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Ω1, Ω2, . . . , Ωs ⊂ R

2 3 ^V#%+�32/( �#$&�g<5_:C3���576  �-.���;#%/<* ∂Ω1 N ∂Ω2 N�Q<Q�Q<N ∂Ωs
Q

o���/( ;Æ�02�µ �-.���;#%/<� ⋃s

ι=1 ∂Ωι
-�57g���><�$�<�������m��#%3¬026����B&.�;*V)R��3P&.#

Γu, Γτ , Γc, Γo,

s
⋃
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τ , Γo =

s
⋃

ι=1

Γι
o, Γc =
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H1(Ω) = {v|v = (v1,v2, . . . ,vs) ∈ [H1(Ω1)]2 × [H1(Ω2)]2 × · · · × [H1(Ωs)]2},
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H1(Ωι) = {wι ∈ L2(Ω
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∈ L2(Ω
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(

wι2 +
2

∑

j=1

(
∂wι

∂xj

)2
)

dx.
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‖vι‖2[H1(Ωι)]2 =

s
∑

ι=1

2
∑

i=1

‖vι
i‖

2
1.
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|v|2 =

s
∑

ι=1

∫

Ωι

eij(v
ι)eij(v

ι) dx,
HP]7Q']��Bc

Fi��57�<#$��6�:C#$-2&.6����%��*$/( Ç+f5�3�6���6;&�*

V0 ≡ {v ∈ H
1(Ω)| v = 0

���
Γu, vn = 0

���
Γo}, V = u0 + V0

HP]7Q']7]lc
��FG�;57�<#$�C6�+��2*%+�6;32&.�@?@/( U+f5�3�6���6;&�*

K ≡ {v ∈ V| vk
n − vl

n ≤ 0
���

Γkl
c },

HP]�Q$]lM�c
"�#$�%#%�;�R��-2��*8¨©5�-�F96

a(u,v) =

s
∑

ι=1

aι(uι,vι) =

s
∑

ι=1

∫

Ωι

cijkmeij(u
ι)ekm(vι) dx

HP]7Q']_SBc

�9¨©6�����/<#%5������
L(v) =

s
∑

ι=1

Lι(vι) =

s
∑

ι=1

∫

Ωι

F ι
i v

ι
i dx +

∫

Γι
τ

P ι
i v

ι
i ds

HP]7Q']=`�c

+�-25i5�"C02�<Fi5_:7p13�*%�'[
F

ι ∈ [L2(Ω
ι)]2

�m+85_:C-�/( �5_:7pkgR��&�*%���<��*
P

ι ∈ [L2(Γ
ι
τ )]

2 Q��-�5 5@�@:757g��<��*�:���-2#���)���*k¨©5�-�F96��%��/<�¦��57�B&.���B&.��*$ �5 +�-�57";�%p<F�6º3��¡gR�������;?CF &�������*%F
gR�R:��<����FG��¨©6�����/<#%5������

j(v) =
∑

k,l

∫

Γkl
c

gkl |vk
t − vl

t| ds.
HP]7Q'].,7c

� +������	��
 + ��
��  � �<������FG��N8��� u ∈ K
02�132����"8p�����\��<�;*¥»;�%57 B[°HJ]7Q$]_c -	HJ]7Qda7ceN;&©0�Q���57�B&.���B&2�

��*$ �5m+�-�57";�%p<F�6Ç"f��g1&����<�;*nNj02��32&.�$#%���

a(u,v − u) ≥ L(v − u) ∀v ∈ K.
HP]7Q']�	Bc

� +������	��
 + ��
��  � �<�����<Fi��NV��� u ∈ K
02�m3��%��"8p����<\2�<��*,»��$57 B[AHP]�Q$]lcj-	HP]�Q K7c��§HJ]7Qd`7ceN	&©0�Q

��5���&.���B&.��*$ �5i+�-�57";�%p<F�6Z32��gR�������;?CF®&.�2�<��*$FUNj02��32&��%#%���

a(u,v − u) + j(v)− j(u) ≥ L(v − u) ∀v ∈ K.
HJ]7Q']lK7c

'�� )���������� ��
 1  WY�R:7�<�;�<Fi��¨©6;����/�#%57�����V+f5�&��<��/�#����$��*	�����<-2�7#%�

L0(v) =
1

2
a(v,v)− L(v) ∀v ∈ K

HP]7Q']_aBc
+�-25i+;��*%+�����3Â��6��$5_:C?CF &����<�;*%F �

Lj(v) =
1

2
a(v,v) + j(v)− L(v) ∀v ∈ K

HP]7Q']_`Bc
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+�-25§+��2*%+����A3��ZgR�������;?CFÈ&.�2�<��*$FUQ��Â�%57 ��½HJ]7Q$]=	BcÂ02�U����:C#':����%�<�B&���*�»��%57g���FG#$��#%FG���%#$gR��/��
/<���%��5l:�pk+85�&��<��/�#����$��*	�����<-2�7#%��N�&³0�Q�»��$57g<�����_02*$&

u = arg min
v∈K

L0(v).
HP]�Q M*�7c

���$57 ���HJ]7Q$]_K7cB02�,�<�B:C#$:����$�<�B&.��*�»��%57g���FG#$��#%FG���$#%gR��/<�O/<���%��5_:�p­+85�&��<��/�#����$��*������<-2�7#%��N<&³0�QR»;�%57g��
���l02*'&

u = arg min
v∈K

Lj(v).
HP]�Q M@]_c

'�� )�������������
��  �D32576�"857-�6�+�-���/<*_023�576�5�"�3.�����<�B[9�@:���)������;��[�N�:�����&��<-P?@/( �02�E+8576���#$&.�57"8�</���>J02\2*h¨©57-�F�6�����/�����57�B&(���B&.�;*% �5Ä+�-257"��$p<F96YQ¥��)<�%������6y� 	7a
? � 02�4��5���&.���B&.��*h+�-�57";�%p<F¨©57-2F96��%5_:�����0�����5��B:���g<# �=32��-�6����<���GH���6���3�#'�±/<576;+��%����c�»��%57 ��µ:m�$#%���<��-��;*@&.��-�Fi5��=+;-�6�����5732&�#��

:4)������;�C6�� ]��;]
? � 02�µ6;:����<5_:����Ç�;[C����Fi#%/(�B?���57�B&(����&���*V+�-257"��%p�F�+;-�59:C#%32��57+�-26��<����&�><�$�<3.�@Q

��-�5�02�<�;��5@�;6�/( �573P&1������g<57-2��573P&�3��9:7�9:�?C�������;6¦57Fi�<g�*%Fi�����4�2�<\2�<��*�+�-257"��$p<F96AHJ]7Q$]_K7ceN
&³0�Q;32&(�j&.#%/(��p< �5G��57�B&.���B&.��*$ �5G+;-�57"��$p<F96Ç+;-�6����;?C/( �&.>��%�<3�:

R
2 3��1gR�������;?CF®&.�2�<��*$FUQ

����� ��� �!�
	 / �� 0/ ��� /�
 � '�� � ������'#�
	
����-.�l025_:7pr»��$57 B[½�$g<�Ä-257g<��>��%#'&4���¡�;:��X ��%�_:C��*�&=[@+B[�Q��,-25�02�J02#%/( g<�R:7�<�;�<��*����e¼���6j02�<Fi�
+�-25732&�57-�+f5�3�6���6;&�*T��5�&�5@)��<��*Y&�6� ;?C/( U&�><�$�<3

R = {v ∈ H1(Ω) | |v| = 0},
HJ]7QdM7M7c

�����13��<Fi#%�;57-�FG�
|v|

02�µ���e¼���5_:������m:@ge&(�� ;�<F HJ]7Q$]=�BceQ
£�3�576C�=�%#­gR��������pG)R��3P&.#h ;-.����#$/

Γι
u

�
Γι

o

&.����5_:�p�N����
R ∩ V = {0}

NT�2�<������FG�4���102���
54qBs_�ez.�e�¬�_t�x8&=[C+Z»��%57 B[�Q��T57��6��

R ∩ V 6= {0}
Nj02����5Ç«_�e~��FEnqBs_�ez.�e�¬�_t�x�&=[@+Z»��$57 B[7Q

� ��5C�<-2/<#':@�;*Y&=[@+Z3��E02�<�;��������+���Q��C�@[@�

meas1Γ
ι
u > 0 ∀ι = 1, . . . , s,

HJ]7QdM�SBc
&³0�QB�j�������k5�"�����3P&Y02�Â+8��:C��>�6�/( B[C/<�<���;Q�´����%\�*�02������5C��6�/( ;?i+��2*%+����G��5@��-�/<#':C��*�»��%57 B[�NC����+��<Q
+�-254M957"��%��32&�#,H

s = 2
cLN�02��+f57��6��

Γ1
o

�
Γ2

o

FG�l02*Y���%������576r]��±-�57g�FG>�-���5�6ZFi*%-26���57"f>��$�<�<*
�����;:�576U:CgR�_02�<Fi��>���57�$Fi?C/( Z+���*$FG�j��/( YQ
1Â:�����6j02FG���B[C��*V��5C�<-2/<#':@�;*¥»;�%57 �6�3��C6;�%5_:�?@F�&.������*%FZQ

� +�� � � ��
��  oÂ�</( ;Æ R ∩ V = {0}
Q·�¥5�&.5�F +��%��&.*c��5�-���5_:��!���<-25_:@�;5732&<N·&³0�Q¥�H�@#%3P&.6j02�

�������;������57��3P&(���B&.�
α0

&.����5_:��;N����

|v|2 ≥ α0‖v‖
2 ∀v ∈ V.

HP]�Q Ma`Bc

"  Bq�v_ª  :C#%gµ����+��<Q<� 	+� � �;�<"85h� `7S � Q
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����� (*+�� + � ��
��  o���/( ;Æ R∩ V = {0}
Q��T5�&.57F +;����&�*

a(v,v)| ≥ c0α0‖v‖
2 ∀v ∈ V.

HP]�Q M+,�c
"  Bq�v_ª  o��!g<����������>G:@�%��32&���573P&.*h������3P&.#$/(��?C/( ¤��5C��¼�/<#%���B&.�¡¨©57-�F�6��%5_:����;?C/( X:X5C��3P&(�R:7/�#
]7Q']1�UHJ]7Q']_SBch+��%��&.*Y+;-�5�:C\��</( ;���

v ∈ V

a(v,v) =
s

∑

ι=1

aι(vι,vι) ≥ c0

s
∑

ι=1

∫

Ωι

cijkmeij(v
ι)ekm(vι) dx = c0|v|

2.
HP]7QdM*	Bc

�O:@-2g<����*;02�1+85�&�57F®���;3��%��������F HP]7QdMa`�cLQ
���
	�� ��
��  o���/( ;Æ R ∩ V = {0}

Q¥�T5�&�57F ���@#%32&�6j02�4+�-��R:7>102������5Ä3��%��"8pG�2�<\�����*E»��$57 B[
HP]�Q$]lcj-	HP]�QdaBcLQ
"  Bq�v_ª  ���$57 ��9���_02*$&�3��%��"8pµ���<\2�<��*O»��$57 B[°HP]�Q$]lcj-	HP]�QdaBcY02�1���B:@#':����%����&���*Y»��$57g<��Fi#%��#$F����%#'�gR��/<��/<���%��5_:�p�+85�&.����/<#%���%��*f�<����-��7#$�iH©:C#%g�+857g<����FG�j�4]7QdM7cLN;&³0�Q

u = arg min
v∈K

L0(v).

