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Predmluva

Predklddana habilita¢ni prace je soubor uvetfejnénych védeckych praci doplnény
komentafem (§72, odst. 3, pism. b Zakona o vysokych skolach ¢. 111/1998 Sb.).
Praci lze charakterizovat pomoci nékolika klicovych slov, kterd v kratkosti uvadim
do souvislosti.

Nosnym tématem je kontakini problém obecné vice téles, jehoz praktické u-
platnéni Ize nalézt naptiklad v oblasti btzomechaniky nebo geomechaniky. V prvnim
pripadé se muze jednat o modelovani zatiZzenych kloubt, piipadné kloubnich nadhrad
v lidském téle. Ve druhém pripadé mize jit o modelovani silového ptisobeni v okoli
tunelu ve skalnim masivu, kterym prochéazi geologicky zlom.

Pro numerické feseni problému lze pouzit metodu konecnyjch prvki, kterd patii
v oblasti mechaniky téles k nejvice pouzivanym néstrojim. Je ziejmé, Ze pocet
neznamych diskretizovaného problému miize byt velky, nap¥. v fadech miliont i
vice, a je tedy namisté hledat a pouzivat rychlé a efektivni algoritmy, napiiklad
metodu rozkladu oblasti.

Pii sestavovani modelu je nutné mit informaci o geometrii. V p¥ipadé mode-
lovani kloubt lze geometrickd data ziskat napf. z rentgenového snimku (pro 2D
modely) nebo z magnetické rezonance a z pocitac¢ového tomografu (pro 3D mode-
ly). Nésledné se z geometrického popisu generuje vlastni konecnéprvkovd sit.

V praktickych tlohach nelze vzdy pfesné urcit vstupni parametry modelu jako
jsou napf. elastické koeficienty materidli nebo silové zatiZzeni. Pro tato nejista
vstupni data je vhodné pouzit metodu nejhorsiho scéndre, ktera pro vstupni data
ze zadané mnoziny nalezne to feSeni, které je podle urcitého kritéria nejhorsi. Cilem
je zarudit, aby mira hodnoticiho kritéria nalezeného feSeni spliiovala predepsané
limity.

P1i feSeni statického kontaktniho problému muzeme kone¢néprvkovou sit vy-
generovat tak, Ze si piislusné uzly na kontaktni hranici odpovidaji, tj. maji stejné
prostorové soutfadnice. Podminka nepronikini téles potom svazuje nezndmé pro
uzly z téchto kontaktnich dvojic. Pokud feSime dynamicky kontaktni problém, t;j.
télesa v jednotlivych ¢asovych vrstvach vici sobé méni polohu, méni polohu i uzly
triangulace, a podminka nepronikani téles se formuluje slozitéji. Pro nesouhlasné
triangulace miiZzeme pouzit tzv. metodu mortarovyjch konecénijch prvki.



Prace sestava z komentaie a ze souboru sedmi puvodnich publikovanych praci
(uvedenych v pfilohdch A az G), recenzovanych ¢lanki v Casopise [21x], [68],
recenzovanych ¢lanku v ¢asopise, publikovanych ve specidlnich ¢islech vénovanych
mezinarodnim konferencim, [17x], [28%], oponovanych p¥ispévki ze sbornikii me-
zindrodnich konferenci [19+], [101%] a p¥ispévku ze sborniku mezindrodni konfe-
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Komentar se skladda z Sesti kapitol, udéva struény piehled studované problema-
tiky a zaclenuje jednotlivé ¢lanky predklddané prace do Sirsiho kontextu. V komen-
tari se objevuji jak odkazy na dalsi puvodni prace autora, které souvisi s tématem
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predkladané prace, tak odkazy na préce jinych autori, které jsou v danych téma-
tech povazoviny za stézejni. V prvni kapitole je podana klasicka a varia¢ni formu-
lace rovinného kontaktniho problému pruznych téles bez tfeni, resp. se zadanym
tfenim, a kratce je zminéna otazka existence a jednoznacnosti feSeni. Druhé kapi-
tola je vénovana metodé rozkladu oblasti, zejména verzi vychézejici z primérni vari-
acni formulace. Ve tieti kapitole je popsan zpusob ziskavani sité konec¢nych prvku
pro biomechanické modely napt. kolenniho kloubu a déle pak metoda nejhorsiho
scénare pro ulohy s nejistymi vstupnimi daty. Ve ¢tvrté kapitole je priblizena jed-
nak metoda kone¢nych prvki a dale pak metoda mortarovych kone¢nych prvki
pro nesouhlasné sité. Pata kapitola obsahuje numerické vysledky pro nékteré bio-
mechanické a geomechanické modely, které nejsou obsazeny v souboru ¢lanki pred-
kladané prace. V posledni kapitole nasleduje shrnuti a vyhled dalsiho zkoumani.

Rad bych zde podékoval svym kolegiim, zejména panu doc. Jifimu Nedomovi
a panu dr. Ivanu Hlavackovi, za ptfijemnou a plodnou spolupraci.

Josef Danék
prosinec 2008
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Kontaktni problém

Kontaktni problém poprvé formuloval v roce 1882 H. Hertz [57]. Pro specialni pfi-
pad odvodil analyticky vztah mezi pusobici silou a vyslednym posunutim. V 60.
letech minulého stoleti popsal A. Signorini kontaktni tlohu ve formé varia¢ni
nerovnice (viz napf. [63]). Otazky existence FeSeni takto podané tlohy byly poprvé
studovany G. Ficherou (viz napf. [63]). V soucasnosti jsou p¥istupy na FeSeni kon-
taktnich problémi zaloZeny na varia¢nich metodach, které umoznuji problém po-
psat elegantné a kompaktné. Obsahla teorie variacnich nerovnic je popsana napf.
v [44, 53]. V Ceské republice se problematikou teorie varia¢nich nerovnic zabyvala
zejména skupina prof. J. Necase, prof. Haslingera a dr. Hlavacka. Z praci téchto
osobnosti pfipomenme alespon [54, 55, 61, 62, 63, 93|. Teorie existence feSeni vari-
atnich nerovnic s dirazem na kontaktni tilohy je podéana napft. v [63].

1.1 Klasicka formulace

UvaZzujme rovinnou tlohu jednostranného kontaktu s pruznych téles, kterym odpovi-
daji oblasti Q' Q% ..., Q% C R? s Lipschitzovskou hranici 90!, 9032, ..., 09Q°.
Necht je hranice |J7_, 99" rozdélena na disjunktni ¢asti

.. T.T, |Joo =r,ur.uT.uT,

=1
ru:Or;, FT:OF;, Fo:OFg, r.=Qré,
=1 =1 =1 k,l
T =T'NT, kile{l,... s} k<l

Na sjednoceni oblasti @ = Q' U Q2 U --- U Q° budeme hledat vektorové pole
posunuti u = (uq, uz), tenzorové pole malych deformaci e;; = e;;(u) a tenzor napéti
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7;; = Tij(w), 4,5 = 1,2. Vztah mezi tenzorem napéti a tenzorem deformaci je dan
zobecnénym Hookovym zdkonem (pi#i pouziti Einsteinovy sumacni konvence)

Tij(0) = cijpmerm(u), 1,5 =1,2, (1.1)

a tenzor malych defomaci je definovan vztahem

Ze symetrie tenzori 7;; a e;; plyne pro elastické koeficienty prostiedi c;jpm,

z (1.1), Cijkm € L™(§2), symetrie v prvni a v druhé dvojici indext a symetrie dvojic
indext ij, km

Cijkm = Cjikm = Cijmk — Ckmij- (*)

Pro elastické koeficienty existuje konstanta ¢, takova, ze
Cijkm(T)€ij€km > Co€ij€km

plati pro vSechny symetrické matice e;; skoro vSude v €.
V pripadé izotropnich téles a rovinné napjatosti plati

ciiiz = A, Ci212 = [,
(plati i pro symetrické ¢leny viz (x)) a
Cii11 = C222 = A+ 21 & Cijpm = 0 v ostatnich piipadech.

V technické praxi se misto Laméovych koeficienti \ a p Castéji pouzivaji Youngiv
modul pruznosti E a Poissonova konstanta v. Pro pievod (uvazujeme-li rovinné
napéti) plati

E Ev

F=oa vy 1— 12

Na I'. = J,,; I'* definujeme normalovou a te¢nou slozku vektoru posunuti u a
tenzoru napéti T

koo ko ko1 ok it y
uy =u;ng, u, =un; = —u;n;, (nestitdme pfes k,l),
ko kb okoko o0 Lok 0k
Up = UpTg — UMy, Uy = UMy — Ughy,
ko k k k _k_ ( k ko k ok _ _k k Kl _ _k
Tp = Ty, Ty = (T4), T4 = TiTy — TpTys Ty =Ty

kde nF, resp. n! jsou slozky jednotkové vn&jsi normaly k 9QF, resp. 0.
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Tenzor napéti 7;; spliiuje v kazdém télese (2" rovnice rovnovahy

ot}
a—.f;‘j(u)—}—F;L:O’ i:1727 L:l’...,s, (13)

kde F} jsou slozky dané objemové sily.
Na castech hranice predpokladame splnéni nasledujicich okrajovych podminek:

u; =uy nal,, =12, (1.4)
kde wug; jsou zadané slozky vektoru posunuti,

;=P mal, i=12, (1.5)

kde P; jsou zadané slozky povrchového zatizZeni,
u, =0, 7 =0 nal,, (1.6)

predstavuje podminku oboustranného kontaktu,
ub —ul <0, th=-71<0, (u—u)rF=0, nal* (1.7)

predstavuje podminku jednostranného kontaktu.

Fl

2 3
Obréazek 1.1: Kontaktni problém - model



12

Pokud predpoklddédme tilohu bez tfeni, plati podminka nulového tieni
"' =0 nal¥ (1.8)

Pokud budeme uvazovat tlohu se zadanym tfenim, plati podminky Trescova mo-
delu tieni

|7 < g™,

ITH| < g = uF—ul=0, na I, (1.9)

=g = >0, b —ul = —0r,
kde g* € L>°(T*) je dana mez tieni.

DEFINICE 1.1: Funkci u spliujici (1.1)—(1.8) nazveme klasickym FeSenim kon-
taktniho problému bez tfeni.

DEFINICE 1.2: Funkei u spliwjici (1.1)-(1.7) a (1.9) nazveme klasickym FeSenim
kontaktniho problému se zadanym tfenim.

Po0zZNAMKA 1.1: Prvni dva ¢lanky prace jsou vénovany feseni rovinného kontakt-
niho problému vice pruznych téles. V ¢lanku [17+ je uvazovana tloha bez t¥ent,
zatimco v ¢lanku [214| tloha se zadanym tfenim.

1.2 Variacni formulace

P1i odvozeni varia¢ni formulace vyjdeme z varia¢niho principu virtuélnich po-
sunuti. Definujeme prostor funkci posunuti s kone¢nou energii

HY Q) = {v|v= (v, v? ... v € [H' QY] x [HY Q) x --- x [HY(Q)]?},
kde

ow*
8xj

HY Q) = {w" € Ly(Q") : € Ly(Q), j=1,2}

je standardni Sobolevuv prostor s normou

2 L
ol = f (w0 + Z(ijj ?) de.

QL .7:1

Definujeme normu

s 2

HVHz = ||V||${1(Q) = Z HVL||[2H1(QL)}2 = Z Z HUfH%-
=1

=1 =1
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Déle definujeme seminormu
|V‘2 = Z / €ij(VL)6ij(VL) d.il?, (110)
=1 O
mnozinu virtualnich posunuti
Vo={veH(Q)|v=0nal,, v,=0nal,}, V=u+Vy (1.11)

a mnozinu p¥ipustnych posunuti

K={veV|v—v <0nal¥} (1.12)
bilinearni formu
a(w,v) = 3 at(u,v) = Y / o (W) epm (v') da (1.13)
=1 =1 O

a funkcionél . .
=Y =% / Frotde + / Protds (1.14)
=1 =1 O e

pro objemové sily F* € [Ly(2')]? a povrchové zatizeni P* € [Ly(T')]2.
Pro odvozeni varia¢ni formulace kontaktniho problému se zadanym t¥enim
zavedeme funkcional

Jjv) = Z /gkl |vF — vl] ds. (1.15)

B p

DEFINICE 1.3: Rekneme, 7e u € K je slabé feseni alohy (1.1)-(1.8), tj. kontakt-
niho problému bez tieni, jestlize

a(u,v—u) > L(v—u) VYvek (1.16)

DEFINICE 1.4: Rekneme, 7e u € K je slabé feseni ilohy (1.1)-(1.7) a (1.9), tj.
kontaktniho problému se zadanym ti¥enim, jestlize

a(u,v—u)+j(v)—ju) > Lv—u) YWwek (1.17)

POZNAMKA 1.2: Zavedeme funkcional potencialni energie

1
Lo(v) = §a(v, v)—L(v) ¥Ywek (1.18)
pro piipad s nulovym tienim a
1
Li(v)==a(v,v)+j(v)—L(v) ¥vekK (1.19)

2
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pro piipad se zadanym tienim. Uloha (1.16) je ekvivalentni tiloze minimalizace
celkové potencialni energie, tj. tloze najit

u = argmin Lo(v). (1.20)

vek

Uloha (1.17) je ekvivalentni tiloze minimalizace celkové potencialni energie, tj. iloze
najit
u= argmiﬂlg L;i(v). (1.21)
ve

PozNAMKA 1.3: V souboru praci jsou obsazeny dva ¢lanky, ve kterych je pouzita
obecnéjsi formulace kontaktniho problému. V ¢lanku [68+] je kontaktni problém
formulovén jako kvazi-sdruzena (quasi-coupled) tiloha v linearni termo-pruZnosti a
v ¢lanku [1014] je uvazovan dynamicky kontaktni problém pro viskopruzna télesa.
Pro jednoduchost a nazornost se ve vykladu omezime na ¥eSeni problému (1.17),
tj. statického kontaktniho problému pruznych téles v R? se zadanym t¥enim.

1.3 Existence a jednoznacnost

Okrajové tlohy lze rozdélit na dva hlavni typy. Pro jejich zavedeni definujeme
prostor posunuti a otoceni tuhych téles

R={veH ()] |v]=0}, (1.22)

kde seminorma |v| je definovana vztahem (1.10).

Jsou-li zadané ¢asti hranic I, a I takové, ze R NV = {0}, fekneme Ze jde
o koercivni typ tlohy. Pokud R NV #£ {0}, jde o semi-koercivni typ tlohy.

O koercivni typ se jedna napi. kdyz

meas[;, >0 Ve=1,...,s, (1.23)

tj. kazda oblast je pevné uchycena. Dalsi jednoduchy piipad koercivni tlohy, napf.
pro 2 oblasti (s = 2), je pokud I'! a I'2 maji kladnou 1-rozmérnou miru a ob& lezi
na dvou vzijemné kolmych piimkéch.

Uvazujme nyni koercivni tlohu s nulovym tfenim.

LEMMA 1.1: Necht RNV = {0}. Potom plati Kornova nerovnost, tj. existuje
kladné konstanta o takova, ze

V2 > aol[v]? Vv e V. (1.24)

Diikaz : viz nap¥. [60] nebo [93].
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DUSLEDEK 1.1: Necht RNV = {0}. Potom plati
a(v,v)| > coapl|v|* ¥v e V. (1.25)

Diikaz : Na zakladé vlastnosti elastickych koeficienti formulovanych v odstavci
1.1 a (1.13) plati pro vSechna v € V

s

a(v,v) = Z a'(vh,v") > ¢ Z/Cijkmeij(vL)ekm(vL) dz = co|v|*. (1.26)

=1 =1 O
Tvrzeni je potom dusledkem (1.24).

VETA 1.1: Necht R NV = {0}. Potom existuje pravé jedno slabé feSeni tlohy
(1.1)—(1.8).

Diikaz : Uloha najit slabé fegen{ tlohy (1.1)—(1.8) je ekvivalentni tiloze minimali-
zace celkové potencialni energie (viz poznamka 1.2), tj.

u = argmin Lo(v).

Diky disledku 1.1 je funkcional £y(.) koercivni a ryze konvexni ve V. Protoze L

je kvadraticky a mnozina K konvexni, uzaviené ve V, existuje jediné feSeni tlohy
(1.20).

Podivejme se na feSitelnost a jednoznac¢nost feSeni semi-koercivni tlohy se
zadanym tfenim. Oznac¢me

Ry=RNVy, a R,={veRy|vf—2v=0na U}

VETA 1.2 [21x, theorem 2.1]: Necht R, = {0}, RN K # {0} a
L(v)<j(v) WeRNK—{0}.
Potom existuje slabé feseni ulohy (1.1)—(1.7) a (1.9). Plati-li
L) > j(v) W € Ry — {0},
je TeSeni jediné. Plati-li
IL(v)| <j(v) Vv ERy,

potom pro kazdé dvé FeSeni u, u* plati

u'—ueRy a L(u —u)=ju")—ju).
Diikaz : viz nap¥. 65, theorem 4.1].

Po0zZNAMKA 1.4: Nasledujici podminka je nutnou podminkou existence slabého
feeni ulohy (1.1)—(1.7) a (1.9) (dikaz viz nap¥. [65, lemma 4.4]).

L(v)<j(v) YWweRNK.
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Metoda rozkladu oblasti

Numerické feSeni varia¢nich tloh (napfiklad pomoci metody koneénych prvka —
viz kapitola 4) vede na FeSeni rozsahlych soustav algebraickych rovnic. Vzhle-
dem k rozméru a ¢islu podminénosti matic téchto soustav muze byt komplikované
pouziti pfimych i itera¢nich metod. Na druhé strané k feSeni stale rozmérnéjsich
uloh mohou byt efektivné vyuziviny nové paralelni algoritmy.

POZNAMKA 2.1: Asi nejjednodus$im pristupem k vyuziti paralelnich pocitacu
(avSak ne tak efektivnim jako dale zminovand metoda rozkladu oblasti) je cesta
modifikace existujich sekven¢nich kédi pouzitim modelu SPMD - Single Program
Multiple Data. V tomto modelu se relativné jednoducha ¢innost provadi nad ob-
jemové rozmérnymi daty. Zpracovdvand mnoZina dat (typicky homogenni pole
prvkii) se v tomto piipadé rozd&li na m ¢asti. Vytvoii se k procesi (kK < m)
pracujicich podle stejného programu (Single Program) a kazdy z t&chto procesii
samostatné zpracuje jednu nebo nékolik strukturné podobnych (ale hodnotami
ruznych) ¢asti dat (Multiple Data). Typickym p¥ikladem vyuZiti modelu SPMD
je nasobeni matic, kdy kazdy prvek (nebo fadek ¢i sloupec) vysledné matice lze
pocitat jednim procesem. Tento zpisob paralelizace na trovni maticovych operaci
pro feSeni kontaktniho problému je popsan a numericky testovan v [15].

2.1 Strucny prehled

Myslenka metody rozkladu oblasti se poprvé objevila v roce 1869, kdy ji némecky
matematik H. Schwarz (viz [104]) poprvé pouzil pro ziskani analytického FeSeni
znalosti konstrukce piesného feseni ilohy na jednoduchych oblastech (kruhu, ¢tver-
ci) k urceni feSeni na oblasti, kterd je sloZena z téchto ¢asti. K dalsimu rozvoji
metody rozkladu oblasti dochézi az v 80-tych letech minulého stoleti v souvislosti
s rychlym vyvojem modernich superpocitacii.

17
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Metoda rozkladu oblasti je zaloZzena na predpokladu, Ze danou oblast €2, na
které problém reSime, rozdélime na podoblasti Q‘, + = 1,...,s, pliCemz tyto
se mohou nebo nemusi prekryvat. Pivodni problém na 2 miuZeme preformulo-
vat na jednotlivé podoblasti €2“, pfi¢emz tyto mensi podproblémy jsou vzajemné
vazany hodnotami neznadmého feSeni na prekryvajicich se ¢astech, resp. rozhranich
podoblasti.

Pro oblasti, které se prekryvaji, H. Schwarz popsal metodu, kterd v kazdém
kroku stfidavé pocita FeSeni na jednotlivych oblastech. V této tzv. alternujici
Schwarzové metodé se v kazdé iteraci prenadsi informace o pfiblizném feSeni na
spolec¢nych ¢astech. Na zakladé alternujici Schwarzovy metody byla odvozena cela
t¥ida Schwarzovych metod - multiplikativni, aditivni, vicekrokové - (M. Dryja, O.
Widlund [45, 46, 47]). Vzhledem ke své iteralni podstaté se pouzivaji zejména k
pfedpodminovéani. D4 se ukazat, Ze metody s prekryvanim konverguji tim rych-
leji, ¢im vice se oblasti prekryvaji. V limitnim piipadé to odpovida situaci, kdy
jsou podoblasti rovny celé oblasti {2 a jako pfedpodmifiova¢ vlastné uvazujeme
pivodni matici, kterd vznikne diskretizaci rovnice pro oblast 2. Prakticky se
vyuziva piekryvu v rozsahu 10 az 20 %.

Druhou moznosti je uvazovat rozklad oblasti bez prekryvani. Sousedni oblasti
maji potom spole¢né pouze rozhrani. Tyto metody jsou oznacovany jako metody
Schurova doplitku nebo substructuring methods, maji podstatu pfimych metod
a predstavuji cestu k zefektivnéni faktorizace matice soustavy. Pokud vyjdeme z
primarni formulace, ziskdme tzv. Balancing Domain Decomposition method (BDD)
nebo Balancing Domain Decomposition by Constraints (BDDC) (J. Mandel, C. R.
Dohrmann, P. Le Tallec [84, 85, 87, 91, 92|), kde je spojitost FeSeni na rozhrani
zajisténa pouZitim stejné nezndmé pro hodnotu feSeni na vSech sousednich podob-
lastech. V dudlnich metodéach, které reprezentuje metoda Finite Element Tearing
and Interconnecting (FETI) a jeji dalsi modifikace (C. Farhat, F. X. Roux, J. Man-
del [48, 49, 90]), je spojitost feSeni na rozhrani zajiSténa pomoci Lagrangeovych
multiplikatori. Dal$i piistup pouziva metoda Dual-Primal Finite Element Tearing
and Interconnecting (FETI-DP) (C. Farhat [50, 92]), ve které je rovnost FeSeni
na rozhrani podoblasti zaru¢ena pomoci Lagrangeovych multiplikatori s vyjimkou
rohu podoblasti, které zustavaji v priméarni formulaci. Problematikou metody roz-

s 0t NIX

[103], B. F. Smith [105], A. Klawonn [79], R. Tezaur [90, 108|, M. Brezina [88|, M.
Vidrascu [86].

V ¢lanku |17+, ktery je soulésti prace, je aplikoviana metoda rozkladu oblasti
bez prekryvani vychéazejici z primarni formulace na kontaktni problém vice téles bez
tfeni ve 2D. V ¢lanku |214], ktery je také soudasti prace, je metoda zobecnéna pro
semi-koercivni kontaktni problémy se zadanym tfenim. Aplikaci duélnich metod
FETI a jejich variant na kontaktni problémy se zabyva zejména Z. Dostal, D.
Horék, F. G. Neto, S. A. Santos [35, 37, 38, 39, 40, 41, 42|.
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2.2 Formulace a popis metody

UvaZzujme rovinnou tlohu jednostranného kontaktu s pruznych téles, kterym odpovi-
daji oblasti Q* € R?, + = 1,...,s, s Lipschitzovskou hranici 9Q* (viz odst. 1.1).
Hledame funkci u € K, ktera je slabym FeSenim tlohy (1.1)—(1.7) a (1.9), tj. kon-
taktniho problému se zadanym tfenim. Ozna¢me tento problém (P). Kazdou oblast

2" rozdélime na J(¢) podoblasti (viz obr. 2.1), tj.

O=J% =1
=1

Obrazek 2.1: Rozklad na podoblasti

Dale ozna¢me ¢asti rozhrani
[i=00:\0Q, v=1,...,8, i=1,...,J().

Celé rozhrani je pak
s J@)

r=yr:.

1=11=1

Oznacéme

T ={je{l....JW}: T.n@ =0}, (=1...s
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mnozinu indexti podoblasti oblasti €2“, které nejsou v kontaktu. Déale ozna¢me
podoblasti v kontaktu

07 = ) @, kde 9 ={[i,: 0% NT, #0}. (2.2)

[i]ed

[\
ey

2y

| |

=

Obrazek 2.2: Rozdéleni podoblasti podle typu na podoblasti bez kontaktu a dvojice
podoblasti v kontaktu

[

o

Ptredpokladejme, 7ze plati

rnr. =0, (2.3)
tj. uvazujeme pouze takové rozdéleni na podoblasti, jejichZ rozhrani neprotne
hranici s predepsanou podminkou jednostranného kontaktu. Potom pro operaror
stop v: [HY(QY)]* — [L*(092)]? dostévame pro mnozinu stop funkei z K, resp. V
na rozhrani I':

Necht v~!: Vp — V je libovolné linearni inverzni zobrazeni takové, Ze
v v=0 na Uk, Ffl Vv € Vr. (2.5)

Déle zavedeme tyto restrikce R: : Vi — D% Lt Lt — QY gt : gt — TG al(,))

i

a'(.,.) — Qs V(Q) — Q a prostor funkei s nulovou stopou na I':

Vo) ={veV|v=0 na (U_ )\ Q}.
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Véta 2.1 predepisuje podminky pro feSeni kontaktniho problému na jednotlivych
¢astech oblasti 2.

VETA 2.1 [21%, theorem 4.1]:
Funkce u € K je feSenim globalniho problému (P), pravé kdyz plati:
1. jeji stopa u = yu|r na rozhrani I spliiuje podminku

S J(L

Z Z v 'w) - Li(y'w)] =0 Vw eV, uelf, (2.6)

=1 =1

2. jeji restrikce uj(u) = ufq: splituji podminky

a) proi€T' t=1,...,s (tj. pro podoblasti bez kontaktu)
a;(ui(u), ;) = Li(#;) (2.7)

e — R;Ha

= D

Vo € VO(), ui(u) € V(2), yui(u)

b) pro [i,¢] € ¥ (tj. pro dvojice podoblasti v kontaktu)

ag(ui(u), ) + 5 (ui(w) + ¢) — j"(ui(w) = D Li(gh) (2.8)
[i,]]ev [i,l]€d

Vo = (¢, i) €9), ¢t € VO(Q), takove, ze

g‘i

r. = R pro [i,i] €9 (2.9)

u+¢ e K, ~uj(u)

Diikaz : viz |214].

Pomoci véty 2.1 jsme piivodni nelinearni problém (P) rozlozili na vice mensich
problémii, z nichZ nelinearnimi zustaly pouze problémy pro dvojice podoblasti
v kontaktu, ostatni jsou linearni (viz obr. 2.2). Pomoci metody Schurova doplitku
tilohu Fesime pro ¢ast FeSeni na rozhrani I' (2.6). V ¢lanku [21+] v odstavci 4.3 jsou
definovany piislusné lokalni a globalni operatory Schurova dopliiku a dokazano
lemma 4.1, pomoci néhoz mizeme rovnici (2.6) zapsat ve tvaru [21, (4.32)]

SoU + SconU = F, (2.10)
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kde Sy je linearni operator Schurova dopliitku odpovidajici podoblastem bez kon-
taktu a Scon je nelinearni operator Schurova doplitku odpovidajici dvojicim pod-
oblasti v kontaktu. Z divodu nelinearity Scoy FeSime rovnici (2.10) metodou pos-
tupnych aproximaci

SoUF =F — SconU, k=1,2,..., (2.11)

pfitem? pocateéni aproximaci U” uréime jako feSeni linearizovaného problému
(P), kde piivodni podminku jednostranného kontaktu (1.7) na I'*! nahradime pod-
minkou oboustranného kontaktu u® — u! = 0 a déle uvaZujeme nulové tieni.

Linerizovany pomocny problém i kazdou iteraci metody postupnych aproximaci
fesime pomoci metody pfedpodminénych sdruzenych gradienti [21%, algorithm
PCG1 - str. 285, algorithm PCG2 - str. 289|. Pfedpodminéni typu Neumann-
Neumann je popsano v 5. odstavci ¢lanku [21x]. Konvegence metody postupnych
aproximaci je dokdzdna v 7. odstavci ¢lanku [214] (viz lemma 7.1, lemma 7.2,
theorem 7.1, corollary 7.1).

P0ozZNAMKA 2.2:V ¢lanku [17+] je popsana metoda rozkladu oblasti bez pfekryvani
pro jednodussi piipad kontaktniho problému bez tieni.
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Pti feSeni konkrétniho problému je nutné nejprve znat piislusna vstupni data, tj.
musime mit informaci o geometrii téles, o materidlovych koeficientech, o silovém
zatizeni, piipadné o velikosti zadaného tfeni. Clanky v souboru praci obsahuji
vysledky nékterych biomechanickych a geomechanickych modeli. V 5. kapitole je
uveden piehled vysledki pro dal§i modely, které nejsou obsazeny v souboru praci.
V oblasti biomechaniky se jedna napi. o model zatizeného zdravého kolenniho
kloubu a kolenniho kloubu s implantovanou totalni ndhradou nebo model celist-
niho kloubu. V oblasti geomechaniky jde napi. o model tunelu v masivu, ktery je
naruSen geologickym zlomem.

Materialové koeficienty lidskych tkani (kortikdlni a spongiozni kosti, kostni
dfené, vaziva, menisku, chrupavky) lze nalézt v odborné literatute (viz napft. |1,
10, 78]). Obvykle jsou pro kazdy typ lidské tkané pfedepsény rozsahy, ve kterych
by se hodnoty materidlovych parametri mély pohybovat. Pro modely obsahujici
umeélou ndhradu jsou mechanické parametry pouzitych materidla dany vyrobcem
(viz napf. [120]). Obdobné jsou dostupné i materidlové parametry hornin (napft.
[119]). Zad4vané hodnoty silového zatizeni lze v uvazovanych modelech odhadnout,
napt. v modelu zatiZzeného kolena predepisujeme ptsobici silu, ktera je odvozena z
prumérné hmotnosti ¢lovéka a z predpokladu, Ze stoji pouze na jedné noze. U mode-
lu tunelu uvazujeme takové silové piisobeni, které odpovida mnozstvi materidlu nad
studovanou oblasti. V dalsim odstavci je kratce popsan postup ziskdvani geometrie
a nasledné generovani sité (viz [27]), ktera je vstupem do metody kone¢nych prvkii
(viz 4. kapitola) pouzité pro feSeni problému.

3.1 Priprava sité pro biomechanické modely
Uvazujeme-li kontaktni problém ve dvourozmérném prostoru, je situace relativné
jednoducha. Pro ziskani geometrie lze vyuZit bud rentgenovy snimek (viz obr.

3.1) nebo, pokud napf. potiebujeme vytvofit model v Fezu obecnou rovinou, lze
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pouzit medicinska obrazova data z CT (Computer Tomography) nebo MRI (Mag-
netic Resonance Imaging). Na obr. 3.2 jsou zobrazeny fezy Celistnim (temporo-
mandibularnim) kloubem ziskané z MRI - (a) pfedni pohled, (b) bo¢ni pohled a
(c) je Tez pouzity k sestaveni modelu. Tento pohled je vybran z fezi rovinami ob-
sahujici vyznacenou osu. Pro zpracovani obrazovych dat z CT nebo MRI je nutny
specialni software, ktery je z velké vétSiny komerc¢ni. Nékteré softwarové firmy, jako

Obrézek 3.1: Rentgenovy snimek kolenniho kloubu s ndhradou MEDIN univerzal

napf. Mercury Computer Systems, Inc. (viz [121]), uvoliiuji alespon trialové verze
produktu, které l1ze pro zpracovani medcinskych dat pouzit, jedna se napft. o soft-
ware Amira (viz [122]). Pokud nejsou k dispozici vlastni medicinska data, lze jako
zdroj dat vyuzit snimky napf. z The Visible Human Project (viz [123]).

Obrézek 3.2: Zobrazeni ¢elistniho kloubu v ruznych fezech s vyuzitim dat z MR
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Pokud mame danu geometrii modelu, je tfeba vytvorit kone¢néprvkovou sit.
Pro dvourozmérné problémy existuje fada volné dostupnych generatori nebo lze
napf. pouzit Partial Differential Equation (PDE) Toolbox v systému MATLAB
od spole¢nosti The MathWorks, Inc. (viz [124]). Na obr. 3.3 a 3.4 jsou zobrazeny
zadané oblasti a vygenerovana sit pro model kolennitho kloubu s nadhradou.

