j) or 2n·p(j)

where p(j) is a polynomial in j. Hence our definition Q(j, n) = 2n·2j

seems
to be the best possible to use while constructing a summable ultrafilter.

Theorem 4.2.4. There is a summable ultrafilter on
�

.

Proof. Consider an arbitrary countable family {Ak : k ∈
�
} of infinite sub-

sets of natural numbers and apply Proposition 4.2.3 to obtain a summable k-
linked family Fk on Ak for every k. From Lemma 4.2.2 we obtain a summable
centered system F on

�
. It is obvious that any ultrafilter that extends F

is summable.

Corollary 4.2.5. There are 2c distinct summable ultrafilters on
�

.

Proof. Assume {Ak : k ∈
�
} is a countable family of disjoint infinite subsets

of
�

and Fk is a summable k-linked family on Ak for every k. For every
free ultrafilter U on

�
let FU ⊆ P(

�
) consist of sets F ⊆

�
such that

{k : F ∩ Ak ∈ Fk} ∈ U . It is easy to see that FU is a summable filter
base and FU 6= FV whenever U 6= V . It follows that there are 2c distinct
summable ultrafilters.

The construction of a summable ultrafilter relies strongly on the fact that
functions in question are one-to-one and there is no obvious way to trans-
form the construction to obtain (S)-ultrafilters or even weak (S)-ultrafilters
although the moreover part of Lemma 4.2.2 is still true for all finite-to-one
functions. This is not the case for Proposition 4.2.3, which can be easily

48



modified just for those finite-to-one functions f for which the size of preim-
ages of singletons, i.e., the sequence |f−1(n)|n∈ � , is bounded from above
by a natural number p (such functions are called p-to-one). It suffices then
to enumerate the block Bn in the proof of Proposition 4.2.3 faithfully as
{b(r, ϕ) : r ∈ p, ϕ ∈

∏k
j=0 Q(j, n)} and we may repeat the construction step

by step. The only difference is that in formula (6) from Claim 2 we get
another upper bound for the sum of reciprocals of the elements of f [Af ],
namely

∑
a∈Af

1
f(a)

≤ 2p(k + 1)2k+1.

Another interesting question arises if we replace the summable ideal in
the definition of a summable ultrafilter by the generalized summable ideal
Ig defined in chapter 1. It is not known at the moment whether it is possible
to construct in ZFC an ultrafilter U such that for every one-to-one function
there is U ∈ U with f [U ] ∈ Ig for arbitrary function g.
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[26] Szemerédi, E., On sets of integers containing no k elements in arithmetic
progression, Acta Arith. 27, 199–245, 1975.

51