´�*$��[Z���;3��%������6X]7Q']�02��¨©6�����/<#%5������
L0(.)

��5C�<-2/<#$:C��*T�m-2[Cg<�9��57�B:7���;�;*·:7�
V
Q8��-�5�&�57�<�

L002�1��:����;-.��&�#%/(�B?Z�iFi��57��#%���
K
��57�B:7�H�@��*wNf6;gR�R:C���<���G:7�

V
N����;#$32&�6j02��02����#%�;p1�2�<\2�<��*¥»��%5� �[

HP]�Q M*�7ceQ
�T5C��*$:��J02Fi�X3��¡���½����\�#$&��<�$��5732&Ä�r02�<���;57g<����)<��573P&r����\��<�;*93���FG# �=��5C�<-2/<#':@�;*k»��$57 B[ 32�

gR�������;?CF®&����<�;*%FZQ ��g<����)�FG�
RV = R∩ V0

�
Ro = {v ∈ RV | v

k
n − vl

n = 0
���
∪k,l Γkl

c }.

���
	�� ��
 1 �dM@]
?
N;&� ��<57-2�<F MCQ$] �  o��</( @Æ Ro = {0}

N
R ∩K 6= {0}

�
L(v) < j(v) ∀v ∈ R ∩K − {0}.

�T5�&.57F ���@#%32&�6j02��3��%��"fpµ�2�<\2�<��*O»��$57 B[rHP]�Q$]lcj-	HP]�Q K7cE�ZHJ]7Qd`7ceQ������j&.*'�±�%#
|L(v)| > j(v) ∀v ∈ RV − {0},02������\��<�;*�02����#%�;p�Q������j&.*'�±�%#
|L(v)| ≤ j(v) ∀v ∈ RV,+85�&.57F�+�-�5i�j���<�;p1�@:7>1���<\2�<��*
u
N
u
∗
+��%��&.*

u
∗ − u ∈ RV

�
L(u∗ − u) = j(u∗)− j(u).

"  Bq�v_ª  :@#$g�����+���Q9�
	+,@N�&. ���57-���F `�Q'] � Q
'�� )���������� ��
��  o���3��$�<��6l02*%/<*¥+85@��Fi*%�;����02�9��6;&.�;576Ä+f5C��Fi*%����576!���;#$32&��<��/���3�����"fp� �5����\�����*O»��%57 B[ÄHP]7Q']lc -fHP]7QdK7cE�ZHP]7Q `BcµH©�����j��gµ:C#%gµ����+;�<Q<� 	N,CN��$�<FiF��I`;Q
` � ceQ

L(v) ≤ j(v) ∀v ∈ R ∩K.
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'�� )���������� 1 
��  ��3�#E���=0¬02�<���;5@��6;\�\�*$F¢+��2*%3P&.6�+8�<F �¦:�[C6��<#'&.*E+���-.���$�<�$��*%/( ¦+f5C)<*'&(��)��
Hw�R:C\.���¦���i&(���r�e¨©�<�B&.#':@�;*%F�0�����5!�����$�Gg�FG#$Å�5_:������UFi��&�5@����-�5�g<�������;6X57"��%��32&�#¬c,02��/��<3P&(�
Fi5@��#'¼��j��/<���H�@#%3P&.6j02*$/( U32�<�B:7����)<��*$/( !���C���Z+f5�6��<#'&.*%F�Fi5@�����%6 vrq�f " �hbC#%���7�$�µ��-�57��-.��F
&U6��'&.#$+��%�k´���&.�;Q	��&�57F�&.5�FG5C���<�$6!3���-��<�%��&.#':C��>Â02�<�;��5@�;6�/( ��Ç)<#$����573P&µ+�-�5_:�����*T�����r57"@�
02�<Fi5_:7>¡-257g<Fi><-2�;?CFG#1����&=[�Q�W	+�-.��/<5_:��_:������DFG��5��<#%���¾����&¤H©&=[C+�#%/(�B[  �57Fi57�7�<�;��*�+857�%�
+�-P:@����cÇ3��Ä:D&�57F�&�5A+;��*%+�����>Ä-�5�g<��>��%*µ���

m
)<��32&�*nQE��[�&�:�57��*µ32�

k
+�-25@/��<32��H

k ≤ m
c

+�-���/<6j02*$/<*$/( X+f5C���$��32&��J02��p� �5r+�-�5��7-.��F�6 Hnb@#$���7�$����-�5��7-.��F�ck�U�����<�;?§g�&.>�/( �&�5r+�-�5C/<��3��
3.��FG573P&(��&���>rg<+�-���/<6l02�402������6 ����"f5A��>���57�$#%�½3P&.-26��B&.6�-2��>§+85@�;57"��;?C/( Hw���$�Ä �5@�;��5�&(��FG#
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+85@)�*$&(�j&O02������*%F�+�-25@/��<32�<FZQb�¥�<�B&.5�g�+���3�5�"Z+���-.���$�<�$#%gR��/<�����9»�-25l:C��#fF��j&.#%/�5_:C?C/( Ç57+8�<-���/<*
+�-25i�2�<\2�<��*O��5���&.���B&.��*$ �5i+�-�57";�%p<F�6902�µ+857+�3����U�m��6�Fi�<-2#%/(�B[Ç&.��32&�5l:�����:�� ]., � Q
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�� /�
 � /�

&Z[C\��$�<���j��Fi��&.5C�;[G-�57g���������6Ç5�"�����3P&.#f3��µ+857+�-2:�pµ57"C02�e:@#$����:�-�5C/<�9]_a*	7`;N;���;[�02#	��>�FG��/(�B?
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g<�����%573P&.#B��57��32&�-�6���/<�E+;���<32��p< ;5�����\��<�;*C»;�%57 B[����·02�<���;5@��6;/( ;?C/( �57"�����32&.��/( ÇH©�C-26� �6YNl)�&2:7�<-J�
/<#�ck�X6�-2)<����*�����\��<�;*����Ä57"�����32&.#wNT�B&��<-.�G02�Ç32�%57���<���ÄgÇ&.>�/( �&�5¦)<��32&�*nQ/� �����$\�*$F96X-�5�g�:75l02#
Fi��&.5C�;[�-�57g��C�%����6�57"��%��32&�*	��5C/( ���g�*O����:�a+�l�±&=?C/( U�$��&��</( �FG#$��6��%p� �5�32&�57�%�e&.*	:�3�576;:C#$3��%5�32&.#
3�-2[C/( ��'?@F :�?�:75l02�<F�Fi5@����-���*$/( �3�6�+8�<-2+f5C)<*'&(��)��YQ
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&U��&�5@���°-257g<��������6¤57"�����32&.#O02�ÇgR���$57�<�����Ä���Ä+�������+f5��C�%����6YN�����������576A57"��%��32&
Ω
N����

�B&.��-�p¤+�-�5�"��%p�F �2�<\�*$FG��N�-257g<��>��%*$FG�¦��� +f5C��57"��%��32&�#
Ωι
N

ι = 1, . . . , s
N�+���#$)<�<Fi�X&=[�&.5
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N�H0`�Q M�`Bc -	H0`�Q S*`�c � Q+tÂ���R:C��*%F¶:�?C3��%���@�

����F®02� � 	7a
?
NY&� ��<5�-��<F `�Q
	 � NV:7���B&��<-�p�F�02�i��57�j��g<�����Z�H�@#%3P&.�<�;/<���2�<\2�<��*�+�-�57";�%p<F�6¦���=0J�

 �57-2\�*$ �5m3�/<p������2�4H �h57-232&Â3�/��<����-�#%5m+�-257"��$�<F�c��
	7a
?
NOH0`�QdS+,7c � N�-���3�+YQ<� 	7a ? NOHT`�Q S+	Bc � Q� ����3��$�<��6j02*$/<*$F :�[C�%57��*%Fi�ÂFi��&�5@�;6G���=02 �57-2\�*% ;5k32/<p<��������+�-�51����\��<�;*f+�-257"��$p<F96�HP]7Q']lcj-

HP]�Q K7c��GHP]�Qd`BcLNB�B&.�<-P?m"B[@��¨©57-2F96��$5l:����9:�]�QB����+�#$&�57�%��QBWY�µ���J02#$32&.�1���j&(��"�6�����FG��+85l:�����5_:��j&
FG��&.��-�#����%5_:7pi+���-���FG�e&.-P[

λ
�

µ
N¥57"C02�<Fi5_:7pÇ32*%�$[

F
NT+f5_:C-�/( ;5l:�p�gR��&�*%�<����*

P
�! �5C����5�&=[

gR��������p� �5U&����<�;*
g
QY�T5C��57"���>�0�����5Z:r5C��32&<Q�]7QdMÇ+;��#,5@�@:757g��<��*�:���-2#���)���*·¨©57-2F96�����/<����5��@�

&(����&���*% ;5i+;-�57"��$p<F96�g<�_:��<����FG�1"�#$�%#%�;�R��-2��*8¨©5�-�F96

a(A;u,v) =
s

∑

ι=1

∫

Ωι

(

λ div u
ι div v

ι + 2µ eij(u
ι)eij(v

ι)
)

dx,
HwS@Q$]lc

�����
div u = ∂ui

∂xi

NY&��<��g�57-1F����'?C/( ¦���e¨©57-�FG��/�*
eij(u)

02�i�����DH³+��2#�+f576;�<#$&�*�s�#%��3P&.�<#$��5_:�[
3�6;F���)���*	��57�B:7����/<�RcE:Cge&(�� ���F HJ]7Q M�c��k:C32&�6�+���*	����&(�

A = {λ, µ,F,P, g}
023�5�6Ç���J02#$32&(���

023�5�6Ug�Fi��57�<#$�B[4+��2*%+�6�3P&.�;?C/( U����&
A ∈ Uad ⇔ λ ∈ Uλ

ad, µ ∈ Uµ
ad,F ∈ UF

ad,P ∈ UP

ad, g ∈ Ug
ad.
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´����$��+��2�<��+857�������;�J02Fi��N�����:@\2�</( ��B[Z6;:�����5l:����;pµ)R��3P&.#
Ωι
023�576Ç+85m)R��3P&.��/( U �5�FG57���<����*	�

&(����5_:7p�N8�����H�@#%3P&.6j02�1��><�$�<��*	57"�����32&.#
Ω

ι +�-25G�B&��<-�p�+��%��&.*

Ω
ι
=

⋃J(ι)
i=1 Ω

ι

i, Ωι
i ∩ Ωι

j = ∅
+�-�5

i 6= j, ι = 1, . . . , s.

Γ
kl

c =
⋃Qkl

q=1 Γ
kl

q , Γkl
p ∩ Γkl

q = ∅
+�-�5

p 6= q, ∀k, l.