£ PDE Toolbox - [Uniifled] __BIEIE3
Fle Ecit Options Draw Boundary PDE Mesh Sobve Plot Window Help =
DjE|o|®] 2] o] rm]| Al 4] = @] ceencscan Ao Y 1573
‘ T e
15 1" il
1
2
i il
10
s .
s
sie
.
sk & E
s
4
Wl is
| | |
o5 0 05
info:  Click on subelomains to select, Double-click to open POE Specification ilalog box. | o

Obréazek 3.3: Oblasti zadané do PDE Toolboxu v systému MATLAB

[ PDE Toolbox - [Untitled],

e o

Options  Draw Boundary PDE Mesh Soive Plot Window Help

- (5%

= | ] O] enericscanr =

¥ 1553

DjE|o|@| | a]m] Al

‘ Set formula

8+PO+P10+P11+P12+P13+P14+P15+P16

VANAVLY

e
& PO,

s

info:  Select the type of FDE application fram this pop-ug menu

| Exit

Obrézek 3.4: Pouziti PDE Toolboxu v systému MATLAB pro generovani sité
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V pripadé vytvareni 3D modeli je situace o mnoho slozitéjsi. Problematika
tvorby tfirozmérnych modelu lidskych tkini na zékladé dat z CT nebo MRI pomoci

jiz zminovaného sw Amira je popsana v praci [27]. Postup zjednoduSené fefeno
spociva

e v nacteni souboru obrazovych dat - fezii zkoumanou ¢asti téla, jejichz pocet
miuze byt v fadech stovek v zavislosti na velikosti zkoumané oblasti,

e v nasledném oznafeni jednotlivych typi tkani v kazdém fezu (viz obr. 3.5)
- tato ¢innost lze usnadnit pomoci fady pomocnych nastroju,

£ image Segmentation Editor

=R
Edit View Sslection Labals

|15 OrthoSlice]

_lpubezne 2am /4
Info: 250 x 250 x 148 labels (0...0), uniform coords
Voxel Size: 1x1x6

Zoom:
alal «1 =
Selection:

}Igﬂﬂd
A=

Tolerance: [15
Gauss Widhi[2

Pos: 7143 462
Index: 71 4377
Material: Exterior
Voxel value: 2

alscovMeega:s O Y BT

Obrazek 3.5: Oznadovani ruznych tkani v fezech (sw Amira)

e ve vytvofeni povrchového 3D modelu tvofeného trojihelniky - pocet povr-
chovych trojuhelniki je vétSinou tieba redukovat a dale je dilezité zajistit
névaznost povrchové sité sousedicich oblasti,

e ve vytvoreni objemové sité tetrahedront a
e v exportu dat ve vhodném formatu.

Obr. 3.6 ilustruje moznosti vizualizace pfi zpracovavani dat a obr. 3.7 ukazuje
vysledny 3D model kolenniho kloubu.
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mage Segmentation Editor. - B %[V Amira

| Edt view Seloction Labels o || Bl Edt Greate wew
' auto Update| Draw

Exterior
B s
e

L |z

Info: 250 x 250 x 148 labels (0...0), uniform coords
Zoom: Voxel Size: 1 x1x6
alal v =

Selection:

L e T eI
Tools:
PIENEY- T

BlowTool

Tolerance: |15

Gauss W2

Pos:
Index:

Material:
Voxel value:

ALTROTUB g APD B e e Feeenly 6 >

Obrazek 3.6: Vizualizace zpracovavanych dat (sw Amira)

€2 Amira Viewer
File Edit View Buffer Tests
| Materials ] femur

M) CTT —ox

(][5 OrthoSiicef

(|18 Gricvolumel

Number of Nodes: 9972 (no duplicated)
Number of Triangles: 98208
Number of Tetrahedrons: 47222 (Material IDs 0...3)

& selector: Selact Tetra Quality

& dRirt.2: [R<02

& Modifier: Modity | Remove Inner Vertices

& Param1: max num neighbours [ 10

& Param2: max edge length [0

~_Amira console

(AmiraMesh RLE fomat)
No oplanar triangles fourd
No coplanar triangles found

ATV R APDY | Tz e BEER 6 Frae

Obrazek 3.7: 3D model kolenniho kloubu (sw Amira)
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Pti vytvareni modelu obsahujici napf. totalni ndhradu kloubu, mizeme samo-
zfejmé postupovat jiz zminénym zpisobem (pokud se jedna o pacienta s jiz implan-
tovanou nahradou), avSak v disledku méné pfesné zadané geometrie ndhrady mize
byt vysledny model do ur¢ité miry zkresleny. Jsou-li od vyrobce k dispozici data
s CAD (Computer Aided Design) popisem geometrie néhrady, ziskdme piesnéjsi
model importovanim téchto dat do modelu kloubu bez nahrady. Tento zptsob jiz
vyzaduje ur¢itou zdatnost a zkuSenosti v praci s CAD systémy. Originalni soubory
s CAD daty popisujicimi ndhradu obsahuji fadu jemnych detailid (viz obr. 3.8),
které jsou dilezité pro vyrobu, ovSem pro potiebu vytvaieni konec¢néprvkové sité
jsou nevhodné, puvodni geometrii je tudiz nutné zjednodusit (viz obr. 3.9).

Obrazek 3.8: Originalni geometrie nahrady kolenntho kloubu Walter Modular

Obrézek 3.9: Zjednodusena geometrie ndhrady kolenniho kloubu Walter Moduléar

Odkazy na nékteré volné dostupné programy zpracovavajici CAD data lze nalézt
na strankach [125].

PozNAMKA 3.1: Na rozdil od biomechanickych modeli je rozmér geomechanic-
kych modeltit mnohonasobné vétsi, coz miize znamenat problém ve znalosti vstup-
nich dat, zejména geometrie a materidlovych parametri. Pokud pracujeme s ne-
jistymi vstupnimi daty, 1ze problém fesSit metodou nejhosiho scénare. Situaci lze
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ilustrovat na piikladu ukladani jaderného odpadu v podzemnim tunelu, ktery je
v oblasti geologického zlomu. Cilem je zarucit splnéni predepsanych bezpec¢nost-
nich limiti, které mohou byt dédny napf. pro stfedni hodnotu posunuti, intenzity
smykovych napéti, hlavnich napéti, atd.

3.2 Nejista vstupni data a metoda nejhorsiho
scénare

Prvni publikaci, kterd pojednava o metodé nejhorsiho scénafe (worst scenario
method), je zfejmé ¢lanek 9] z roku 1940 od B. V. Bulgakova. Po padesati letech se
objevuje monografie [2] autori Y. Ben-Haima a I. Elishakoffa, ve které je navrzena
metoda nejhorsiho scénéie pro konvexni mnozinu pifipustnych dat. Kontaktni pro-
blém neni jedinou tlohou, na kterou byla aplikovana metoda nejhor$iho scénéfe.
V poslednich ptiblizné deseti letech se jednalo napf. o linearni eliptické PDR s ne-
jistymi koeficienty, kvazi-linearni eliptické okrajové tlohy, parabolické problémy
nebo tlohy z teorie plasticity, atd. Struény ptehled l1ze nalézt v [70].

Metoda nejhorsiho scénéafe pro kvazi-sdruzenou (quasi-coupled) tlohu v termo-
pruZnosti je studovana v ¢lanku [68+], ktery je soucasti prace. V ¢lanku je ve
2. odstavci uvedena formulace kontaktniho problému v termo-pruznosti a ve 4.
odstavci je studovana metoda nejhorsiho scénafe. Nejprve jsou zavedeny mnoziny
piipustnych dat a poté je uvedena véta [68*, proposition 4.2] o existenci a jedno-
znacnosti slabého feseni kontaktniho problému pro kazdy prvek z mnoziny piipust-
nych dat (dikaz viz [67]). ,Spolehlivym feSenim“ tlohy definujeme nejhorsi mezi
vSemi moznymi FeSenimi, kde stupen nespolehlivosti je méfen jistym funkciondlem,
kritériem (criterion functional), ktery zavisi na feSeni studované tlohy. V ¢lanku je
ukazano 6 moznosti volby tohoto kritéria (viz [68x, (4.29)—(4.34)]. Hlavnim vysled-
kem je [68%, theorem 4.6|, ve kterém je dokdzéna existence feSeni problému nej-
hor§iho scénaie (worst scenario problem) [68x, (4.35)], resp. [68x, (4.36)].

V nésledujicim vylozime metodu nejhorsiho scénéfe pro feseni problému (1.1)-
(1.7) a (1.9), ktery byl formulovan v 1. kapitole. Za nejista data budeme povazovat
materidlové parametry A a p, objemové sily F, povrchové zatizeni P a hodnoty
zadaného tfeni g. Podobné jako v odst. 1.2 p¥i odvozeni varia¢ni formulace kon-
taktniho problému zavedeme bilinearni formu

a(A;u,v) = Z/()\ div u* div v* + 2u eij(uL)eij(VL)> dz, (3.1)

=1 O

kde div u = gZ?, tenzor malych deformaci e;;(u) je dan (pfi pouziti Einsteinovy

sumacni konvenlce) vztahem (1.2) a vstupni data A = {\, u, F, P, g} jsou nejista a
jsou z mnoziny piipustnych dat

A€Uy & NeUlpneUlFeUNPecUy, geUs.
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Déle predpokladejme, Ze vSechny uvazované ¢asti Q2 jsou po Castech homogenni a
takové, Ze existuje déleni oblasti Q" pro které plati
O =UM, 2nQi=0 pro ifj i=1,...,s
—k O W P (3.2)
L. =U2 0, Iynly=0 pro p#gq, Ykl

Definujeme mnoziny pf¥ipustnych dat

UN={AeL®Q): X\ <A

min

_ 1,0
q: = const < ALL .,

1<i<J(),1<0<s}, (3.3)

Ui ={n e L¥(Q) : ppn < p
kde 0 < A0 < A4

konstanty.

Q= const < IuL’i 1< < J(L), 1< < S}, (34)

max’

0<po<ps, <psl, 1<i<J@), 1<e<s,jsou dané

Dale pro nejista vstupni data A zavedeme funkcionaly

LAv) =Y / Frotde + / Prods (3.5)
=1 O

Ty

JAv) =3 / g* ok — o] ds, (3.6)
k.l

’ Flcd

kde F € UE,, P € UY,, g € U, v; = v;t; je tecna slozka posunut,

Usa = {F = [I1, B] € [L®(Q)]* :

; , (3.7)
Fﬂjbjrlnin S FJ Q = const S -F}i’;axa j - 1727 1 S 1 S J(L), 1 S L S S},
UR ={P =[P, P € [L=(,)]: -
Pl in < Pilr. = const < P, j=1,2, 1 <0 < sy '
— ki
Usy =19 € L=(I,) : g|fi;z € C(O)’I(Fq ) 3.9
0<g(s) < g&il, |dg/ds| < CF' sv.naTl, 1<q<Qu,k, I},
kde Ff,’;in < F]-Lj;ax, P! in < Pl 955 a CF jsou dané konstanty a CO1 znagi

prostor lipschitzovsky spojitych funkei.

Pro dand vstupni data A € U,g = U x UY, x UE, x UP, x U, dostavame
problém (P4): najit u(A) € K tak, aby

a(A;u(A),v—u(A)) +j(A;v) —j(A;u(A) > L(A;v —u(A)) Vv eK. (3.10)
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Plati nasledujici odhady (viz napf. [64, lemma 2.1, [67, lemma 1], [68%, lemma
4.1]).

LEMMA 3.1: Existuji kladné konstanty c¢;, ¢ = 0,1,2,3 nezavislé na A € U,gq,
takové, ze
a(A;v,v) > co||V]]F Vv €V,

la(A; v, w)| < ¢i][v]i [[w]i Vv, w e H'(Q),
IL(A; V)| < ea([[voge + IVlor,) Vv eH (),
7(A;v) = §(A;w)| < esl|v = wllor, Vv, w e H(Q).

Na zékladé téchto odhadu lze dokizat existenci a jednoznac¢nost FeSeni problému

(Pa):

VETA 3.1: Existuje jediné feSeni u(A) € K ulohy (3.10) pro kazdé A € U,gq.
Diikaz : analogicky jako v |64, proposition 2.1| nebo |67, proposition 2|.

Mezi v8emi moznymi feSenimi problému (P4) vybereme to ,nejhorsi“, kde ne-
spolehlivost méfime jistym funkciondlem, ktery zavisi na feSeni u(A) studované
ulohy. Ukazeme nékolik moznosti volby funkcionélu kritéria.

Necht G, € Q, k=1,...,k, jsou napiiklad (malé) podoblasti piilehlé k hrani-
cim 0. Potom jednim piikladem funkcionélu kritéria miize byt

®;(A;u) = max [(meaSQ Gp)™? /uZnZ(Xk) dx], (3.15)
1<k<F
G

kde n(Xj) je jednotkova vnéjsi normala v pevném bodé X, € 90" N IGy (je-li
Gy C ) k hranici 9. Druhym piikladem funkcionalu kritéria je

Py(A;u) = max [(measl Gt /uZnZ(Xk) ds], (3.16)
<k< &

kde G}, C |J_, 99" \ T',. Dalsi moznosti, jak volit funkcional kritéria, je

O3(A;u) = max [(meaSQ Gp)™? / IZ(1(A;u)) dm], (3.17)
<k< s

kde I,(T) = (7'57'5)% je intenzita smykovych napéti a 7.} = 7;; — £ 70,5 je deviator
napéti, tj.

2
]22(7') = g[lel + T222 + T§3 — (THTQQ + T11733 + 7'227'33) + 37’122],
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7 (A;u) = Aoy div u+ 2pe;i(u), 0,5 =1,2,
m33(A;u) = Adiv u.

Ulohy nejhorsiho scénafe (worst scenario problems) potom formulujeme takto:

hledame ‘
A% = arg max ®;(4;u(A)), i=1,2,3, (3.18)
A€eU,q

kde u(A) je feSeni problému (P,), tj. (3.10).

Abychom dokazali Fesitelnost problému (3.18), musime ukéazat spojitost zobra-
zeni A — u(A) definovaného ve vété 3.1 na mnoziné U,q. Definujeme prostor

U = [R7]® x My, 1% O(TS), (3.19)

kde J =" | J(i), s normou

2 2
1Al = 1{X 1, B, P gHlo = [Mloco + lllooo + D 1 Eilloce + D I1Billo.co +llgllo.co-

=1 i=1

LEMMA 3.2: Necht A, € Uy, A, - Av U au, — uslabé v H}(Q). Potom

a(Ay;u,, v) — a(A;u,v) Vv € HY(Q), (3.20)
L(A,;u,) — L(A;u), (3.21)
J(Ansuy) — j(A4;u). (3.22)

Diikaz : analogicky dikazu [64, lemma 3.1] nebo [67, lemma 2|.
VETA 3.2: Necht A, € Uy, A, — A v U pro n — oo. Potom

u(A,) —u(4) vH(Q). (3.23)
Diikaz : analogicky dikazu [64, proposition 3.1| nebo |67, theorem 2|.

LEMMA 3.3: Necht ®,(A;u), i = 1,2,3, je definovan v (3.15) - (3.17), necht
A, €Uy, Ay — Av U au, —uv H(Q). Potom

lim ®;(A,;u,) = ¢;(A;u) (3.24)
Diikaz : analogicky diukazu [64, lemma 3.2] nebo [67, lemma 4, lemma 5].

VETA 3.3: Existuje aspoii jedno feSeni maximalizaéniho problému (3.18).

Diikaz : 'V dusledku lemmatu 3.3 a véty 3.2 je funkcional J(A) = ®;(A;u(A)) spo-
jity na mnoziné U,y. Pomoci Arzela-Ascoliho véty lze ukazat, ze je U,q kompaktni
v U. Diusledkem je, Ze na mnoziné U,y existuje maximum.



Metoda konecnych prvki

Obecné plati, ze analytické feSeni problémi popsanych parcialnimi diferencialnimi
rovnicemi je znadmé pouze ve velmi méalo piipadech a navic na speciélnich oblastech.
Je tudiz nevyhnutelné pouzit nékterou numerickou metodu, pomoci které ziskdme
které specialni volbou bazovych funkei ziskdme metodu koneénych prvki (MKP).

Metodu kone¢nych prvkia poprvé navrhl R. L. Courant v roce 1943 (viz [13]),
bohuzel ale v dobé vzniku nebyla rozpoznana jeji vyznamnost a tak byla myslenka
metody zapomenuta. Na zac¢atku padesatych let 20. stoleti byla metoda znovuob-
jevena leteckymi inZenyry, ovSem prvni matematickd analyza aproximace feSeni
metodou konecénych prvkua byla podédna aZ na konci Sedesatych let 20. stoleti M.
Zlamalem (viz [116]). Od té doby se metoda koneénych prvki i diky velkému rozvoji
pocitaci stala jednim z nejpouzivanéjSich a nejsilnéjSich nastroji pro numerické
feSeni parcialnich diferencidlnich rovnic.

4.1 Zakladni idea

Myslenku metody ukéZeme na linedrnim eliptickém problému. Vyjdeme z varia¢ni
formulace, tj. feSime problém: najit u € V tak, aby

a(u,v) =L(v) VveV, (4.1)

kde bilinearni forma a(u,v) je dana vztahem (1.13), funkcional L(v) vztahem
(1.14), mnoziny Vo a V vztahem (1.11) a dale pfedpokladame, 7e T'. = 0, T, = ()
auy =0 (= V=V). Jedna se o problém linearni pruznosti, tj. hleddme posuny
tuhého télesa, které je zatizeno objemovymi silami F, povrchovym zatizenim P, a
pro které je predepsan nulovy posun na ¢asti hranice I',,.

Zkonstruujeme kone¢nédimenzionalni podprostor koneénych prvki V; prosto-
ru testovacich funkci V tak, 7e funkce v, € V, jsou po ¢astech polynomialni
(daného stupné) vzhledem k déleni vypocetni oblasti. Zvolené déleni je koneénym

33
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sjednocenim urcitych disjunktnich podmnozin, napi. trojtihelniki, ¢tverci, obdél-
nika atd. V pfipadé trojihelnikovych prvku se jedné o triangulaci (viz obr. 3.4).
Diskretiza¢ni parametr h vyjadiuje maximéalni rozmér vSech ¢asti zvoleného déleni.

Problém (4.1) nahradime aproximovanym problémem: najit u; € V,, tak, aby

a(uh, Vh) = L(Vh) Vv, € V.. (42)

Reseni uy, diskretizovaného problému (4.2) hledame ve tvaru linearni kombinace
bazovych funkei prostoru V,. Bazi {v'}Y¥, prostoru Vj, kde N = dim 'V, volime
tak, aby jeji funkce mély maly nosi¢. Dosazenim

N
uy = Z ;v (4.3)
j=1

do (4.2) a volbou bazovych funkei v, i =1,..., N, za v;, dostaneme
N
a(chvj,vi) =L(v) i=1,...,N.
j=1

Hledané koeficienty linearni kombinace ziskdime vyfeSenim soustavy line4rnich al-
gebraickych rovnic

N
D a(v v)e;=L(v') i=1,...,N. (4.4)
j=1

V disledku V-elipticity bilinearni formy a(.,.) je matice A = [a(v/, v/)]N,_; re-

gularni. Diky predpokladu, Ze bazové funkce maji maly nosi¢, je matice A navic
fidk4. Pro libovolné 2 bazové funkce v a v/, jejichZ nosice maji prazdny prinik,
totiz plati, ze a(v',v?/) = 0.

P0ZNAMKA 4.1: Matice A je ¢asto nazyvana matici tuhosti a vektor pravé strany
L = [L(v%)]Y, vektorem zatiZeni.

4.2 Aproximace kontaktniho problému

Vratme se k feSeni kontaktniho problému se zadanym tfenim (1.1)—(1.7) a (1.9).
Hled4dme slabé feseni u € K problému (P) tak, aby platilo (viz (1.17))

a(u,v—u)+j(v)—ju) > Lv—u) YWwek (4.5)

Oblast Q = |J;_, 2" aproximujeme pomoci ), = |J;_, ©}, s polygonalni hrani-
ci 0, = Ty, U, Ul U, kde Ty, opy Ten, o jsou po Géstech linedrni.
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Obrazek 4.1: Triangulace oblasti €2y,

Oblast Q, = |J/_, , triangulujeme (viz obr. 4.1) a uzly triangulace ozna¢ime

¢;- Oznacme 7!, « = 1,..., s, regularni triangulace polygonalnich oblasti 2}, + =
1,....s,a Ty, = {7}, = 1,...,s}. Pfedpokladame, ze 7,), « = 1,...,s, jsou
konzistentni s p¥islugnymi hranicemi 9%, ¢ = 1,...,s, a Ze uzly leZici na T

nale7{ do triangulaci odpovidajicich sousednich oblasti v kontaktu 2% a Q.

Definujeme kone¢nédimenzionalni mnozinu virtualnich posunuti Vj
Vi = {vi | vin € [C(QN]* % -+ X [C(Q)]?, Va1, € [PL(Thi)]?, YT € T

Vnn(qi) = 0,4 € To; V(@) = wo(qi), ¢ € T}
a kone¢nédimenzionalni mnozinu p¥ipustnych posunuti K,
Ky, = {va|vh € Vi, (v}, = vh,) (@) <0, ¢; € TF'}.

P0ZNAMKA 4.2: V obecném piipadé plati K, ¢ K.
DEFINICE 4.1: Funkce u;, € K, je feSeni problému (P);, jestlize

a(uh,vh — llh) +j(Vh) — j(uh) > L(Vh — uh) Vv, € K. (46)
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Souvislost mezi problémy (P) a (P), pro h — 0, ukazuje néasledujici véta.
Predpokladem je dostatecéna hladkost feSeni kontaktniho problému.

VETA 4.1 [21%, theorem 3.1]:

Necht jsou hranice 0X) a jeji ¢asti Iy, I';, T',, [« po ¢astech polygonalni. Necht
feseni problému (P) u € KN [H*(Q)]?, 7;(u’) € HY(Q), i, =1,2act=1,...,s,
Tri(u) € L>°(T*), uF, ul € H?(T*), k,l =1,...,s. Necht je dile u, € K, fedeni
problému (P),,, K;, C K a pocet bodi, ve kterych dochazi ke zméné u* — ul < 0
na u* —ul = 0 je koneé¢ny.

Potom v semi-koercivnim piipadé
|lu—u| = O(h), kde seminorma |.| je definovana v (1.10),

a v koercivnim pripadé

[u = unf| = O(R).
Diikaz : viz |65].

P0O0zZNAMKA 4.3: Pii generovani sité pro oblast {2, jsme jiz mohli zohlednit
rozdéleni oblasti Q4+ = 1, ..., s, na dalsi polygonélni podoblasti, tj. % = U;]:(Ll) Q.
(viz metoda rozkladu oblasti). Uvazované podoblasti mohou pfedstavovat napft.
rizné komponenty ndhrady kloubu, které maji rizné materiadlové koeficienty. V di-
sledku toho mizeme pfedpokladat, ze kazdé podoblasti 2j. odpovid4 homogenni
material, coz usnadni generovani piislusSnych matic tuhosti. Dilezitym predpokla-
dem bylo, 7e pouzita triangulace je konformni, tj. nemize nastat p¥ipad, kdy uzel
jednoho prvku lezi uvnit¥ strany jiného prvku. Splnéni tohoto pfedpokladu jsme
pozadovali na celé triangulaci oblasti €2, tj. i na rozhranich mezi podoblastmi
o N\NoQ, t=1,...,s,i=1,...,J(¢), i na ¢astech hranice I'c;, a [',;, kde byla
predepsana podminka jednostranného a oboustranného kontaktu (viz obr. 4.1).

4.3 Mortarové prvky

Pii generovani sité nejprve musime pro kazdou podoblast ;. zadat popis geome-
trie, tj. v R? soufadnice vrcholi odpovidajictho polygonu. Pokud nevyzadujeme,
aby byla vysledna sif konformni, miZeme si generovani usnadnit tak, Ze kazdou
podoblast triangulujeme nezavisle (viz obr. 4.2). Vysledna triangulace potom bude
nekonformni, tj. uzly triangulaci sousednich podoblasti si obecné nebudou odpovi-
dat. Vyhodou tohoto pristupu mize byt i fakt, Ze sité podoblasti, ve kterych
nas hodnoty feSeni zajimaji nejvice, mohou byt mnohem jemnéjsi nez v ostatnich
podoblastech.

Dalgi a zfejmé nejvétsi vyhoda tohoto pristupu nastane v pfipadé, kdyz budeme
feSit dynamicky kontaktni problém. Zatimco pro staticky kontaktni problém ma
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Obrazek 4.2: Nekonformni triangulace oblasti €2,

pouziti konformni sité vyhodu ve snadné implementaci podminky nepronikéni
(uf  — b V() < 0 (viz obr. 4.3), v dynamické tloze se jiz ve druhé casové

Obrazek 4.3: Ilustrace podminky nepronikéni pro konformni triangulaci

vrstvé musime vypotradat se zménou puvodné stejnych souradnic ptislusného uzlu
¢;- Jednou z cest by mohlo byt piegenerovéni sité (tak, aby byla opét konformni),
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coz by mimo jiné znamenalo generovani novych matic tuhosti a velkou vypocetni
naroc¢nost. Druhym, efektivnéj$§im, zptisobem je pouziti tzv. metody mortarovych
kone¢nych prvki, kterd pouziva nekonformni sité.

n

[ 2
Fk

qi

Obrazek 4.4: Tlustrace podminky nepronikani pro nekonformni triangulaci

Metodu mortarovych koneénych prvkia poprvé uvedli C. Bernardy, Y. Maday

a A. T. Patera zatatkem 90. let 20. stoleti v pracech [6] a [7]. V ¢lanku [3] F. B.
Belgacem a Y. Maday uvedli prostorou verzi metody a X. C. Cai, M. Dryja a M.
Sarkis v ¢lanku [11] roz§i¥ili pouZiti metody pro piekryvajici se oblasti. Riiznym
typim mortarovych prvki se vénuje B. I. Wohlmuth napf¥. v [112, 113]|. Koneéné
na kontaktni problém aplikuji metodu autoti F. B. Belgacem, P. Hild a P. Laborde
v praci [4], S. Hiieber a B. I. Wohlmuth v [75], I. Hlavagek v [71] a Z. Dostal, D.
Horék a D. Stefanica v [43].

V ptipadg, ze mame sit vygenerovanou na kazdé podoblasti €}, nezévisle (viz

obr. 4.2), dostavame 2 typy podminek, které musime splnit.

1) Na rozhranich podoblasti 0§2, \ 09, ¢ =1,...,s, 4 =1,...,J(¢), musime

zajistit spojitost feSeni ve slabém smyslu. Tento piipad je studovan v ¢lanku
[33%|, ktery je soucésti prace. Zde je metoda mortarovych koneénych prvki
pouzita pro TeSeni linearnich eliptickych problémi ve 2D, pro jednoduchost
je uvazovan Poissontiv problém. Podminku slabé spojitosti feSeni na rozhrani
vyjadfuje rovnice [33x,(19)]. JelikoZ je rozhrani urceno vzdy ¢astmi hranic
dvou podoblasti, je nutné oznacit spole¢nou hranici p¥islusnou jedné pod-
oblasti jako mortarovou a spole¢nou hranici p¥islu§nou sousedni podoblasti
jako nemortarovou (zavislou). Pouzity zptusob oznafovani mortarovych a
nemortarovych hran je znazornén na obr. [33, Fig. 7). Numerické vysledky
uvedené na konci ¢lanku ukazuji vlastnosti metody mortarovych kone¢nych
prvki, zejména slabou spojitost feSeni na rozhrani oblasti. Pro ilustraci feSme
nésledujici problém:
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—Au = 30 on ),
u = 0 on Iy,

u = 1 onl}y.

Lo

Na obr. 4.5 je zndzornéno zvolené déleni na podoblasti a pouzité triangulace.

Na obr. 4.6 je vykresleno feSeni.
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Obrazek 4.5: Diskretizace oblasti 2
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Obrazek 4.6: Regeni

2) Podobné jako v pfedchozim bodu, budeme pozadovat na I'y;, a Ty, splnéni
kontaktnich podminek v integralnim (slabém) smyslu. Podminkou obou-
stranného kontaktu se nebudeme detailné zabyvat, nebot je to specidlni
pfipad podminky jednostranného kontaktu, kde je podminka nepronikéni
splnéna ve tvaru rovnosti (linedrni problém). Mortarovy pfistup je pouzit
v ¢lanku [1014], ktery je posledni sou¢asti souboru praci. Diskrétni tvar slabé
podminky jednostranného kontaktu pfedstavuje vztah [101x,(15)].

Pfi odvozeni mortarové metody vychazime ze smiSené varia¢ni formulace (kon-
taktniho) problému, kdy ,slepujeme* (z angl. piekladu slova mortar ... malta)
aproximace feSeni na jednotlivych podoblastech - viz body 1) a 2). V linearnim
pfipadé je odvozeni odpovidajici diskretizované ulohy sedlového bodu [33%,(22)] ob-
sazeno v |33x,0dst. 3.2]. V pfipadé pouziti mortarové metody na kontaktni problém
odpovida tvar diskretizované tlohy sedlového bodu problému [101%,(13)]. V obou
piipadech vyjadfuje druha rovnice podminku na ,slepeni feSeni. Pro aproximaci
Lagrangeovych multiplikdtor pouZzijeme tzv. dualni béazi, ktera je biortogonélni
vzhledem k standardni bazi spojitych po ¢astech lineadrnich funkci, tj. stop stan-
dardniho prostoru kone¢nych prvki na podoblasti s mortarovou hranici. Tato
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dudlni baze se sklada z nespojitych po ¢astech linedrnich funkei (viz [75, 114]).
Slepujici podminka vzdy svazuje dvé nekonformni triangulace. Abychom pod-
minku vyjadfili pouze pomoci stop kone¢nych prvki z podoblasti s mortarovou
hranici, je tfeba provést transformaci celkové béaze (viz [71, 75, 115|, [101x]).
Tim také umoznime snadnou eliminaci Lagrangeovych multiplikidtord. V nové bazi
se potom problém sedlového bodu zjednodu$si v maticovém tvaru na soustavu
[101,(26)]. Kone¢né pro feSeni této soustavy lze vyuzit algoritmus priméarné dualni
metody aktivnich mnozin (primal-dual active set strategy - PDAS), ktery se d4 zto-
toznit se zobecnénou itera¢ni Newtonovou metodou pro feSeni nelinedrnich rovnic
a je popsan napf. v [58, 59, 69, 71, 75].



Numerické vysledky

V élancich [21x], [19%], [28+] a [68x| jsou obsaZeny numerické vysledky pro nékteré
biomechanické a geomechanické modely. Obsahem této kapitoly je stru¢ny piehled
vysledku autora pro dalsi vybrané problémy, které nejsou soucasti predkladaného

souboru praci.

5.1 Biomechanické modely

5.1.1 Model ndhrady kycelniho kloubu

Na obr. 5.1 je zobrazena geometrie modelu ndhrady
kycelniho kloubu. Zadané elastické koeficienty pro
kost jsou Youngtiv modul pruznosti £ = 2 x 10°
[Pa], Poissonova konstanta v = 0,3 a pro diik
a jamku E = 2 x 10 [Pa], v = 0,3. Cerve-
nou barvou je oznacena Cast hranice, kde je ste-
henni kost upevnéna (nulova Dirichletova pod-
minka). Modrou barvou je oznalena ¢ast hrani-
ce, na které predepisujeme podminky oboustran-
ného kontaktu (podminka symetrie). Zlutou bar-
vou je oznacCena Cast hranice, kde predepisujeme
podminky jednostranného kontaktu (mezi kycelni
jamkou a d¥ikem). Na horni ¢asti hranice pfedpo-
kladame zatiZeni tlakem 0,4 x 10° [Pa] (naznadeno
zelenymi Sipkami). Na obr. 5.2 jsou vykresleny ho-
rizontalni a vertikalni slozka vysledného posunuti
a na obr. 5.3 je vykreslen detail hlavnich napéti
(Cervené Sipky —«— piedstavuji tlaky, modré Sipky
«—— popisuji tahy). Pravé ze zobrazenych hlavnich
napéti si lze udélat predstavu o rozlozeni silového

41

Obrazek 5.1: Model nahrady
kycelniho kloubu
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pisobeni. Uvedeny model lze nalézt v praci [15].
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0.1

-15
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Obrazek 5.2: Horizontélni a vertikalni slozka vektoru posunuti

Uvedeny model odpovida
situaci, kdy je ndhrada pevné
spojena s kostni tkani. Pokud
bychom chtéli napf. mo-
delovat stav, kdy je diik
uvolnény, museli bychom na
uvazované c¢asti rozhranni
diiku a stehennfi kosti prede-
psat podminku jednostran-
ného kontaktu. Po zatizeni
by na vnéjsi ¢asti jiz nebyl
diik a stehenni kost v kon-
taktu, disledkem c¢ehoz by
se na Cast stehenni kosti
nepiendSelo Zzadné napéti
a odpovidajici ¢ast kostni
tkdné by postupné ztracela
pevnost.
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Obrazek 5.3: Hlavni napéti - detail
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5.1.2 Model dolni koncetiny

Geometrie modelu dolni koncetiny je vykreslena na obr. 5.4. Pouzité materialové
parametry jsou pro kost £ = 1,71 x 10 [Pa], v = 0,25, pro chrupavku F =
0,492 x 10° [Pa), v = 0, 1. Podobné jako v modelu ndhrady kycelntho kloubu

0.8

0.6~

0.5

04+
0.3
0.2
0.1+
0Ly |

—

0

Obrazek 5.4: Model dolni

koncetiny

0.1 0.2

Obrazek 5.5: Horizon-
talni slozka posunuti

Yy x 10"
09r
m—-0.5
-1
m-1.5
-2
-25
-3
-35
0.1
-4
0 |
0 0.1 0.2

Obrazek 5.6:  Ver-
tikalni slozka posunuti

pouzijeme toto barevné znaceni: na Cervené ¢éasti hranice je predepsan nulovy po-
sun, na modré ¢asti hranice pfedepisujeme podminky oboustranného kontaktu a
zluté jsou oznacCeny Casti hranice, kde predepisujeme podminky jednostranného
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kontaktu. Na horni ¢4sti hranice predpokladame zatiZeni tlakem 1 x 10° [Pa| (na-
znaleno zelenymi Sipkami). Na obr. 5.5, resp. 5.6 je vykreslena horizontalni, resp.
vertikalni slozka posunuti. Podrobnéji je model popséan v ¢lanku [25].