HwS@Q M7c

´��e¼���6j02�<Fi�kFi��57��#%�B[4+;��*%+;6�32&��;?C/( �����&

Uλ
ad = {λ ∈ L∞(Ω) : λι,i

min ≤ λ|Ωι
i
= const ≤ λι,i

max, 1 ≤ i ≤ J(ι), 1 ≤ ι ≤ s},
HwS@QdSBc

Uµ
ad = {µ ∈ L∞(Ω) : µι,i

min ≤ µ|Ωι
i
= const ≤ µι,i

max, 1 ≤ i ≤ J(ι), 1 ≤ ι ≤ s},
HwS@Q
`�c

�����
0 ≤ λι,i

min < λι,i
max, 0 < µ0 ≤ µι,i

min < µι,i
max, 1 ≤ i ≤ J(ι), 1 ≤ ι ≤ s,

0232576!�����;p
��5���32&.���B&=[7Q

´����$�1+;-�5m���J02#$32&.��:C3P&.6�+��;*¥����&(�
A
gR�R:7�����<Fi��¨©6�����/�#%57�����$[

L(A;v) =

s
∑

ι=1

∫

Ωι

F ι
i v

ι
i dx +

∫

Γι
τ

P ι
i v

ι
i ds

HwS@Q ,7c

�
j(A;v) =

∑

k,l

∫

Γkl
c

gkl |vk
t − vl

t| ds,
HwS@Q 	Bc

�����
F ∈ UF

ad

N
P ∈ UP

ad

N
g ∈ Ug

ad

N
vt = viti

02��&��<)����i32�%57���j�m+857326���6;&.*wN

UF

ad = {F = [F1, F2] ∈ [L∞(Ω)]2 :

F ι,i
j,min ≤ Fj|Ωι

i
= const ≤ F ι,i

j,max, j = 1, 2, 1 ≤ i ≤ J(ι), 1 ≤ ι ≤ s},

HwS@Q K7c

UP

ad = {P = [P1, P2] ∈ [L∞(Γτ )]
2 :

P ι
j,min ≤ Pj|Γι

τ
= const ≤ P ι

j,max, j = 1, 2, 1 ≤ ι ≤ s},

HwS@QdaBc

Ug
ad = {g ∈ L∞(Γc) : g|

Γ
kl

q

∈ C(0),1(Γ
kl

q );

0 ≤ g(s) ≤ gq,kl
max, |dg/ds| ≤ Ckl

g

3�Q :8Q����
Γkl

q , 1 ≤ q ≤ Qkl, ∀k, l},

HwS@Qd`Bc

�����
F ι,i

j,min ≤ F ι,i
j,max

N
P ι

j,min ≤ P ι
j,max

N
gq,kl
max

�
Ckl

g

023�576!������p���57��3P&(���B&=[Ä�
C(0),1 g�����)�*+�-25732&�57-��%#$+�3�/( �#'&.g�5l:C32��[�32+f5l02#$&=?C/( Z¨©6;����/�*nQ

��-�5°�������Ä:C32&.6;+���*�����&.�
A ∈ Uad ≡ Uλ

ad × Uµ
ad × UF

ad × UP

ad × Ug
ad

��573P&(�R:���Fi�
+�-257"��%p�F

(PA)  ���_02*$& u(A) ∈ K
&(���8N���"�[

a(A;u(A),v− u(A)) + j(A;v)− j(A;u(A)) ≥ L(A;v − u(A)) ∀v ∈ K.
HwS;Q']��Bc
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	�a ? NT�%�<FiFG�`�Q'] � ceQ
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��  s/�@#%3P&.6j02*�����������p���57�;32&(����&=[ ci

N
i = 0, 1, 2, 3

���<g<�R:@#$3��$pZ���
A ∈ Uad

N
&(����5_:7p�N8���

a(A;v,v) ≥ c0‖v‖
2
1 ∀v ∈ V0,

HwS;Q']7]lc
|a(A;v,w)| ≤ c1‖v‖1 ‖w‖1 ∀v,w ∈ H1(Ω),

HwS@Q$]lM�c
|L(A;v)| ≤ c2(‖v‖0,Ω + ‖v‖0,Γτ

) ∀v ∈ H1(Ω),
HwS@Q$]_S7c

|j(A;v)− j(A;w)| ≤ c3‖v −w‖0,Γc
∀v,w ∈ H1(Ω).

HwS@Q$]=`Bc
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(PA)  
���
	�� � 
��  s/�@#%3P&.6j02�h02�<�;#%��pµ�2�<\�����* u(A) ∈ K

»��%57 B[°H³S;Q']��Bc�+�-25G�j������p
A ∈ Uad

Q
"  Bq�v_ª  �������%57�7#$/(�B?�0�����5i:l�
	*`;N�+�-�5�+f5732#$&�#%57�ZM@Q'] � �;�<"85h� 	BKCN�+;-�57+8573�#'&.#$57��M � Q

&U�<g�#T:C\���FG#TFG5��<�;?CFi#¥�2�<\2�<��*$FG#O+�-257"��%p�F96
(PA)

:�[C"f��-��<Fi��&�5 �=���=02 �57-2\�* �(N������9���L�
3�+857�$�< ��$#$:75�32&�Fi><�2*%Fi�102#%3P&=?@F ¨©6�����/<#%5������%��FUNT�B&.�<-P?¤gR�R:C#%32*����Ä���<\2�<��*

u(A)
32&�6���5_:�����p

»��$57 B[7Q 1Â�����<�<Fi����><��57�%#$��Fi57�<�;5732&�*Y:757�$"�[�¨©6�����/�#%57�����%6���-�#'&.p<-2#��;Q
o���/( ;Æ

Gk ⊂ Ω
N
k = 1, . . . , k

Nj023�576�����+���*$�C�%���rH©F����$p_c,+f5C��57"��%��32&�#f+;��#%�$�< ��$p��G �-.���;#'�
/<*$F

∂Ωι
Q��T5�&.57F 02������*$F +���*$����������F�¨©6;����/�#%57�����%6���-�#$&�p<-2#��9F9������"�?�&

Φ1(A;u) = max
1≤k≤k

[

(meas2 Gk)
−1

∫

Gk

uini(Xk) dx
]

,
HwS;Q'].,7c

�����
n(Xk)

02�k02�<���;5�&.��5l:��r:@�;>J02\�*���5�-�FG�����U:X+f�e:@�;p<FÈ"85@��>
Xk ∈ ∂Ωι ∩ ∂Gk

H 02�e�±�%#
Gk ⊂ Ωι

ch�4 �-.����#%/�#
∂Ωι

Q�´�-�6� ;?CF�+��2*%���������<F�¨©6�����/�#%57�����%6Ç��-�#'&.p�-�#��Â02�

Φ2(A;u) = max
1≤k≤k

[

(meas1 G′
k)

−1

∫

G′

k

uini(Xk) ds
]

,
HwS;Q']�	Bc

�����
G′

k ⊂
⋃s

ι=1 ∂Ωι \ Γu

Q�´����%\�*	FG57����573P&.*nNl0����G:�57�%#'&�¨©6�����/�#%57�����Y��-�#'&.p<-2#��;N_02�

Φ3(A;u) = max
1≤k≤k

[

(meas2 Gk)
−1

∫

Gk

I2
2 (τ (A;u)) dx

]

,
HwS;Q']lK7c

�����
I2(τ ) = (τD

ij τD
ij )

1

2

02�E#%�B&.����g<#'&(��32F�[C��5_:�?C/( 4����+8>�&�*��
τD
ij = τij−

1
3
τkkδij

02������:C#%��&.57-
����+8>�&�*nN;&©0�Q

I2
2 (τ ) =

2

3
[τ 2

11 + τ 2
22 + τ 2

33 − (τ11τ22 + τ11τ33 + τ22τ33) + 3τ 2
12],



� �

τij(A; u) = λδij div u + 2µeij(u), i, j = 1, 2,

τ33(A; u) = λ div u.

���$57 B[4���=02 �57-2\�*% ;5G32/<p<��������H ��57-�3P&Â3�/<������-2#%5m+�-�5�"��%��FG3.ch+f5�&�57F�¨©5�-�F96��$6j02�<Fi��&.���B&.5   ��$�<����Fi�
A0i = arg max

A∈Uad

Φi(A;u(A)), i = 1, 2, 3,
HwS;Q']_aBc

�����
u(A)

02������\�����*O+�-�57";�%p<F�6§H
PA

cLN;&³0�Q¥H³S;Q']��BceQ
��"B[C/( �57F �;57�j��gR���$#����<\2#$&��<�%�;5732&h+�-�57";�%p<F�6ÄHwS@Q$]_a7ceNCF96�3�*$FG�Â6��j��g<��&�3�+85j02#'&.573P&Eg<5�"�-.�j�

g<����*
A 7→ u(A)

���e¼���5_:�����p< ;5G:7��:7>e&.>kS;Q']1���mFi��57��#%��>
Uad

Q�´��e¼���6j02�<Fi�1+�-�573P&.57-

U = [RJ ]6 × uk,l u
Qkl

q=1 C(Γ
kl

q ),
HwS;Q']_`Bc

�����
J =

∑s

ι=1 J(ι)
N�3���57-2FG5�6

‖A‖U = ‖{λ, µ,F,P, g}‖U = ‖λ‖0,∞+‖µ‖0,∞+

2
∑

i=1

‖Fi‖0,∞+

2
∑

i=1

‖Pi‖0,∞+‖g‖0,∞.

� +�� � � � 
 1  o���/( ;Æ An ∈ Uad

N
An → A

:
U
�

un ⇀ u
32����"8>�:

H1(Ω)
Q��T5�&�57F

a(An;un,v)→ a(A;u,v) ∀v ∈ H1(Ω),
HwS@Q M*�7c

L(An;un)→ L(A;u),
H³S;Q MC]lc

j(An;un)→ j(A;u).
H³S;Q M�M7c

"  Bq�v_ª  �������%57�7#$/(�B?����;����g<6 � 	*`@N��%�<FiFG�9S;Q'] � ����"f5��
	7K@N��%��FGFG��M � Q
���
	�� � 
 1  oÂ�</( ;Æ An ∈ Uad

N
An → A

:
U
+�-25

n→∞
Q��¥5�&.57F

u(An)→ u(A)
:
H1(Ω).

HwS@Q M�S7c
"  Bq�v_ª  �������%57�7#$/(�B?����;����g<6 � 	*`@N�+�-�57+85732#$&.#$57�ÇS;Q'] � ����"f5 � 	BK@N�&� ��<57-2�<F M � Q
� +�� � � � 
��  oÂ�</( ;Æ Φi(A;u)

N
i = 1, 2, 3

NV02�!�;��¼���5_:����D: HwS;Q'].,7c9�UHwS@Q$]lK�ceN­���</( ;Æ
An ∈ Uad

N
An → A

:
U
�

un → u
:
H1(Ω)

Q��¥5�&.57F
lim

n→∞
Φi(An;un) = Φi(A;u)

HwS@Q Ma`Bc

"  Bq�v_ª  �������%57�7#$/(�B?����;����g<6 � 	*`@N��%�<FiFG�9S;QdM � ����"f5��
	7K@N��%��FGFG�I`�N��$�<FiF��u, � Q
���
	�� � 
��  s/�@#%3P&.6j02�1��32+f57Å�02������5i���<\2�<��*OFG�G�@#%FG���%#$gR��)���*% ;5k+�-257"��$p<F96¦HwS@Q$]_a7ceQ
"  Bq�v_ª  ������32�%�<�;�C6G�%��FGFG��&.6mS@QdS���:7>e&=[�S@Q M­02��¨©6�����/<#%5������ J(A) = Φi(A;u(A))

3�+85��
02#$&=?i���9Fi��57��#%��>

Uad

Q��¥57FG5C/<*���-2g<�<�%�j�)��3�/�57�%#$ �5k:�>�&=[4�$g<��6;����gR��&<N;�<��02�
Uad

��57Fi+����B&.��*
:

U
Q�´���32�%��������F�02��N��<������Fi��57�<#$��>

Uad

�H�@#%3P&.6j02�1F��.�;#$F96�FZQ
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Fi��&.5C�;[�gR��+857Fi�<��6;&(�@Q�o���gR��)<��&.��6Z+�������3.��&=?C/( !�$��&�M*�@Q�32&�57�%�e&.*Y"B[C���mFG�e&.5C���9g<�;5l:C6�5�"@�
02��:��<���¦�%��&��</(�B?CFG#�#$���<���;?C-2[7N­5_:C\��<F +�-P:C��*�FG��&��<FG��&.#$/(���r�������$?CgR�°��+�-25=�;#$F���/<������\��<�;*
Fi��&.5C��576r��57���<)��;?C/( X+�-P:@���¦"�[C�%�Z+85@�����������m���Ç��57�;/<#,\������<3���&=?C/( ¡�%��&kMa�;QY32&�57�%�e&.*R&¦Q
W	����F����$�<F H¬:@#$g �']�]�	 � ceQ ���µ&.p,��57"B[µ32�,FG�e&.5C���E��57�;�<)<�@?@/( �+�-2:C���k#B�;*%�B[�:��<�%��p<F961-�5�g�:75l02#+85@)�*$&(��)<�§3P&(���%��02������*%F g��;�J02+8576��<*':�����>J02\2*%/( ¡�U���J0232#%�%�;>J02\�*$/( X����3P&.-25j02�¡+�-�5��C6;FG��-�#%/(��p
����\�����*O+���-�/�#����$��*%/( Ç�;#$¨©�<-2�<��/�#����$��*%/( �-�5_:C��#%/�Q

� ��� � $ " �.� 
 � � � 
 / �
&Z[C\��$�<����6ZFG�e&.5C�;[46;�����<�<Fi�µ���9�$#%���<��-���*$F��<�%#$+;&.#$/(��p�F®+�-257"��%p�F96YQC��[_02�;�<Fi�µg�:���-�#���)<��*
¨©57-2F96�����/<��NC&³0�Q��2�<\�*$FG�µ+;-�57"��$p<F  ���_02*$& u ∈ V

&(����N���"B[

a(u,v) = L(v) ∀v ∈ V,
HT`�Q']lc

�����r"�#%�$#%���<��-��;*�¨©57-2F��
a(u,v)

02�r�������¡:Cge&(�� ���F HP]7Q']_SBcLNh¨©6�����/<#$57�����
L(v)

:Cge&(�� ���F
HP]�Q$]=`BceN�FG�;57�<#$��[

V0

�
V
:Cg�&.�� ��<F¢HP]�Q$]7]_c��G�����%�1+�������+857����������FG��Nf���

Γc = ∅
N
Γo = ∅�

u0 = 0
H
⇒ V = V0

ceQ8£��������m3��15G+�-257"��$p<F®�$#%���<��-��;*	+�-26��<��5�32&.#wN�&³0�Q� ��$�<����FG�µ+8573�6;��[
&.6; �p< �5�&�><�%��3.�;N@�B&.�<-2p�02�µgR��&�*%���<��5�57"�02�<Fi5l:�?CFi#	3�#$����Fi#

F
N�+85l:C-2/( �5_:C?CF�g<��&.*$�<�<�;*%F

P
N��

+�-25i�B&��<-�pE02��+��������<+;3.���U�C6;�%5_:�?Ç+f5�3�6��Z����)R��3P&.#V �-�����#$/<�
Γu

Q
W	��57�;32&.-26�6j02��FG�k��57����)<��>���#%Fi�<�;g<#%5������%�;*¥+85C��+�-�5�32&.5�-���57���<)��;?C/( r+�-2:C���

Vh

+�-�5�32&.5j�
-�6�&.��32&.5_:���/�*%/( ²¨©6;����/�*

V
&(���8N����°¨©6��;��/<�

vh ∈ Vh

0232576 +85A)R��3P&.�</( +f57�'[C��57Fi#����$��*
H³������p< ;5i3P&.6�+;��>_cE:Cg< ��$�<����F ����>��%����*Y:�?@+85C)<��&���*V57"��%��32&�#nQ;Wf:757�$�<��pµ�;><�%����*@02�µ��5����<)��;?CF

S7S
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3©02������5C/<����*%F�6�-�)�#$&=?C/( U�;#%3©026;���B&.��*$/( Ç+f5C��Fi��57�<#$�YNC����+���Q;&.-25j02»� ����%��*$�C�	N;)�&2:7��-�/<�	N�57"f�;p<�'�
��*$�C�r�j&.�YQ	��+���*$+�����>�&�-�5j02»; ��<�$��*%��5l:�?C/( °+�-2:C���¦32��02�<������54&�-�#%�����76��%��/<#hH©:C#$g957"�-�QYS;Q `�ceQ
´�#$3���-��e&.#%g<��)<�;*;+���-���Fi��&.-

h
:�[_0�������6j02��FG�G�@#%FG���$��*7-�5�g<Fi><-T:C\2�</( m)R��3P&.*@g�:75��%�<�;p< �5µ��>��%����*nQ

��-�57"��$p<F HT`�Q']lc����� �-.���;*%Fi�µ��+�-25��@#$FG5_:����;?CF�+�-�57";�%p<Fi�<F  ���_02*$& uh ∈ Vh

&(����N���"�[

a(uh,vh) = L(vh) ∀vh ∈ Vh.
HT`;Q M7c

� �<\�����*
uh

��#$3���-��e&.#%g�5_:�����p< �5�+�-�57";�%p<F�6 HT`;Q M7cµ ��$�<����Fi�m:7��&2:���-�6X�$#%���<��-���*���57F9"�#$����/��
"���g�5_:C?C/( r¨©6�����/<*·+;-�573P&.57-26

Vh

QGHE��g<#
{vi}Ni=1

+;-�573P&.57-26
Vh

Nf�����
N = dim Vh

Nf:�57�%*$FG�
&(���8N���"�[102�J02*Y¨©6�����/<�1FG>��$[GF����$?G��573�#$)�Q�´�5�3.��g��<��*$F

uh =

N
∑

j=1

cjv
j HT`;QdSBc

��5UHT`;Q M7cE��:75��%"8576�"���g<5_:�?C/( U¨©6��;��/<*
v

i
N
i = 1, . . . , N

N�gR�
vh

��5�32&(�����<Fi�

a
(

N
∑

j=1

cjv
j,vi

)

= L(vi) i = 1, . . . , N.

t��$�<������pk��5@�e¼�/<#$�<�B&=[U�%#%�;�R��-2��*V��57F�"�#%����/<�1g<*%32�j��FG�µ:�[C����\��<�;*%F 3�576�3P&(�R:�[��$#%���<��-��;*%/( U���'�
�7��"�-.��#$/(�B?@/( U-�5_:C��#%/

N
∑

j=1

a(vj,vi) cj = L(vi) i = 1, . . . , N.
H0`�Q `�c

� ����32�%������6A�Â�=�<�$#%+;&�#%/�#$&=[°"�#%�$#%���<��-��;*­¨©57-2F�[
a(., .)

02�ÇFG��&.#$/<�
A = [a(vj,vi)]Ni,j=1

-��L�
�76��%��-��;*nQf´�*%�B[Ä+��2�<��+857��������6YNY���i"���g<5_:7pm¨©6�����/<�mFG�l02*�FG���$?U��5732#%)�N�02��F���&�#%/��

A
���_:C*$/

��*$���j�;Qf�,-25��%#%"85_:757�$��p�M�"���g<5_:�pm¨©6;����/��
v

i
�

v
j
N�02�=02#%/( ��9�;573�#$)<��FG�l02*·+�-���g<�;�;?!+�-2����#$�8N

&.5�&.#%�µ+;����&�*nNC�<�
a(vi,vj) = 0

Q
'�� )���������� � 
��  &���&.#$/<� A

02�­)R��3P&.5�����g�?�:�������FG��&�#%/<*�&.6� �5�32&.#@��:7�<�B&�57-�+�-��_:�ph3P&.-.����[
L = [L(vi)]Ni=1

:7���B&.57-2�<F�gR�j&.*%���<��*wQ

� ��� � 
 ) ' � � + �� 0/ " ' � 	 � " 	�� � 
�' 
 ) ' �*� �#+ -
�,-.�jÆ.Fi�93��m�!�2�<\�����*,��57�B&.���B&.��*$ �5�+�-�57";�%p<F�6°32�mgR�������;?CF
&.�2�<��*$FÈHP]�Q$]lcj-	HP]�Q K7cÂ�°HP]7Q `BceQ
t��$�<����FG�µ32����"8pµ����\��<�;*

u ∈ K
+�-�5�"��%p�F96°H

P
ch&(����N���"B[Ç+��%��&.#$�%5�H¬:C#%giHP]�Q$]lK�c�c

a(u,v − u) + j(v)− j(u) ≥ L(v − u) ∀v ∈ K.
HT`�Q ,7c

��"�����32&
Ω =

⋃s
ι=1 Ωι

��+�-�5=�@#%F�6j02�<Fi��+857Fi5@/�*
Ωh =

⋃s
ι=1 Ωι

h

3�+f57�'[C�757�����$��*� �-�����#'�
/<*

∂Ωh = Γ̄uh ∪ Γ̄τh ∪ Γ̄ch ∪ Γ̄oh

N,�����
Γ̄uh, Γ̄τh, Γ̄ch, Γ̄oh

023�576½+f5¦)R��3P&.�</( �$#%���<��-��;*nQ
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��"�-.��g<�<� `�Q$]  �T-2#�������6�����/���57"��%��32&�# Ωh

��"�����32&
Ωh =

⋃s

ι=1 Ωι
h

&�-�#%�����76��$6j02�<Fi�¦H©:C#%gU57"�-�QC`�Q']lcm�X6�g<�'[A&�-�#%�����76��%��/<�Z57g�����)<*$FG�
qi

Q ��g<����)<Fi�
T ι

h

N
ι = 1, . . . , s

N	-2�<�76;����-2��*T&�-�#������76��%��/<�1+f5��$[C�757�����%��*$/( !57"��%��32&�*
Ωι

h

N
ι =

1, . . . , s
NE�
Th = {T ι

h

N
ι = 1, . . . , s}

Q���������+857����������FG��NE�<�
T ι

h

N
ι = 1, . . . , s

NO023�576
��5���g<#$32&.���B&.��*µ3�+��2*%3��$6�\��@?@Fi#� ;-.����#$/<��FG#

∂Ωι
h

N
ι = 1, . . . , s

N��X���r6�g<�'[D�%���<*$/<*����
Γkl

c�����$�<��*Y��5m&.-�#%�����76;����/�*f5C��+85l:C*$���l02*%/�*%/( �3�5�6�3�������*%/( U57"��%��32&�*f:Ç��57�B&(���B&.6
Ωk

�
Ωl
Q

´��e¼���6j02�<Fi�k��57����)<��>���#%Fi�<��g�#%57�����%��*	FG��5��<#%��6Ç:C#%-P&.6����$��*%/( Ç+857326���6;&.*
Vh

Vh = {vh | vh ∈ [C(Ω1)]2 × · · · × [C(Ωs)]2,vh|Thi
∈ [P1(Thi)]

2, ∀Thi ∈ Th;

vhn(qi) = 0, qi ∈ Γo;vh(qi) = u0(qi), qi ∈ Γu}����57�;�<)<�;><��#$FG����g<#$57�����$��*YFi��57�<#$��6Z+;��*%+;6�32&��;?C/( �+8573�6���6;&�*
Kh

Kh = {vh|vh ∈ Vh, (vk
hn − vl

hn)(qi) ≤ 0, qi ∈ Γkl
c }.'�� )���������� � 
 1  �¶57"8�</<�;p<F�+��2*%+����;>µ+�����&�*