5.1.3 Model holenni kosti

V piedchozich modelech nebyla uvazovana kostni dfen, kterd mé jiné materidlové
vlastnosti nez vlastni kost. Na zakladé numerickych vysledkii pro model holenni
kosti lze ziskat predstavu o tom, jak se napéti v kostni dieni prenasi. Geometrie
modelu holenni kosti je zobrazena na obr. 5.7. Cervend oznacena hranice je fixo-

u 4 u
x x 10 y x 10
0.4 041
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-6 -35
L 00 L v 1
0.02 0.04 0.06 0.02 0.04 0.06

Obrazek 5.7  Model Obrazek 5.8: Horizon- Obrazek 5.9: Ver-
holenni kosti talni slozka posunuti tikalni slozka posunuti
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véna, na horni ¢asti hranice je pfedepsano zatizeni 0,2 x 107 [Pa| (viz zelené $ipky) a
mezi kostni dfeni a kosti uvazujeme podminku oboustranného kontaktu. Elastické
koeficienty jsou pro kost E = 1,71 x 10! [Pa], v = 0,25 a pro kostni diei
E =2 x 10° [Pa], v = 0,49. Slozky napéti 7, 7, a 7, jsou vykresleny na obr.
5.10, 5.11 a 5.12.

X x 10
0.4
15
0.35
H1
0.3
05
0.25
0
02
-0.5
1 0.15
-1.5 0.1
-2 0.05
-2.5
o 0 -20 o
-4
er e+r er
0.02 0.04 0.06 0.02 0.04 0.06 0.02 0.04 0.06

Obrazek 5.10: Slozka Obrazek 5.11: Slozka Obrazek 5.12: Slozka

napéti 7, napéti 7, napéti 7,

Na obr. 5.13 a 5.14 jsou vykreslena hlavni napéti. Je zfejmé, Ze se kostni dfeni
napéti prenasi také, ovSem jeho velikost je o 3 az 4 fady menSi nez je napéti
pfenasené vlastni kosti (Youngiv modul pruznosti pro kost je pfiblizné 4x veétsi
neZ Youngtv modul pruznosti pro kostni dfefi). Numerické vysledky jsou pro model
holenni kosti uvedeny v [110].
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Obrazek 5.13: Hlavni napéti -
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Obrazek 5.14: Hlavni napéti -
kostni dien
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5.1.4 Model kolenniho kloubu

Geometrie modelu kolenniho kloubu
je zobrazena na obr. 5.15. V modelu
uvazujeme detailnéjsi strukturu ob-
sahujici kortikalni kost (£ = 1.71 x
10' [Pal, v = 0.25 - oznadena sedou
barvou), spongiézni kost (F = 1.4x
10'° [Pa], v = 0.3 - oznadena Zlutou
barvou), kostni diei (E = 2 x 10°
[Pa], v = 0.45 - oznacena hnédou
barvou), vazivo (E = 7 x 10* [Pa),
v = 0.49 - oznaceno rizovou bar-
vou), chrupavku (F = 2 x 10° [Pa),
v = 0.2 - oznafena fialovou barvou)
a meniskus (£ = 4.92 x 10® |Pa],
v = 0.1 - oznacena modrou bar-
vou). Na ¢astech hranice 1-2 a 3-4
jsou lytkova kost (fibula) a holenni
kost (tibie) fixovany, na rozhrani
mezi chrupavkou a meniskem, t;j.
ba-6a, 5b-6b, 7a-8a a Tb-8b, a na
¢asti hranice 9-10 mezi fibulou a
tibii predepisujeme podminku jed-
nostranného kontaktu, na castech
11-12 a 13-14 predepisujeme za-
tizeni odpovidajici statické vlastni
hmotnosti pacienta, tj. 0,215 x 107
[Pa] a na zbyvajicich ¢astech hra-
nice predepisujeme nulové zatiZeni.
Na obr. 5.16 je vykreslena vertikalni
slozka napéti 7, a na obr. 5.17
je vykresleno smykové napéti 7.
7 obrazku 5.16 je patrné, Ze je
tlakové napéti vice koncentrovano

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

-0.02

11 12 13 14

1 1 1 1

0 0.02 0.04 0.06

Obrazek 5.15: Model kolenniho kloubu

do oblasti vnéjsitho kondylu a méné pak do oblasti vnit¥niho kondylu. Podrobné&;jsi
numerické vysledky pro model kolenniho kloubu jsou uvedeny v [26].
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Obrazek 5.16: Slozka napéti 7, Obrazek 5.17: Slozka napéti 7,,
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5.1.5 Model ndhrady kolenniho kloubu

V €lanku [28+], ktery je soudasti prace, jsou uvedeny numerické vysledky pro model
néhrady kolenniho kloubu jednak ve frontalni roviné a také v sagitilni roviné.
Vypocéty byly provedeny pro nékolik rtznych materiali, které byly pouzity na
jednotlivé ¢asti nahrady.

Jednim z podstatnych faktori ovliviiujicich tspéch operace kolenniho kloubu
je vysledn& geometrie dolni koncetiny. Hodnoceni osovych poméri skeletu dolni
koncetiny pfed operaci protézy kolenniho kloubu se bézné provadi z rtg. snimku
dolni koncetiny, kde musi byt zachycen nejen kycelni kloub, ale i ¢ast panve s ace-
tabulem, horni konec stehenni kosti, kolenni kloub a bérec s hlezennymm kloubem.
V pripadé kolenniho kloubu je tfeba urcit tzv. mechanickou osu dolni koncetiny
(viz obr. 5.18), coz je spojnice stiedu hlavice stehenni kosti se stfedem hlezenného
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| I

i () 18

Z ,(a) .,.}b) .__(-C)

Obrazek 5.18:
dolni koncetiny

Mechanickd osa

padé mechanicka osa prochazi stie-
dem kolenniho kloubu (viz obr.
5.18a). Pokud tomu tak neni
(viz obr. 5.18b,c), lze napravy
dosdhnout pomoci resekce ste-
henni kosti pod vét§im ¢ mensim
tthlem. V ¢lanku [194], ktery
je soucasti prace, jsou uvedeny
vysledky pro model ndhrady kolen-
niho kloubu ve frontalni roviné,
kde je femoralni komponenta im-
plantovana na konec stehenni kosti
s riznymi hodnotami thlu re-
sekce. Vypocty byly opét prove-
deny pro nékolik riznych materiala
pouzitych na vyrobu jednotlivych
¢asti ndhrady. Numerické vysledky
pro podobné modely jsou uve-
deny v [26]. V téchto modelech
jsou, podobné jako v odst. 5.1.4,
zahrnuty kortikalni a spongi6zni
kost, kostni dien i vazivo. Geome-
trie modeli pro uhly resekce 0°, 3°,
5°, 7% a 9° je na obr. 5.19. Na obr.
5.20, 5.21 a 5.22 jsou vykreslena
hlavni napéti pro thly 0°, 5° a 9°.

-0.02

kloubu. Uhel, ktery svird mechanicka
osa s anatomickou osou stehenni kosti
urcuje stupen fyziologické valgozity, ve
kterém by meéla byt provedena re-
sekce dolniho konce stehenni kosti.
Dodrzenim spravné techniky implan-
tace, predevsim stranové vyrovnaného
napéti mékkych tkani a odstranénim
zvySeného tlaku na zadni Cast tibidl-
niho plata a respektovanim mechanické
osy koncetiny se vytvoii zakladni pred-
poklady pro spravné biomechanické fun-
govani totalni ndhrady. V idealnim pii-
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Obrazek 5.19: Model nahrady kolenniho
kloubu
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Obrazek 5.20: Hlavni Obrazek 5.21: Hlavni Obrazek 5.22: Hlavni
napéti (thel resekce 0°) napéti (ahel resekce 5°) napéti (tihel resekce 9°)

5.1.6 Model ¢elistniho kloubu

Analyza rozlozeni napéti v Celistnim kloubu je obsahem ¢lanku [73]. Geometrie
modelu byla ziskdna postupem zminénym v 3. kapitole a jeji popis vychézi z obr.
3.2. Pro tuto geometrii bylo vytvoieno nékolik modeli pomoci rizné volby okra-
jovych podminek. Na obr. 5.23, 5.24 a 5.25 jsou znézornény 3 modely. Cerveng
oznalend Cast hranice (na horni ¢elisti) je fixovana, zelené Sipky znac¢i povrchové
zatizeni na piislusné ¢asti hranice a podminky jednostranného kontaktu predepisu-
jeme na spole¢né hranici mezi chrupavkami, které jsou vykresleny zlutou barvou.
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Obrazek 5.23: Celistni Obrazek 5.24: Celistni Obrazek 5.25: Celistni
kloub - model 1 kloub - model 2 kloub - model 3

Tyto predpoklady jsou spole¢né pro vSechny uvedené modely. V modelu 1 je pro
vSechny uzlové body dolni ¢elisti pfipojena podminka omezujici maximélni posun
ve vodorovném i svislém sméru na +1 mm. V modelu 2 je pfipojena podminka
oboustranného kontaktu pro modfe oznacenou ¢ast hranice dolni celisti. V mode-
lu 3 je pro ¢ervené oznaceny bod dolni &elisti (levy dolni roh) pfedepsan posun
[—1 mm, 1 mm]. Z obr. 5.26, 5.27 a 5.28, na kterych jsou zobrazena hlavni napéti
pro model 1, 2 a 3, jsou potom patrné rozdily v rozlozeni prenaseného zatizeni.

Obrazek 5.26: Hlavni Obréazek 5.27: Hlavni Obrazek 5.28: Hlavni
napéti - model 1 napéti - model 2 napéti - model 3

5.1.7 3D model kolenniho kloubu

Pokud pouzijeme tiirozmérny model kolenntho kloubu, popf. jeho ndhrady, ziskdme
detailnéjsi a presnéjsi informaci o silovém zatizeni jednotlivych ¢asti modelu. V praci
[83] jsou uvedeny vysledky pro 3D model kolenniho kloubu, jehoZ geometrie (viz
obr. 5.29) byla ziskidna postupem zminénym ve 3. kapitole. V modelu jsou 4 kon-
taktni plochy (dvé mezi femoralnimi kondyly a meniskem, jedna mezi meniskem
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a holenni kosti a jedna mezi holenni a lytkovou kosti. Dale je predepsan nulovy
posun na dolnich fezech kosti holenni a lytkové a pro horni ¢ast (fez) stehenni kosti

Obrézek 5.29: 3D model kolenniho kloubu - geometrie a kone¢néprvkova sit

je predepsan posun 0.5 mm ve sméru ke stfedu menisku a soucasné je predepsana
rotace tohoto fezu v sagitalni roviné okolo stfedu menisku o velikosti od —0.9° do
0.9°. Volbou téchto podminek simulujeme deformaci zatizené nohy, kterou mirné
propiname a pokrcéujeme. Na obr. 5.30 a 5.31 jsou vykresleny hodnoty vertikalnich
posuni pro natoceni o velikosti 0° a 0.9°. Vertikalni slozka napéti na povrchu
menisku je pro stejné hodnoty natoceni stehenni kosti znazornéna na obr. 5.32 a
5.33. Informaci o rozlozeni napéti mezi oba kondyly lze ziskat ze dvou sagitalnich
fezl (viz obr. 5.34). Na obr. 5.35 a 5.36 jsou prezentovany hodnoty napéti ve sméru
osy y (pfedozadni) pro sagitalni fez prochéazejici pres vnéjsi kondyl pro natoceni
stehenni kosti o velikosti 0° a 0.9°.
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Obrazek 5.30: Vertikalni posun - Obréazek 5.31: Vertikalni posun -

natoceni 0° natoceni 0.9°
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Obrazek 5.32: Vertikilni napéti - Obrazek 5.33: Vertikilni napéti -
natoceni 0° natoceni 0.9°
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Obréazek 5.35: Napéti ve sméru osy y
(pfedozadni) - natoceni 0°
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Obrazek 5.36: Napéti ve sméru osy y

(pfedozadni) - natoceni 0.9°
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5.1.8 3D model ndhrady kolenniho kloubu

Numerické vysledky pro 3D model nahrady kolenniho kloubu jsou uvedeny v préci
[83]. Pro vlastni vypocet byl pouzit zjednoduseny model nahrady, ve kterém byly

vypustény neadekvatni detaily (viz
3. kapitola, obr. 3.8 a 3.9), a ktery
sestavd z kovové femoralni kompo-
nenty (CoCrMo), tibidlni kompo-
nenty (Ti6Al4V) a plastové vlozky
(UHMWPE). Piedpokladame, Ze plas-
tova vlozka je pevné spojena s
tibidlni ¢asti nahrady, a Ze ke kon-
taktu dochazi na rozhrani plastové
vlozky a femoralni c¢asti néhrady.
Dale pfedepisujeme nulovy posun
pro celou spodni plochu tibidlni
Casti a femoralni ¢ast zatéZujeme na
jeji horni horizontalni ploSe casové
proménou silou piisobici svisle doli
s odchylkou =+5° od svislé osy ve
frontalni roviné (jedna se o kvazista-
cionarni ulohu). Motivaci je mode-
lovat reakci nahrady pri zatizeni
vahou téla, kde riazné thlové od-
chylky zatézujici sily mohou vysti-
hovat situaci pfi rtuzném umisténi
komponent nidhrady vzhledem k me-
chanické ose koncetiny. Abychom
zabranili rotaci femoralni kompo-
nenty v sagitalni roviné, predepisu-
jeme pro jeji horni svislou sténu
podminku oboustranného kontaktu,
tj. komponenta se muZze pohybovat
pouze ve frontdlni roviné a pohyby
v pfedozadnim sméru umoznény nej-
sou. Na obr. 5.37 jsou vykresleny hod-
noty napéti ve svislém (proximalnim)
sméru pro piipady odchylky —4°, 0°
a +4° vektoru zatézujici sily od svislé
osy ve frontalni roviné. Pro nazornost
je vyteckovana dorzalni ¢ast femoralni
komponenty.
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Obrazek 5.37: Vertikdlni napéti pro fezy
femoralni komponentou pro odchylku za-
tézujici sily od svislé osy ve frontalni roviné
—4°,0° a +4°
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5.2 Geomechanické modely

5.2.1 Model Zulového bloku naruSeného trhlinou

V ¢lanku [24] jsou uvedeny
numerické vysledky pro model

yulového bloku naruseného trhli- s — LU L L
nou. Geometrie modelu je zo- zo,§,

brazena na obr. 5.38. Cervend =

oznagenou ¢ast hranice fixuje- = L
me, 7luté je vyznacena Kkon- ‘é
taktni hranice a zelené Sipky A —
naznacuji povrchové zatizeni. %
Na obr. 5.39 je vykreslen blok T .

po deformaci (50-ti nasobné
zvétSeni), na obr. 5.40 smykova
napéti a na obr. 5.41 hlavni
napéti.

Obrazek 5.38: Model Zulového bloku narusSeného
trhlinou
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Obrazek 5.39: Deformace

x10°

Obréazek 5.40: Smykova napéti
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Obrazek 5.41: Hlavni napéti

5.2.2 Model Himalaji

Geometrie modelu je zobrazena
na obr. 5.42. Uvazujeme celkem
27 podoblasti s riznymi ela-
stickymi koeficienty (na obréaz-
ku jsou rozliSeny rtznou in-
tenzitou Sedi). Cervenou bar-
vou je vyznacena Cast hrani-
ce s predepsanym posunutim,
které je nulové s vyjimkou levé
horni ¢asti, kde je predpsano
posunuti [3x10% m, 0 m], které
odpovida pohybu litosferické
desky v ¢asovém intervalu 6 x
10* let. Zlutou barvou je vy-
znacena kontaktni hranice.

Obrazek 5.43: Oznaceni vytezu

Obrazek 5.42: Model Himélaji

Numerické vysledky pro tento model jsou ob-
sazeny v praci [15]. Pfedstavu o rozlozeni
silového zatiZeni ziskdme z vykreslenych
hlavnich napéti. Na obr. 5.44, 5.45 a 5.46
jsou vykresleny detaily hlavnich napéti pro
vyfezy zobrazené na obr. 5.43.
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Obréazek 5.44: Hlavni Obréazek 5.45: Hlavni Obrazek 5.46: Hlavni
napéti - vyrez A napéti - vyrez B napéti - vytez C

5.2.3 Model tunelu naruSeného geologickym zlomem

V ¢lanku [68+], ktery je soucasti prace, jsou uvedeny numerické vysledky pro model,
ktery popisuje tunel kruhového prifezu ve skalnim masivu, kterym prochazi geo-
logicky zlom. Geometrie je znazornéna na obr. 5.47. Na Cervené oznacené ¢asti
hranice pfedepisujeme posun [2,5 x 1072 m, 0 m], zlutou barvou je vykreslena hra-
nice, kde pfedpokladdme jednostranny kontakt, na modré hranici plati podminky
oboustranného kontaktu a zelené Sipky naznacuji pfedepsand povrchové zatizeni
0,5 x 107 [Pa], resp. 1 x 107 [Pa].

LU L LU L

HHHHHHHHHHHHHHHHHHHN\HHH‘HHHHHH

L L \ L L L L L \
60 40 20 o 60 60 40 20 o 20 40 60

Obrazek 5.47: Model tunelu - 1 Obrazek 5.48: Model tunelu - 2

Na obr. 5.48 je model, ve kterém uvazujeme jiné okrajové podminky. Povr-
chové zatiZeni na horni hranici je 0,5 x 107 [Pa], na modré hranici plati podminky
oboustranného kontaktu a na 7luté podminky jednostranného kontaktu. Hodnotu
posunuti na ¢ervené oznacené hranici predepisujeme ve vodorovném sméru ve tiech
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variantach: (I) —2,5 x 1072 m, (IT) —1 x 107! m a (III) —2 x 10~ m. Deformace
okoli tunelu jsou pro tyto t¥i moznosti vykresleny na obr. 5.49, 5.50 a 5.51 (zvétSeno
10x). Posunuti bodi na sténach tunelu ukazuji obr. 5.52, 5.54 a 5.56. Obr. 5.53,
5.55 a 5.57 zachycuji hlavni napéti na sténach tunelu.

6 ‘
’ ‘
2 2
4] 0
-2 2
. .
-6 6
i N
T -5 0 5 10 T T
Obrazek 5.49: Deformace - verze (I) Obrazek 5.50: Deformace - verze (II)

A

-6

-8

-10
-10 -8 -6 -4 -2 0 2 4 6 8 10

Obrazek 5.51: Deformace - verze (III)
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Obrazek 5.52: Posunuti - (I)

6.17481e-02

Obrazek 5.54: Posunuti - (II)

Obrazek 5.56: Posunuti - (III)

1.58012e+08
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Obrazek 5.53: Hlavni napéti - (I)

b
o
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Obrazek 5.55: Hlavni napéti - (II)

//

2. 55288e 08
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Obrazek 5.57: Hlavni napéti - (III)



Shrnuti

Predklddana habilita¢ni prace, ktera je souborem puvodnich praci autora do-
plnénym komentafem, je vénovana tlohdm z oblasti biomechaniky a geomechaniky;,
které lze formulovat jako kontaktni problém. Préce, které jsou zafazeny do piedkla-
dané prace, nepredstavuji veSkeré vystupy autora. Jedna se o vybér, ktery charak-
terizuje urcité dil¢i pristupy, které lze vyuzit pro efektivni feSeni kontaktniho pro-
blému. V komentéfi jsou pouzity i odkazy na dalsi puvodni prace autora, které
souvisi s danou problematikou. Cilem prace je snaha podat komplexni pohled na
feSeni problému, od formulace az po vlastni numerické feSeni. Z komentafe je pa-
trné, 7e pro teSeni problému jsou diilezité poznatky z riznych obori, zejména
z matematiky, mechaniky, pocitacovych véd, mediciny, geologie a dalsich. Pravé
v propojeni ruznych védnich disciplin spatiuji velky vyznam a potencial pro dalsi
praci.

V &lanku [174] je popsana metoda rozkladu oblasti bez piekryvani vychéze-
jici z primarni formulace pro posunuti pro feSeni kontaktniho problému obecné
vice pruznych téles ve dvou dimenzich. Na kontaktu pfedpokladdme nulové tieni.
Popsana metoda je efektivni v piripadé, Ze je kontaktni hranice ,relativné“ mala.
Zadané oblasti rozdélime na podoblasti tak, ze jejich rozhrani neprochézi kontakt-
ni hranici. Vzniklé podoblasti miizeme rozdélit do dvou skupin: a) oblasti, které
neosahuji kontaktni hranici a b) dvojice oblasti, které jsou v kontaktu. Princip
metody vychazi z metody Schurova dopliiku, tj. hleddme hodnoty posunuti na
rozhranich mezi oblastmi. Vzhledem k tomu, Ze jsou operatory Schurova dopliku
pro dvojice podoblasti v kontaktu neline4rni, feSime problém metodou postupnych
aproximaci. Pocatec¢ni aproximaci uré¢ime jako feSeni linearizovaného problému,
kdy je podminka jednostranného kontaktu nahrazena podminkou oboustranného
kontaktu. Pro feSeni linearizovaného problému i pro feSeni v jednotlivych krocich
metody postupnych aproximaci pouzivime metodu sdruzenych gradientt s pred-
podminénim typu Neumann-Neumann. V ¢lanku je dale dokazana konvergence
metody postupnych aproximaci a jsou uvedeny vysledky numerického experimentu
pro modelovou tlohu.
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Metoda rozkladu oblasti bez prekryvani pro feseni kontaktniho problému pruz-
nych téles ve 2D je popsana také v ¢lanku [21x], kde je na rozdil od ¢lanku [17+]
pouzita pro FeSeni kontaktniho problému se zadanym tfenim. Struktura c¢lanku
[21x] je proto obdobna struktufe ¢lanku [17]. V zavéru jsou uvedeny numerické
vysledky pro geomechanicky model tunelu, kterym prochazi geologicky zlom, a pro
biomechanicky model ndhrady kolenniho kloubu.

V ¢lanku [194] jsou uvedeny a diskutovany vysledky numerickych experimenti
pro dvourozmérny model ndhrady kolenniho kloubu. Umisténi femoralni kompo-
nenty je uvazovano ve tfech variantach, pro tihel resekce hlavice stehenni kosti 3°, 5°
a 7°. Motivaci zkoumani je na zakladé vysledného rozlozeni napéti v jednotlivych
pfipadech urcit nejvhodnéjsi polohu femoralni ¢asti ndhrady. Uvedené vysledky
byly pfedneseny na mezinarodni konferenci The 2004 International Conference on
Computational Science and its Applications (ICCSA 2004).

Modelu nahrady kolenniho kloubu je vénovan také ¢lanek [28x], kde jsou uve-
deny vysledky pro fezy ve frontalni a v sagitalni roviné. Na zékladé analyzy roz-
lozeni napéti v jednotlivych ¢astech nahrady jsme se snazili potvrdit praktické
zkuSenosti lékaiu a zduvodnit asymetrické opotiebeni tibidlniho plata, zejména
jeho zadni ¢asti. V dusledku pfetéZzovani ndhrady dochézi k tzv. otéru, coz je
progresivni tbytek materiadlu spojeny s uvoliiovinim otérovych ¢astic, které ve
svém disledku mohou narusit spojeni implantatu s zZivou tkani. Vysledky byly
prezentovany na mezinarodni konferenci The 3rd IMACS Conference on Mathe-
matical Modelling and Computational Methods in Applied Sciences and Engineer-
ing (MODELLING 2005).

Obsahem ¢lanku [68+] je metoda nejhorsiho scénafe pro kvazi-sdruzenou (quasi-
coupled) tlohu v termo-pruznosti a vySe zmifiovana metoda rozkladu oblasti. Nej-
prve je uvedena formulace kontaktniho problému v termo-pruznosti, nasleduje vy-
klad metody rozkladu oblasti pro feSeni kontaktniho problému pruznych téles se
zadanym tfenim a déle je popsdna metoda nejhorsiho scénéie pro nejista vstupni
data. Jsou zde zavedeny mnoziny pripustnych dat a poté je uvedena véta o exi-
stenci a jednoznacnosti slabého feSeni kontaktniho problému pro kazdy prvek z
mnoziny p¥ipustnych dat. ,Spolehlivym FeSenim“ tlohy definujeme nejhors$i mezi
vSemi moznymi feSenimi, kde stupen nespolehlivosti je méten jistym funkcionalem,
kritériem (criterion functional), ktery zavisi na feSeni studované tlohy. V ¢lanku je
ukazano 6 moznosti volby tohoto kritéria a je dokizana existence feSeni problému
nejhorsiho scénafe (worst scenario problem).

V ¢lanku [334] je formulovana metoda mortarovych kone¢nych prvka pro feseni
linearnich eliptickych problémi ve dvou dimenzich. Pouziti metody mortarovych
kone¢nych prvki vychazi z metody rozkladu oblasti, kde jednotlivé podoblasti
jsou dikretizovany (triangulovany) nezavisle, tzn. 7e sité na spole¢nych hranicich
(rozhranich) mezi podoblastmi nesouhlasi - jedné se o nekonformni metodu. Takovy
pristup je vice flexibilni a umoziiuje napf. lokalni zjemfovani pouze na nékterych
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podoblastech. Spojitost feSeni na rozhranich je zajisténa ve slabém smyslu. V ¢lan-
ku je dale popsana implementace metody v systému MATLAB a na dvou piikla-
dech jsou ilustrovany vlastnosti metody.

V ¢élanku [1014] je popsédna metoda pro numerické feSeni dynamického kontakt-
niho problému viskopruznych téles. Prezentovany model je pouzit pro popis Sifeni
seismickych vIn napii¢ zemskou kiirou. Pro feSeni je pouzito semi-implicitni schéma,
metoda mortarovych kone¢nych prvki a priméarné dualni metoda aktivnich mnozin
PDAS. Uvedena metoda zatim nebyla imlementovana a soucasti ¢lanku proto ne-
jsou zadné numerické vysledky. Tato prace urcuje smér dal§tho zkoumani.
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Abstract

A non-overlapping domain decomposition algorithm of Neumann—Neumann type for solving variational in-
equalities arising from the elliptic boundary value problems in two dimensions with unilateral boundary condition
is presented. We suppose that boundary with inequality condition is ‘relatively’ small. First, the linear auxiliary
problem, where the inequality condition is replaced by the equality condition, is solved. In the second step, the
solution of the auxiliary problem is used in a successive approximations method. In these solvers, a preconditioned
conjugate gradient method with Neumann—Neumann preconditioner is used for solving the interface problems,
while local problems within each subdomain are solved by direct solvers. A convergence of the iterative method is
proved and results of computational test are reported.
© 2002 Published by Elsevier Science B.V. on behalf of IMACS.

Keywords:Domain decomposition; Schur complement; Unilateral contact problems; Parallel computing; Preconditioning

1. Equilibrium of a system of bodiesin contact

We consider a system of elastic bodies decomposed into subdomains each of which occupies, in refer-
ence configuration, a domai@ inR?,i = 1,..., Iy, M = 1,..., 7, with boundaryd 2™. Suppose
that boundar;U;@z1 02M consists of four disjoint parts),, I';, I'. and Iy and that the displacements
uo : I, — R? and forcesP: I, — R? are given. The parf, denote the part of boundary that may get
into unilateral contact with some other subdomain and thelpatenote the part of boundary on that the
condition of the bilateral contact is prescribed (5&g 1).
We shall look for the displacements that satisfy the conditions of equilibrium in th& set{v €
Vivk +v) <0 onr.} of all kinematically admissible displacementss V, V = {v € HY2)|v =
uo onl,,v, = 0 onlp}, HX(R) = [HY(LD]? x --- x [Hl(.Q;Z)]2 is standard Sobolev space.
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Fig. 1. The contact problem with decomposition.

The displacemeni € K of the system of bodies in equilibrium then minimizes the energy functional
L) = (1/2)a(v, v) — L(v):

Lu) < Lw) foranyv € K. D)

Conditions that guarantee existence and uniqueness of the solution may be expressed in terms of coercivit
of £ and may be found, for example, [if].

We definel’™ = 92M/92M and the interfacé™ = |J7,_, U/, I’™. Let us introduce
™ ={je{l,....Iy}: [.noR} =9}, M=1...7, ()

The number of a separate subsggis P, i.e.I'. = Uf;l I. Further, we denote

J Iu

v=xelJYRM 02" nry#£0p. j=1... P, €)
M=1i=1

o ={li,M]: a2 nry#v), j=1...,P, 4)

v= J e j=1...r
[i,M]ev]

We suppose that
rnr,=9, (5)
then

Vr=yvK|lr=yVir, (6)
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for trace operatoy: [H1(2M)]2 — [L?(352})]%. We suppose that~1: V — V is arbitrary linear
inverse mapping for which

J
> (M), =0 onl. VieVr. (7)
M=1

After denoting restrictionR™: Vi — M, LM: LM — QM gM( ) aM(,.) — @M veM) .
V(£2M) — 2M and introduction

J
VO(.QZ.M): veVjp=0 on(UQM>\S2iM ,

M=1

we can formulate th&heorem 1.1

Theorem 1.1. A functionu € K is the solution of the global problefi) if and only if the function u
satisfies

J  Iu
1. DO @ @y, ytw) — LY (v t) =0 Vb € Vpi e Vr, (8)
M=1i=1
for the tracei = yu|r on the interfacd”.
2. Its rescrictionu? (u) = ulon satisfies following conditions

@
al ! (i), p!") = LY (@) Vo' € Vo),
ul' (@) € V(@M), yul @) = RMa, )
forietT, M=1,...,7,
(b)
Yo aMw @, ¢
[i,M]evi
= Y LY@ Vo=@ [l Ml e 0)), ¢ e Vo2, (10)
[i,M]ev/
such that
u+dek; yul @) = RMa for[i, M] € v/,

forj=1,..., P.

Proof. Seg[2,5]. O
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2. Thelocal and global Schur complement

We now want to write the interface problgi®) in operator form. For this purpose, we first introduce
additional notation. We introduce the local trace spaces

= {yvipulv € K} = {yv[pulv € V}, (11)
and the extension Jf : VM — v (2M) defined by

y (@) pu =a, i=1.... Iy, M=1..7

(12)
a (TrjuM, vMy = ovoM e VvO(QM), TryfaM e V(M) forieT”, M=1,...,7.
For subdomains2*/, j =1, ..., P., we completed definition T,\;Il with boundary condition
Z (Trta™), =0 only, forj=1,...,P,
[i,M]ev/
i.e.
D al@ngal v}y =0 v [i,M] ev’): v} e vOR2M) sothat
[i,M]edi
> @M.=0 only j=1....P. (13)
li.M]ed
Definition 2.1. Thelocal Schurcomplement, foe T¥, M =1, ..., J,isoperatoss} : VM — (VM)*
defined by
(SMaM oMy = aM (Trigta, TrgtoM)  vaM, oM e vM. (14)
In matrix form, we have
SMUM = (Am — By Ayt Bm) U}, (15)

where we decompose the degrees of freedbmof u; into internal degrees of freedog}’ and interface
degrees of freedory}”:

M= [Ule UiM]T~

With this decomposition, the matrix representatiom$f., .) on Hl(QiM) takes the form

A B
Am = |: ';A _'M . (16)
By Aim
Definition 2.2. The combined local Schur complement, for subdomadins j = 1, ..., P., is operator

Seit (VM i, M) € 07) — (VM [i, M] € 99)*, j=1,..., P,
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defined by
(S, @, [i, M] € &), (W, [i, M] € ©))
= Y a'@f @, Trgo!y Y@M, [i, M] e 97) e (VM. [i, M] € 9), 17)
[i,M]ev

whereu™ (i) is the solution of the problerfl0)and RM i = i, [i, M] € ¥/,

Lemma2.1. The condition8) for the functioni on interfacerl” is equivalent to the conditiofi8):

J P.
SO sMaM iy + > (Sey @ i, M] € 99), b} [i, M] € 9))
M=1jeT™ ji=1
= Z doLYangw!y Y e Ve, wheren) = RMw, i) = R, (18)

M= 1161M

by using the local Schur complements
Proof. Seeg[5]. O
We rewrite the conditior(18) in the form
SoU + SkonU = F, (29)
where

J
=Y > (RMTSMRY,

M=ljeTM

J
F=Y > ®R""ah"LY,

M=liely
Skon = ZRT SejRj,

and
R.ji = (RMa, [i, M] e /)", ueVr Vj=1,...,P,

Since the operatdikoy is non-linear, we solve theq. (19)successive aproximations method. We choose
the solution of the auxiliary linear problem as an initial aproximatith In the auxiliary problem, we
replace the sek by

Ko=qveVv| Y M,=0 onlyj=1..P
[i,M]epi
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and we obtain

ug = arg minl(v),
vek?©

U° = yuolp.
Now, we come back t&q. (19)and we computé&/* as the solution of the linear problem
SoU* = F — SgonU*Y, k=1,2,... (20)

3. Theauxiliary problem

We solve the variational equation
e K°, DLW’ v)=0 VuveK" (21)

There exists a unique solution of the probl€gil). For problem(21) we can describe analogy of
Theorem 1.1

Theorem 3.1. Afunctionu® € K9 is the solution of the auxiliary proble(@1)if and only if the function
uY satisfies

J Iy
1. Z Z (@M @ @), y~*w) — LY (y"'w)) =0 Vw € Vr,i® € Vr, (22)
M=1i=1
for the tracei® = yu°| on the interfacd".
2. Its restrictionu® (i1) = u0|Q[M satisfies following conditions

(a)
al ™ @), ¢;")
=LY @) v e vo@RM), u@® e veM), yu @) m = RMa®  (23)
forieT™ , M=1,...,7,
(b)
> al @@, o)
[i,M]ev/
= Y L@ Vo=@, li, M] € 9)), ¢} € VO(2]") suchthap € K®  (24)
[i,M]evi
forj=1,..., P.
Proof. Seeg[5]. O

Definition 3.1. We define a combined local Schur complements for subdonsins

St (VM i, M] € 90) — (VM. [i, M] € 9/)*, j=1,...,P.
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by
(S2.@M . [i, M] € 97, (3. [i, M] € v))
= Y a(Trgud™ Trho!y V@), [i M] € 9/) € (VM. [i, M] € 7). (25)
[i,.M]ev/

Lemma 3.1. The condition(22) for the functionz on interfacerl” is equivalent to the conditio26):

J P,
DO sMEM My Y (82, @M i, M] € 97), (@), [i. M] € 9))
j=1

M=1ieTM
= Z doLYangw!y Y e Vr, wheren) = RMw, ad = R a°. (26)
M= 1lEIM
Proof. Seeg[5]. O

Definition 3.2. We define a global Schur complement:

Pe J
S=Y RLSOR;+Y D (RMHTSYRY, (27)
j=1

M=1lieTM
and the conditiorf26) on the interfacd™ has form
SU = F, (28)

in dual spaceéV)*.