Kh 6⊂ K
Q

� +������	��
 + � 
��  z�6��;��/<� uh ∈ Kh

02�µ�2�<\�����*O+�-�5�"��%p�F96¦H
P
c
h

N�02�<3P&.�$#%�<�

a(uh,vh − uh) + j(vh)− j(uh) ≥ L(vh − uh) ∀vh ∈ Kh.
HT`;Q 	Bc
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P
c
h

+�-25
h → 0+

6;����g<6j02�U����3��$�<��6l02*%/<*�:�>�&(�@Q
��������+f5��C�%������F 02����5732&.��&.��)<���m ��%������5�32&Â����\��<�;*V��57�B&(����&���*% ;5G+�-257"��$p<F96YQ
���
	�� � 
��w�dM@]

?
N;&� ��<57-2�<F�S@Q$] �  o���/( ;Æ�023�576¡ ;-.����#$/<�

∂Ω
�i02�J02*h)<��32&�#

Γu

N
Γτ

N
Γo

N
Γc

+85Ä)R��3P&.��/( ¾+857�$[C�75������%�;*nQ¥o���/( ;Æ
����\�����*T+;-�57"��$p<F96¦H

P
c
u ∈ K ∩ [H2(Ω)]2

N
τij(u

ι) ∈ H1(Ωι)
N
i, j = 1, 2

�
ι = 1, . . . , s

N
τkl
n (u) ∈ L∞(Γkl

c )
N
uk

n

N
ul

n ∈ H2(Γkl
c )
N
k, l = 1, . . . , s

QYoÂ�</( ;Æh02�k�����$�
uh ∈ Kh

����\��<�;*
+�-257"��%p�F96¡H

P
c
h

N
Kh ⊂ K

�i+f5C)<�e&�"85@���	N8:��9�B&.�<-P?C/( °�;5@/( ���g<*·���9g<Fi><�;>
uk

n − ul
n < 0���

uk
n − ul

n = 0
02�µ��57���<)��;?7Q

�T5�&.57F®:43��<Fi#'�±��5C�<-2/<#$:C��*$F�+;��*%+�����>
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O�E�=;*�+36/4@6L8QP	0R.3=;*�+SET.101B�E�U;03=;VW0YXS+	ZJ0
VW=@?�03AJN[BC,/D�+-E/?GF
2HF@I101ALB�KJDG=\2@AL=;N�*�N]6Q^QE/?�E/B�_�03A`E/a�XSZJbc2T_�2/=@03d�b1ZJ03BHXeFgf�+	=
2/=/a	X�P	a-=/N ��=/N�B�U;hGijVk=7?�NGARf�+	N�l1B�=/a	XSZ

E = 2 × 109mon ETprq n =;ZLa-a-=/B�=si/Et2/=;BGa	XcETBuXSE
ν = 0, 3

Evf�+	=v?Gw-KJ2
ExP-E/Vk2uN

E = 2 × 1010
mon ETprq

ν = 0, 3
6�yR03+	i/0Yz

B�=;N{*�E/+	i/=;NjP	0g=;.3BCE/I103BCE|I},Ta	X\D�+-E/B�ZLb10/q�2u?�0WP	0ga�XS0Yz
D�03B�B�K~2/=;a�X�N�f�03i@B��3BCE���BuN�AL=si/,!��ZJ+	ZJbcD�AL03X-=�iTE&f#=@?7z
VkKJB�2�EH��6[<>=@?�+-=;N�*CE/+�i;=;N�P	0�=;.1BCETI101B�EvI},Ta	X~D�+SETB�Z9z
b10Tq�BCE�2HX-01+-_�fGw-01?G01f�ZLa-N�P	03VW0�f�=7?GVWKLB�2HFx=;*#=/N�a	X-+SE/B7z
B�_3D�=x2/=;BHXcET2uX-N���f#=@?�VkKJB�2�E~a	F@VW0YXS+	ZJ0s��6��]ALNGXS=;N�*CE/+�z
i;=/N5P	0�=;.3BCE/I301BCExI},/a�X�D�+SE/BGZJb10Tq�2u?�0�f�w-03?�01fGZJa-N�P	01Vk0
f�=7?�VkKJBG2uF�P	03?�B�=;a�XS+SETB�B�_1DG=~2T=;BHXcE/2HX-N���VW03.1ZR2HF@I103AJB�K
P-E/Vk2/=;N�E\?�w	KJ2T01V��Y6QO�E�D�=;+	B�K�I},Ta	XSZ�DG+SE/B�ZLb10�fGw-01?Gf#=Tz
2uA`,/?�,/VW0�.}E�XSKJl301B�K�XSAJE/2/03V

0, 4× 106
m�n ETp
��BCE/.1B�E/I103B�=

.103AJ03BG�@VWZQ�	ZJf�2�E/VkZ���6GO�E�=;*�+16�476 ��P	a	=;N\iuF72u+	01a-AL01BHF¡D�=Tz
+-ZL.1=;B7Xc,/ALB�KREgi/01+	X-ZJ2�,/ALB�KRa	AJ=;l32TE¢iu�@a-AL01?�BG_1D�=jf#=;a	N�BuNGXSK
E|BCE5=;*�+36£476�¤�P	0giuF72u+	01a-AL01Bt?�03XSE/ZJA�D�A`E}i@B�KLbcDtB�E/f#�YXSK
��I301+�i;01BG_)�-ZLf�2HF

→←
f�w-03?�a	XSE}i7N�P	K#XSAJE/2HF;quVk=7?�+	_£�-ZJfG2uF

←→
f�=;f�ZLa-N�P	K@XcE/DHFG�Y6 n +-,si/��.10�.3=;*�+SET.101B7�7bcDkD�AJEsi@B�KLbcD

BCE/f��3X-K�a-Z�AL.10MN�?��3A`ETX[f�w	01?�a�XcE}i@N�=�+-=;.3AJ=;l301B�K¥a-ZJAL=si;_1DG=
¦ 8
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B�03f�w-03BC,/�-03AJ= l},/?�BG_ BCE/f��3X-K
E =@?�f#=si@KJ?�E�P	KJb3K~I1,/a	X 2T=;a	X-B�K
XS2�,/BG��*uF�f#=;a�XSN�fGB���.3XS+-,/b103A`E
f�03i@B�=;a�X}6



���������
	 ����
�� ������������� ���

���	�
��� ��
���������
��%��$M 


��"]�����%�R�
 01=;Vk03X-+-ZJ0 Vk=7?�03AJNg?G=;AJB�K 2/=/B�I10YXSZJBHFMP	0�i@F@2u+-03a-AL01BCE\BCE�=;*G+16�4@6 ¦ 6 n =/N�l1Z9XS_�VWETXS03+-Z`,TAJ=si;_
fCE/+-E/Vk03XS+�F¡P	a	=;Nxf�+-=�2T=;a	X

E = 1, 71 × 1010
mon ETprq

ν = 0, 25
q f�+-=�bcD�+	N�fCE}i@2uN

E =
0, 492 × 109

mon E�p q
ν = 0, 1
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f�=;N�l1Z P	01Vk0)XS=/X-=M*CE/+-0Yi@B�_ .3BCE/I301B�Kr:CBCEkI301+�i;01BG_ I},Ta	XSZ�DG+SE/B�ZLb10RP	0[f�w-03?�01fGaS,/B>B@NGAJ=siu�¡f#=Tz
a-NGBQq BCE�Vk=@?�+-_MI},Ta	XSZ�DG+SE/B�ZLb10Mf�w	01?�03f�ZJa	N�P	01Vk0Wf�=@?�VWKLB�2HFg=;*�=;N�a�XS+-E/B�B�_3D�=¢2T=;BHXcE/2HXSN�E
l1ALNGXS��P	a-=;N =;.1B�E/I103BuF�I},/a�XSZ�D�+SETB�ZJb30/q
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2/=/BuXSE/2HXSNQ6�O�E�D�=;+-BGKQI},/a�XSZQDG+SE/B�ZLb10 f�w	01?�f�=;2uA`,T?C,/Vk0).}ETX-KJl301B�K]X-A`E/2T01V
1× 106

mon E�p ��BCE�z
.1B�E/I103B�=�.301AJ03BG�@VWZ��	ZJf�2�E/VkZ���6�O�Ek=;*G+16�476 47q�+	01a-f]6]4@6"!�P	0 i@F@2u+-03a-AL01BCEkD�=;+-ZL.1=;BHXS,/AJB�KrqG+	01a-f]6
i;03+	X-ZJ2�,/AJBGKQa-AL=;l12�E�f#=/a-N�BuNGX-K 6 n =7?�+	=;*�B��eP	Z7P	0[VW=@?�01A]f#=;fGaS,/B¡i\I1AJ,/B�2uN m �/4�p 6
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# f�w-03?�bcD�=;.3KJbcD¢Vk=@?�01AL01bcD�B�01*HF@A`EkNGiTE/l1=siT,/BCEk2/=;a�XSB�K ?�w	0��Qq�2HXS03+S,WVW,�P	ZJB�_[VWETXS03+-Z`,TAJ=si;_
i@A`E/a�XSB�=/a	XSZ
B�03lWi@A`ETa	XSBGK 2T=;a	X16¥O�E>.},T2@AJE/?��kBuN�VW03+-ZLbc2u�@bcD|iu�@a-AL01?�2uh5f�+	=¢Vk=7?�03A�D�=;AL01B�B�K
2/=/a	XSZ
AL.10�.1KLa-2�ETX[f�w	01?�a�XcE}i@N�=¡XS=;V�quP-ET2ga-0MBCE/f��3X-K�i�2/=/a	XSBGK�?Gw-01BGZ�f�w-03BC,/�-Kr6  01=;Vk03X-+-ZJ0
Vk=7?�03AJN\D�=/AJ01BGB�KQ2/=/a	XSZGP	0[.1=/*�+SE/.301BCEMBCE�=;*�+36�476��76�yR01+�i;03B�� =;.3BCE/I301BC,MD�+SETB�ZJb30 P	0[d	�G=�z
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iT,/BCEGqsB�E�D�=/+-B�KHI1,/a	X-ZHD�+SE/BGZJb10]P	0
f�w	01?�03f�aS,/BG=).}ETX-KJl301B�K
0, 2×107

mon E�p#��i@ZJ.
.103AJ03B�_ �	ZJf�2HFG��E
Vk01.1Z#2/=;a�XSB�K]?�w-03B�KQE�2T=;a	X-KQNGiTE/l1N�P	01Vk0)f#=@?�VkKJB�2uNW=;*#=/N�a	X-+SE/B�BG_1D�=�2T=;BHXcE/2HXSN]6��
AJE/a	X-ZJbc2T_
2/=@03d�b1ZJ03BHXeF5P	a	=;N fG+-=�2/=;a�X

E = 1, 71 × 1010
mon ETprq

ν = 0, 25
E�f�+	=�2T=;a	X-B�K[?�w-0 �

E = 2 × 106
m�n ETp q

ν = 0, 49
6	�@AJ=;l32uF~BCETf#�YXSK

τx

q
τy

E
τxy

P	a-=;N�iuF@2u+-03a-AJ03BHF|BCE�=;*�+16
47698�
Gq�4@6L8;8 Ek47698��76
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BCE/f��3X-K f�w-03BC,/�	K)XcE/2T_/q£=si7�	01V P	03D�=�i/01ALZJ2/=/a	X�P	0�= ¤xE/l ¦ wS,/?7F{VW03B��-K BG01l�P	0�BCE/f��3XSK
f�w	01BC,/�	01B�_ki@A`E/a�XSB�K�2T=;a	X-K�����=;N�B�U/hGi�VW=@?�N�A¥f�+-N�l3B�=;a�XSZ
f�+-=�2/=/a	X�P	0kfGw-ZJ*GAJZJl3B��

4×
i/�3X-�-K

B�03l���=;NGB�U;hGi Vk=7?�NGA;f�+-NGl1B�=;a�XSZ@f�+-=�2/=/a	XSBGK7?�w	0�����6/O�N�Vk01+-ZLbc2/_
iu�7a	AJ03?�2HF�P	a	=;N fG+-=�Vk=@?�01A
D�=;AL01B�BGKQ2/=;a�XSZ NGi/01?�03BuF¡i m 8;8�
�p 6



���

0 0.020.040.060.08

−0.1

0

0.1

0.2

0.3

0.4

τ
1
, τ

2

−2.8494e+007

+1.1893e+007

� *�+S,/.3012 47698s¤G: ��A`E}i@B�K BCE/f��3XSK5z
2/=;a�X

0 0.02 0.04 0.06 0.08

−0.1

0

0.1

0.2

0.3

0.4

−2.24e+04

+4.39e+03

τ
1
, τ

2

� *�+-,/.1032�47698 ¦ : ��AJEsi@B�K�BCE/f��3X-K�z
2T=;a	X-B�K ?�w-0 �



���������
	�����
���������������� ���

���	�
��� ��
������  


�%������$���
  ��%
�'�()'

0 0.02 0.04 0.06

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4

5a 6a

5b 6b

7a 8a

7b 8b

9

10

11 12 13 14

� *�+-,/.1032¡47698�47:�<�=7?�03A�2/=;AL01B�BGKJD�=M2uAJ=;NG*�N

 01=;Vk03X-+-ZJ0 VW=@?�03AJN)2T=;AJ03B�B�KJDG=�2@AL=;N�*�N
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Domain decomposition method for contact problems
with small range contact

Josef Daňek
Centre of Applied Mathematics, Faculty of Applied Sciences,

University of West Bohemia, Univerzitní 22, 306 14 Plzeˇn, Czech Republic

Abstract

A non-overlapping domain decomposition algorithm of Neumann–Neumann type for solving variational in-
equalities arising from the elliptic boundary value problems in two dimensions with unilateral boundary condition
is presented. We suppose that boundary with inequality condition is ‘relatively’ small. First, the linear auxiliary
problem, where the inequality condition is replaced by the equality condition, is solved. In the second step, the
solution of the auxiliary problem is used in a successive approximations method. In these solvers, a preconditioned
conjugate gradient method with Neumann–Neumann preconditioner is used for solving the interface problems,
while local problems within each subdomain are solved by direct solvers. A convergence of the iterative method is
proved and results of computational test are reported.
© 2002 Published by Elsevier Science B.V. on behalf of IMACS.

Keywords:Domain decomposition; Schur complement; Unilateral contact problems; Parallel computing; Preconditioning

1. Equilibrium of a system of bodies in contact

We consider a system of elastic bodies decomposed into subdomains each of which occupies, in refer-
ence configuration, a domainΩM

i in R
2, i = 1, . . . , IM , M = 1, . . . ,J, with boundary∂ΩM

i . Suppose
that boundary

⋃J
M=1 ∂Ω

M consists of four disjoint partsΓu, Γτ , Γc andΓ0 and that the displacements
u0 : Γu → R

2 and forcesP : Γτ → R
2 are given. The partΓc denote the part of boundary that may get

into unilateral contact with some other subdomain and the partΓ0 denote the part of boundary on that the
condition of the bilateral contact is prescribed (seeFig. 1).

We shall look for the displacements that satisfy the conditions of equilibrium in the setK = {v ∈
V |vkn + vln ≤ 0 onΓc} of all kinematically admissible displacementsv ∈ V , V = {v ∈ H1(Ω)|v =
u0 onΓu, vn = 0 onΓ0}, H1(Ω) = [H 1(Ω1

1)]
2 × · · · × [H 1(ΩJIJ)]

2 is standard Sobolev space.

E-mail address:danek@kma.zcu.cz (J. Daněk).

0378-4754/02/$ – see front matter © 2002 Published by Elsevier Science B.V. on behalf of IMACS.
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Fig. 1. The contact problem with decomposition.

The displacementu ∈ K of the system of bodies in equilibrium then minimizes the energy functional
L(v) = (1/2)a(v, v)− L(v):

L(u) ≤ L(v) for anyv ∈ K. (1)

Conditions that guarantee existence and uniqueness of the solution may be expressed in terms of coercivity
of L and may be found, for example, in[1].

We defineΓ M
i = ∂ΩM

i /∂Ω
M and the interfaceΓ =⋃JM=1

⋃IM
i=1Γ

M
i . Let us introduce

T M = {j ∈ {1, . . . , IM} : Γ̄c ∩ ∂Ω̄M
j = ∅}, M = 1, . . . ,J, (2)

The number of a separate subsetΓc is Pc, i.e.Γc =
⋃Pc

j=1Γcj. Further, we denote

Ω∗j =
{
x ∈

J⋃
M=1

IM⋃
i=1

ΩM
i : ∂ΩM

i ∩ Γcj �= ∅
}
, j = 1, . . . , Pc, (3)

ϑj = {[i,M] : ∂ΩM
i ∩ Γcj �= ∅}, j = 1, . . . , Pc, (4)

i.e.

Ω∗j =
⋃

[i,M]∈ϑj

ΩM
i , j = 1, . . . , Pc.

We suppose that

Γ ∩ Γc = ∅, (5)

then

VΓ = γK|Γ = γV |Γ , (6)
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for trace operatorγ : [H 1(ΩM
i )]

2 → [L2(∂ΩM
i )]

2. We suppose thatγ−1: VΓ → V is arbitrary linear
inverse mapping for which

J∑
M=1

(γ−1v̄M)n = 0 onΓc ∀v̄ ∈ VΓ . (7)

After denoting restrictionsR̄M
i : VΓ → Γ M

i , LM
i : LM → ΩM

i , aMi (., .): a
M(., .) → ΩM

i , V (ΩM
i ) :

V (ΩM)→ ΩM
i and introduction

V 0(ΩM
i ) =


v ∈ V |v = 0 on

(
J⋃

M=1

ΩM

)∖
ΩM

i


 ,

we can formulate theTheorem 1.1.

Theorem 1.1. A functionu ∈ K is the solution of the global problem(1) if and only if the function u
satisfies

1.
J∑

M=1

IM∑
i=1

(aMi (u
M
i (ū), γ

−1w̄)− LM
i (γ

−1w̄)) = 0 ∀w̄ ∈ VΓ , ū ∈ VΓ , (8)

for the traceū = γ u|Γ on the interfaceΓ .
2. Its rescrictionuMi (ū) ≡ u|ΩM

i
satisfies following conditions

(a)

aMi (u
M
i (ū), φ

M
i ) = LM

i (φ
M
i ) ∀φMi ∈ V 0(ΩM

i ),

uMi (ū) ∈ V (ΩM
i ), γ u

M
i (ū)|Γ M

i
= R̄M

i ū, (9)

for i ∈ T M , M = 1, . . . ,J,

(b) ∑
[i,M]∈ϑj

aMi (u
M
i (ū), φ

M
i )

≥
∑

[i,M]∈ϑj

LM
i (φ

M
i ) ∀φ ≡ (φMi , [i,M] ∈ ϑj), φMi ∈ V 0(ΩM

i ), (10)

such that

u+ φ ∈ K; γ uMi (ū)|Γ M
i
= R̄M

i ū for [i,M] ∈ ϑj ,

for j = 1, . . . , Pc.

Proof. See[2,5]. �
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2. The local and global Schur complement

We now want to write the interface problem(8) in operator form. For this purpose, we first introduce
additional notation. We introduce the local trace spaces

VM
i = {γ v|Γ M

i
|v ∈ K} = {γ v|Γ M

i
|v ∈ V }, (11)

and the extension Tr−1
iM : VM

i → V (ΩM
i ) defined by

γ (Tr−1
iM ūMi )|Γ M

i
= ūMi , i = 1, . . . , IM, M = 1, . . . ,J

aMi (Tr−1
iM ūMi , v

M
i ) = 0∀vMi ∈ V 0(ΩM

i ),Tr−1
iM ūMi ∈ V (ΩM

i ) for i ∈ T M, M = 1, . . . ,J.
(12)

For subdomainsΩ∗j , j = 1, . . . , Pc, we completed definition Tr−1
iM with boundary condition∑

[i,M]∈ϑj

(Tr−1
iM ūMi )n = 0 onΓcj, for j = 1, . . . , Pc,

i.e. ∑
[i,M]∈ϑj

aMi (Tr−1
iM ūMi , v

M
i ) = 0 ∀(vMi , [i,M] ∈ ϑj) : vMi ∈ V 0(ΩM

i ) so that

∑
[i,M]∈ϑj

(vMi )n = 0 onΓcj, j = 1, . . . , Pc. (13)

Definition 2.1. The local Schur complement, fori ∈ T M,M = 1, . . . ,J, is operatorSMi : VM
i → (V M

i )∗

defined by

〈SMi ūMi , v̄Mi 〉 = aMi (Tr−1
iM ūMi ,Tr−1

iM v̄Mi ) ∀ūMi , v̄Mi ∈ VM
i . (14)

In matrix form, we have

SMi Ū
M
i = (ĀiM − BT

iMÅ−1
iM BiM)Ū

M
i , (15)

where we decompose the degrees of freedomUi of ui into internal degrees of freedom
◦
UM
i and interface

degrees of freedom̄UM
i :

UM
i = [

◦
UM
i , Ū

M
i ]T .

With this decomposition, the matrix representation ofaMi (., .) onH 1(ΩM
i ) takes the form

AiM =
[

Å iM BiM

BT
iM ĀiM

]
. (16)

Definition 2.2. The combined local Schur complement, for subdomainsΩ∗j , j = 1, . . . , Pc, is operator

S∗j : (V M
i , [i,M] ∈ ϑj)→ (V M

i , [i,M] ∈ ϑj)∗, j = 1, . . . , Pc,
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defined by

〈S∗j (ūMi , [i,M] ∈ ϑj), (v̄Mi , [i,M] ∈ ϑj)〉
=

∑
[i,M]∈ϑj

aMi (u
M
i (ū

M
i ),Tr−1

iM v̄Mi ) ∀(v̄Mi , [i,M] ∈ ϑj) ∈ (V M
i , [i,M] ∈ ϑj), (17)

whereuMi (ū
M
i ) is the solution of the problem(10)andR̄M

i ū ≡ ūMi , [i,M] ∈ ϑj .

Lemma 2.1. The condition(8) for the functionū on interfaceΓ is equivalent to the condition(18):

J∑
M=1

∑
i∈T M

〈SMi ūMi , w̄M
i 〉 +

Pc∑
j=1

〈S∗j (ūMi , [i,M] ∈ ϑj), (w̄M
i , [i,M] ∈ ϑj)〉

=
J∑

M=1

∑
i∈IM

LM
i (Tr−1

iM w̄M
i ) ∀w̄ ∈ VΓ ,wherew̄M

i = R̄M
i w̄, ū

M
i = R̄M

i ū, (18)

by using the local Schur complements.

Proof. See[5]. �

We rewrite the condition(18) in the form

S0Ū + SKONŪ = F, (19)

where

S0 =
J∑

M=1

∑
i∈T M

(R̄M
i )

T SMi R̄
M
i ,

F =
J∑

M=1

∑
i∈IM

(R̄M
i )

T (Tr−1
iM )T LM

i ,

SKON =
Pc∑
j=1

R̄T
∗jS∗j R̄∗j ,

and

R̄∗j ū = (R̄M
i ū, [i,M] ∈ ϑj)T , ū ∈ VΓ ∀j = 1, . . . , Pc.