Eq. (28)we solve by a preconditioned conjugate gradient method PCG1:

Choosel/% andH™ (by Eq. (51), PI% = 0.
Iteration loop om.
Compute the preconditioned direction of desagft = M~H,
ComputeP[”] =Gl 4 ((H[”], G["])/(H[”_ll, G[n—l]>)P[n—l],
On each subdomai?,i e TM, M =1,..., 7,
solve in parallel Dirichlet problem

AmUY = BuR}M P,

On subdomai2*/, j =1,..., P. computeSij*jp[n],
Compute

Pe J
ZM = sA = (R )TSHRG P Y 0 Y (R SMRY P

j=1 M=1ieTM

J
— Z(R*J) SO RGP+ 3 S (R (AR PM - B UM,

M=1lieTM
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(H Gy

. W 67
Tz, Py

HI+1 gyl _ g0 7l
gl — glnl 4 gl plal

End loop om.

This method does not require the explicit construction of the local Schur complement §4tbiit
does require an efficient preconditionet ™ (se€g/3,4]). By construction, the Schur complement operator
is defined by the sur(27). Its inverse(S¥)~1,i e TM, M = 1, ..., J simply consists in associating
to the generalized derivative € (VM)* the tracey¢™ on I';" of the solutiong of the corresponding
Neumann problem in variational form

al (@M, v) = (g yvlpm) YoeV(RQY), oM e V(M) (29)
Then
(St =y (30)

Similarly, we define inverse operator
S (VM LM e 9N - (VM [ M] e d)), j=1.... P.
We solve the Neumann problem far, [i, M] € /) € (VM,[i, M] € 9/)*

dooa@ o= > @Myl Yu.é eV (31)

[i,M] €9 [i, M]ed

whereV; = (M. [i, M] € 9))[vM € V(2M), Y yyess @¥)n = 00NTy).
Then

Definition 3.3. We define an injection

pM .vM s vy ieT, M=1,...,7,
D.;: (DM [i,M] € /) > Vr,D,; = (DM, [i, M] € ©/), j=1,...,P, (33)

such that on each interface degree of freedom is

M
D%ﬁ(Pl)za(Pk)QQLT, i=12.. . Iy, M=1...,J (34)

if the /th degree of freedom df - corresponds to theth degree of freedom df * and
DMu(P) =0, if not. (35)
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Here,o is a local measure of the stiffness of subdom@jH (for example, an average Young modulus
on2M) and

or= ) o, (36)

P[EQ;VI

is the sum obj.” on all subdomainﬂj’.” containingp;.

We define

Z > Mo +ZD*,(S Dl (37)

M=1lijeTM

In operator form, the action o841~ on L e (V;)* is thus given by

Z > ploM+ ZD*,U*J,

M=1lieTM

(sMuM, vMy =(L,DMvMy wwMevM UMevM forieT M=1,...,9 (38)
and
(8.0, V) =(L.Dy;V;) VV;eV;, UgyeV;, forj=1...P. (39)

The original Neumann—Neumann preconditioner supposes that the solution of each local Neumann prob-
lem is uniquely defined, whereas rigid body motions are possible. This weakness can be fixed by replacing
(SM)~1, (82,)~* by a regularized inverseS)~*, respectively(S?)~*. We introduce on each subdo-
main 2, respectively2*/ a small local coarse spact”, respectivelyZ*/ containing all rigid body
motions.

The general trick to upgrade the original preconditioner then consists in adding to the initial local
contributiong?”, respectlvelypj a“bad’z” € zM, respectively;; € Z*/ which is chosen in order to

get the smallest differenqgg\t 1 — §—1).
We suppose that satisfies the invariance property
(L,DMyzMy=0 vMezM, ieT", M=1,..J7, (40)
(L.D.jyzj)= Y (L.DMyz})y=0 Vz;€z%, j=1... P, (41)
[i,M]evi

We introduce a closed orthogonal complement sgace ) of ZM in vV (£2) and a closed orthogonal

complement spac@(£2*/) of Z*/ in Vj. Let thenq&ioM € Q(£2M) be the particular solution of the
variational problen{29) defined by

al @M. v} = (L. DM v ) VoM e vRM) (42)
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ande?, = (92, [i, M] € ©/) e Q(£2*) be the particular solution of the variational probl¢gi)
defined by

D al @M vy = D> (L.DM v Vu; e V. (43)
[i,M]evi [i,M]ev/

Egs. (42) and (43are well posed varitional problems set gis2), Q(£2*/).

Definition 3.4. We define our new Neumann—Neumann preconditiover (z°) by

J  Iu
ML =" DYy @ + 2M)lrw, (44)

M=1i=1
with the solutionz?” of the minimization problem

2% = arg mnSM 1) — STHL, M Yz) — s7HL), (45)

zellZ

J(2)

NZ = erm =1, 7(ZM)) x (X =1 p(Z*)).

.....

By construction, and sinck satisfies (40) and (41), we have

J Iu J Iy
J(2) = <S DY DMy Y Y (DY v + ZDMy¢OM)> + constant (46)
M=1i=1 M=1 j=1

Its minimum is attained for the functiof? which cancels its gradient, that is for the solution of the
variational coarse equality

<S > Z DYy, Z Z DM)/ZOM> <S > Z DYy, Xj: i D{”y¢§’M> Vz e TZ.

M=1 j=1 M=1i=1 M=1j=1 M=1i=1
(47)

The upgraded Neumann—-Neumann preconditigaé} is therefore obtained by first solving the local
Neumann problem@2) and (43)and then the variational coarse probléfii) set on the coarse product
spacellZ.

We introduce the coarse trace space

J P.
Vy = Z Z DMy z¥ +ZD*/'VZ*1, (48)
M=1ijeTM j=1

asetV; C (Vr)* given by
LeVie (L,z)=0 VzeVy
and theS-orthogonal projectiorP; from V- onto Vg given by
(SzU — P,U)=0 Vze Vy, YU € Vp, P,U € Vy. (49)
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Under this notation, the coarse problé47) can be written as

J I J  Iu
Y DMyM=—P, > Y DMy,

M=1i=1 M=1i=1

and thus the new Neumann—Neumann preconditi¢tértakes the final form
J u
ML= =Py Y Y DMye™. (50)
M=1i=1

Lemma 3.2. Suppose thatH¥ ¢ Vi, PO = 0in algorithm PCG1using preconditioné#4). Then
H"MevVin=12...

Proof. Seeg[5]. O

According toLemma 3.2 we must only suppose thafl® e v, which is achieved by setting the
initial solutionU'® € V;+ to the solution of the coarse problem

(H[O],Z)E(F—SU[O],Z)IO Vz € Vy. (51)

This coarse problem is identical (67) within a change of right-hand side and thus the condit(@s
and (41)do not restrict the generality of the proposed preconditioner.
4. Theoriginal problem

Now, we solve by the successive approximations metkod{(20) We must effectively compute the
solutionU* of the linear problem

SoU* = bF, (52)
with
j - - -
So= D Y (RMISMRY. b =F —Son0"
M=1ieTM

J Pe

F=Y Y RN LY, Scon=) Rl S.,R;.
M=1iely j=1

TheEqg. (52)we solve by a preconditioned conjugate gradient method PCG2(we costruct the sequence

of the iterationso!l — U* for n — o0):

Chooses!? (by theEq. (64), n'® = b* — Seal, 7% = 0.

Iteration loop om:

Compute the preconditioned direction of descéfit= M,y
Computen[n] — K[n] + (<n[n]’ K[”]>/(7’][n_l], K[”_l]))ﬂ[n_l]
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On each subdomai?™,i e TM, M =1, ..., 7,
solve in parallel Dirichlet problem

Ai|\/|.fo2,M = BiMRiMTF["],

Compute
j —_ —_ -
£ = Sl = 3" SR (A RY 7 — B oM,
M=1jeTM
St — o )
GRS

g1l — plrd _ gLl gl
Gl — gl 4 gl ],

End loop om:

Now, we define a preconditione\r/lgl:

J
Mgt =Y > DMt (53)

M=1lieTM

with a new injectionD”.

Definition 4.1. We define an injection

DY :vM > vp, ieT", M=1,...,7 (54)
such that on each interface degree of freedom is
DMu(P) =uv(P) if PelMcae* foranyje(l,..., P, (55)
oM .
DMo(P) = o(P)-~ forP e I'M¢ga* Vj=1,...,P, (56)
or

if the /th degree of freedom df - corresponds to theth degree of freedom df  and
DMu(P) =0 ifnot (57)

Let¢p®™ e Q(£2]) be the particular solution of the variational problé€28) defined by(42). Similarly
to the auxiliary problem we now define a new preconditioner.

Definition 4.2. We define our new Neumann—-Neumann preconditid\%cgr'l by

J
MGHOL =" 3" DMy @™ + "), (58)

M=lieT™
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with the solutionz® of the minimization problem

2% = arg minSo(Mg1(2) — SoHL, Mgt) — SgHL), (59)

zellpZ

.....

Its minimum is attained for the functiog? which cancels its gradient, i.e. for the solution of the
variational coarse equality

J J
(3" X pfvalt. Yo X offyath)

M=1jeTM M=1jeT™
J J
= —<So DI LZ I D,My¢9M> Vz € TIoZ. (60)
M=1 jeT™ M=1jeT™

We introduce the coarse trace space
J

Vo= »_ > DMyz! (61)

M=1lieTM

a setV;, C (Vr)* given by

LeVye (L,z)=0 Vze Vou,
and theSy-orthogonal projectiorP,z from V- onto Vo given by

(Soz, U — PozU) =0 Vz € Vou, YU € Vi, PozU € Von. (62)
Under this notation, the coarse probl¢e®) can be written as

J J

Do DMy =—Pz ) Y DMyel,

M=lieTM M=1jeTM
and thus the new Neumann—Neumann preconditiB®rtakes the final form

J
MG OL = —P) Y Y DMyo™. (63)

M=lieTM

Lemma 4.1. Suppose thayl® e V3, 7% = 0in algorithm PCG2 using by precondition€88), then
[n] e
neVy,n=12...

According toLemma 4.1we must only suppose thaf! e Vi, Which is achieved by setting the initial
solutiona® e Vi, to the solution of the coarse problem

MO, 2y = (b* — S0, z) =0 Vz € Von. (64)
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A convergence theorem requires to introduce some definitions Lt an ortogonal complement of
Von IN V. We introduce seminorms

IRjila, = [ Y a (T RM6, TriRMv),  j=1.....P.
[i,M]edi

Lemma4.2. The expression
i = (Soit. it)
is a norm on® where
Q =X miermim—1,..70(2M")
Definition 4.3. Let7: ® — ® be a mapping defined by
(So(Ty), v) = (F — Skon(y), v) Vv € 6. (65)

Theorem 4.1. Assume that there exists a constank (1/+/2P.) such that the following condition
hold:

|Rujitla,, < Ml Yae®, Vjell,... P} (66)

1252 1236 1508

14 1 1493

197 210

(a) 785 798 (b)

Fig. 2. Model problem—(a) geometry and (b) deformations.
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Then the mapping@’is the contraction om®. If U° e © then the sequence of the iteratiaiis, computed
by (52), are convergent and the limit is a fixed pofiitof the mapping/. The following error estimate
holds

(202 P.)*

10 = Ullg = T—5,7510° = TV°llg-
c

Proof. Seeg[5]. O

5. Numerical experiments

In this section, we illustrate the practical behavior of our algorithm on the solution of a model problem.
The introduced algorithm has been implemented in the program system MATLAB Version 5.2.1 and in
MPI Version 1.2.0 by using FORTRAN 77 compiler. A geometry of the problem Edgn2(a).

Material parametersThree regions with Young’s modulus = 10'° (Pa) and Poisson’s ratio= 0, 3.

Boundary conditiondrescribed zero displacement on 785-798. Pressl8e 00’ (Pa) on 1252-1236.
Bilateral contact boundary: 1493-1508. Unilateral contact boundary: 14-1, 197-210.

Discretization statisticsEight subdomains, 1748 nodes, 3040 elements, 3304 unknowns, 28 unilateral
contact conditions, 68 interface elements, dimension of the coarse equality for the auxiliary problem is
13, dimension of the coarse equality for the original problem is 7.

Convergence statisticBline iterations of the PCG1 algorithm for the auxiliary problem, 17 iterations of
the successive approximations method, total 38 iterations of the PCG2 algorithm for the original problem.

Fig. 2b) represents deformations in model problem.
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Abstract

A non-overlapping domain decomposition is applied to a multibody unilateral contact problem with given fric-
tion (Tresca’s model). Approximations are proposed on the basis of the primary variational formulation (in terms
of displacements) and linear finite elements. For the discretized problem we employ the concept of local Schur
complements, grouping every two subdomains which share a contact area. The proposed algorithm of successive
approximations can be recommended for “short” contacts only, since the contact areas are not divided by interfaces.
The numerical examples show the practical efficiency of the algorithm.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Domain decomposition; Unilateral contact; Tresca's friction model; Formulation in displacements; Linear finite
elements

1. Introduction

In mechanics, geomechanics and biomechanics as well as technological practice there are problems
whose investigations lead to solving model problems based on variational formulations. Such problems are
described frequently by variational inequalities. Variational inequalities physically describe the principle
of virtual work in its inequality form.
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Domain decomposition for contact problems has been applied by many authors. An augmented La-
grangian method was used by Daisét al.[1]. The scalability of the algorithm has been studied by
Schbberl [2], Dureisseix and Farhd8] and Dosél and Hoak [4]. Boundary element technique was
employed by Kosior et a[5]. For related papers, we refer to Luo Ping and Liang Guoféhand the
literature therein.

Inthe present paper we will deal with numerical solution of a generalized semi-coercive contact problem
with the given friction arising in static and quasi-static linear elasticity, for the case that several bodies of
arbitrary shapes are in mutual contacts and are loaded by external forces, by using the non-overlapping
domain decomposition method. The problem will be formulated as the primary variational inequality
problem (se¢21]), i.e. in terms of displacements.

We follow the approach proposed by Le Tallg¢ and group every two subdomains which share a
contact area into a single “nonlinear” subdomain (see a similar idea used by Barbotd8]¢t al.

Section2 contains both classical and weak formulation of the problem. Conditions sufficient and
necessary for the existence of a weak solution are given. Approximations by linear finite elements on
triangulation are proposed in Secti®together with error estimates. In Sectibwe introduce a nonover-
lapping domain decomposition by proving the equivalence of the weak solution on the original domain
with that on the interface and subdomains. For the discretized version we employ the concept of local
Schur complements. The resulting nonlinear equation on the interface is solved by successive approxima
tions. For the starting approximation we choose the solution of the linear problem, where the unilateral
contact conditions are replaced by classical bilateral conditions without friction.

Sectionsb and 6are devoted to the construction of suitable preconditioning matrices of Neumann—
Neumanntype. In Sectiofwe study the convergence of successive approximations. A sufficient condition
and an error estimate is deduced on the basis of contractive mappings theorem. $ectibains a
numerical test solving a geomechanical model with two domains in contact.

Though the solution of the problem with given friction (Tresca’s model) has little physical meaning
itself, it can be plugged into an iterative process for the solution of a more realistic Coulomb friction
model (se¢9-11]).

Since we do not divide the contact areas by interfaces, the proposed algorithm can be recommended fo
“short” contact only. Such configurations occur e.g. in models of human joints — hips or knegf@d2($89.

2. Model formulation
Let the investigated part of the elastic body occupy a ufi@i“s” bounded domain®‘,: =1,...,s
in R2, with Lipschitz boundariesQ". Let the boundaryQ = | J_, Q" consist of four disjoint parts, i.e.
Q=r,Ur,ur.ur,. Letus denote
MM =09QknaQ!, k,i=1,...,5,k#LT. =, ¥ T, =U_T,
M =r,Nno,r=r,Nno,r,=u_I, I =I.no.
Assume that either

mead™¥ > 0orr¥ = ¢
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and either

mead”, > OorI";, = ¢.

Let body forces, surface traction®, boundary displacements and slip limitsg" be given.

We have the following problem: find the displacemauiti all 2* such that
a ,
a—‘rij(u‘)—i— F/=0inQ,¢=1,...,5,i=12,
X

7;j(U) = Cijmern(U)in 2, U = ugonTl’,

u, = 0andr; = 0onl,, 7;(u)n’; = P;onI",

and on every™¥ the following conditions are satisfied:
k

u, —ul <0, tﬁfO,(uﬁ—ufl)q’j:O,
17| < g"
|'r |<g = U, —ul—O
1T =g = 39 >0, uf —ul = —v<l.
We denote the stress tensordy e;;(u’) = (1/2)((0u;/9x;) + (du j/0x;)),

k k. k 1 _ Ik
U, =u;n;, u, =u;n;

= —u, n I f(nosumovek or1),

k_ k. k Kok 1 _ 1 k I k
Uy = Uy — Uy, Uy = Ul — UMY,

k_ k
rnzt”lj, (r)r—rn T,n;,

k Kk Tkl T]t('

In what follows, we introduce

1/2
W =[T_[HYQ)2  IVllw = (Z > ““5“59‘> ’

1<s <2
={ve W|v=0onI',andv, =0onl,}, V = ug+ Vo,
={ve Vvt -, <0onu, ¥}
Assume thatf, — ul, = 0onU ' Let
Ff e LAQ"), P{ € LAT"), cijy € L(R'), g € L®(T¥), ug € W.

Definition 2.1. A functionu is a weak solution of problemR,,, if u € K and

a(u,v—u)+ j(v) — j(u) > L(v—u) Yv € K,

273

(2.1)

2.2)
(2.3)

(2.4)
(2.5)
(2.6)
2.7)

(2.8)
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where

s
a(u, W) = Z/ céjkleij(uL)ekl(W‘) dx,
=1 s

00 =3 [ gk - vlas
k.l rk

L(w)=Z<fQ F;w;.o|x+fF P;wﬁ.ds>.

L<s

Let us denote the sets of rigid displacements and rotations

N
P' = {V' = (v}, vy)|v] = a; — b'xo, vy = a5 +b'xq}, P = 1_[ P,
=1

whereqa;, i = 1, 2 andb' are arbitrary real constants. Let
Py=PnNVy, Po={vePylf—,=00n|Jr¥
k,l
Theorem 2.1. Assume that
Po={0}, PN K # {0}
and
L(w) < j(w) Ywe PNK — {0}
Then there exists a weak solution. If
IL(w)| > j(w) Yw e Py — {0},
the solution is unique. If
IL(W)| < j(w) Vw e Py,
then for any two solutions, u*
u*—ue Py and LU*—u)=jUu") — j)

holds.
For the proof se¢l4, Theorem 4.1]
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Remark 2.1. The following condition is necessary for the existence of a weak solution
L(w) < jw) vYwe PNK.
For the proof see Lemma 4.4 by HEbek and Nedom§L4].

Remark 2.2. A simple example satisfying the conditions Bifieorem 2.1is given in Remark 4.2 of
Hlavatek and Nedom§L4].

3. Finite element approximation

_ Let the domainQ = | J;_, @' be approximated b2, = [ J,_, €, with polygonal boundary<2, =
Cyn Ul UTy U, whereTyy,, Ty, Ty, Ty, are piecewise linear. Le®, = | J;_; €, be triangu-
lated, letg; be nodes of used triangulation. L&}, =1, ..., s, denote triangulations of polygonal
domainsQj,t=1,...,s, and7, = {T,,t=1,...,s}, We assume thal;,.=1,...,s, are consis-
tent with the respective decompositions of the boundaiféls . =1, ..., s and let the nodes lie on
I'® belonging to the triangulations corresponding to the neighbouring subdomé&iasd Q' being
in a mutual contact. The triangulation, is said to be regular, if all™%,. =1, ..., s, are regularj

is the maximal side of the triangulation. For every nagef the triangulation7, on ¥ andT", we
define the set of indice8/' = {j € {1.....r} | ¢ € T¥} and; = {j € {L..... 7"} | ¢; € Ty}, where

T = T To = U:f:l r,;, ', T, denote segments dif’, I', andr, »’ the number of segments on

cj? cj?
'® andr,, respectively.
Let us define a finite dimensional spaégby

Vi = Vi [ Vi € [C@D)]% x -+ x [C(Q))?, vy, € [PU(Tii)I%, VT € T
Vin(gi) = 0, i € T'o; Vi(qi) = Uo(g:) gi € T}
and a finite dimensional set of admissible displacements
Ky = {(ValVi € Vi, (W), — v},,)(qi) <0, g € T}
Definition 3.1. Functionu,, € K, is a solution of the problenfR); if
a(Uh, Vv, — Uh) + j(Vh) — j(Uh) > L(Vh — Uh) Vv, € K.
Note that in a general cagg, ¢ K.
The next theorem gives the connection between the proli#igmhdnd the problemRy,); if » — 0
under the assumption that the solution of the problem is sufficiently smooth.
Theorem 3.1.Leto2 and its partd,, I';, T, I, be piecewise polygondl = U;.:l F’;j Let the solution

of problem(Py,) u € K N[H(Q)]?, 7;;(u) € HY(R'),i, j =1,2and. = 1,...,s, t¥(u) € L>(T¥), ut,
ul, € H¥("),k,1=1,...,sandj=1,...,r. LetK, C K. Let the set of points at which the change of



276 J. Darek et al. / Mathematics and Computers in Simulation 68 (2005) 271-300

ub —u! < O0tou* —ul = 0occurs be finite. Then for the semi-coercive case

s 1/2
U —uy| = O(h), where |w| = (Z / e;j(W)e;;(w) dx) (3.1)
=1 QZ
and for the coercive case
Iu—ullw = O(h).

For the proof se§l4,15]

4. Domain decomposition algorithm
4.1. Introduction

For effective solution of the problem the parallelization technique by using the High Performance
Fortran can be employed. The latter techniques can be based on overlapping or non-overlapping domail
decomposition methods, respectively. The global problem is splitted in a sequence of local problems of
a smaller dimension. In this section we use the non-overlapping domain decomposition method derived
from the primal formulation in displacements and group every two subdomains in contact (cf. Barboteu
et al.[8], LeTallec[7], Hlavatek[16], Darék [17], Pavarino, Tosellj18]).

4.2. Domain decomposition
Let every domair' = Ul.’:(‘i §§, whereJ (i) represents a number of subdomain$2fLet us denote

M= 9N\, t € {1,...,s},i € {1,..., J())},apartofdividing lineand et = | J_, ;") " represent
the whole interface boundary. Let us introduce

T'={je{l....J0}:T.NQ;=0}1=1...5s (4.1)
the set of all indices of subdomains of the dom@irwhich are not adjacent to a contact, and let

QY = Up; ges 2, (4.2)
where

v ={[i,]:02 NT.#¥} (subdomainsin unilateral contact) (4.3)
Suppose that

rnr. =4@. (4.4)
Then for the trace operater: [H1(Q2!)]?> — [L?(9$2)]? we have

Vr = yK|r = yVlr. (4.5)

Lety~!: Vi € V be an arbitrary linear inverse mapping satisfying
ylv=0o0onu, "  weV. (4.6)
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Further, we introduce restriction§§. Ve —> Ty Lyt L — Q5 jiijt = S al., ) d(.,.) > Q

i

V(Q) : V — Q! and let us introduc& () by
VO(QY) = {v e VI[v=0o0n(U_,Q)\ 2},
representing the space of functions with zero traceE;on

Theorem 4.1. A functionu is a solution of a global probler(P,,), if and only if
its traceu = yu|r on the interfacd™ satisfies the condition

s J@)

DO lal(ui(u), y'w) — Li(y W) =0 Yw e Vp,u € V.,

=1 i=1

and its restrictionsy;(u) = u|q: satisfy

(i) the condition
a(Ui(U). ) = Li(¢)) Vo € VIR, ui(W) € V(). yuiWIir = Riu,
forieT,(=1,...,s5,

(i) the condition

3 aluiu). ) + jui(u) + ¢) — i) > Lie)

li.ev li,ev
forall ¢ = (¢, [i, ] € ¥), ¢ € VO(R!), and such that

Ut¢ek, yuUlr=Ru forli.] e
Proof. Letu be a weak solution of the probler?(). Thenu satisfies

a(u,v—u)+ j(v) — j(u) > L(v—u) Vv e K.

Let us put test functions

Vi=u' £ ¢;, ¢§6VO(Q§), ieT,i=1,...,s,vVV'=U", u#u,ue{l, ..., s}

into (4.11) Thus we obtain
a;(ui(u), ¢) — Li(¢;) =0
so that(4.8) holds.

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

Now let us putv = u + ¢, ¢ = (¢', [i, ] € 0, ¢} € VO(RY)), such thau + ¢ € K, i.e. such that

(uy — y) + (¢, — ;) < 0on Uy, Ty

Hence(4.9)follows.
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Next, we will derive thecondition (4.7)for u = yu|r. First, we decompose the set of admissible
displacements as

K=y VroViQhe Vi) e - o Vo(Qi,) e
VAR VUL B D VAR ) D - (4.13)
@ VUQY) B VAR B - VOQY)-
Any functionv € K can be written in the following form

s J@)

v=yT' W+ YD W), (4.14)

=1 i=1

where

v =V, ¢i(v) € V().
According to the definition of the mapping* on T, given by(4.6), we find

(@F(W)n — (¢(V) < 00N Uy T¥ (4.15)

if[i,k] e ®and [}, 1] € v.
From(4.14)we infer

s J@

Vou=y ) -y + 3D 0w - ¢iw). (4.16)

=1 i=1

The inequality(4.11)implies

0< ) la(u,y ' W) -y W) - L'y "W —y T + Y D lai(ui, ¢1(v) — ¢i(w)

=1 =1 ieT"

— Li(#) — W] + Y [a(u}, 4(v) — ¢(W) — LiSW) — ¢ (W)] + j(v) — j(u).

[i,]Jev
By virtue of (4.8), the second sum vanishes. According4d), we may take
(V) =¢i(u) ve=1,..., s and i< J(, (4.17)

so that
0= [a(, y'(¥) — y (W) — L'y W) — ¥ HW)] + (V) — ().
=1

Next, we have

y ) —y W) =y (v —u)
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and we can take
V—Uu==+w,

wherew is an arbitrary function fronV|-. Moreover,

JW) = jW) = j W+ D W) — i+ > ¢iw) =0

[i, e [i, e

due to(4.6) and (4.17)As a consequencé.7)follows.
On the contrary, let us assume that tdomditions (4.7)—(4.9hold for same functiom € K. For any
v € K we may write

I=a(u,v—u)— LV —u)+ j(v)—j)

=Y la 'y Y — ) — LMy —w)] + 0 D lal(ul ¢iv) — $H(W) — LAW) — $(W)]

=1 =1 ieT"
+ D lau, ¢1(v) — ¢i(W) — LUV — )] + j(v) — j(u).
[i,l]ed

Due to(4.7) and (4.8)the first and the second sum vanish.
Next, we have for all < s andi < J(¢)

¥i = (V) — ¢i(u) € V(). (4.18)
U+ v =y ' Wle + #(V), (4.19)
so that
s JQ)
u+y Y yiek
=1 i=1

follows from (4.15) and (4.6)
Then(4.9)yields that

s JQ)
3 laj(u i) — Liwi] = ju) — j (u +3 Y w;) .
[i.ey =1 i=1
Altogether, we obtain

s J@
Izj(v)—j<u+ZZw;>=o

=1 i=1
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since
jM=@Wﬂ@+§j¢®ﬁw<§j¢@>
[i]ev [i.]ew
and
G+X§)O—J<%J+Z¢M)w<2¢m)
=1 i=1 [i,]Jev [i,l]ed

follows from (4.19) and (4.6)As v € K was arbitraryu is a weak solution of the (global) problem
Py. O

4.3. Local and global operators of the Schur complement

The aim of this subsection is to analyze in detail the condition (4.7) and to employ it for numeri-
cal computation of our discretized problerR{),. We will introduce the concept of thecal Schur
complement

Let us denote

Vi={pvirlv € K} = {yv|n|v € V}

and define a particular case of the restriction of the inverse mappiﬂg)m; by

Tri b V= V@), (T ') =l i=1,...,J0),t=1,.

al-(Tr uj,v,) =0 W e V)Y, T;l’ u‘ € V(Q) ieT, 1= 1 (4.20)
where
V() = {v € Volv=00n(U) \ 2. (4.21)
For [i, ] € ¥ we complete the definition by the boundagndition (4.6)i.e.
Tr;,'ug = 0on Uy, TV, (4.22)

Definition 4.1. By the local Schur complement foe 7" itis meant the operatd; : V! — (V/)* defined
by
(S, vy = ay(Try 'ul, Try v VUL Ve Vo (4.23)

In the matrix form we may write
SU: = (A, — BLA, B)U;. (4.24)
where we use the decomposition of the ma#jx= a;(., .) into blocks of the form

Au Bil
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which corresponds to the decomposition of the vector of nodal paranu;-tefsiﬁﬁ.’, U7 of §; where

the nodes oU; belong toI'; and the internal degrees of freedom élée
To derive(4.24)we firstly find

.| A B
Tr;, " = , ieT,i=1,...,5. (4.26)
1

Then from(4.20)for the vectow = (W, w)? = Tr;, 1U‘ we obtain thatv = U: and using the decom-
position(4.25)we arrive at

Aitw + Bilw = O,
so that
= —A B,LU‘

Hence(4.26)follows. Inserting(4.26)into thedefinition (4.23)with the matrix(4.25)we obtain(4.24)
Next, for subdomains which are in contact we will defirmanmon local Schur complemexstfollows.

Definition 4.2. The common local Schur complement for the urifru @', (wherel's! c I'. and ., k] €
9, [J, 1] € ) is the operator

H(VE X V) > (VEx Vi = (V) x (V)
defined by the relation
(S Y. (L V) = al (Ui, T vh) + d(uiy). Trp'vy) Y V) e VEx Vi (a.27)

Herer;* and7r;* are defined again by means(df20)—(4.22)
The functionsuf.‘(Xf) andulj(zlj) denote the solution of theroblem (4.9)i.e.

a; (Ui (y)). ¢F) + aj(U(y). ) + J(u) + ¢) — juy)) = Li@) + Li(e))
= (¢, 8)), ¢} € VOQ), ¢, € V), (4.28)

such that
u@y) +¢ € K. yu)lr, = Rly.
uy) = (Ui (y"), U’»(x’,.)) e V() x V(R),  (U(y) — (U(y). < 0onr¥.

The condition (4.7)can be expressed by means of local Schur complements. In fact, we have the
following lemma.
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Lemma 4.1. The traceu = yu|r of the weak solution satisfies the following condition

K s J@
Lyl oyl Lok 4o k 1 _ t =1\,
D DS vi) + DS, u), (v, i) = 30D LT ) (4.29)
(=1 ieT" k,l =1 i=1
wWe Vr,[i,kled, [jled,T¥cCrT,,
wherev, = RV, Uj = Riu.
Proof. By definition (4.20) and (4.23)e have
(S, vi) = al(Try 'u, Tri ') = al(uy(u), Try ') (4.30)

since
l -1 . 0/t
u;(u) — Tri,"u; € V().

For [i, k] € 9 and [j, 1] € 9, T c I'. we have(4.27) Inserting(4.30) and (4.27)nto the equatior4.7),
we obtain(4.29)

Remark 4.1. Conditions(4.7) and/or (4.29)respectively, express the continuity of the stress vector
7(u).n on the interfacd (see[16]).