Since the operatorSKON is non-linear, we solve theEq. (19)successive aproximations method. We choose
the solution of the auxiliary linear problem as an initial aproximationŪ0. In the auxiliary problem, we
replace the setK by

K0 =

v ∈ V | ∑

[i,M]∈ϑj

(vMi )n = 0 onΓcj, j = 1, . . . , Pc






364 J. Daněk / Mathematics and Computers in Simulation 61 (2003) 359–373

and we obtain

u0 = arg min
v∈K0
L(v),

Ū0 = γ u0|Γ .
Now, we come back toEq. (19)and we computēUk as the solution of the linear problem

S0Ū
k = F − SKONŪ

k−1, k = 1,2, . . . (20)

3. The auxiliary problem

We solve the variational equation

u0 ∈ K0, DL(u0, v) = 0 ∀v ∈ K0. (21)

There exists a unique solution of the problem(21). For problem(21) we can describe analogy of
Theorem 1.1.

Theorem 3.1. A functionu0 ∈ K0 is the solution of the auxiliary problem(21) if and only if the function
u0 satisfies

1.
J∑

M=1

IM∑
i=1

(
aMi (u

0M
i (ū0), γ−1w̄)− LM

i (γ
−1w̄)

) = 0 ∀w̄ ∈ VΓ , ū0 ∈ VΓ , (22)

for the traceū0 = γ u0|Γ on the interfaceΓ .
2. Its restrictionu0M

i (ū) ≡ u0|ΩM
i

satisfies following conditions:

(a)

aMi (u
0M
i (ū0), φMi )

= LM
i (φ

M
i ) ∀φMi ∈ V 0(ΩM

i ), u0M
i (ū0) ∈ V (ΩM

i ), γ u
0M
i (ū0)|Γ M

i
= R̄M

i ū
0, (23)

for i ∈ T M , M = 1, . . . ,J,

(b) ∑
[i,M]∈ϑj

aMi (u
0M
i (ū0), φMi )

=
∑

[i,M]∈ϑj

LM
i (φ

M
i ) ∀φ ≡ (φMi , [i,M] ∈ ϑj), φMi ∈ V 0(ΩM

i ) such thatφ ∈ K0 (24)

for j = 1, . . . , Pc.

Proof. See[5]. �

Definition 3.1. We define a combined local Schur complements for subdomainsΩ∗j

S0
∗j : (V M

i , [i,M] ∈ ϑj)→ (V M
i , [i,M] ∈ ϑj)∗, j = 1, . . . , Pc
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by

〈S0
∗j (ū

0M
i , [i,M] ∈ ϑj), (v̄Mi , [i,M] ∈ ϑj)〉

=
∑

[i,M]∈ϑj

aMi (Tr−1
iM u0M

i ,Tr−1
iM v̄Mi ) ∀(v̄Mi , [i,M] ∈ ϑj) ∈ (V M

i , [i,M] ∈ ϑj). (25)

Lemma 3.1. The condition(22) for the functionū on interfaceΓ is equivalent to the condition(26):

J∑
M=1

∑
i∈T M

〈SMi ū0M
i , w̄M

i 〉 +
Pc∑
j=1

〈S0
∗j (ū

0M
i , [i,M] ∈ ϑj), (w̄M

i , [i,M] ∈ ϑj)〉

=
J∑

M=1

∑
i∈IM

LM
i (Tr−1

iM w̄M
i ) ∀w̄ ∈ VΓ ,wherew̄M

i = R̄M
i w̄, ū

0M
i = R̄M

i ū
0. (26)

Proof. See[5]. �

Definition 3.2. We define a global Schur complement:

S =
Pc∑
j=1

R̄T
∗jS

0
∗j R̄∗j +

J∑
M=1

∑
i∈T M

(R̄M
i )

T SMi R̄
M
i , (27)

and the condition(26)on the interfaceΓ has form

SŪ = F, (28)

in dual space(VΓ )∗.

Eq. (28)we solve by a preconditioned conjugate gradient method PCG1:

ChooseŪ [0] andH [0] (by Eq. (51)), P̄ [0] = 0.
Iteration loop onn.

Compute the preconditioned direction of descentG[n] =M−1H [n] ,
ComputeP [n] = G[n] + (〈H [n],G[n]〉/〈H [n−1],G[n−1]〉)P [n−1],
On each subdomainΩM

i , i ∈ T M , M = 1, . . . ,J,
solve in parallel Dirichlet problem

Å iM
◦
UM
i = BiMR̄

M
i P

[n],

On subdomainΩ∗j , j = 1, . . . , Pc computeS0
∗j R̄∗jP

[n] ,
Compute

Z[n] = SP[n] =
Pc∑
j=1

(R̄∗j )T S0
∗j R̄∗jP

[n] +
J∑

M=1

∑
i∈T M

(R̄M
i )

T SMi R̄
M
i P

[n]

=
Pc∑
j=1

(R̄∗j )T S0
∗j R̄∗jP

[n] +
J∑

M=1

∑
i∈T M

(R̄M
i )

T (ĀiMR̄
M
i P [n] − BT

iM

◦
UM
i ),
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α[n] = 〈H
[n],G[n]〉

〈Z[n], P [n]〉 ,

H [n+1] = H [n] − α[n]Z[n],

Ū [n+1] = Ū [n] + α[n]P [n],

End loop onn.

This method does not require the explicit construction of the local Schur complement matrixSMi but
does require an efficient preconditionerM−1 (see[3,4]). By construction, the Schur complement operator
is defined by the sum(27). Its inverse(SMi )

−1, i ∈ T M , M = 1, . . . ,J simply consists in associating
to the generalized derivativeg ∈ (V M

i )∗ the traceγφMi onΓ M
i of the solutionφMi of the corresponding

Neumann problem in variational form

aMi (φ
M
i , v) = 〈g, γ v|Γ M

i
〉 ∀v ∈ V (ΩM

i ), φ
M
i ∈ V (ΩM

i ). (29)

Then

(SMi )
−1g = γφMi |Γ M

i
. (30)

Similarly, we define inverse operator

(S0
∗j )
−1 : (V M

i , [i,M] ∈ ϑj)∗ → (V M
i , [i,M] ∈ ϑj), j = 1, . . . , Pc.

We solve the Neumann problem for(gMi , [i,M] ∈ ϑj) ∈ (V M
i , [i,M] ∈ ϑj)∗∑

[i,M]∈ϑj

aMi (φ
M
i , v

M
i ) =

∑
[i,M]∈ϑj

〈gMi , γ vMi |Γ M
i
〉 ∀v, φ ∈ V̂j (31)

whereV̂j = {(vMi , [i,M] ∈ ϑj)|vMi ∈ V (ΩM
i ),

∑
[i,M]∈ϑj (v

M
i )n = 0 onΓcj}.

Then

(S0
∗j )
−1(gMi , [i,M] ∈ ϑj) = (γ φMi |Γ M

i
, [i,M] ∈ ϑj). (32)

Definition 3.3. We define an injection

DM
i : VM

i → VΓ , i ∈ T M, M = 1, . . . ,J,

D∗j : (DM
i , [i,M] ∈ ϑj)→ VΓ ,D∗j = (DM

i , [i,M] ∈ ϑj), j = 1, . . . , Pc, (33)

such that on each interface degree of freedom is

DM
i v̄(Pl) = v̄(Pk)

+Mi

+T
, i = 1,2, . . . , IM, M = 1, . . . ,J, (34)

if the lth degree of freedom ofVΓ corresponds to thekth degree of freedom ofVM
i and

DM
i v̄(Pl) = 0, if not. (35)
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Here,+Mi is a local measure of the stiffness of subdomainΩM
i (for example, an average Young modulus

onΩM
i ) and

+T =
∑

Pl∈Ω̄M
j

+Mj , (36)

is the sum of+Mj on all subdomainsΩM
j containingPl.

We define

M−1 =
J∑

M=1

∑
i∈T M

DM
i (S

M
i )
−1(DM

i )
T +

Pc∑
j=1

D∗j (S0
∗j )
−1DT

∗j . (37)

In operator form, the action ofM−1 onL ∈ (VΓ )∗ is thus given by

M−1L =
J∑

M=1

∑
i∈T M

DM
i Ū

M
i +

Pc∑
j=1

D∗j Ū∗j ,

〈SMi ŪM
i , V̄ M

i 〉 = 〈L,DM
i V̄

M
i 〉 ∀V̄ M

i ∈ VM
i , ŪM

i ∈ VM
i , for i ∈ T M,M = 1, . . . ,J (38)

and

〈S0
∗j Ū∗j , V̄j 〉 = 〈L,D∗j V̄j 〉 ∀V̄j ∈ V̂j , Ū∗j ∈ V̂j , for j = 1, . . . , Pc. (39)

The original Neumann–Neumann preconditioner supposes that the solution of each local Neumann prob-
lem is uniquely defined, whereas rigid body motions are possible. This weakness can be fixed by replacing
(SMi )

−1, (S0
∗j )
−1 by a regularized inverse(S̃Mi )

−1, respectively(S̃0
∗j )
−1. We introduce on each subdo-

mainΩM
i , respectivelyΩ∗j a small local coarse spaceZM

i , respectivelyZ∗j containing all rigid body
motions.

The general trick to upgrade the original preconditioner then consists in adding to the initial local
contributionφMi , respectivelyφj a “bad” zMi ∈ ZM

i , respectivelyzj ∈ Z∗j which is chosen in order to
get the smallest difference(M−1− S−1).

We suppose thatL satisfies the invariance property

〈L,DM
i γ z

M
i 〉 = 0 ∀zMi ∈ ZM

i , i ∈ T M, M = 1, . . . ,J, (40)

〈L,D∗j γ zj 〉 ≡
∑

[i,M]∈ϑj

〈L,DM
i γ z

M
i 〉 = 0 ∀zj ∈ Z∗j , j = 1, . . . , Pc, (41)

We introduce a closed orthogonal complement spaceQ(ΩM
i ) of ZM

i in V (ΩM
i ) and a closed orthogonal

complement spaceQ(Ω∗j ) of Z∗j in V̂j . Let thenφ0M
i ∈ Q(ΩM

i ) be the particular solution of the
variational problem(29)defined by

aMi (φ
0M
i , vMi ) = 〈L,DM

i (γ v
M
i )|Γ M

i
〉 ∀vMi ∈ V (ΩM

i ) (42)
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andφ0
∗j = (φ0M

i , [i,M] ∈ ϑj) ∈ Q(Ω∗j ) be the particular solution of the variational problem(31)
defined by∑

[i,M]∈ϑj

aMi (φ
0M
i , vMi ) =

∑
[i,M]∈ϑj

〈L,DM
i (γ v

M
i )|Γ M

i
〉 ∀vj ∈ V̂j . (43)

Eqs. (42) and (43)are well posed varitional problems set onQ(ΩM
i ), Q(Ω

∗j ).

Definition 3.4. We define our new Neumann–Neumann preconditionerM−1(z0) by

M−1(z0)L =
J∑

M=1

IM∑
i=1

DM
i γ (φ

0M
i + z0M

i )|.M
i
, (44)

with the solutionz0M
i of the minimization problem

z0 = arg min
z∈/Z

〈S(M−1(z)− S−1)L, (M−1(z)− S−1)L〉︸ ︷︷ ︸
J (z)

, (45)

/Z ≡ ( i∈T M,M=1,...,J(Z
M
i ))× ( j=1,...,Pc (Z

∗j )).