In accordance withemma 4.1we will solve Eq.(4.29)on the interfacé” in the dual spacel-)*. Let
us denote

Scon = Z R}, SRy, (4.31)
k,l
where
Ry(u) = (RE(u), R'(W)" u e Vr,[i,kl e . [j. ] € 0. T¥ C T..
By definition, we may write

(VEx V- (SY(Ria(u)). Ekl(ﬂ))‘/i"x\/_; = i [(Ru)" 8" Ria(u), Wy,
Wy (SR, RW) v = (v [(R)" S Rju, W],

andcondition (4.29can be expressed in the spageas follows:

SoU + SconU = F, (4.32)
where
So=Y_ > (R)'SR, (4.33)
=1 ieTt
and
s J@©) _
F=Y Y (R) (T )'L;. (4.34)

=1 i=1
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Eq.(4.32)will be solved bysuccessive approximatiortsecause the operata$¥ and thereforeScoy are
nonlinear.

We choose a suitable initial approximatibf, for instance the solution of the global primal problem,
where the boundary conditions o are replaced by the linear “classical” bilateral conditions

uk ui = O, ‘[ﬁd =0 onFco = Uk’lr% (435)

(note that these conditions corresponds with=0 and j(u) = 0), where everyl'*, is a part of
'™ mead™) > 0, chosen a prioril(*y = I' is allowed, for example). OF*\I'*%, we consider ho-
mogeneous conditions of zero surface Id%jd: P} =0,j=12.

Denotingk® = {v € V|vk — v/ = 00on U, '}, we therefore solve the following problem
u® = arg minZ(v), (4.36)

veKo0

where£(v) = Za(v, v) — L(v) and set
U=y .

The auxiliaryproblem (4.36)s a linear elliptic boundary value problem of a systemsjfélastic bodies
with bilateral contact. We can solve it by the domain decomposition method again, as we will see later.
Returning to the non-linear E¢.32), we assume that the approximatioh— is known and define
the next approximatiol)* as the solution of the following linear problem
SoUf = F — SconUF ™1, k=1,2,... (4.37)

To the linear operata$, a suitable preconditioning of the Neumann—Neumann type will be applied.
4.4. Solution of the auxiliary problem

Let us assume that
K°n P ={0. (4.38)

Then the Korn’s inequality holds for the uni¢g;_; Q' (see[20]). Consequently, there exists a unique
solutionu® of the auxiliary problem (4.36).
Instead of the variational inequality (3.1) we have the following equationar K°:

DLW, v)=0  WveK)={ve V-1 =0onu, I'). (4.39)

Thus an analogue dtheorem 4.Xan be derived, where a mappip@l . Vr — V plays arole, being
linear and satisfying conditions
Vo ™VE — (o), =0 onuyy, T, (4.40)
Theorem 4.2. A functionu® e K° is a solution of the auxiliary probler#.36), if and only if its trace
u® = yu® | on the interfacd fulfils the condition

s J@

S S T W), v W) — LG W] =0 Vw e Ve ug € Vi (4.41)
=1 i=1
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and its restrictionsi? (u®) = u®|: satisfy the following conditions

a(uP (). ¢;) = Li(¢)) Vi € Vo), 4.42)
ud(u0) e V(Q)), yud(u® = RW® forie T, <s, '

and

Y a0, ¢) = Y L) Vo =(@[i.] e,
[i,]ed [i,]ed (4.43)
i € Vo) such thatdy), — (¢°), = 0on Uy, Tk, (i.e.¢ € Kg).

Proof. Itis analogous to that ofheorem 4.1 [

Next, we will rewritecondition (4.41)oy means of operators of Schur complements.iFof*, : =
1,...,s wedefinethe mappingﬁr;l according td4.20)and the local Schur complemenﬂ% by (4.23),
so that(4.24)—(4.26hold in the matrix form.

Definition 4.3. The common local Schur complement for the uni@hu @', whereI™™ c T and
[i,k] €9, [j ] eV

S* (v x le) — (VEY* x (le)*

is defined by the following relation
(SM (U, uY), (vf, V) = af(ub ), Trytvh) + (), Tr Vv (vE, Vi) e VEx VI (4.44)

HereTr;,* andTrT, are defined by means of

(Tr; V0, — (Tr—1 ’)n = 0onr* (4.45)
and

af(Try Vi wh) + d(Tr Ve w!) = 0 ywf e VO(Qh), w) e Vo) (4.46)
such that

(W), — (W), =0 onI'lg,

Like in Lemma 4.1we can rewritecondition (4.41)n terms of Schur complements as follows:

ZZ S0 vy +250k1 u%, u%), (v%, V1)) = =ZZL§(Trifly§)

=1 ieT" =1 ieT!

W e Vi, Vi = Ry, u) = Riu’. (4.47)

Definition 4.4. A global Schur complemerd is defined by

S=38+ Z(Ekz)TSOklEkh
&l

whereS, has been defined if#.33)andS% in Definition 4.3
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Thencondition (4.47)n the interface implies the equation

SU=F (4.48)
in the dual spacel{-)* (cf. (4.31)—(4.34).

Let a suitable matrix of preconditioninfyt be chosen. In what follows, we will describe a method of
so-called Neumann—Neumann preconditioner.

Algorithm PCG1. ChooseU®, H and letP° = 0:

(i) compute the preconditioned direction of descent

G"=M1TH" m=01,...,

(i) compute
(H™, G™) 1
P"=G" 4+ —r——P" ", =12,...,
+ (Hm—l’ Gm—l) m
(iii) on each subdomai®;,i e 7', =1,...,s, solve the Dirichlet problerrilu i =By R‘P’" (see

(4.25)for the def|n|t|on of the above matrlces)
(iv) on every subdomaift U Qlj (wherel'*, c T',) solve the following problem:

OF, 0) = argmin wv*, V), (4.49)
BV 4+ BV =0
where
ok o] ok.pro ok g A o k olir e Ol n Tl o [

WV, V) = (VYT AV 4+ 2REPMTBLV + (V)T AV 2(RLP™)T BTV
and the condition

EXV  + EV' =0 s equivalent with¢t), — (v'), = 0onI'.. (4.50)
Then

(SHU) = BLU" + A REP™, (S%U)E = BRU + AR P

Here we used the decompositiods=[U'", UT]”, =k, [ and insertedJ* = Rpm, U
Rl Pm
(V) compute

2 — SP" = Z(Rk,) SMR P + Z > (R) (AL RP" — BLO)),

=1 ieT"

o, = (H™, Gm)/(Zm P™),
HmH = W — g, 27,
QmH =Qm + o, P,

goto (i).
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Remark 4.2. It is not needed to construct the mat&explicitly in step (v).

5. Preconditioner of Neumann—Neumann type

A suitable preconditioning matri®1 can be defined by means of the inverse Schur complements (see
e.g.[7,19)). To this end, we realize, that the inverse mappidys ¢ fori € 7',: = 1, ..., s, map a given
surface loading € (V/)* on the tracey/®! on T}, where®; is the solution of the following “Neumann
problem”: find®; € V(£2!) such that

ai(¢;, V) = (9, yv) WV e V(). (5.1)
Then

(S)7'g = voilr. (5.2)
Likewise the operator inverse to any common local Schur complement is defined:

SV x (Vi) > VEx VL
For given datad", ¢') € (V/)* x (V})* we solve a “Neumann-Neumann” problem: fiad= (o}, ') €
V such that

ai (¢f, V) + di(¢. V) = (g I + (d VVllr'j) weV (5.3)

where

V= (V) € V(@) x V(@) (), — (V). = OonT).

Then we define
(8™ 9) = i e vl).- (5.4)

In terms of the degrees of freedom t@blem (5.3)eads to a quadratic programming problem with a
linear equality constrain(@.50)
Furthermore, we introduce the following injections

D Vi—=Vp, ieT,1=1...5,
DM (VEX V) —> Vi, [kl ew[jl]edThCr.,

by means of the following rule.
For each degree of freedom on the interface
D(P,) =V(P))oi/or, i=1....,J(1),t=1...,s, (5.5)
if the mth degree of freedom df- corresponds with theth degree of freedom df; and
DiV(P,) =0 (5.6)
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in the opposite case; hepedenotes the local measure of stiffness of the subdomga(e.g. the average
of the Young modulus) and

or= Y 0} (5.7)
P/GS-_ZL,-
is the sum of’; over all subdomain§‘j, which contain the poinp,.
Note, that a necessary conditions for a correct choice of the injecipiss

s J@)

DR =1, onVyp (5.8)
> D DR,

=1 i=1

(wherel, is the identity operator).

The boundary value (Neumanpjoblems (5.1and (5.3) are not solvable, in general (for details see
[19]). We denoteZ; = KerA;,t=1,...,s,i€T" and 2 a common subspace of displacements and
rotation of the blocif U Q’J Let®d? e Q(Q}) = V(R!) © 2! be aparticular solution of the problem (5.1)
and let the couplek®, ®%) be a particular solution of theroblem (5.3)n the subspac@(Qf U @) =
Ve zh

Now, we will define the Neumann—Neumann preconditioner. This preconditioner was described e.qg.
in Le Tallec[7].

Definition 5.1. A preconditionetM ~1(z°) of the Neumann—Neumann type will be defined by the formula

MHO)S=) "> Div(¢ + 20, (5.9)

=1 ieT

wherez® will be found from the following global optimization problem

2% = arg minSMY(2) — §HS, MY(z2) — s 1HS) (5.10)
zell Z;
where
nz=[[[]zx]]2"
(1=1ieT* k,l

Remark 5.1. We see that the optimal preconditionet%(z°) minimizes the differencet1(z) — S7*
in the subset of kerneld Z;.

In what follows, we analyze the question, how to satisfy the equilibrium conditions in the course of
the Algorithm PCG1 To this end, we introduce the “course space” of traces

Vi = Z > DiyzZi + ) DHyzH (5.11)

(=1 ieT" k1

and the set

Vii € (Ve)*
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by the relation
SeVi e (SS2=0 Vze V.

Next, let Pz be theS — orthogonal projection o¥- on Vy defined by
Pz:UeVy, (Sz,U—-P:U)=0 Vze Vy,VUEe V. (5.12)

The Euler necessary condition of a minimum of functiona{5ri.0) leads to a variational “coarse”
equation that can be written as

Y Dy =Pz Diyg®, (5.13)

so that the precondition€b.9) takes the form

MIS= MD)S= (I - Pz) ) Diygp™. (5.14)

i
Lemma 5.1. Assume that in the AlgorithPCG1lwe takeH® € V. ThenH” € Vi,m = 1,2, ...
Proof. LetH™ € Vi andSP™~1 € V;;. Using(5.14) we derive that
G" = M 'H" = (I — Pz)¢°

holds for the elemend® e V., calculated on the basis of the functiok#!. By virtue of (5.12)and due
to the symmetry we may write

(SG™,z) = (Sz, G™) = (Sz, (I — Pz)¢°) =0 Vz e Vy,
so thatSG™ € Vj;. In the algorithm, we have
2" = 8SP" = 8G" + B,SP" e Vi,
sincep,, is a constant anﬁ’ﬁ is a linear subspace. Finally, we also have
H" = H" — @, 2" € V.
SinceSP? = 0 € Vj; andH! = H® — pSP? = H? € Vj;, the assertion of the lemma follows by induc-
tion.

To satisfy the conditiohl® e V., we calculate the initial approximatias in PCG1 such that® e v
and

H% 2)=(F-8U% 2=0 Vze V. (5.15)

Note that this problem is the same as the calculatiar? éifom Eq.(5.13) except for another right-hand
side. O
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6. Solution of the original problem on the interface

Recall that we have to solve theoblem (4.32pby successive approximations ($&8]), i.e., by means
of a sequence of problems (4.37), i.e.

SoUf =b*, k=12 ..., (6.1)
where
So=Y > (R)'S, (6.2)
=1 ieT"
b*=F — SCONQk’l; (6.3)

now U° is the solution of the auxiliary problem, i.&l° = yu® |-, whereu® is a solution of problem
(4.36). To solveproblem (6.1) we use the method of preconditioned conjugate gradients, as follows.

Algorithm PCG2. ChOOS&Uo, Po = bk — Soa)o, g = 0.

(i) compute the preconditioned direction of desagnt= Mg p,,, whereMg' is a “reduced” precon-
0 0

ditioner;
(i) compute
(pﬂl’ gm)
T =0n + -1,
" " <pm—l’ gm—l> "
(iii) on every subdomain2;,: =1,...,s andi € T* solve (parallel) the systenfl“&)j. = Biﬁjnm;

(Dirichlet problem); o
(iv) computet,, = So— =D o1 D er (R (AyRiwr,, — Bl @;);
(v) compute

O[m == <pm’ gm)/(&m’ nm)’
Pyl = Py — amgm’
Wyl = Wy + apm,,,

goto (i).
Now, the “injection operators”

oDi Vi—>Vr, =1, ,sandie T’
differ from the previous. Namely, for the nodes BhU I, (T¥ C T, [i, k] € 9, [}. 1] € 9)
oL _ . k i
Dly(Pm) - \_/(Pn) if P, € F,’ U Fj, (64)
bv(P,) = v(P.)ol/0" (6.5)
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if the mth degree of freedom corresponds with il degree o and P, ¢ T'* U F’j and
bv(P,) =0 (6.6)

in the remaining caseg; andor have been defined i(5.7).
Now we define new Neumann—Neumann preconditioner (for more detail$%@e

Definition 6.1. The new preconditioner of the Neumann—Neumann type is defined by
MG'@)S=>"> " Div(e? + 2, (6.7)
=1 ieT*

wherez? denotes the solution of the following reduced global optimization problem

2% = arg minSo(My1(2) — Sy H)S, My 1(2) — S,1)S), (6.8)
ZEH()Z;
where
oz =[]]]2
1=1ieT"

Let us define the “coarse” reduced space of traces

Vou = Z > byz

=1 ieT"
and a linear se¥;;, € (Vr)* of functionals by the relation
SeVi, & (S2)=0 Vze Vog.

Lemma 6.1. In the AlgorithmPCG2et us sefog € VoiH, 7o = 0. Thenp,, € VOLH, m=12,...

Proof. Itis analogous to that dfemma 5.1 O

7. A convergence theorem for the successive approximations

In the present section we will analyze the convergence of the method of successive approximation
(6.1), to the solution of the originglroblem (4.32)n the space¥r)*.
To this end, we introduce a seminorm and a norm.

Definition 7.1. Let Hy be an orthogonal complement of the subsp¥gg in Vr. Let us introduce a
seminorm

1/2

IRVly = [ Y [af (Try RV, Try ' Riv) + &' (Tr Ry, Tr ' Riv)]
k,l
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wherel'™ c ', [i, k] € ® and [}, [] € v.
Lemma 7.1. The expressiofiu||2, = (Sou, u) defines a norm .

For the proof seeemma 5.1by Hlavacek[16].

Definition 7.2. Let a mappingl : Hyo — Hj be defined by the relation

(So(Ty), V) = (F — Scon(y), V) V¥V € Ho. (7.1)
Assumption 7.1. Let a constang exist such that

[Reuly < Bllullo Vu € Ho. (7.2)

Lemma 7.2. If Assumption 7.1s satisfiedthe mapping T is well-defingde. for ally € Hy there exists
a unique elemerify € Ho, satisfying(7.1).
Proof. By Lemma 7.1the mappingS, is positive definite oritly. Since we have

> a(Tr, R, Tr;, "Riv)

=1 ieT"

[(Sou, V)| =

< Y (T, 'Ry, Tr Rl (Try 'Ry, Tri 'RVTY? < lullo vl o-

L,

So is continuous. Therefore, it suffices to show tHaén(y) € (Ho)* for anyy € Ho. We may write, using
the corresponding definitions and the Schwarz inequality,

(Scon(y), V) = <Z S*(Ruy). Ekzy> = D (@ (uiy). Tryv) + dj(uy). Ty V)
k,l k,l

< [uf(y)). uy)lal Revls < CYBIVII

where

1/2
Cy) = [ui (). ui(y))la = (Z[af-‘(UZ-‘(zf.‘), ur (y;)) + a(uiy). U’-(x’j))]) :
k,l

SinceC(y) < oo for anyy € Ho, Scon(y) € (Ho)* follows.

Theorem 7.1. Let theAssumption 7.Thold. Then
IT(y) — TW)llp < 28%ly —Wlo Y. W € Ho.
Proof. By definitions, we may write

So(T(y)) — So(T(W)) = So(T'(y) — T(W)) = Scon(W) — Scon(y)-
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Let us denoty = T'(y) — 7(w) and
! k I ki k |
(u,v) =a; (ul, l)+a (uj, J) for I'¢ C e,  Vu,ve V(Q) x V(Q),
LYW) = Li(v)) + LY(VY),  Trg'v = (Try Ve, Tritvh).

Then we may write
V1% = (SoV. V) = (Scon(W) — Scon(y). V) = Y _ a*(uw) — u(y)., Tr,'v). (7.3)
Here u(y) is the solution of the variational inequalif¢.28) i.e. u(y) € V() x V("), (uf (), —

a(u(y), ¢) + j(u(y) + ¢) — j(uy)) = L (¢) (7.4)

for all ¢ € VO(Q}) x V(&) such thatu(y) + ¢ satisfies the unilateral contact condition &
andu(y) + ¢ € V(QF) x V(Q). We can writeu(y) = Tr;;'y + y°, wherey® € KJ = {v e VO(Qf) x
VOQ)I(V))n — (V)a < OonT¥}.

Analogous characterization holds fiofw), so that

uw) = Trg'w +w®,  wP e KJ,.

If we denotev = u(y) + ¢, theng = v — (Tr;'y +y°) = v° — y°. wherev® = v — Tr;;'y € kY. The
inequality(7.4)is equivalent with
a(u(y), v° = y°) + j(u(y) +v° —y°) — ju(y)) = L¥(v° —y°) (7.5)

forall v0 € KJ.
By a parallel argument, we arrive at

a(uw), v2 —wP) + j(uw) +v° —w°) — j(uw)) = L“(v° —w°) (7.6)
forallv° e K7,

Let us insert? :=wPin (7 5)andv® := y%in (7.6)and sum up.
Recall thatTr;'y = Tri'w = 0 onT'¥, (cf. (4.22) so that

ju@y) +w® —y0) = j(Try'y + w°) = j(w°) = j(uw)),
Ju) +y° —w°) = j(u(y)).

As a consequence, the summing gives

(u(w) ~ u(y), y° ~ %) = 0, (7.7)
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Let us denotey = y° —wP and
It = [t D172 ¥t e V(Q[) x V(L)
Then(7.7)and the Schwarz inequality yields the estimate

lWliZ < a(Trw — Ty, ) < 1772w — W)l s

so that

1l < 177w = Y) - (7.8)
Making use of(7.3) and (7.8)we may write

V15 =D d(Trw—y) — . ') = > [d(Tr N w —y), Tr'v) — (v, Tr ')
k1 k,l

<Y UT W = Yl + 1IN TV < 2[Re(W — Y)[5| RVl
k,l

Finally, theAssumption 7.implies|v||%, < 28%|w — yl|o|lV] o and proof is complete. (]

Corollary 7.1. Let theAssumption 7.1hold with 8 < +/2/2 for all U € Y, whereY is a subset oH
such that

T(Y) c YandU® e Y. (7.9)

Then the mappindl is contractive onY. The successive approximatio8.1) converge to the
fixed point of the mappingd, which represents a solution of E@.32) The following error estimate
holds

IUF —Ullo < (2891 — 2771V — TWlp, k=1,2,...

Proof is classical — see e.g. the book bychie and Hla&ek (20], Section 11.7Theorem 7.1

Remark 7.1. To find conditions guaranteeir(@.2) with 8 < ~/2/2 and(7.9)is a difficult task. Having

the definitions of the norms in mind, it seems that the subdomains adjacent to the contact boundary should
be “small” in comparison with the union of the remaining subdomains. Nevertheless, these conditions
are only sufficient for the convergence and the successive approximations may converge in other cases
too.

8. Implementation of the algorithm and numerical results

The algorithm which is described in the previous section is based on the nonoverlapping domain
decomposition method. The original problem is first decomposed into smaller problems defined on
nonoverlapping subdomains. Parallel iterative procedures are then constructed for decoupling the whole
domain problem into subdomain problems. During the iterative process, information must be trans-
mitted between subdomains. For passing informations we used Message Passing Interface (MPI).
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Fig. 1. A geometry of the geomechanical problem.

Hence the introduced algorithm has been implemented in MPI Version 1.2.0 by using FORTRAN
77 compiler. The implementation of the described parallelization is based on model “master-slaves”,
where one computer (master) directs all other computers (slaves) which compute partial problems
for subdomains without contact and partial problems for couples of subdomains with contact. In
this section, we illustrate the practical behavior of our algorithm on the solution of the following
problems.

Fig. 2. A detail of deformations (enlarging factor is 10).
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Fig. 3. A detail of displacements and principal stresses in a neighbourhood of the tunnel.

8.1. The geomechanical problem

The geomechanical model problem describes a loaded tunnel which is crossing by a deep fault and
based on the geomechanical theory and models having connection with radioactive waste repositories
(see Nedomél5]). A geometry of the problem is iRig. 1

8.1.1. Material parameters
Two regions with Young’s modulug = 5.2 x 10° Pa and Poisson’s ratio= 0.18. Specific gravity
is 2.45 x 10* Pa/m.

DUn, DUt DUn, DUt
o] om =
0.02f 0.04
0.011 0.03
R L e - 0.02
-0.01¢ 0.01
-0.02} : o
-0.03} _0.01
5 6 ?I 8
Nodes Nodes

Fig. 4. Normal and tangential components of displacements on contact boundary (parts 5—6 and 7-8).
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Fig. 5. Normal and tangential components of stress on contact boundary (parts 5—6 and 7-8).
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Fig. 6. A geometry of the biomechanical problem.
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8.1.2. Boundary conditions

Prescribed displacement.f2x 1072; 0)m on 1-2. Pressure®x 10’ Pa on 1-4 and 2-8 andxl
10’ Pa on 8-3. Bilateral contact boundary on 3—4. Unilateral contact boundary: 5-6 and 7-8. Given slip
limit is 106 Pa. Zero surface forces on the tunnel wall.

8.1.3. Discretization statistics

Twelve subdomains, 5501 nodes, 9676 elements, 10428 unknowns, 89 unilateral contact conditions,
466 interface elements.
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298 J. Darek et al. / Mathematics and Computers in Simulation 68 (2005) 271-300

x 107 DUn, DUt x10° T G
DUt
6 ; 0
4t o
o -05
T L (T R 5 TR
-2 \ T
-1.5 \ o 4 \‘
=4 5 |
Y A
-6 2 // ey
-8 T /
16 -25 K
7 89 10 7 89 10

Fig. 8. Normal and tangential components of displacements and stress on contact boundary (parts 7-8 and 9-10).

8.1.4. Convergence statistics

Twenty one iterations of the PCG algorithm for the auxiliary problem, 15 iterations of the successive
approximations method for accuracy fQtotal 39 iterations of the PCG algorithm for the original
problem.

Fig. 2 represents detail of deformations alrig). 3 shows displacements and principal stresses in a
neighbourhood of the tunnel.

Fig. 4shows normal and tangential components of displacements on two parts of the contact boundary,
where we denoteBUn = u* — u! andDUt = u* — u!. Fig. 5shows normal and tangential components
of stress on two parts contact boundary.

8.2. The biomechanical problem

The biomechanical model problem was derived from the X-ray image and describes total knee re-
placement. We deal with and simulations of mechanical processes taking place during static loadening.
A geometry of the problem is iRig. 6.

8.2.1. Material parameters
Bone: Young’s modulusE = 1.71 x 10*°Pa, Poisson’s rati® = 0.25, (1) Ti6Al4V: E = 1.15 x
10 Pa,v = 0.3, (2) Chirulen:E = 3.4 x 18 Pa,v = 0.4, (3) CoCrMo:E = 2.08 x 10'*Pa,v = 0.3.

8.2.2. Boundary conditions

The femur is loaded between points 5 and 6 by a loadi@@®x 10’ Pa, the tibia and the fibula are
fixed between points 1 and 2 (the tibia) and between 3 and 4 (the fibula) are fixed and the unilateral
contact boundary are between points 7 and 8 as well as between 9 and 10. Given slip lifiRas 10

8.2.3. Discretization statistics
Thirteen subdomains of domain decomposition, 3800 nodes, 7200 elements, 62 unilateral contact
nodes, 350 interface elements. The loadings evoked by muscular forces were neglected.
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8.2.4. Convergence statistics

Nineteen iterations of the PCG algorithm for the auxiliary problem, 14 iterations of the successive
approximations method for accuracy £Gand total 36 iterations of the PCG algorithm for the original
problem.

In Fig. 7 the principal stresses are presente). 8 shows normal and tangential components of
displacements and stress on two parts of the contact boundary, where we dedatedu* — u! and
DUt = uf —ul.
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Abstract. The paper deals with the stress/strain analysis of an artifi-
cial knee joint. Three cases, where femoral part of the knee joint part is
cut across under 3, 5 and 7 degrees, are analysed. Finite element method
and the nonoverlapping decomposition technique for the contact prob-
lem in elasticity are applied. Numerical experiments are presented and
discussed.

1 Introduction

The success of artificial replacements of human joints depends on many factors.
The mechanical factor is an important one. The idea of a prothesis being a device
that transfers the joint loads to the bone allows one to explain the mechanical
factor in terms of the load transfer mechanism. A complex relation exists between
this mechanism and the magnitude and direction of the loads, the geometry of
the bone/joint prothesis configuration, the elastic properties of the materials
and the physical connections at the material connections. Authors in [7,12,9,
10] showed that the contact problems in a suitable rheology, and their finite
element approximations [2,5] are a very useful tools for analyzing these relations
for several types of great human joints and their artificial replacements. The
aim of the paper is to analyze the total knee replacement in dependence on the
femoral cut and the orientation of the anatomic joint line.

2 The Model

The model of the knee is based on the contact problem in elasticity, and the finite
element approximation. The problem leads to solving variational inequalities,
which describe physically the principle of virtual work in its inequality form.

A. Lagana et al. (Eds.): ICCSA 2004, LNCS 3044, pp. 456466, 2004.
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In the present paper we deal with mathematical simulations of total knee joint
replacements and simulations of mechanical processes taking place during static
loadening. The model problem investigated was formulated as the primary semi-
coercive contact problem with the given friction and for the numerical solution of
the studied problem the nonoverlapping domain decomposition method is used
(1.2.3)).

Let the investigated part of the knee joint occupy a union {2 of bounded
domains 2, ¢t = f,t in RN (N = 2), denoting separate components of the knee
joint - the femur (f) and the tibia together with the fibula (t), with Lipschitz
boundaries 9£2*. Let the boundary 92 = 027 U0£2? consist of three disjoint parts
such that 02 = I, UL, U .. Let I, = T, U 2I;, where by I, we denote the
loaded part of the femur and by %I, the unloaded part of the boundary 9£2. By
I, we denote the part of the tibia boundary, where we simulate its fixation. The
common contact boundary between both joint components 2/ and £2* before
deformation we denote by I, = 0£2f N o02*.

Let body forces F, surface tractions P and slip limits ¢/* be given.

We have the following problem: find the displacements u* in all 2* such that

0
—;(u)+F;=0 inf2 ¢=ft i=1,..,N, (1)
(9$j

where the stress tensor 7;; is defined by
7ij(u) = cijen(u’)  in 2 0= ft, i=1,..N, (2)

with boundary conditions

mij(wn; =P, on Iy, i=1,.., N, (3)
7;(wn; =0 on Ty, i=1,..,N, (4)
u=1uy(=0) on I, (5)

uf —ul, <0, 77 <0, (uf —ut)rf =0 on I, (6)

7| <g’* onI.,
|7’tft|<gft = u{—u§:O7 (7)
17/t = g/t —> there exists ¥ > 0 such that u/ — ul = —97/".

Here e;;(u) = (8% + %) is the small strain tensor, normal and tangential
i i

components of displacement vector u (u = (u;), ¢ = 1,2) and stress vector 7

_ R N R U 4 f _ f f
(r =(11)) qu = u/n!, v, = uin] (no sum over ¢t or f), u; = (uy;), uz; =
f fof Syt (ot to_ ot tot ;o f_f f fF _f _ (_f
w; —upng, uy = (ug), uy = u; +upng, i =1, N, 7y = Ty, Ty = (Ti4),
f__f. f forf ot _ t ot ot .t _ (t\ t _ .t ot tot ft — _f
Ty = TGNy — Tp My, Ty = TNy, Ty = (74), T = TigTy — TpWy, Tg = Tg -
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Assume that ¢j;, are positive definite symmetric matrices such that
0 < ch < chypijbu | € |72< ¢ < +oo foraa. xe 2,6 e RV, & =&,
where cg, ¢f are constants independent of x € (2*.

Let us introduce W = HL:f,t[Hl(QL)]Nv [vlw = (ZL:f,t Zig]\/ ||”1LH%_Q>%
and the sets of virtual and admissible displacements Vp = {v € W
v=0onl,},V =u+V, K={veV|v —v <0on I.}. Assume
that uf, —uf, = 0 on I. Let ct;, € L®(2"), Ff € L*(2"), P; € L*('I;),
uj € [H(029))Y.

Then we have to solve the following variational problem (P):
find a function u, u — ug € K, such that

a(u,v—u)+j(v)—ju)>L(v—u) Vvek (8)

holds, where

a(u,v) =37, [o chimei(u)en(v') dx,
J(

v) = [r. o' Iv] =i ds, 9)
(v) = ZL:f,t fQL Fivjdx — ZL:f,t fr; Pivj ds.

Let us define the sets of rigid displacements and rotations
P = Pf x Pt P = {v' = (v},05) | v} = a} — blwa, vl = ab + b'a;} where
a:,i=1,2 and b* are arbitrary real constants and ¢ = f,¢.

It can be shown that the problem (8) has a unique solution, if (see [5]):

L(v)<j(v) ¥YvePnK—{0},
{vePnVy,vf —vt =0 onl.} = v=0
and |L(v)|>j(v) VYvePnV,—{0}.

~

3 Short Description of the Domain Decomposition
Algorithm

Let every domain 2" = Ug:(i)ﬁ; , where J(¢) is a number of subdomains of 2*.
Let I'f = 002:\082", .= f,t,1 € {1,...,J(¢)}, be a part of dividing line (boundary
line) and let I = U=y, U;]:(Ll) I'} be the whole interface boundary. Let

T ={je{l,..J0)}: TN, =0} = ft, (10)

be the set of all indices of subdomains of the domain 2* which are not adjacent
to a contact, and let

“Q*j = U[i,L]EﬂQz'L7 (11)

where ¢ = {[i,¢] : 002!NI. # 0} represent subdomains in unilateral contact. Sup-
pose that I'N I'. = (). Then for the trace operator ~y : [H'(02:)]N — [L2(0024)]Y
we have

Vp:’}/K|F:’7V|F (12)
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Let v~ : Vi € V be an arbitrary linear inverse mapping satisfying

7% =0 onl, VYveVr (13)

Let us introduce restrictions R; : Vi — I L« Lt — Q4 jb 2 j* — S; ai(.,.) :
a(.,.) = 025 V(2 — 2 and let VO(21) ={veV |v=0 on (U—y2)\02:}
be the space of functions with zero traces on I'}. The algorithm is based on the
next theorem and on the use of local and global Schur complements.

Theorem 3.1: A function u is a solution of a global problem (P), if and
only if its trace W = yu|r on the interface I" satisfies the condition

J(0)
Z Z[aé(ug(ﬁ),’y_lw) —Li(y'W)] =0 VweVpueVp (14)
v=f,t i=1

and its restrictions uj(u) = ufq: satisfy:
(i) the condition

a;(u (@), ) — Li(e) Yooy € VO(2), wi(m) € V(£27),

Z 'yug(ﬁz).hy =R, i €T = f,t, (15)
(ii) the condition
2 iges @ (Wi (W), @) + 5 (uj(@) + ¢5) —.j‘(ui(ﬁ)) > (16)
> Y iges Li(0h) Yo € (k1,0 € 9,08 € VO(£2),
and such that
ut+ype K, yu(a)r = Riu  for [i,] € 9. (17)

For the proof see [2].

To analyze the condition (14) the local and global Schur complements
are introduced. Let

Vi = {7V|F; veK}= {W’V|F; vevV}

and define a particular case of the restriction of the inverse mapping v~ 1(.)
by

(031

Tri_Ll ‘/ZL*)V(“Q:)v ’Y(T’rz_Llﬁ)hﬂ: :u'Lia i:L"?J(L)v L:f7t
at(Try;'at, vi) =0 Wt € VP(82), (18)
Tr;'at € V() for i € T, = f,t,

where VY(£24) = {v e Vo | v=0 on (UN)\2:}. For [i,] € ¥ we complete the
definition by the boundary condition (13), i.e.

Tr;'a =0 on I (19)
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The local Schur complement for ¢ € T* is the operator S¢ : V! — (V*)* defined
by
(Sta,vt) = al(Try'w, Tr;,'%t)  vaL, v € Vi (20)

7 i i i

For subdomains which are in contact we define a common local Schur com-
plement for the union 2/ U 2% (where [i, f] € ,[j,t] € ¥) as the operator

ST (VI x V) = (V) x Vi) = (V)" x (V})* defined by

(s7671.9). 1. ¥0)) = ol @l &), Trig vl & 0 (7). T
(v V) e Vil x VY,

where Tr;fl and Tr;tl are defined by means of (18) and (19).
The condition (14) can be expressed by means of local Schur complements
in the form

S S (S V) + g (ST ), (9,9 ) =

(22)
= I LT Ve e Vi i fl € 9,151 €9,

where U = yu,,., Vi = R;¥,ut = R,u. Then we will solve the equation (22) on
the interface I' in the dual space (V)*. We rewrite (22) into the following form

Soﬁ—FSCONﬁ =F, (23)
where
-t -t =T -
So=2 ;4 Sier (R)TSIR;, Scon = POy R; SRy,
F=Y,_, Sl @) (Tr )T,
and Bp,(@) = (B! (0), R,

)T, e Vi, [i, f] € 9, [j,t] € 9. Equation (23) will be
solved by successive approximations, because the operators S7* and therefore

(24)

Scon are nonlinear. As a initial approximation ﬁo we choose the solution of
the global primal problem, where the boundary conditions on I'. are replaced
by the linear bilateral conditions with ¢g/* =0 (i.e. j(u) = 0)

ul

n

—ul, =0, /" =0 on I,. (25)

On I''\I'.o we consider homogeneous conditions of zero surface load ij = P} =
0,j=1,2.

Then we replace the set K by K = {v € V | v/ — v = 0 on I',} and
therefore, we solve the following problem

u’ = argmingcgo L£(V) (26)

where £(v) = 1a(v,v) — L(v) and we set T’ = yu®|r. The auxiliary problem
(26) represents a linear elliptic boundary value problem with bilateral contact

and it can be solved by the domain decomposition method again.
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(1)

0.02-

0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 1. The models.

The non-linear equation (23) will be solved by successive approximations. We
. . . =—k—1 . . .
will assume that the approximation U " is known and the next approximation
—k
U we find as the solution of the following linear problem

SoU =F — SconU " k=1,2, ... (27)

In [2] the convergence of the method of successive approximation (27) to the
solution of the original problem (23) in the space (V)* is proved.
Numerically (26) and (27) are solved by the finite element method.

4 Discussion of Numerical Results

The model of the knee joint replacement was derived from the X-ray image after
application the total knee prothesis under the resulting femoral cuts 3, 5 and 7
degrees.

In the model the material parameters are as follows: Bone: Young’s modulus
E = 1.71 x 109 [Pa], Poisson’s ratio v = 0.25, (1) Ti6Al4V: F = 1.15 x 10!
[Pa], v = 0.3, (2) Chirulen: £ = 3.4 x 108 [Pa], v = 0.4, (3) CoCrMo:
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E = 2.08 x 10! [Pa], v = 0.3. The femur is loaded between points 5 and
6 by a loading 0.215 x 107[Pa], the tibia and the fibula are fixed between
points 1 and 2 (the tibia) and between 3 and 4 (the fibula) are fixed and the
unilateral contact boundary are between points 7 and 8 as well as between
9 and 10. On the contact boundary we suppose that ¢gf* = 0. Discretization
statistics are characterized by 13 subdomains of domain decoposition, 3800
nodes, 7200 elements, 62 unilateral contact nodes, 350 interface elements.
The loadings evoked by muscular forces were neglected. The paper presents
three models - the frontal cross-section prothesis with the cut under 3 de-
gree - model (a), 5 degree - model (b) and 7 degree - model (c). All models
are presented in Fig.1. In Fig.2 a,b,c the vertical stress tensor components for the

frontal cross-section are presented, while in Figs 3 a,b,c the principal stresses
are presented. The presented graphical results represent distribution of stresses
in the femur, in the total protheses and in the tibia as well as in the fibula. On
Figs 4a,b,c the normal and tangential components of displacement and on Figs
5a,b,c stress vectors on the contact boundaries of both condyles (i.e. between
points 7 — 8 and 9 — 10) are presented. We see that both parts of the prothesis
are in a contact and that they mutually move in the tangential direction.

The obtained numerical results, in their graphical forms, corespond to the
observed distribution of stress field in the bones and in the knee prothesis, and
therefore, they are in a good agreement with the orthopaedic practice. The
presented models facilitate to compare the protheses made from the different
materials like the CoCrMo alloy, the AloO3 and ZrOs ceramics, respectively.
The aim of the mathematical modelling of the knee prothesis is to determine the
best version of the knee prothesis.
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Abstract

In the contribution a weight-bearing total knee joint replacement will be based on numerical results on a non-linear contact
problem with Coulombian friction in elasticity. The non-overlapping domain decomposition algorithm will be used. The main goal
of the contribution represents an application of mathematical modelling and obtained numerical results to the practice—the total
knee joint replacement.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Total knee joint replacement; Contact problem; Non-overlapping domain decomposition method

1. Introduction

The first attempt of artificial replacement of human knee joint was made by Gluck in 1890. The technology of
artificial joint replacement has developed namely during the last 50 years. The fundamental idea of Charnley, the so-
called low friction arthroplasty, changed the development of all types of joint prostheses and is used up to the present.
During recent years, considerable progress has been made in theoretical investigation of total joint replacements and
their successful application in the practice. Let us mention here [1,2,7,11].

In the contribution a weight-bearing total knee replacement will be discussed and analysed. The model was derived
from the X-ray radiograph of the knee joint after the implantation of artificial knee joint prosthesis. The stress—strain
analysis is based on the theory of contact problems in elasticity and the non-overlapping domain decomposition method.

In our presentation, we would like to present our numerical results and their application in practice. Therefore, we will
also present the information about the knee joint replacements WALTER UNIVERSAL and WALTER MODULAR.

The intention of total knee replacement is to replace damaged articular surfaces and to restore the mechanical axis
of the extremity in such a way to change the non-functional knee joint by the complete functional one.

* Corresponding author.
E-mail address: danek@kma.zcu.cz (J. Dan€k).
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The model concerned with the above-discussed problem makes it possible to test total knee prosthesis from the
aspect of biomechanics during statically loading of the knee prosthesis as well as tribology and the distribution of
stress—strain field in the natural knee and in its replacement. The best surgical procedure for a given patient is then
determined to preserve the condition of an approximately equal distribution of the stress—strain field in the knee joint
and its replacement (see [6]). Since the implanted artificial knee joint, as well as the natural one, is a physically defined
static system, where the shape corresponds to the function, then its impairment leads to a mechanical failure of the
knee prosthesis, i.e. to a loosening of the knee prosthesis.

2. The Model

For the geometry of the model the X-ray radiograph was used. The mathematical model is based on the theory of
contact problem in elasticity and the finite element approximation. The algorithm used for our computation is based
on the non-overlapping domain decomposition method. On the contact boundary between both collided parts of the
knee the Coulombian type of friction acts.

We will assume that the investigated knee joint occupies the domain £2 = UE’ZI.Q‘, where 22! is occupied by the
femoral part of the knee joint, £2% by the tibial part of the knee joint and £23 by the fibula. The boundary 952 is assumed
to be sufficiently smooth and consists of three disjoint parts such that 082 = I'; U I, U I, where by I'; we denote the
loaded and unloaded part of the boundary 952. By I, we denote the parts of the tibial and fibula’s boundaries, where the
tibia and the fibula are fixed. By I, = (32! N 3£22) U (322 N 9£23) we denote the common contact boundary between
both knee joint components £2! and £22 and the connection between the tibia and the fibula. The knee joint is assumed
to be loaded by the loading parallel with the femur’s axis, corresponding to the weight of the human body. Let the body
forces F, the surface forces P and the slip limits g, be given. Then we have to solve the following problem:

Problem (P). Find the displacements u’ in all £2* such that:

9z:(ut
M) g, =122, o=1,2,3, (1)
3)6./

yinj =Pk, i, j= 1,2 onl%, 2)
ui =ug;,, i=1,2onl,, 3)

k_ 1 kl k_ Iy kil —
u, —u, <0,7, <0, (u, —u,)t, =0

[T )] < FN |t (u)) = g

7)) < g = uf —uf =0 on I}, @)
IT],‘I (w)| = glcd = there exists ¥ > 0
such that uf — ui = —0-[1;1 (n)

where I Ckl =092k N a2k # 1, ke{l,2},] = k 4+ 1 and where the normal and tangential components of displacement
vector u = (u;), i = 1, 2, and stress vector T = (1;), i = 1, 2, are defined as follows: u,, = u;n;, 4, = u — u,n, T, =
Tjjh jn;, T, = T — TN, where n denotes the outerward unit normal to the boundary 052, and therefore, t{i = 1,11 = t,’;l ,
Tf(u) = rﬁ(u) = Tfl(u). Moreover, the elastic coefficients c;ji; satisfy the conditions of symmetry c;jx = cjiki = Cijik =
cuij and the condition 0 < ¢y < cfjklsijék1|€|_2 < ¢} < oo, for a.a. x e 2', EeR4, & =&, cj, ¢§ = constant > 0
independent of x € £2*, 1 € {1, 2, 3}.

Let W = I‘I?Z1 [Hl(.Q‘)]2 be the Sobolev space in the usual sense, let [|[vl|lw = O_,> ;v II%,QL)I/Z. Let us introduce
the sets of virtual and admissible displacements:

Vo={veW|v=0on I,}, V=uy+ Vp, KZ{VEV|U§-U2§OOHFC}

andlet Vy,, K, = V), N K be their finite element approximations. Assume thatu](‘)n — uén =0onrl Ck’ .Let cﬁjk, € L°(£2Y,
Fie L2(§2Y), Pie LA(Iy), uj € [Hl(.QL)]z. Then we have to solve the following variational problem.
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Problem (P,). Find a function u € K, such that:

a(u,v—u)+ j(v) — j(u) > L(v—u), Vvek, )
where
a(u,v) =" /Q ciueij(uen(v') dx,
L
jov) = / vk — vl ds, (6)
U T
Lv) = / Fldx — / Plut ds.

Let us introduce the sets of rigid displacements and rotations R = U, R', R = {V' = (v, vy)|v] = a| — b'x2, v} =
ay + b'x1}, where ai, a4, b*, 1 = 1,2, 3, are arbitrary real constants. If:

L(v) < j(v), VveRNK — {0},
{(veRNVy, vk — v, =0 onI¥} = {0} and (7)
IL(V)| > j(v), VYveRNVy— {0},

then the problem (5) has a unique solution. The finite element approximation leads to solve the following problem.

Problem (P;). Find a function u;, € Kj,, such that:
a(up, Vi —up) + j(vp) — jup) = L(vp —wp), Vv € K. (®)

For the numerical solution the non-overlapping domain decomposition method [3-5,9,10] was used.

3. Numerical results

For the geometry of the model the X-ray radiograph was used. We will study the knee joint replacement in two
cases—the cut in the frontal plane (Fig. 1 a) and the cut in the sagital plane (Fig. 1b). The numerical results were used
for verifications of the real existing total knee joint replacements WALTER-UNIVERSAL and WALTER-MODULAR,
described below in Section 4.

The material parameters are as follows (E, Young’s modulus; v, Poisson’s ratio): bone: £ = 1.71 x 1019Pa, v =
0.25;[1] TigAlyV: E = 1.15 x 101! Pa, v = 0.3; [2] UHMWPE: E = 3.4 x 108 Pa, v = 0.4;[3] CoCrMo: E = 2.08 x
10" Pa, v = 0.3.

The femoral part of the knee joint was loaded between points 5 and 6 by a loading 0.215 x 107 Pa, the tibia and the
fibula are fixed between points 1 and 2, 3 and 4, and the contact between the femoral and tibial parts of the knee joint
replacement is between 7 and 8, 9 and 10, and between the tibial and fibula’s parts 11 and 12. Figs. 2 and 3 represent
the vertical T, and shear t,, components of stress tensor and Fig. 4 the principal stresses in the knee joint replacement.

Ideal distribution of loading on the tibial component of the total knee joint replacement represents the main require-
ment for its high quality. Stresses in the soft tissues (ligaments, joint capsule) in the neighbourhood of the total knee
replacement determine the pressure relations in the joint. Observations of the reoperated knee joints show that certain
asymmetric overloading of medial or lateral compartment, as well as overloading of the hinder part of the tibial plate
increases to a wear of the UHMWPE insert or even starts its deformation.

Our numerical results show that for horizontal stresses predominate relatively small tractions in the region around
inner medial and outer lateral parts of the contact area and in the region between condyles, otherwise the pressures
are indicated in the femoral and tibial parts of the knee joint. Moreover, analyses of our numerical results indicate that
the gradients of stresses in the joint are counterpoised in the epiphysis and then the metaphysis is strained uniformly.
For vertical stress components in the whole area are indicated pressures, the area between condyles and the medial
periphery are lightened and in the lateral direction the stresses increase. The similar situation is also in the tibia. Our
numerical results indicate that pressures are transferred across outward lateral and inner medial contact area. From
the vertical and shear stress components as well as from the principal stresses, it is shown, that greater parts of the
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Fig. 1. The geometry of the model (a) in the frontal plane and (b) in the sagital plane.
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Fig. 3. The shear component t, of stress tensor.

concentration of pressures are situated into the areas of outward condyles of the femur and the tibia, the smaller part
across the inner condyles and tractions are situated in the area between the condyles.

4. Applications

Analyses of our numerical results were used for verification of function of the knee joint replacements WALTER
UNIVERSAL and WALTER MODULAR (see [8]). Both are indicated for severe destruction of the knee joint in
rheumatoid arthritis or osteoarthritis, and for some post-traumatic cases, as well as for some systemic diseases. The
implants are intended for the primary replacement of the knee joint.

WALTER UNIVERSAL (WU) (see Fig. 5) is the older design which has used since 1984 and has implanted suc-
cessfully in more than 12,000 cases. Femoral component of WU is designed as a symmetrical one and is manufactured
of the CoCrMo (ISO 5832-4) alloy. Its basic type is intended for the application with bone cement. The femoral com-
ponents are supplied in four sizes and can be provided with distal or dorsal inserts for the filling of local bone defects.
Tibial component of WU is designed as a symmetrical one. The total tibial plateau is composed of two inseparable
parts of (i) symmetric anchoring plate with a stem manufactured of the CoCrMo (ISO 5832-4) alloy and (ii) an insert
produced of UHMWPE (ISO 5834-2), which forms the contact areas. It is supplied in four sizes and each of four
thicknesses.

WALTER MODULAR (WM) (see Fig. 6) is based on the experiences with the previous model WU. The femoral
component is designed as an asymmetrical one—right and left versions, and is produced of CoCrMo (ISO 5832-4)
alloy. In its basic version is used with the bone cement. Femoral component is supplied in four sizes and it can be also
provided with distal or dorsal inserts for the treatment of the local bone defects. Tibial component is designed as a
modular one, in right and left versions. It is formed by an anchoring plate with a stem, and with an interchangeable
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Fig. 5. The knee joint replacement—WALTER UNIVERSAL.
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Fig. 6. The knee joint replacement—WALTER MODULAR.

insert with corresponding contact areas. The asymmetrical anchoring plate of tibial component shape corresponds to
the different shapes of medial and lateral tibial condyles. The slots on plate provide space to preserve the posterior
cruciate ligament. For fixation, the anchoring plate is provided with couple of anti-rotating ribs, short stem and two
holes for bone screws. Basic version is supplied with a standard stem, which is provided with closing bolt at the end.
All parts together with the anchoring plate are manufactured of titanium TigAl4V (ISO 5832-3) alloy. The articular
insert is manufactured of the UHMWPE (ISO 5834-2) material in the right and left versions. The insert is fixed in the
anchoring plate by several bosses and one central screw. The insert is delivered in four basic and three intermediate
sizes to compensate possible differences between the femoral and tibial components.
Fig. 7 represents the X-ray images of WALTER UNIVERSAL in the frontal and sagital plane.

Fig. 7. The X-ray images of WALTER UNIVERSAL.
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Abstract

In geomechanics, there are problems whose investigations lead to solving model problems based on variational formulations.
Such problems are frequently formulated by variational inequalities as they physically describe the principle of virtual work
in its inequality form. In the first part of the contribution, the algorithm for the numerical solution of the discussed variational
inequality problem will be investigated. The used parallel algorithm is based on a nonoverlapping domain decomposition
method for unilateral contact problem with the given friction and the finite element approach. The conditions of solvability will
be presented. In the second part of the contribution, a unilateral contact problem with friction and with uncertain input data in
quasi-coupled thermo-elasticity is analysed. Method of worst scenario will be applied to find the most “dangerous” admissible
input data. The solvability of the corresponding worst scenario (antioptimization) problem will be shortly discussed. Numerical
experiments, e.g. a tunnel crossing by an active fault will be presented.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction quently formulated by variational inequalities as they

physically describe the principle of virtual work in its
In this paper, we will deal with semi-coercive con- inequality form.

tact problem with friction and uncertain input data The first part of the contribution will deal with

in linear quasi-coupled thermo-elasticity. The prob- numerical solution of a geomechanical problem based

lem represents extension of problems solvefili®] on the generalized semi-coercive contact problem with

for their application in geomechanics of high level the givenfrictionin quasi-coupled thermo-elasticity for

radioactive waste repositories. Such problems are fre- the case thats” bodies of arbitrary shapes are in mutual
contacts and are loaded by external forces. The problem

"+ Corresponding author. will be formulated as the primary variational inequal-

E-mail address: danek@kma.zcu.cz (J. Dék). ity problem. The corresponding algorithm, employing

0167-739X/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
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properties of modern parallel computers with greater
number of processors, will be based on nonoverlap-
ping domain decomposition method.

In the second part of the contribution we will
assume that the input data will be also uncertain. By
uncertain data we mean input data (physical coef-
ficients, right-hand sides, boundary values, friction,
etc.), which cannot be determined uniquely but only
in some intervals determined by their measurement
errors. The notatiorveliable solution denotes the
worst case among a set of possible solutions, where
possibility is given by uncertain input data, and the
degree of badness is measured by a criterion-functiona
[3-5]. The main goal of our investigation will be to
find maximal values of this functional depending on
the solution of the problem to be solved. Therefore,
we will formulate and analyze a corresponding
maximization (worst scenario) problem.

2. Formulation of the thermo-elastic contact
problem

Let us consider a unio®2 of bounded domains
£2',0=1,..., s, with Lipschitz boundariess2‘, occu-
pied by elastic bodies such thae =Uj_; 2" C
RN, N € {2, 3}. Letthe boundary2 = U_, 852" con-
sist of three disjoint parts%, I, and Iz, such that
R2=I,Ul,UT,.

Assume that § — 1)-dimensional measures of
Iy, I, andT. are positive, wheré, = Uy, I'¥, ¥ =
aknoaRl, 1<kl <s k+#I andly, I, I. denote
the closures is2.

We will deal with the following quasi-coupled prob-
lem of thermo-elasticity, which consists of a pair of

boundary value and contact problems to be solved grad-

ually.

2.1. Problem of stationary heat
conduction—problem Py

Let W* andT; be given functions. ProblefR; is to

find a function of temperaturg = (71, ..., T%) such
that
a , OT!
R P W =0
3xl' <Klj ij) +
in2, 1<it<s,i,j=1,...,N, (2.2)

|1 to N. Furthermoren* =

469
oT
,]3 n;=0 onrl,, (2.2)
T=T, only, (2.3)
aT \F T\
k I

T" =T, <K,’jaxjni> + (K,‘jaxjni> =0

on U, M 1<k l<s. (2.4)

Throughout the paper we use the summation con-

vention, i.e. a repeated index implies summation from

(n*),i=1...,N1< k <

s, denotes the unit normal with respecta@k nf =
—n’ on I'*; (};) is the matrix of thermal conductlv—

ities. Assume thak* are positive definite symmetric

matrices,

0<xkp< K§j§i§j|§|_2 < ki <400
fora.ax e 2, ¢ e RV,

wherexy, k7 are constants independentwoé Q. Let
Loe LY, W e LX), Th e HY(2Y), T =T
on Uk,lrkl.

Definition 2.1. We say that a functiofT" is a weak
solution of probleny, if T — Ty € V1 and

b(T,z) =s(z) VYze Vi, (2.5)
where
, oT" Bz
b(T, X,
(1.2) = Z/ “ij ox; 8xj

s(z) = Z/ W'zt dx,
=1 @2

={zeWr=r'_;HY2)z=0 only,

k

Z =Zl on Uy, Fkl}.

The formulation(2.5) can be obtained by multi-
plying Eq. (2.1) by a test function, integrating by
parts over the domai2* and using the boundary
conditions.
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2.2. Problem of unilateral contact problem with where ¢y, ¢f are constants independent efe
friction—problem P> Omega'. Let C;/kl € L>(£2Y), Ff e L3(2Y), P e
. LA(Iy), B e L®(2Y),ug e [HY (2], Let coef-
Let the body forces, the surface traction®, ficients of thermal expansior; be such that
boundary displacements, elastic coefficients;;,, Bij = Bji.
coefficients of thermal expansigff; and slip limits To simplify the formulation of stress—strain rela-
g¥, the temperatur@* and the reference temperature tions, the entries of any symmetri&v(x N) matrix
Ty = To(_x) be g|v_en. _ {7;;} will be denoted bythe vector notation {t;}, j =
We will deal with the following problem: 1, ..., jn,wWherejy = N(N + 1)/2, as follows:
Problem P»: Find the displacement fieldr =
(Mi),izl,...,Nin Q,Suchthat T = Tjj fOrlSISN’ 73 = T12 fOrN:Z’
ad .
a—nj(u‘, T+ F/ =0 in$2, T4 = 123, 15 = 131, =112 for N =3.
Xj
l<i:<s,i=1...,N, (2.6) Likewise, we replace the symmetric matrices

(eij(p)), (/31-,:) by vectors{e ;(u)}, {ﬂj}. Then the stress—
i, T = ijklekz (') — ﬁﬁj (T = TY) strain relation(2.7) can be rewritten as

in2, 1<i<s,i=1...,N, (2.7) i, T)_ZAe,(u)—,B(T‘ 7).

=1

u=ug onlrl,, (2.8) 1<i j<jy, l<i<s, @2.7)

tj(w, T)nj=F only, i=1....N, (29)  where A' is a symmetric fy x jy) matrix, A, €
L>®(2Y),¢c=1,...,s

ub—ul <07 <0,k —ul)k =0 Itis readily seen that

onU ' 1<k i<s, (2.10)

T: e_r,,e,,—g Tie; + 2 E T;€;.

| < g onu M 1<k I<s, (2.11) i=N+1
Therefore, we can write

|r | < gM :>“t_“z—0 (2.12)
JN
|| = ¢! = there exist® > 0 ciueijen = Y Bjjeiej,
i,j=1
such thaw® — ul = —9<¥. (2.13)

whereB' is a symmetric {y x jy) matrix such that
Here, e,»,-(u) = 2((Bui/0x;) + (du;/0x;)), uk =

knk, ! k — (,k

upnf, i, = kr;{ (no sm(;m)ovelrk orll), U = (“_n : Bi.,=A. forl<i, j<N,

“ti=“i_”n”i’ ut "‘n Uy =Uj — Uy, 1= . . ..
L= <1 < < <

1,. Nr_r[kli‘k (r)r—r]jnk—rfjnf, Bl/ 0 forl<i<N, N+1=j<jn,
L L .. .

T, = sz z j‘ = (o) o = sznlj nn i =1 Bij=2A; forN+1<i j<jn.

Assume thatcfjkl are posmve definite symmetric
matrices such that Let us denote

1
2

Wi =m_ HY(2),  lwlw, = (Z ||w‘||igl> :

1<s

-2
0 < cp = cijbijéulél™ < ¢ < +o0

fora.ax e &', & e RV, &i = &ij,
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W=, [HH(2)]",

2
Ivliw = { D) 111 o

1<s i<N

Assume that the matricé® are positive definite, so
that

JN
O<ap < Z Bjj£i&|E|7% < dj < 400
i, j=1

fora.a.x € 2, £ € R/V,

where the constantg), a are independent of € £2*.
Finally, let us assume that

meag—1(I;, N92*) >0 and

meagy_1(I; N 32') > 0 foralle =1,...,s,

and let e W, Toe Wi, g eL>(I"),p; e
L*>°(£2"). Let us introduce the space of virtual
displacements

V={veW|lv=0 onrl,}
and the set of admissible displacements
K={ve V|vﬁ - vi, <0 on Uy Fkl}.

We shall define a weak solution of the problés
which is motivated by the standard procedure: multiply
equationg2.6) by a test vector function, integrate by
parts over the domaif®, use the boundary conditions
and assume that satisfies conditionsf,, — uf,, = 0
on Uk’[[‘kl.

Definition 2.2. We say that the function is a weak
solution of problen,, if u —ug € K and

a(u, v —u) + jg(v) — jg(u)

>8S(v—u,T) Vveu +K, (2.13)
where
K 3
a(,v) =3 / S Ble)e;(v)dx,  (2.14)
=172 =1

471

Je(v) = Z/Fkl gV — vl ds, (2.15)
k,l

, — Lo L TYHB 9d
S(v,T) ;/QL(Flvle(T To)B' @ e(v')) dx

+/ P;v; ds,
Iy

where the weak solutiofiof the problenPy in S(v, T)
is inserted.

(2.16)

3. Numerical solution and domain
decomposition algoritm

In this section, we deal with the elastic part of prob-
lem only, as the domain decomposition algorithm for
the thermal part of the problem is the standard problem
solved in the literature.

3.1. Formulation of the problem

We follow the approach proposed by Le Tallé¢
and group every two subdomains which share a con-
tact areal ™™ into a single “nonlinear” subdomain. We
use discretization by linear finite elements and the
concept of local Schur complements. The resulting
nonlinear equation on the interface is solved by suc-
cessive approximations. For the starting approximation
we choose the solution of the linear problem, where the
unilateral contact conditions are replaced by the clas-
sical bilateral contact conditions without friction.

Let every domain$2* be divided into J(:) sub-
domainss2;, i < J(i). Let us denotel} = 9§2:\952",
tefl,...,s}ie{d, ..., J()}, apartof dividing line
andletl" = Uj_; Ul.]:(‘{ I} represent the whole interface

boundary. Let us introduce
T'={je{l..  JO:L.N2=0=1. .5
(3.1)

the set of all indices of subdomains of the dom&in

which are not adjacent to a contact, and let
.Q*j = U[i,t]eﬁ.Q;-, (32)

where ¢ = {[i, ] : 982; N I'. # ¥}, represent subdo-
mains in unilateral contact. Suppose tihan I, = 9.
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Then for the trace operatory:[Hl(Q;)]N—>
[L2(352)]Y we have

3.2. The Schur complements and the linearized
problem

Vr =yKlr=vVIr. (3.3) The aim of this subsection is to analyze in detail the

Let y~1: Vr € V be an arbitrary linear inverse map- condition(3.5)and to employ it for numerical compu-

ping satisfying tation of problentP,. We will introduce the concept of
1= " _ thelocal Schur complement.
yv=0 onUgI'™ VveVr. (3.4) Let us denoteV; = {yvir|v e K} = {yvllv e

Letusintroduce restrictioné‘ VP —TH L L —
Q5 j = T () di( ) > 2 V() —
2; and et

VO2) =(veVIv=0 on(U_ 2)\2})
be the space of functions with zero tracesign
Theorem 3.1. A function u is a solution of a global

problem P2, if and only if. its trace u = yu|r on the
interface I' satisfies the condition

V} and define a partlcular case of the restriction of the
inverse mapping~ ()| by

Tl vi— v(2Y),
YT ) =wy,  i=1,...,J(),
t=1,...,5,
a(Tr;; 1, v = (3.9)
Vvie vo(sz;),
Tri Mut € V($2Y), fori e T,
t=1,...,s

s J@)

D0 lai(ui(). ytw) = Sy 'w)] =0

=1 i=1

For [i, (] € ¥ we complete the definition by the bound-
ary condition(3.4), i.e.

r_lgf- =0 on U, .

@5 I (3.10)

YweVr,uevr,

and its restrictions u;(u) = u| o satisfy Definition 3.1. By the local Schur complement foe
T' itis meant the operatd; : Vi — (V/)* defined by

(i) the condition

. (S, Vi) = al(Tr; tul, T WY Vb, v e Vi (3.11)
a(ui(u), o) = S (e Ve e VoY,
(i@, ¢) = Si(0) Vo () _ and in the matrix form by
u;(u) € V(£2), yuj(w)lr = Rju, .
(3.6) SiU; = (Ai, — B;A;, " Bi)U;, (3.12)
) where
forieT,t=1,...,s, and . .l
ii) the conditi Aic Bi Ui
(i) the condition Ay = (Bflf ;llt>7 U= (ﬁi>’ (3.13)
> awi(), ¢) + jy(ui(@) + ¢}) — jt (uj(w) Wt i
li.ded where the nodes dfi; belong torI} and the internal
o L
> Z SH (0" (3.7) degrees of freedom alé.
[i,]]ev

For subdomains which are in contact we will define

forallo = (¢, [i, (] € V), ¢! € VO(.Qf»), and such acommon local Schur complement as follows:
that

Definition 3.2. The common local Schur complement
uteeck, B for the unions2f U 2/ (wherer’¥ c I'. and }. k] €
yui(w| = Riu for [i,] € v, (3.8) vlillev)is the operator

P ko vlye — (vky: Iy
For the proof seg7]. ST (VEx Vi) = (Vi x Vi = (V) x (V)
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defined by the relation
(SGE ¥, (. V)
= a} @07, VD) + @), T ')

V(v V) e Vi x Vi (3.14)

where 7r;;* and Trﬁl are defined by means ¢8.9)

and (3.10pnduj (y}), u/(y')) denote the solution of the
problem(3.7). '

The condition(3.5) can be expressed by means of
local Schur complements. Then we have

Lemma 3.2. The trace u = yu|r of the weak solution
satisfies the following condition

DN s v+ > sk wl), (8, V)
=1 ieT k,l
s J@©
=> > LTV} ¥veVr, [ik] e,

=1 i=1

[iev r'cr., (3.15)

where Vi = Riv,u} = Riu.

Then we will solve the Eq(3.15)on the interface

I' in the dual spaceWr)*. We rewrite(3.15)into the
following form

SoU + SconU = F, (3.16)
where
N
So=»_> (R)'SR,  Scon=» RjS"Ru,
1=1ieT* k,l
s J@© _
F=) D (R)(@ 'S, (3.17)
=1 i=1

and Rkl(l_l) = (Rf(l_l)’ Rl] (ﬁ))Tv uce Vr, [l’ k] €D,
[jllev, T¥ ..

Eq. (3.16)will be solved bysuccessive approxima-
tions, because the operatcﬁél and therefor&con are
nonlinear. We choose a suitable initial approximation
UY, for instance the solution of the global primal prob-
lem, where the boundary conditions bpare replaced
by the linear “classical” bilateral conditions (which cor-
respond withg"’ = 0 and j,(u) = 0)

473

ubk —ul =0,7" =0 onrg=ur¥ (3.18)

wherer§! are parts of ™, textrmmeasI{! > 0, cho-
sen a priori (for exampled! = '¥). On ¥\ r we
consider homogeneous conditions of zero surface load
Pi=P =0,j=1,...,N.

Then we replace the sd& by K0 = {v e V|v} —
vl =0 on Uy, I'¥} and therefore, we will solve the
following problem

. 1
u® = argmin,_xo <2a(v, v) — S(V)> (3.19)
and we seU® = yu®| . The auxiliary problen3.19)
represents a linear elliptic boundary value problem of a
system of §” elastic bodies with bilateral contact and
it can be solved by the domain decomposition method
again.

3.3. Solution of the auxiliary problem

Instead of2.13)we will solve the variational equa-
tion foru® e K©:

a@® v) = S(v) Vve K’ (3.20)

Thus, an analogue ofheorem 3.1can be derived,
where the conditiofB.7)is replaced by the correspond-
ing variational equality and where a mappiljzgl :
Vr — V satisfies conditionsyf V)t — (5 V), = 0
on Uk,]Féd.

We introduce operators of Schur complements. For
ieT,t=1,...,s, we define the mappinggr;*
according tq3.9) and the local Schur complemenents
S* by (3.11)

Definition 3.3. The common local Schur complement
for the union2f U 2/, where ! c I and [, k] €
9, [j,1] € 9,

SH (Vi x Vi) = (VI x (V)"

is defined by the following relation
(SH @, u?), (V¥ ¥))

k(o k=k -1k 1l (=1 —-1.1
= a; (w; (up), Try"v;) +aj(uj(uj)a TIry Vj)

V(i Vi) e vEx Vi (3.21)
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1 1

where Tr;~ and 7r;~ are defined by means of
(Tri"V)n — (Tr;*V%), = 0 on ! and
& (Tri 'V, wh) + dl(Tr 'V, wh) = 0

vwh e vORh), W e vi(2) (3.22)

such that ¢), — ('), = 0 onTy’.
A global Schur complemerd is defined by

S=58+ Z(ﬁkz)TSOklﬁkl,
k.l

whereSy is defined in(3.17) ands™ by (3.21) and
(3.22)

(3.23)

Then the condition coresponding (8.15) of the
auxiliary problem on the interface implies the equation

SU = F in the dual spaceW{)*. (3.24)

To solve problen{3.24)the method of preconditioned
conjugate gradients can be used[Th the so-called
Neumann—Neumann preconditioner is derived.

3.4. Successive approximation method and its
convergence

Recall that we have to solve the probl¢&l6)by
successive approximations. N is the solution of
the auxiliary problem, i.eU°% = yu®| -, whereu® is a
solution of problem(3.19) The next approximations
Uk, k=1,2, ..., wefind as the solution of the follow-
ing linear problem

SoUr = F— SconU L, k=1,2,.... (3.25)

To solve problem(3.25) we use again the method
of preconditioned conjugate gradients with new
“reduced” preconditioner of the Neumann—Neumann

type (se€7]).
Definition 3.4. We define “injection operators”

vt

Di-: i —Vr, 1=1...,sandi e T

by the following relation. For the nodes dff U I';
(Fkl C FC? [lv k] € 197 [.]7 l] € 19)

Diy(Pn) =y(P)) if Pyerfurt, (3.26)
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oL

DiX(Pm) _ X(Pn)pf

oT

(3.27)

if the mth degree of freedom corresponds with title
degree of} and P, ¢ I} U I'} and

oDi-g(Pm) =0 inthe remaining cases (3.28)

Here, p; denotes the local measure of stiffness of the
subdomairn2; (e.g. the average of the Young modulus)
and

or = Z QAL/

Ol
PIGQJ.

is the sum ob‘i overall subdomain.é‘i, which contain
the pointP;. ‘

Let us realize that the kernel

Z. =KerA;, 1=1,...,s5,ieT (3.29)
may contain nonzero elements, i.e. displacements of a
rigid body £2¢. Therefore, we introduce the orthogonal
complement of the kernef; in the spaceV/(£2!), so
that

0(2) & Ker A, = V(£2)). (3.30)

Let us define the “coarse” reduced space of traces

S
Vou = Z Z oD;yZ;

=1 ieT!

(3.31)

and alinear se‘t’olH € (Vr)* of functionals by the rela-
tion
SeViy© (8,2)=0 Vze Voy. (3.32)
The setVg;; will be used for starting values of the
preconditioned conjugate gradients algorithm. Now we
will analyze the convergence of the method of suces-
sive approximatiof3.25) to the solution of the original
problem(3.16)in the spaceV{)*.

To this end, we introduce a seminorm and a norm.
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Definition 3.5. Let Hg be an orthogonal complement
ofthe subspac®yy in V. Letusintroduce a seminorm

Ryl = | Y _[af(Tri Riy, Try 'REy) + d(Tr Ry, Tr " RLy)]

k1

wherer'™ c I.,[i,k] € ® and [}, [] € v.

Lemma 3.3. The expression
Il = (Sou, u) (3.34)
defines a norm in Hp.

Definition 3.6. Let a mappingT : Ho — Hp be

defined by the relation
(So(Ty), ¥) = (F—Scon(y),¥) Vv e Ho.

(3.35)

Assumption 3.4. Let a constanpg exist such that

IRculy < Blullp Vu e Ho. (3.36)

Lemma 3.5. IfAssumption 3.4is satisfied, the mapping
Tiswell-defined, i.e. forally € Hothere exists aunique
element Ty € Ho, satisfying (3.35)

For the proof se7].

Theorem 3.6. Let the Assumption 3.4 hold. Then
IT() — TWllo =< 28%ly —wllo  y,w € Ho.
(3.37)

For the proof seé/].
Corollary 3.7. Let the Assumption 3.4 hold with 8 <
\/2/2. Then the mapping T is contractive on Hy. The
successive approximations (3.25) converge to a fixed

point of the mapping T, which represents a solution U
of the Eq. (3.16) The following error estimate holds

IU* —Ullg < (2891 - 2837 HIU° - T o,
k=1,2... (3.38)
for any U° € Ho.

For the proof segB, §11.7]
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Remark 3.1. The Assumption 3.4vith g < +/2/2 is
fulfilled if the unionUy; ;je9 £2; of subdomains, adjacent
1

2

(3.33)

to the contact boundaw, is “small” with regard to the
union of remaining subdomains and if the triangulation
of every$2:, [i, ] € v is sufficiently fine near7.

4. Worst scenario problem for uncertain input
data

4.1. Sets of uncertain input data

Let us assume that the input data

A={B'. k', W' T F, B Puo "
t=1...,sVk I}
are uncertain. Let the only available information about

them be that they belong to some sets of admissible
data, i.e.

A€Uxs B U, «eus, weul,

" L

Tie UL, Feuly peul, PeuUl,
u il Kkl

ug € UyS, ¢¥ e US,.

Assume that all the bodie@' are piecewise homo-
geneous, so that partitions &f exist such that
Q=0 2, 2n2=0 forjAkl<i<s

(4.2)

r=u2rd riard =g forqg+p. vkl
(4.2)

and letthe dat®', «*, F*, W', B bepiecewise constant
with respect to the partitio(d.1).

Let us denote
r,noae =r,,

(=1,...,s, (4.3)

rynNa=ri, <s.

(4.4)
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We define the sets of admissible matrices:

Ufa = {(jn x jy)Symmetric matrices’ : B ()
< Bitlg, = const.< By(j). j
<juik=1...,jn) (4.5)

whereB'(j) and B'(j) are given {y x jy) Symmetric
matrices; = 1, ..., s. Assume that positive constants
() exist such that

Amin(3(B'(j) + B'(j))) — p(3(B'(j)
=chy(j) forj=1,...

— B'(j))

,E,L:l,...,s, (4.6)

whereimin andp denotes the minimal eigenvalue and
the spectral radius, respectively. Next, we define the setWhere P;() and P(), i=1,.

of admissible matrices

ad = {(N x N) — symmetric matrices' : & (/)
< Kik|_Q; = const.< kj. (), j < jt, i,k < N}

4.7)
wherex'(j) and«’(j) are given (V x N) symmetric
matricesj =1,..., j,t=1,...,s. Assumethatpos-
itive constants:,.(j) exist such that

dmin(3(< (/) + € (D)) = (GG () — ()

=c(j) forj<j,i<s, (4.8)
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for . < s, whereW'(j) andW'(;) are given constants;

ad ={Te L¥(I7) 1 T1(1) < Tl

= const.< Ti(1), ¢ < s}, (4.11)
whereT;(:) and T1(.) are given constants;
Upg = {u € L(I) : ugi(t) < ulpy
= const.< ug;(t), t < s}, (4.12)

whereuq;(t) andug;(1),i =1, ...
stants;

, N, are given con-

Uli={p e L®(7): Pi(t) < plr

= const.< P;(1), ¢ < s}, (4.13)

, N are given con-
stants;

B L
Uag= b € L(2): Bi()) < blg
= const.< B'(j), j < ji} (4.14)

fori < jy.u < s, wheregi(j) andp;()) are given con-
stants;
Uad = {g e LMy g|1:4€, c C(O)»l(f;l);

0<g(s) <g.

d .
d% <CMae.inr¥ g < le} ,

(4.15)

wheremin andp denotes the minimal eigenvalue and  for all pairsk, / under consideration, whegé andC¥/
the spectral radius, respectively. Then the matrlces are given positive constants. He®?-1 denotes the

K'(j) =« o, are positive definite for any Uad,

L8, j =< Ji
Now, let us introduce

F! .
Uaa = {f € L™(R2) 1 Fi(j) = fley
= const.< F/(j), j < j.), (4.9)

fori < N, . < s, whereF;(;) andfi‘(j) are given con-
stants;

= (we L¥(2): W'()) < wlgy

= const.< W'(j), j < j}. (4.10)

space of Lipschitz-continuous functions.
Finally, we introduce the set of admissible data, as
follows:

Bl KL F’L

Uad = Mi<sUpg X MisUpqg X Mi<s, j<nUgg
wt T, B

X Mi<s Ugg X Upg X Mi<s,ishUpq

P: . kl
x Mij<n Ugq X I‘I[SNU;g' X I_Ik,lUgd. (4.16)

To obtainTy € Wl, we have to extend the bound-
ary valuesTi € vl ad iNto the domains* properly,
i.e. satisfying the conditiongf = 7} on all I'*. As
a consequence at some intersectibisN I, (if any),
additional continuity conditions are necessary in the
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definition ofUT . An analogous remark holds for the
dataug; € Upy andF"’ NI,

Definition 4.1. Instead of the bilinear forms and func-
tionalsb(T, z), a(u, v), j,(v), s(z), S(v, T) introduced
in Definitions 2.1 and 2.,2we will write b(A;T, z),
a(Asu,v), jo(A;v),s(A;z), S(A;v,T) for any A e
Uag.

Lemma 4.1. There exist positive constants c;,i =

0,1, ..., 6 independent of A € Uag, such that
b(A;z.2) = Collzl§: ¥z eV, (4.17)
1b(A;z, y)I < Callzliyallyllwe Yz, y € Wi, (4.18)
a(A;v,v) = Ca|vlI3, VveV, (4.19)
la(A;v, w)| < Callvilwlwllw VYv,we W, (4.20)
Is(A;2)| < Callzllo,e Yz e Vi, (4.21)
1S(A;v,T)| < Cs(lIvllo.2 + IVllo.r, + IIT
—Tolo.ellvllw) Yv.we W, (4.22)

ljg(Aju) — jo(A; V)]

<Ce)  lu'~Vilosz Yu.veW. (4.23)

Proof. By Theorem 5 irf9], we have

Amin(K () = cL()VK' € Uy 1 <s,j < ji.

As a consequence, we obtain

b(A;z,z) > ( min_c (J))Z/ |gradz'|? dx.

LS8, J<Ju (<s
(4.24)

Then we have

gradz' 2 dx > C4||z'[12 (4.25)
QL
for any restriction;* of z € V3. Combining(4.24) and
(4.25) we arrive a{4.17)

The inequality(4.18) follows from the definitions
of UX immediately.
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Arguing as in(4.24) we may write
a(A;v,v) > ( mm cB(J)) Z/ Zek(vt) dx.
(4.26)
The Korn’s inequality
/ e(v) T e(v) dx = CH|Iv'[12 (4.27)
Ql
holds for any restriction* of v € V. Since
1 JN
ée e < Ze,%, (4.28)
k=1

recall the formuld2.13) combining(4.26)—(4.28)we
obtain the inequality4.19) The inequality(4.20)is an
easy consequence of the definitionsuﬁ,.

Thus, we may write

(4591 = 3 (maxi () / 121 dk < Callzllo.o

L<s§ =)
Next, we have
|S(A; v, T)|
< Y (NYEHmax(| F () IELAD DIV llo.

1<s

+Cmaxp() [ 27"~ Tyl (vl i

+ NY2(max| P01, [P, (OIV o, 1)
< Cs(Ivllo.e + IVllo.r, + IT — Tollo.2lIVIlw).

Finally, we may write

|jg(A; u) — jg(A; V)|

k(i k
< u’ —
=3 [l

Kl
<Z max g

9=Qu
k k 1
<CY Y (luf = vfllo pu + lluj —

kil i<N

<Ce» v =vlose. O

1<s

Vi) — (uj — vyl ds
/ |(u, — Vl) - (u, - V,)I ds

!
Villo, )
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Proposition 4.2. There exists a unique weak solution
T(A) of the problem P1 for any A € Uaq and u(A) of
problem P for any A € Ugg.

For the proof sel0].

4.2. Criteria of worst scenario

To find the “worst”, i.e. the most “dangerous” input
dataA in the setlU,q, we need a criterion, i.e. a func-
tional, which depends on the soluti@tfA) or u(A) of
problem?P; or P, respectively.

Next, we present several examples of such criteria.

LetG, Cc £2,r=1,...,r, be (small) subdomains,
adjacent to the boundari@s2', for example. We can
define
@1(T) = maxe,(T) (4.29)

r<r
where ¢.(T) = (meas/G,)™* [; Tdx; let G; C
r,,r<rand

®(T) = maxy,(T) (4.30)
wherey,(T) = (meag,—1G.)~* [, T ds.

Next, we define
@3(u) = maxy; () (4.31)

where x,(u) = (meas/G,)~* [; wini(X,)dx; where
n(X,) is the unit outward normal at a fixed point
X, € 082' N3G, (if G, C £2') to the boundary2';

Pa(u) = maxy; (u) (4.32)
where x.(u) = (measy—1G,) ™! [ uini(X,)ds; G,
C U502\ Ty '

Since the weak solutiom(A) of our problem(2.13)
depends o (A), thenu(A) = u(A; T(A)) and instead
of @;(u) we write ®;(A; u, T). Another choice is

&5(A0, T) = m<a_Xa),(A; u,7) (4.33)
r=r

wherew,(A;u, T) = (meas/G,) ™t [ 15(x(A;u, T))
dx.

Here,I>(7) denotes the intensity of shear stress (see,

e.g.[8)]), i.e. the second fundamental invariant of the
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stress tensor deviatoP, i.e.

3
2 D_D
@) =) 5t

ij=1

§Tkk5ij;

D_ ..
T = Tij —

15 = §[t2) + 13, + 13 — (111722 + T11733 + T22730)
+ 3(1’%2 + T%:g + T%s)] f0r N = 3

In (4.33) t(A;u, T) is defined by the formuld2.7).
For orthotropic material and plane strain, we have to
insertti3 = 123 = 0.

If the friction can be neglected (as ihl1,8,2), we
setgk! = 0 and define, e.g.

Po(Asu, T) = maxu,(A;u, T); (4.34)
r=r
wr(A;u,T) = (meagyG,)~* 6, (=ta(A;u, T)) dx;
andG, is a small subdomain adjacent tp.
Now we formulate thevorst scenario problems as
follows:

find

1,2,  (4.35)

A% = arg max®;(T(A)), i
AeUyq
and
A% = arg max®;(u(A), T(A)), i=3,4,5,86,
AeUyg

(4.36)

whereT'(A) areu(A) are weak solutions of the problem
P1 and P>, respectively.

Remark 4.1. Since the weak solution(A) of prob-
lem P> depends 0T (A), u(A) = u(A; T(A)) and we
write @;(u(A), T(A)), instead ofd;(u(A)) fori = 3,4
in (4.36)

4.3. Stability of weak solutions

To analyze the solvability of worst scenario
problems(4.35) and (4.36)ve have to study the map-
pingA +— T(A)andA — u(A, T(A)). First, we intro-
duce the following decomposition oA € Ugg: A =
{A’, A"}, where
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A= Mz My, k() Mess Mj<G, WD Mess T1),
A e R,
pr=0Un+DD Ji+s
L<§
and
AN = {|_|L§s ngz B[(j)’ M<s rljgz FL(])s |_|L§SPL7

|_|L§Su6a Mi<s M, B () Nkl Mg<Qpy gkl(CI)}a
” D2 ki
A" € RP2 x My Ng<g, C(IT,),

p2= (Z Z) [+ jn)in/2+ N(L+29)].

L<s

We are going to show the continuity of the mappings

L WL
A’T»L—> T(A") for A" € Ujy= Mi<,Usyx Mi<sUpzq X
1 I /" B
U,jandA — u(A, T(A ));f)r A" € Ully=n<;UB; x
L P uo;
Mi<s, j<n ULy X Mizsicn Uy X MienUql x Ni<nUgd,

respectively. Since the problem discussed is quasi-
coupled, we have the following theorem and lemma:

Lemma 4.3. If A, € Uag, An — A in U, where U =
RPITPZ X My Mg<0y C(Féd), and w, — u weakly in
W then

a(Ap;u,, v) = a(A;u,v) VveW, (4.37)
S(Ayiuw,, T) — S(A;u, T) VT € Wy, (4.38)
Jo(Aniu) = jo(Asu). (4.39)

For the proof sel0].

Theorem 4.4. Let A’ € Uy, A, — A" inRPLasn —
00. Then
T(A))— T(A") in Wi

Let Ay, € Uad, Ay > Ain U = RPYTP2 x My My< gy
C(I'). Then

u(A,;) - u(A) inWw.

For the proof se€l0].

4.4. Existence of a solution of the worst scenario
problem

To prove the existence of a solution of the worst

scenario problem, we will use the following lemma.
Lemma 4.5. Let @;(T),i = 1, 2, be defined by (4.29)
and (4.30)and let T, — T in W1, as n — oo. Then

im &:(T,) = ®(T), i=12
n—oo

Let @;(u),i = 3, 4,be defined by (4.31)and (4.32)and
letu, > uin W,asn — oo. Then

lim &;(u,) = &;(u), (=34

n—o0

Let ®;(A;u,T),i =5,6, be defined by (4.33) and
(4.34)Let A, —> AinU, A, € Ugg,u, — win Wand

T, — Tin L%(82). Then

||m qjj(An, u,, Tn) == (pi(Av u, T)v

n—oo

i=5,6.

The main result gives the next theorem:

Theorem 4.6. There exists at least one solution of
the worst scenario problems (4.35) and (4.36), i =
1,...,6.

Proof. Let us denote

Ji(A) = (T (4)), i=12

If A, € Uag, Ay - AinU asn — oo, thenA) — A
inRPtandT(A,) — T(A)in Wy by virtue ofTheorem
4.4. UsingLemma 4.5 we obtain

Ji(An) — Ji(A),

so thatJ; is continuous on the séfyg.
It is easy to show thal/;q is compact subset df,

kl
if we employ Arzela—Ascoli Theorem fars ;.
As a consequencd; attains its maximum oWag.
The same argument can be applied to

Ji(A) = @(A;u(A)T(A)), i=3,456.
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Here, we employrheorem 4.4ndLemma 4.50 verify 6r -
the continuity of/; on the seUyg. O

s

5. Numerical experiments

For approximations of the problem we can employ
the finite element method and the algorithm of Section
3 based on the nonoverlapping domain decomposition
approach developed |[id].

The geomechanical model problem describing a
loaded tunnel which is crossing by a deep fault and
based on the geomechanical theory and models having
connection with radioactive waste repositorjigk A
geometry of the problem is iRig. L

2

—2H

5.1. Material parameters B |
Two regions with Young’s moduluE = 5.2 x
10° Pa and Poisson’s ratip = 0.18. Specific gravity
is 245 x 10" Pa/m. Fig. 2. Detail of deformations (enlarging factor is 10).
5.2. Boundary conditions
Prescribed displacement.f2x 10~2; 0) [m] on
1-2. Pressure.B x 10’ Pa on 1-4 and 2-8 andxl
60 sl
1, 4
6l
40t
phle——=
s Ve e
/ A%
20t / \Vd
2 \'
; "
of 0 ]}( /
-20 Jj 7\ A f/ V.
-4 [TTTT f
-40 5} o
2 3 3 —
st 4.31014e-02
-60 ‘ . .
-60 -40 -20 0 20 40 60 -5 0 5

Fig. 1. Geometry of the problem. Fig. 3. Detail of displacements on the tunnel wall.
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-2 F

-4 F

’
\ =
-6 r
e
-8 1.45199e+07
-5 0 5

Fig. 4. Detail of principal stresses on the tunnel wall.

10’ Pa on 8-3. Bilateral contact boundary on 3—4.
Unilateral contact boundary: 5-6 and 7-8. Given slip
limit is 10°Pa. Zero surface forces on the tunnel
wall.

8 6 -4 -2 0 2 4 & 8 10

Fig. 5. Detail of principal stresses in a neighbourhood of the tunnel.
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5.3. Discretization statistics

Twelve subdomains, 5501 nodes, 9676 elements,
10428 unknowns, 89 unilateral contact conditions, 466
interface elements.

5.4. Convergence statistics

Twenty-one iterations of the PCG algorithm for
the auxiliary problem, 15 iterations of the succes-
sive approximations method for accuracy $Qtotal
39 iterations of the PCG algorithm for the original
problem.

Fig. 2 represents detail of deformations afig. 3
shows displacements in a neighbourhood of the tun-
nel. OnFigs. 4 and Hetails of principal stresses are
displayed in a neighbourhood of the tunnel.

6. Conclusions

The theory presented in this paper represents exten-
sion of geomechanical problems solvedl2] for the
case if input data, i.e. thermal conductivity and elastic
coefficients, body and surface forces, thermal sources,
body and surface forces, coefficients of thermal expan-
sion, boundary values, coefficient of friction on contact
boundaries, etc. are uncertain. Since the theory is an
extension of problems solved ii2] it can be used
for mathematical models connected with the safety of
construction and of operation of the radioactive waste
repositories. The models involve input data (as thermal
conductivity and elastic coefficients, body and surface
forces, thermal sources, coefficients of thermal expan-
sion, boundary values, coefficient of friction on contact
boundaries, etc.) which cannot be determined uniquely,
but only in some intervals, given by the accuracy of
measurements and the approximate solutions of identi-
fication problems. The “reliable solution” denotes the
worst case among a set of possible solutions where
the degree of badness is measured by a criterion func-
tional. For the safety of the high level radioactive waste
repositories and other structures under critical condi-
tions we seek the maximal value of this functional,
which depends on the solution of the mathematical
model. Then for the computations of such problems
(some mean values of temperatures, displacements,
intensity of shear stresses, principal stresses, stress
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tensor components, normal and tangential componentsAcknowledgements
of the displacement or stress vector on the contact
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Abstract

The paper is focused on the mortar finite element method for solving linear
elliptic problems in 2D. The mortar finite element method is a nonconforming
domain decomposition technique tailored to handle problems posed on domains
that are partitioned into independently triangulated subdomains. In the contri-
bution we explained the principle and properties of the method. A significant
part of the paper is dedicated to the implementation of the mortar method in
the Matlab system. The numerical results are showing both the principle and
the possibility of practical use of the method.

1 Introduction

The finite element method is applicable to a wide range of physical and engineering problems
which can be described by means of partial differential equations. The mortar finite element
discretization is a discontinuous Galerkin approximation. The functions in the approximation
subspaces have jumps across subdomain interfaces and are standard finite element functions
when restricted to the subdomains. The jumps across subdomains interfaces are constrained
by conditions associated with one of the two neighboring meshes so that a weak continuity
condition must be fulfilled. Because of the discontinuity on the interface we classify the mortar
finite element method as a nonconforming finite element method (see [6]).

Mortar finite elements were first introduced in 1994 by Christine Bernardi, Yvon Maday
and Anthony T. Patera in [1]. Our paper is focused on the mortar finite element method in two
dimensions and its implementation in the Matlab system. Most of the literature describing the
mortar finite element method deal with the geometrically conforming partition, which is easier.
Therefore, this paper is focused on the nonconforming case.

2 Mortar Finite Element Method

In this section we briefly describe the mortar finite element method in two dimensions. Let
Q C R? be a polygonal computational domain. We decompose the domain into P nonoverlapping
polygonal subdomains

Q= ﬁi, QjﬂQk:@ for j#£k, jk=1,...,P.

-

=1

The partition can be:

o Geometrically conforming — The intersection between two closure of any two subdomains
;N Yy, i # jis either an entire edge, a vertex or empty. Figure 1 shows an example of
the partition.

o Geometrically nonconforming — All the other cases. See example of the nonconforming
partition in Figure 2.
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Figure 1: Example of geometrically conforming partition of {2 into subdomains €2;.
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Figure 2: Example of geometrically nonconforming partition of € into subdomains £2;.

The subdomains €2; form together a coarse mesh of the whole domain ). We discretize
each subdomain by triangular elements known from the finite element method. The size of the
triangles can be chosen with regard to the problem. We use finer mesh in subdomains, where
big changes in behaviour of the solution are expected, etc. The resulting triangulation can be
nonmatching across the interfaces of the subdomains, as you can see in Figure 4.

We define the interface I' between subdomains €; as a closure of the union of the parts of
the boundaries of 9€;, i = 1,... P, that are interior to 2

T =0 (09 \ 09). (1)

The interface can be considered also as a set of nodes, that belong to the boundary of at least
two subdomains.

We denote
Vi) = V() x V5'(Q2) x - x VE(Qp) (2)
the space of mortar finite elements defined on €2. We consider the low order basis functions, for

example the piecewise linear basis functions. Vzh(QZ) is a finite element space in each subdomain
Q;. V(S) is a restriction of functions from V" to a set S.

For further analysis, we introduce some more notation. A main edge will represent a side
of a planar n-agle, see Figure 3. A square has four main edges, n-agle has n main edges. Let
I';; be an open common edge or a part of an edge of two adjacent subdomains 2; and €2;

fij = ﬁl N ﬁj. (3)

The edge I';; is a part of a main edge (or is a main edge) both of the subdomain Q; and Q;. We
choose the main edge of one subdomain as a master (mortar) and the main edge of the second
subdomain as a slave (nonmortar). We use a new notation:

e Mortar edge v — If it belongs to a particular main edge of a boundary 9€2;, we denote it
Vi

e Nonmortar edge 6 — If it belongs to a particular main edge of a boundary 9€2;, we denote
it 0;.



Figures 3 and 4 show examples of situations, that can occur on the interface. If we consider
geometrically conforming partition of €2, it is obvious, that for two subdomains {2; and €2; with
a commom edge holds an equality v; = I';; = d;, or 7; = I';; = ¢; (it’s important which edge
is chosen as a mortar), see Figure 4. The situation is more complicated in the nonconforming
case. There is arising a question, how to choose mortar and nonmortar edges. An example of
such a choice is in Figure 5. It can be proven that the partition always exists (see [3] or [6]).

In term of a new notation we can write:
K
F:U%, Y NV =0, ifm#n, mmn=1,.... K, (4)
k=1

where K is the number of all mortar edges. Obviously also

L
F:U(S_l, OmNop =0, ifm#n, mmn=1,... L, (5)
=1

where L is the number of all nonmortar edges.

Q

1—‘, .
main edge 9; "

¥ .
Qi main edge 0§);
Vi Q j

Figure 3: Interface I';; of two subdomains €2; and €2; and signification of edges as mortar and
nonmortar.
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Figure 4: Mortar edge v and nonmortar edge d on the interface I';; of two subdomains €2; and

Q;.

It remains to solve the most important point of the method - the situation on the interface
I'. It’s necessary to join somehow the values of the searched function (we call it mortar function)



0 o 0

O

v

Q5

Q7

Figure 5: Example of choice of mortar edges in geometrically nonconforming case (mortar edges
are blue).

on the interface. Instead of a pointwise continuity we require fulfilment of a weak continuity
condition. The exact formulation will follow after some necessary definitions.

Each nonmortar edge d; belongs to exactly one subdomain, we denote it €2;. Let I'; be the
union of ¢ parts of the mortar edges 7;; which correspond geometrically to nonmortar edge d;

q

T = J@n®). (6)

i=1

For each nonmortar edge §; we choose a space of test functions ¥"(4;), which is a subspace
of the space V}"(§;), that is a restriction of functions from V;"(;) to &;. So if we choose piecewise
linear basis functions, V}*(€;) will be a space of piecewise linear functions. W"(3;) will be a
restriction of functions from Vlh(Ql) to §; with requirement that these continuous, piecewise
linear functions are constant in the first and last mesh intervals of §; (see Figure 6). Other
possibility how to establish the space of test functions is described in [7].

Figure 6: Test functions on d;.

We define the mortar projection on &; as mg, 4, (u;) : L2(T;) — V/*(6;). For two arbitrary
values q; and g2 and a function u; € L?(I) it satisfies

[ =) ds =0 e v(), 7
]
The condition means, that the jump of the mortar function across each nonmortar edge must

be orthogonal (in L?(I';)) to the space of test functions defined on &;. The condition is called
the weak continuity condition or the mortar condition.



3 Formulation of the Mortar Problem

3.1 Variational (Weak) Formulation of the Mortar Problem

Let us remind a variational (weak) formulation of a Poisson problem in two dimensions. We
need to find a solution u € W () of the Poisson equation

—Au=f inQcCR? (8)
ou

u=g¢g; ondQp, —— =go on Iy, 9)
on

where f € L3(Q), g1 € La(0Qp), g2 € L2(00y). The solution u € W () must be from the set
of admissible functions

V, = {u € W3(Q) :u=g; nadQp in the sense of traces} (10)

and for every test function v must satisfy

a(u,v) = F(v) Yv eV, (11)
where
V ={veW3(Q):v=0o0ndQp in the sense of traces}. (12)
a(u,v) = /[gradu grad v] d€2, (13)
Q
F(v) = /fv dQ + / gavdS. (14)
Q 00N

We can formulate the problem (8), (9) in terms of a decomposition of the domain € into
subdomains €, i = 1,2, ..., P and by using an appropriate mortar finite element space V. We
appear from the weak formulation (11) of the problem (8), (9) and we rewrite it to the discrete
form.

We know, that V}*(Q;) € Wi(€;), i =1,..., P. Thus, we can write
a’(u,v) = FY(v) Yo e Wy°(Q). (15)

a''(-,-) is a bilinear form, which is defined as a sum of contributions from the particular subdo-
mains

P
a (u,v) = Z /[gradu grad v] d§2; (16)
i=1g,
and / /
F'(v)=F(v) = | fodQ+ gav dS. (17)
Q QN

A variational (weak) formulation of the mortar problem represents such a task: Find uj, € V*
which satisfies

at(up,vp) = FY(vp) Yo, € VI (18)

The existence and uniqueness of the solution of (18) follows i.a. from the Lax-Milgram lemma.



3.2 Mixed Formulation of the Mortar Problem

First, we present some findings relating to dual spaces. We know, that Vlh(QZ) C Wi (). A
restriction of a mortar function u to a nonmortar edge d; belongs to the space W21 / 2(51). The
space of test functions W"(§;) can then be a subset of the dual space of space W21 / 2(51) with
respect to the L? inner product, thus ¥"(8;) C WQ_l/Q(él).

For introduction of a mixed formulation we use the mortar condition (7), whose satisfaction
is demanded on the interface. We denote [u;] the jump of uy, € V" across ;. The test functions
from the mortar condition can be considered as Lagrange multipliers. A function u belongs to
the space V" if and only if for all the nonmortar edges §; and for all the Lagrange multipliers
1, which form a basis of W"(4;), holds

[tuds =o. (19)

]

From the first paragraph of this subsection results, that [u;] € W21 /2 (6;). Lagrange multi-
pliers y; must then be from the dual space W2_1/2(5l). Let Mh =TT, ¥"(8) C I, W2_1/2(5l) and
pn € M", where up, = (141)1=1.1, L is the number of nonmortar edges. We define a bilinear form

b(up, up) = Z/[uh],ulds. (20)

=1,
A function uy is a mortar function if and only if
b(up, pin) =0 Vpp € M". (21)

We can rewrite the discrete problem (18) to the mixed formulation: Find a couple (up, \p) €
VT x M™" which satisfies

a (un,vp) + blup,Ap) = FT(vp) Yo, € VI, -
b(un, pn) =0 Y € M. (22)

As well as in other mixed formulations, it is important to satisfy the Brezzi-Babuska
condition (see [7]) also in formulation (22). This is important for the existence of the solution
and for the error estimate.

4 Implementation of the Mortar Finite Element Method

We describe briefly the key points of the implementation of the mortar finite element method
in the Matlab system. We started from the program [4], which deals with the conforming
partition of the computational domain into squares and rectangles, whose sides are parallel
to the coordinate axes. The generalization of the program to the nonconforming case is not
a trivial task. Our program solves the Poisson or Laplace equation in two dimensions with
Dirichlet boundary condition and can deal with polygonal computational domains, that can be
divided into general polygonal convex subdomains. Since the conforming partition is a specific
case of the nonconforming partition, it’s obvious, that the program can handle with conforming
case also.

The input data are the geometry of the computational domain, the right hand side and the
Dirichlet boundary condition. The geometrical data contain informations about the subdomains
- each subdomain and its triangulations is inscribed with a triplet of matrices p, e, t representing
matrices of points, edges and triangles. It’s necessary to save the information on the mutual



relationships of the edges and subdomains. We must distinguish the edges on the boundary
because of the fulfilment of the boundary condition and we need to know the adjacent edges
and subdomains of each edge and subdomain.

4.1 Mutual Relationship of the Edges

So let us consider a polygonal computational domain §2. We divide the domain into polygonal
subdomains €2;. There are, in fact, two types of nonconforming partitions, see Figure 2. In the
first case, the subdomains are squares and rectangles, whose sides are parallel to the coordinate
axes. The second case is more general — the subdomains are general n-agles or rectangles, whose
sides are not parallel to the coordinate axes. Both cases can be combined.

In the following text we will use the terms edge and main edge, see Section 2 for the
explanation. The edges and their belongings to the main edges are described in matrices e. The
comparison of the mutual relationships in the input geometry data is realized through the edges,
not the main edges. We look for the parallelism of the edges. The parallelism is indicated by
the identical multiples of x- and y- component of the directional vectors. If an edge is parallel
to a coordinate axis, we can profit from the fact, that one component of its directional vector
is equal to zero. We must identify the edges, that are overlapping. The necessary condition of
the overlapping is, that the edges lie on the same line (a special case of parallelism). Two edges
can overlap with parts of the edges, one edge can be inside the second one or they can coincide.
The information on the mutual relationships of the edges and subdomains is stored in a matrix
by a numerical value. On the basis of described information we can do the partition into mortar
and nonmortar edges.

4.2 Division of the Edges into Mortar and Nonmortar

We divide the main edges, that are not lying on the outer boundary, into mortars and non-
mortars. We have already mentioned, that the partition is always possible. But there is no
universal instruction, how to choose the mortars. We introduce some possibilities. First of all,
we focus on the conforming case with rectangular subdomains. Each main edge is either on the
outer boundary or has one adjacent main edge with which it coincides. The choice of mortar is
without any problems. Let’s show two possibilities:

e Neumann-Dirichlet partition — Each subdomain has either all the main edges mortar or
nonmortar.

e We sign the first two main edges of the subdomain as mortar, the second two as nonmortar.
We omit the main edges on the boundary.

The situation is more complicated in the nonconforming case. Neither of the above-mentioned
methods can be used. With regard to a lack of information in a literature we use our own way
of a choice of the mortar edges.

We will do the following. We go through the particular subdomains in the same sequence
as they were entered. If a main edge is unsigned yet and if it is possible, we sign the main edge
as mortar and its adjacent main edge (or edges) as nonmortar. So we go through all the main
edges of all the subdomains. If a main edge is once called mortar (or nonmortar), we don’t
change it again. The process of signing of the main edges is shown in Figure 7.

The information on the adjacent edges is known from the previous research and is stored
in a matrix. On the basis of a detection of an overlap there is assigned a type of the appropriate
edge and of the adjacent edge. It’s necessary to verify if one of these two edges already has
a value (mortar or nonmortar). In this case, we must keep the value and the type is assigned



only to the second edge. The edges, that belong to the same main edge, are of the same type.
The type (mortar, nonmortar, outer boundary) is stored as a numerical parameter added in the
matrices e (0 = outer boundary, 1 = nonmortar edge, 2 = mortar edge), see Figure 7.

0 0 0
1) \ 2) \ Q9 0
0 O 2 0 Q2 2

2 2

S I e 0
N N

Figure 7: Process of signing of main edges (mortar edges are blue (2), nonmortar edges are grey
(1) and 0 is for edges of outer boundary).

4.3 Assembling

We briefly describe the assembling of the stiffness matrix and the right hand side. We add in
the assembling the requierement of the fulfilment of the mortar condition (see Section 2) also.
First, we need to do some auxiliary steps. Let us consider all the nodes of all the subdomains.
For further computation we divide the nodes into several groups - in the local meaning (within
the subdomains) and also in global meaning (in terms of the whole computational domain). We
divide the nodes into active and inactive, into interior and boundary, etc. We mention closely
the global division of the nodes. We introduce a set of global active interior nodes, that contains
interior nodes of all the subdomains, interior nodes of the mortar edges and all the corner nodes,
that don’t lie on the outer boundary. All the nodes lying on the outer boundary are called global
active boundary nodes, etc. The sense of these sets will be clear later.

For each mortar (master) edge we assemble the so-called master matrix and for each



nonmortar (slave) edge the so-called slave matrix, that introduce the right and left hand side
matrix in applying the mortar condition. In the computation of the master matrix we deal with
the test functions on the nonmortar edge described in Section 2. Since the test functions have
zero values at the end points of the nonmortar edges, it’s necessary to have the nonmortar edges
with at least three nodes (including the end nodes).

Each subdomain is first assembled in a usual way as in the case of the finite element
method. The values on the subdomain edges are re-counted according to whether the appropriate
main edge is mortar or nonmortar.

4.4 Solving the Resulting System of Equations

For solving the resulting system of equations, we use the conjugate gradient method with pre-
conditioning, that is implemented in Matlab. This method is highly suitable for solving system
of equations with symmetric positive definite and sparse matrix. The method is convenient for
large matrices because of the iterative character of the method. The preconditioning accelerates
the computation and improves stability.

The system of equations is solved only for the global active interior nodes. After the
computation it’s necessary to compute the solution on the outer boundary, where the fulfilment
of the Dirichlet boundary condition is required, and the solution in the inactive (nonmortar)
nodes, which is computed by the mortar projection.

5 Numerical Results

In this section, we present two practical examples showing both the principle and the possibility
of practical use of the method. The examples are solved by our program for solving linear elliptic
partial differential equations in 2D by the mortar finite element method.

As first example, we consider a Poisson problem on a general computational domain {2
(see Figure 8):

—Au = 30 on €,
u = 0 onTy, (23)

u = 1 onljy.

Figure 8: Computational domain 2 for problem (23).



The partition of the computational domain with the appropriate nonmatching mesh is on
Figure 9 and the solution of the problem (23) is displayed in Figures 10 and 11. This example
serves as an illustration of the principle of the mortar finite element method. There is shown
the commonness of the usage of the method.

2
18
16
14
12
1
PN 08
QAN Vay
O OORBRIRS AN A
N\ R R LR o~
SR RRIIIRRISSEAR] K 0.4
KK ORISR TSRS AR K
A\ BRI SEROR R SESEE
e R ORI KEO3 A 02
KOO KK RIS Ox R
OO RERRRSK SRR
RS T R ARSI
LVAVAVAVAVAVAV AV VaVAVAYS OV o

Figure 9: Partition of 2 for problem (23). Figure 10: Solution of (23).
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Figure 11: Solution of (23).



As the second example, we consider a Laplace problem:

1
—Au=0 onQ=/{(z,y) €R?: Z<x2+y2<1},

. 5T T 97
u(cos p,sinp) = T Y, pE (Z, Z)’ (24)
1 1 . 5m T 97
u(icosgp,ismga) = 4% pEe (Z,Z)

Figures 12(a),(b) show the partition of the computational domain with two versions of
the appropriate mesh. The solution of the problem (24) is displayed in Figures 13(a),(b) and
14(a),(b). The usage of the mortar finite element method enables a choice of a mesh with respect
to the discontinuity of the boundary condition. The subdomain with the jump can be meshed
much finer than the other one.
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Figure 13: Solution of (24) for two versions of the appropriate mesh.
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Figure 14: Solution of (24) for two versions of the appropriate mesh.
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Time-Space FE-PDAS Method for Dynamic
Unilateral Contact Problem in Viscoelasticity
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Pilsen, Czech Republic

Abstract. The paper deals with numerical analysis of a class of multi-
body dynamic unilateral contact problems. The presented problem de-
scribes the seismological model problem, representing a new approach in
this branch and of studying propagation of seismic waves through bro-
ken up upper parts of the Earth. The semi-implicit finite element and
the primal-dual active set strategy methods will be discussed.

Keywords: multibody unilateral dynamic contact problem, time-space
solution of hyperbolic equation, semi-implicit scheme, FEM, seismology.

1 Introduction

This paper deals with a computational efficient method for multibody dynamic
visco-elastic bodies being in contact, describing propagation of seismic waves
through the elastic and/or viscoelastic media. The dynamic contact problems
with given (Tresca) friction involving linearly (thermo-—)elastic and visco-
elastic bodies were analyzed in |Duvaut, Lions (1976), |Hilber et al. (1977),
Jarusek (1996), |Rivera, Racke (1998),  |Nedoma (1998),  [Nedoma (2000),
Nedoma (2001), [Eck et al. (2005), Nedoma, Danék (2007), etc.

Analyses of seismic wave propagation play an important role in geodynamic
investigations. The propagation of elastic as well as seismic waves through the
elastic and the visco-elastic media or the Earth body, characterized by inhomoge-
neous with elastic or visco-elastic parameters are functions of place were studied
theoretically by means of simplified models in several papers and books by use
of different techniquies, like the ray method, the wave method, the method of
propagators, the finite difference and finite element methods, etc. Theoretical
seismograms, constructed on this basis of results obtained by various methods
mentioned above, do not yield a complete answer to the question of the struc-
ture of the Earths crust, mantle as well as core. Their physical structure is so
complicated that the present-day methods cannot give the actual information
about their structure. The present-day methods analyse the interior of the Earth
under the presumption that the Earths interior can be described by continuous
inhomogeneous media. But in the real Earth the crust and the upper mantle are
broken up into a great number of 3D plates and geological blocks which are in

O. Gervasi et al. (Eds.): ICCSA 2008, Part II, LNCS 5073, pp. 707-[Z19} 2008.
© Springer-Verlag Berlin Heidelberg 2008



708 J. Nedoma and J. Danék

common contacts. Such problems are up-to-date unsolved. Therefore, the main
goal of this paper is to give the new methodology and the optimal algorithm
which facilitate to investigate such type of seismological problems. The method-
ology discussed in the paper can be applied also in the other branches like the
building industries, the structural mechanics, etc. These type of problems lead to
study the dynamic multibody contact problem in linear viscoelasticity, where the
damping term and the Coulombian type of friction acting on the contact bound-
aries between lithosperic plates or geological blocks being in common contact
are also assumed.

2 Formulation of the Dynamic Contact Problem

We introduce a viscoelastic bodies of a Kelvin-Voigt type being in a mutual
contact which initially occupy a bounded domains of arbitrary shapes 2* of
R?) such that 2 = U_,2". Let several neighboring bodies, say 2° and 2™,
be in a mutual contact and let I'7™ be the common contact boundary between
them before their deformation. Let the boundary 02 = I'; U I, U I, where
I = Ug o L2, I2™ = 082° N o™, s # m, s,m € {1,...,r} and where I},
Jj = u,T,c are open subsets in 0f2. Let I = (0,,) be a time interval and let
2y = I x 2 denote the time-space domain and I, (t) =1 x Iy, I,(t) =1 x [,
I'.(t) = I x I'. denote the parts of its boundary 92, = I x 912.

We assume that in the region {2 will act the damping « (x) > 0, defined by
such a way that the waves propagated through the areas of a certain thickness
D (in which a(x) > 0) near the boundary I, are completely absorbed (for
more details see Nedoma (1998)). In the body different nonzero densities p are
assumed. The body is subjected to volume forces F and as a result of the effect of
damping « (x) zero displacements are imposed on I, and on I'; zero or nonzero
tractions P are imposed. The point sources of seismic waves can be of different
types and can be simulated by nonzero volume forces (in remaning points of {2
the volume forces are assumed to be zero), see e.g. Nedoma (1998).

Let n denote the outer normal vector of the boundary 02, u, = u;n;, us =
u—upn, T, = TjjN;N;, Tt = T —T,N be the normal and tangential components of
the displacement and stress vectors u = (u;), T = (1), 7, = Ti;n;4, 4,5 = 1,2. On
I'*™ the positive direction of the outer normal vector n is assumed with respect
to £2°. The respective time derivatives are denoted by “’ 7.

The stress strain relation in every 2* will be defined by the Hooke’s law

Tij = Tij (u',u") = ngl)cz( Jer(u’) + ngl)cz( Jew (u”), (1)
i, 5,k l=1,2,1=1,...,r,

where nglzl (x), n =0, 1, are elastic and viscous coefficients and e;;(u) = %(aul +
n=

g L) are components of the small strain tensor. For the tensors c( ,21 (x),n=0,1,

We assume
(")L 00 (O _ (m)e _ (n)e _ (m)e _ (n)
Ciig €L (82) . n=0,1, 5 = Ciig1 = iy = Cijik

(n)e (n)e n)e
Cijki €ij €kl >y eijei; Veij, e;j =ej; and a.e. x € £2,¢y " > 0.

(2)
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A repeated index implies summation from 1 to 2.
The problem to be solved has the following classical formulation:

Problem 1. Let s > 2. Find a vector function u : I x 2 — R2, satisfying

0%ut out Ot} (u',u”)
L ) L2 2 F‘L
P o T o oz, o

j=1,2,1=1,...,r (t,x) € Q=1 x ",

TijNg = P’i7 Z,j = 1,2, (t,X) c FT(t) =1x U::l (FT ﬁ@.Qb), (4)
u;=0,1=1,2, on I,(t) =1 x U _; (I, NON"), (5)

up, = <A T = = <0, (u), - gt = d) T =0,
uP —w =0 = e < F(0) [m,

W £ 0 = = —E () | e O

(t,x) € [.(t) =1 X Ug n I5™,

u(x,0)=ug(x), u (x,0)=u;(x), x€, (7)
where ug, u; are given functions.

The coefficient of friction F5™ = F5™ (x,u’) is globally bounded, non-negative
and satisfies the Carathéodory property and has a compact support SF., which
depends on the space variable x and since we model also the difference between
the coefficients of friction and of stick as well as slip, it depends also on the
tangential displacement rate component u}. Let us denote by “I'5™ C I'*™ the
actual contact set, i.e. for which u —u* = d*™ on *I7™ and uj, —u,* < d*™ on
erem = ™\ °I'*™. For the continuous displacement u the actual contact zone
o™ is well-defined and closed subset of Uy ,,, “I°7™.

In the next, the Hilbert and the Sobolev spaces will be used as usual, see e.g.
(see|Adams (1975)).

The dynamic contact problem with Coulombian friction where the Signorini
conditions are formulated in displacements is up-to-date unsolved. In the next,
for the numerical solution of the problem discussed, we will assume that the
Coulombian friction in every time level depends on its value g™ from the pre-
vious time levels, where ¢ is non-negative function and has a meaning of a
given friction limit and —g¢2™ represents a given frictional force.

The contact problem (B)-() has a weak formulation in terms of a variational
inequality. Let us introduce the set of virtual displacements and the set of ad-
missible displacements by

V={v|veL*Lm_H“ (02"),v=0o0n I(t),
v — v =d™ ae. on I XU, [S™},

K={v|veL*;n_HY"(2")),v=0o0nTI,(t),
v — o <d*™ ae. on I XU, I5™}.

Then we have the following problem:
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Problem 2. A weak solution of [@)-(T) is a function u € B(I; HY2(£2)) with
u(t,.) € Kforae.t € I,u € L?(I; HY2(02))NL>®(I; L*2(2)), ' (t,,.) € L*2(2)
such that for all v.e H?(£2(t)) with v(¢,.) € K a.e. in I the follovvlng inequality
holds

JAW" (@) v —u(®) + (a0 (1), v —u()
t)

) (u(t),v—u(t)+
+aq® (W), v—u(t)+j(v)— ]( ))}

f[(f v—u())dt, (8)
(x), u ( 0) =uy (x)

where we assume that the initial data wug, u; satisfy the static con-
tact multibody linear elastic problem (see Nedoma (1983), [Nedoma (1987),
Hlavédcek, Nedoma (2002)) and where

(0, v) =3, (0", v") = [, pujfv; dx,
(au',v) =377 (atu,v') = [, aujv; dx,
al™ (u,v) = 37y a (ut, vt) = [, e (W) es; (v) dx,
(fv)=>_ (?L VL> = [, Fividx + fp Pv; ds,
j(V):ZL 1] fu Fsmgsm|vt*"t | ds = (g §m|VtS*V;n|>FC»

()
dt >
= Uy

7

where the bilinear forms a(™ (u,v), n = 0,1, are symmetric in u, v and satisfy
a™ (u,u) > cén) Hu||f2, cé") = const. > 0, |a™ (u,v)| < !

cgn) =const. >0, u,veV.

To prove the existence of the solution the decomposionv —u=v —u+u'—u’ =
w —u’ can be used. Then the proof is similar of that of [Eck et al. (2005),
Chap. 4. For the proof the technique of penalization and regularization will
be used.

3 Numerical Solution and the Algorithm

Let {2 be approximated by a polygon (2, with the boundary 8Qh =1 pUlypU
I'th. Let I =(0,t,), t, > 0, let m > 0 be an integer, then At = t,/m, t; = iAt,
i=0,...,m. Let {Th’gh} be a regular family of finite element partitions 7, of
2, compatible to the boundary subsets T4, I and I'en. Let Vi, C V be the
finite element space of linear elements corresponding to the partition 7. Then
K, = V3 N K is the set of continuous piecewise linear functions that vanish at
the nodes of I, and whose normal components are non-positive at the nodes on
Us,m I It is evident that K}, is a nonempty, closed, convex subset of V}, C V.
Let ugp, € Kp, uip, € Kj, be an approx1mat10n of ug or u;. Further, we assume
that the end points T UTLun, Tun U, Trn UT . coincide with the vertices
of Th;. Moreover, we will assume that the frictional term is approximated by its
value in the previous time levels, so that the frictional term is approximated by
a given friction limit. Then in every time level we have the following discrete
problem:
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Problem 3. Find a displacement field u : I — V3, with uy, (0) = ugp, u}, (0) =
uyp, such that for a.e. t € I, uy, (t) € Kp

al ( (t),v,—up (1)) +
> (F(t), vi—un () 9)

Vv, € Kp,ae. te€l,

(uh (8), vi —up (1) + (@), (8) , v —up (1) +
+alD (w), (1), vy~ (1) + (Vh) —J (Uh (1))

where

(wiis va) = 3oi—y (Wy',vi) = [q pujvni dx,

(o), vi) = 32, (e'w, vi) = [ auj vpi dx,

a™ (up,vp) =31 a™ (uy,v) = [, Cgﬁlem (up) €ij (vi) dx, n=0,1,
(F,vi) =X 1(fL ij anvhzdx—i—fF Pyuy,; ds,

j(Vh):ZL 1] fu mpsmgsm|vt*"t | ds = (g™, |vi — vi" |>

where we also assume that the frictional term is approximated by the given
friction functional in the previous time levels.

To prove the existence of discrete solution uy the technique similar of that as in
the continuous case based on the decomposition vy, —uy, = vj, —uy +uj, —uj, =
wj, — u},, the penalty and regularization technique (Eck et al. (2005))) is used. In
the next the test function v will correspond with v+ u’ — u in ) and v, with
vy +u), —uy, in ([@) after used decomposition.

3.1 Algorithm

For the algorithm the semi-implicit scheme in time and the finite elements in
space will be used. Let m > 0 be integer, then At = t,/m, t; = iAt, i =
0,1,...,m. Then, the derivatives are approximated by the differences, i.e. uj, =
A Y N L

YN , = ~—, and after some algebra, in every time level
t = t;41 we have to solve the following problem:

(uh,vh — uh) + At (auh,vh — uh) +
+At2a(0) (uh, Vi — uh) + Ata® (uh, Vp — uh) +
FOR [ G (Vh — Vi~ uh, —up) ds > (10)
> (fp, v —up), t=tiy1 €1,

uy, (0) = ugp, uj, (0) = uyy,

) i+1

where we set ui, = uy, (t;), Auj, = w, (4) —up (Lio1), up = uy,

sm — s mi s AN
g = g () = Fom (A (g — Aup)) [rim (uh, S5)], (F(tig).vi) =
A (F1(tiv1), via)+(2ul —ul- ,vh)+At(o¢u§l,vh)+Atah (u,vi), F(tis1) = f.
Let us put
A (uh,vh) = (uh,vh) + At (auh,vh) + AtQa(O) (uh,vh) + Ata(l) (uh,vh) R
J(va) = At? fusmFgm Ger' [Vin — Vinl ds,

where g is the approximate given frictional limit.
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Since we assumed that p > pp > 0, a > a9 > 0 and since bilinear forms
afln) (up,vp), n = 0,1, are symmetric in u, and vy, and satisfy a(™ (uy,,uy)

e llnlly 5. 6 = const. > 0, |a®™ (upvi)| < e [lunlly 5 [Valy o i
const. > 0, n = 0,1, up, vy, € Vj, then the bilinear form A (up,vy) is also

symmetric in up and vy and

Y

A(uap,vi) > ao ||uh|\i2, aén) = const. > 0,
|A (up, vi)| < a1 ||up] 12 th||1,2, a; = const. >0, up, vy € Vi,

hold.
Then we have to solve in every time level the equivalent problem:

Problem 4. Find uy € Kj, a.e. t =t;41 € I, such that
A (uh,vh — uh)+j (Vh)*j (uh) > (fh,Vh — uh), Vvy, € Kh, t=1;41 € I, (11)

Then Problem Ml is equivalent with the following problem:
Problem 5. Find uy € Kj,, a.e. t = t;11 € I, such that

E(uh) < [:(Vh), Vv, € Kp, t =ty €1, (12)

where the Lagrangian £ is defined as £ (vy) = Lo (vp) + 5 (va), Lo (vy) =
%A (Vh,Vh) — (fh,Vh).

The Mortar Approach - The Non-matching Case. For every polygonal
domain 2%, v = 1,...,r, we introduce triangulations 7 . in such a way that
on the contact boundaries I';™ the points of I'Y and I')"" are not identical, and
therefore, the meshsizes hg # hyy,.

To give a saddle point formulation, we introduce a Lagrange multiplier space
M. We introduce the trace space W = H: (Us,mI2™), being the trace space of
Vs restricted to Uy, I3, and its dual W’ = H~2 (U, I5™). We introduce the
Lagrange multiplier space M = M,, x M;, where

M, = {Nn € WI; P = 0}7
M; = {,ut € L% (Usm I2™) |||l €1 ace., pe =0 on Us,y, TE™\ supp gﬁm}.

C

We define the bilinear form

b(0,9) = (s bvonl® = @+ [ gt bl ds,
UsTs
where [v.n]® = 03 (x)—0™ (R*™ (x)), [v¢]” = v§ (x)— v/ (R*™ (x)), where R*™ :
I's(t)— I (t), at t € I, is a bijective map satisfying I (t) C R*™ (I'? (t)),t €
I and where (.,.) . denotes the duality pairing between W and M = M,, x M.

We introduce the discrete approximation of the Lagrange multiplier space
Mpg = Mp,, X Mg, where

Wi (1) = Wi (1) x Were (1) = {pla, € [Po (A))7,0 <7 < n(h*)}
Mpn, = {tthn € Whn (I'5), tthn >0 a.e. on every IS},
My ={pae €W (I7), fpcs HHYH dS—fpcs g |u| ds<0,Ypy € Wy (I)},
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where I = Ub_ TP, T3P = Up Ly, Ay = (qry G + hyp), 7 = 0,1, ,m (hy) — 1,
where hy, is a step of mesh in the p — th segment of I}.

The problem then leads to the following problem:
In every time level find (Apg,up) € Mpy x V;, satisfying

A (uh,vh) + b()\hH,Vh) = (fh,Vh) vy, €V, = rlleth,

1
b(nm — A, Vi) < (A, pthn — Ann) s (13)

The existence and uniqueness of (Apm,u,) of this saddle-point problem has
been stated e.g. in [Haslinger et al. (1996), and the discrete Babuska-Brezzi “inf-
sup” condition must be satisfied. Thus

Proposition 1. Let —7, (u) € Mp,. Then the problem (I3) has a unique solu-
tion (Apm,up) € Mpg X Vi, a.e. t € I. Moreover, we have

hm = —Tn (Un) and gZXj, = =77 (un),
where uy, is the solution of the discrete primal problem and g3 = §3;"*.

The above problem is equivalent to that of the Lagrangian formulation:
Find in every time level a pair (Apg,up) € (Mpn X Mpyt) X Vi, such that

H(pnmsun) < HApmsu) <H(Aww, vi) (14)
YV (g, vn) € (Mpp X M) X Vi, t €,
where H (py,17,v1) = 54 (Vi, Vi) + b (451, vi) — (B, v5,).-

Matrix Formulation and the Primal-Dual Active Set Strategy Method
(PDAS) for the Frictionless Case. Since in the frictionless case the tangen-
tial stress component on the contact boundary UI';™ is zero, then gy = 0, and
therefore, Mpy = Mp,. Wolhmuth and Krause (2003) show that the standard
basis of the space V}, (£2*,7},.0.) is not a good choice for these type of problems
and they introduced the space with a weak condition on UI'’™

Vi ={verm_ V(2" Th.o) | Ve thds =0, 1<i<21¢e M},

ursm
where e; denotes the i-th unit vector. The definition of V}, yields

/ [v.n,)® ¢, ds < d)
urs

for all vertices on the slide (non-mortar) side. Then the strong form of the non-
penetration condition [u.n]® < d*™ will be replaced by its weak discrete form

/ [un]’® ¢, ds < / dypds, peS, (15)
urs urs



714 J. Nedoma and J. Danék

where S is the set of all vertices in the potential contact part on the slave side.
The constraints ([IH) give a coupling between the vertices on the slave side and
the master side. We introduce now a basis transformation of the basis of V}, in
such a way that the weak non-penetration condition (IH]) in the new basis (the
so-called dual basis) only deals with the vertices on the slave side. Thus the non-
penetration condition is satisfied for all elements in Vh, and Vj, is a subspace of
K.

The Lagrange multipliers Ap, are the approximations of the contact forces
—7 (up) .n = — (njnE7jr (up)) which are necessary to adjust the contact dis-
placements on the contact boundary UI7™.

Let the space Vi, = span{yp, p = 1,...,nv}, ny denotes the number of
degrees of freedom of the space Vj, and My, = span{1y,q =1,...,n¢n}, where
1) denotes the basis function associated with the vertex p and n, denotes the
number of degrees of freedom of the space M}, in each component. ¢, and v,
are the scalar basis functions associated with the node p resp. the node ¢, and
satisfying the biorthogonality relation

/ Pptqg ds = bpq / ©p ds, (16)
urs ur:

with the Kronecker symbol 0,4, where

1 where the structure node p coincides with potential node g,

bpg = <0 otherwise.

The discrete mortar formulation of the saddle point problem (3]
for every time level is defined as follows:

Problem 6. In every time level find u;, € Vi, Apn € Mpy,, ae. t € I, satisfying

A (U_h,Vh) + b()\hn,vh) = (fh,Vh) vp €V, tel,

b (tthn — Aan, Vi) < (d°™, (Bhn — Abn)) Vithn € Mpn, t €1, (17)

urgm
where

>0 Yoy, € {'Uh S Wh|vh.ns > 0}},

sm —
urg

Mhn = {Mhn S Mn| <Mhn7vh>
where W), is the discrete approximation of W

and
Ay, vy,) = (pup,v,) + At (aup, vy,) + At2a? (aup, v,) + Ata™ (auy, vy,),

b(knn, va) = / finn [Vien]® ds = (pnn, [vien]®) YV € Vi, g € M.
ursm ¢

The condition (I’fh) is equivalent with the following conditions

b()\hnvuh) = <dsm7>\hn>upsm7 (18)
b (Mhn»uh) S <dsmvﬂhn> V/Lhn S Mhn-

sm
urg
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Since the space My, is the convex cone, then putting up, = 0 and
Phn = 2Xnn in (IZD), we have b (Apn,un) > (d°™, Apn)pem and b(Apn,up) <
(d*™, Aun) psm » therefore (I8h) follows immediately. Fromc(IIZY)) using ([I8k) the
condition (IIEC?”)) follows and it represents the weak nonpenetration condition.

Let us denote the nodal parameters uy by U, of Ay, by Apy, and since for the
frictionless case the tangential stress component on the contact boundary UI';™
is zero, then Agy = 0, and thus Ag; = 0.

The Eq. (ITk) for every t € I in the matrix form is of the form

AU+ Bpp = Fy,. (19)

To examine the structure of Bj,, we introduce three sets of indices N, M, S.
We decompose the set of all vertices in every time level into three disjoint parts
N, M and S, where by S (dim ny ) we denote all vertices on the possible contact
part on the slave side, by M (dim n.,) all vertices of the possible contact part
of the master side, and by N all the other one. Then the strong formulation of
the non-penetration condition (i.e. [u.n]*™ < d*™ on UI'S™) will be replaced by
its weak discrete form

/ [U.n]" ¢, ds < / d"ppds, peS. (20)
ursm ursm

This condition connects points of sets S and M. We introduce a basis in a
new transformation of the basis of the space V}, in such a way that the weak
non-penetration condition (20)) in the new basis only deals with the vertices on
the slave side (see [Hiieber, Wolhmuth (2005), Wolhmuth, Krause (2003))).

Let us introduce the transformation ¢ = (par, O, gps)T. The matrices and
vectors in ([[9) can be decomposed in the sense of decomposition of the set of all
vertices into three disjoint parts N, M and S, i.e.

U
Avn Avm Axys O IUJ,:; Fu
Amn Ay Aps —MT Us | = Fam |, (21)
Asy Asm Ass D N Fs
S
where elements of By, are defined by Bp[p,q] = [ om @pthgdsla =
Opq quS wpds, p =1,...,nv, ¢ = 1,...,nc,, and where I denotes the iden-

tity matrix in R?*2. The biorthogonality of the basis functions satisfies (I6]).
Further, the matrix M represents the coupling matrix the trace of the finite
element shape functions on the master side “m” and the shape functions for the

[1PS2)

Lagrange multiplier on the slave side “s”, defined by
Mipa = [ opbydsls, peSgem (22)
ursm

The matrix M is the block matrix and ID is the block diagonal matrix with

D[Paq]Z(Squ[g./ ppds, p=gq€S. (23)
ULsm

Ie
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The structure of the matrix By, in every time level, using an approximate node
numbering, is thus of the form B, = ((O), fMT,D)T. The block matrices associ-
ated with the basis functions of the free structure nodes (i.e. N), the potential
contact nodes of the master side (i.e. M) and the potential contact nodes on the
slide side (i.e. S) are denoted by Ay, k,l € {N, M,S}. The entries of vectors
U and F for k € {N, M, S} are denoted by Uy, and Fy, respectively.

We introduce a new modified basis & = (@N,QM,QS)T instead of the basis
© = (oNs oM, gos)T and the matrix M = D~'M. Then

HQ @ (O) BN
D= (Dn,Pp,05)" = |0 I, M| |om| = Qe (24)
O 0 I, vs

Hence R
U=Q"U,
where U is the vector of coefficients with respect to the transformed basis &.

The modified stiffness matrix A, associated with the transformed basis @ is
of the form

[ O O7[Ayy Agu Ay ][l O O

> s
Ap=10 T M [Auy Agn Aus 0 HA2 0 :QAhQT:
0O 0 I | |As An A ||O0 M I

A/\f/\/ - A/\//\/l +ANSM - - N A/\fS N
= AM/\/ + MTASN A./\/1/\/1 + AM/‘\SM + MTASM + MTASSM AMS +MTASS
AS.l\/ AS./Vl +ASSM AS‘S

and the modified vector of the right hand side F,, is the following

Fpr
Fp=QF, = |Fao + MTFs
Fs

The algebraic representation of the weak non-penetration condition associated
with the transformed basis @ is the following:

[Un]s = Zpes I[/jp [qun]s + quM I[qu [éqn]s =

~ ~ ~

= (Zpes Up@p)-nz + quM Uq(—pq + Zp/es M[p’, q] Sﬁp’)-n2~

By multiplying this equation with v, p € S and integrating the resulting equa-
tion over UsI'?, we have due to the biorthogonality condition (I6]) and the defi-
nition of the matrix M and (24])

Y S T Y S
Unp=(n3) Dip,p] U, <dj Vp e S, (25)

where d;" = fusl‘g di™pds, p € S, as the coefficients at [[AJq,q € M, are
nullified. This basis transformation glues the vertices of the slave (non-master)
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side and on the master side together. The displacements of the glued vertices are
given by Uprq and the relative displacements between the vertices on the slave
side and on the master side are given by Us.

The modified matrix By, associated with the transformed basis ¢ has the form

R b O O 0
B,=QB,= |0 I, M! |[-MT| =(0,0,D)".
0O 0 I D

Then, in every time level, we will solve the following problem
&h[[AJ + @hAhH = fF\h,
I[,j’n,p < d;m’ Ahn,p > Oa (ﬁjn,p - d;m)Ahn,p = 07 Vp € Sa (26)
Apep =0, VpeS§,

where in (28] the second line represents the Karush-Kuhn-Tucker conditions of
a constrained optimization problem for inequality constraints,

Apnp = 03D [p,p] Apy (9), Ann (p) € R?,
Anrp = Apn (p) — (Apn (p) m5) 05 = (Apn (p) £5) 5.

We decompose the set S as § = A UZ, where A is the active set and 7
is the inactive set. Then the above problem in every time level leads to the
primal-dual active set algorithm, which is of the form:

Algorithm PDAS:

STEP 1. Initiate the sets A; (active set) and Z; (inactive set), such that
S = A1 UZ; and A;NZ; = B, put the initial value (T[AJO, A%n), c € (103, 104)
and set k = 1.

STEP 2. If (U*~!, A*~1) is known, find the primal-dual pair (U, A}, ) such
that A R

AhUk + Bh/l;cm =y,
Uk, =dsm  forallp e Ay,

A,lfmyp =0 forallpe€Zy,

Alfqt7p =0 forallpes.
STEP 3. Set .Ak+1 and Ik-+1 to

Aps1 ={peS: A}, +cr(UE  —d5m) >0},

Tir1:={peS: A}, , +er (U —dsm) <0}

STEP 4. If Ay11 = A, and Ty 1 = Iy, then STOP else k = k+1; goto STEP 2,

where the active (Ay) and inactive (Zj) sets are associated with the trans-
formed basis ®.

(27)

Remark 1. The system (27) can be rewritten if we decompose the set of vertices
S on the slave side in each step k of the PDAS algorithm into the disjoint active
and inactive sets S = A, UZ;.
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4 Conclusion

With the development of computers, methods of numerical analysis of solv-
ing partial differential equations were evolved and were applied to the solution
of the propagation of seismic waves in the stratified homogeneous and non-
homegeneous media in the time domain. Such models allow the simulation of
propagations of seismic waves inside the Earth closed to the real rheology of
the investigated upper parts of the Earth. All these methods were evolved for
the continuous Earths crust and the mantle. Since the upper parts of the Earth
are broken up into a great number of plates and blocks the up-to-date evolved
methods cannot be used and we are forced urgently to investigate new meth-
ods and new algorithms permit to simulate and study propagation of seismic
ans elastic waves through the broken up media. The different problem is to ap-
proximate optimally the contact conditions between geological blocks being in
common contact. In our paper the primal-dual active set strategy technique for
the 2D seismological model is used. The real Earths body is connected from a
great number of 3D bodies being in common contact, and therefore, the meth-
ods as well as algorithms must be extended and investigated also in the three
dimensions, and moreover, for very complicated contact boundaries between ge-
ological blocks, as well as for complicated cracks problems which accompanied
the propagation seismic waves through elastic media. It is evident that these
problems are enormous difficult and will be problems for very long future time
period.
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