By construction, and sinceL satisfies (40) and (41), we have

J (z) =
〈
S

J∑
M=1

IM∑
i=1

DM
i γ z

M
i ,

J∑
M=1

IM∑
j=1

(DM
j γ z

M
j + 2DM

j γφ
0M
j )

〉
+ constant (46)

Its minimum is attained for the functionz0 which cancels its gradient, that is for the solution of the
variational coarse equality〈

S

J∑
M=1

IM∑
j=1

DM
j γ z

M
j ,

J∑
M=1

IM∑
i=1

DM
i γ z

0M
i

〉
=−

〈
S

J∑
M=1

IM∑
j=1

DM
j γ z

M
j ,

J∑
M=1

IM∑
i=1

DM
i γ φ

0M
i

〉
∀z ∈ /Z.

(47)

The upgraded Neumann–Neumann preconditioner(44) is therefore obtained by first solving the local
Neumann problems(42) and (43)and then the variational coarse problem(47)set on the coarse product
space/Z.

We introduce the coarse trace space

VH =
J∑

M=1

∑
i∈T M

DM
i γZ

M
i +

Pc∑
j=1

D∗j γZ∗j , (48)

a setV ⊥H ⊂ (VΓ )
∗ given by

L ∈ V ⊥H ⇔ 〈L, z〉 = 0 ∀z ∈ VH
and theS-orthogonal projectionPZ from VΓ ontoVH given by

〈Sz, Ū − PZŪ〉 = 0 ∀z ∈ VH ,∀Ū ∈ VΓ , PZŪ ∈ VH . (49)
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Under this notation, the coarse problem(47)can be written as

J∑
M=1

IM∑
i=1

DM
i γ z

0M
i = −PZ

J∑
M=1

IM∑
i=1

DM
i γ φ

0M
i ,

and thus the new Neumann–Neumann preconditioner(44) takes the final form

M−1(z0)L = (I − PZ)

J∑
M=1

IM∑
i=1

DM
i γ φ

0M
i . (50)

Lemma 3.2. Suppose thatH [0] ∈ V ⊥H , P [0] = 0 in algorithm PCG1using preconditioner(44). Then
H [n] ∈ V ⊥H , n = 1,2, . . .

Proof. See[5]. �

According toLemma 3.2, we must only suppose thatH [0] ∈ V ⊥H , which is achieved by setting the
initial solutionŪ [0] ∈ V ⊥H to the solution of the coarse problem

〈H [0], z〉 ≡ 〈F − SŪ [0], z〉 = 0 ∀z ∈ VH . (51)

This coarse problem is identical to(47) within a change of right-hand side and thus the conditions(40)
and (41)do not restrict the generality of the proposed preconditioner.

4. The original problem

Now, we solve by the successive approximations method,Eq. (20). We must effectively compute the
solutionŪ k of the linear problem

S0Ū
k = bk, (52)

with

S0 =
J∑

M=1

∑
i∈T M

(R̄M
i )

T SMi R̄
M
i , bk = F − SKONŪ

k−1,

F =
J∑

M=1

∑
i∈IM

(R̄M
i )

T (Tr−1
iM )T LM

i , SKON =
Pc∑
j=1

R̄T
∗jS∗j R̄∗j .

TheEq. (52)we solve by a preconditioned conjugate gradient method PCG2(we costruct the sequence
of the iterationsω̄[n] → Ū k for n→∞):

Chooseω̄[0] (by theEq. (64)), η[0] = bk − S0ω̄
[0] , π [0] = 0.

Iteration loop onn:
Compute the preconditioned direction of descentκ [n] =M−1

0 η[n]

Computeπ [n] = κ [n] + (〈η[n], κ [n]〉/〈η[n−1], κ [n−1]〉)π [n−1]
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On each subdomainΩM
i , i ∈ T M , M = 1, . . . ,J,

solve in parallel Dirichlet problem

Å iM
◦
Ω

M
i = BiMR̄

M
i π

[n],

Compute

ξ [n] = S0π
[n] =

J∑
M=1

∑
i∈T M

(R̄M
i )

T (ĀiMR̄
M
i π

[n] − BT
iM
◦
ωM
i ),

α[n] = 〈η
[n], κ [n]〉
〈ξ [n], π [n]〉 ,

η[n+1] = η[n] − α[n]ξ [n],

ω̄[n+1] = ω̄[n] + α[n]π [n],

End loop onn:

Now, we define a preconditionerM−1
0 :

M−1
0 =

J∑
M=1

∑
i∈T M

DM
i (S

M
i )
−1(DM

i )
T (53)

with a new injectionDM
i .

Definition 4.1. We define an injection

DM
i : VM

i → VΓ , i ∈ T M, M = 1, . . . ,J, (54)

such that on each interface degree of freedom is

DM
i v̄(Pl) = v̄(Pk) if Pk ∈ Γ M

i ⊂ ∂Ω∗j for anyj ∈ {1, . . . , Pc}, (55)

DM
i v̄(Pl) = v̄(Pk)

+Mi

+T
for Pk ∈ Γ M

i /⊂ ∂Ω∗j ∀j = 1, . . . , Pc, (56)

if the lth degree of freedom ofVΓ corresponds to thekth degree of freedom ofVM
i and

DM
i v̄(Pl) = 0 if not. (57)

Letφ0M
i ∈ Q(ΩM

i ) be the particular solution of the variational problem(29)defined by(42). Similarly
to the auxiliary problem we now define a new preconditioner.

Definition 4.2. We define our new Neumann–Neumann preconditionerM−1
0 by

M−1
0 (z0)L =

J∑
M=1

∑
i∈T M

DM
i γ (φ

0M
i + z0M

i )|Γ M
i
, (58)
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with the solutionz0M
i of the minimization problem

z0 = arg min
z∈/0Z

〈S0(M
−1
0 (z)− S−1

0 )L, (M−1
0 (z)− S−1

0 )L〉, (59)

/0Z ≡ i∈T M,M=1,...,J(Z
M
i ).

Its minimum is attained for the functionz0 which cancels its gradient, i.e. for the solution of the
variational coarse equality

〈
S0

J∑
M=1

∑
j∈T M

DM
j γ z

M
j ,

J∑
M=1

∑
i∈T M

DM
i γ z

0M
i

〉

= −
〈
S0

J∑
M=1

∑
j∈T M

DM
j γ z

M
j ,

J∑
M=1

∑
i∈T M

DM
i γ φ

0M
i

〉
∀z ∈ /0Z. (60)

We introduce the coarse trace space

VoH =
J∑

M=1

∑
i∈T M

DM
i γZ

M
i , (61)

a setV ⊥oH ⊂ (VΓ )
∗ given by

L ∈ V ⊥oH⇔ 〈L, z〉 = 0 ∀z ∈ VoH,

and theS0-orthogonal projectionPoZ from VΓ ontoVoH given by

〈S0z, Ū − PoZŪ〉 = 0 ∀z ∈ VoH,∀Ū ∈ VΓ , PoZŪ ∈ VoH. (62)

Under this notation, the coarse problem(60)can be written as

J∑
M=1

∑
i∈T M

DM
i γ z

0M
i = −PoZ

J∑
M=1

∑
i∈T M

DM
i γ φ

0M
i ,

and thus the new Neumann–Neumann preconditioner(58) takes the final form

M−1
0 (z0)L = (I − PoZ)

J∑
M=1

∑
i∈T M

DM
i γ φ

0M
i . (63)

Lemma 4.1. Suppose thatη[0] ∈ V ⊥oH, π [0] = 0 in algorithm PCG2 using by preconditioner(58), then
η[n] ∈ V ⊥oH, n = 1,2, . . .

According toLemma 4.1we must only suppose thatη[0] ∈ V ⊥oH, which is achieved by setting the initial
solutionω̄[0] ∈ V ⊥oH to the solution of the coarse problem

〈η[0], z〉 ≡ 〈bk − S0ω̄
[0], z〉 = 0 ∀z ∈ VoH. (64)
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A convergence theorem requires to introduce some definitions. LetΘ be an ortogonal complement of
VoH in VΓ . We introduce seminorms

|R̄∗j v̄|a∗j =
√ ∑

[i,M]∈ϑj

aMi (Tr−1
iM R̄M

i v̄,Tr−1
iM R̄M

i v̄), j = 1, . . . , Pc.

Lemma 4.2. The expression

‖ū‖2Q = 〈S0ū, ū〉
is a norm onΘ where

Q = i,M:i∈T M ;M=1,...,JQ(Ω
M
i )

Definition 4.3. Let T : Θ → Θ be a mapping defined by

〈S0(Tȳ), v̄〉 = 〈F − SKON(ȳ), v̄〉 ∀v̄ ∈ Θ. (65)

Theorem 4.1. Assume that there exists a constantλ < (1/
√

2Pc) such that the following condition
hold:

|R̄∗j ū|a∗j ≤ λ‖ū‖Q ∀ū ∈ Θ, ∀j ∈ {1, . . . , Pc}. (66)

Fig. 2. Model problem—(a) geometry and (b) deformations.
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Then the mappingT is the contraction onΘ. If Ū0 ∈ Θ then the sequence of the iterationsŪ k, computed
by (52), are convergent and the limit is a fixed pointŪ of the mappingT. The following error estimate
holds

‖Ū k − Ū‖Q ≤ (2λ2Pc)
k

1− 2λ2Pc
‖Ū0− TŪ0‖Q.

Proof. See[5]. �

5. Numerical experiments

In this section, we illustrate the practical behavior of our algorithm on the solution of a model problem.
The introduced algorithm has been implemented in the program system MATLAB Version 5.2.1 and in
MPI Version 1.2.0 by using FORTRAN 77 compiler. A geometry of the problem is inFig. 2(a).

Material parameters: Three regions with Young’s modulusE = 1010 (Pa) and Poisson’s ratioν = 0,3.
Boundary conditions: Prescribed zero displacement on 785–798. Pressure 0.18×107 (Pa) on 1252–1236.

Bilateral contact boundary: 1493–1508. Unilateral contact boundary: 14–1, 197–210.
Discretization statistics: Eight subdomains, 1748 nodes, 3040 elements, 3304 unknowns, 28 unilateral

contact conditions, 68 interface elements, dimension of the coarse equality for the auxiliary problem is
13, dimension of the coarse equality for the original problem is 7.

Convergence statistics: Nine iterations of the PCG1 algorithm for the auxiliary problem, 17 iterations of
the successive approximations method, total 38 iterations of the PCG2 algorithm for the original problem.

Fig. 2(b) represents deformations in model problem.
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Abstract

A non-overlapping domain decomposition is applied to a multibody unilateral contact problem with given fric-
tion (Tresca’s model). Approximations are proposed on the basis of the primary variational formulation (in terms
of displacements) and linear finite elements. For the discretized problem we employ the concept of local Schur
complements, grouping every two subdomains which share a contact area. The proposed algorithm of successive
approximations can be recommended for “short” contacts only, since the contact areas are not divided by interfaces.
The numerical examples show the practical efficiency of the algorithm.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Domain decomposition; Unilateral contact; Tresca‘s friction model; Formulation in displacements; Linear finite

elements

1. Introduction

In mechanics, geomechanics and biomechanics as well as technological practice there are problems
whose investigations lead to solving model problems based on variational formulations. Such problems are
described frequently by variational inequalities. Variational inequalities physically describe the principle
of virtual work in its inequality form.

∗ Corresponding author. Tel.: +420 377 632 611; fax: +420 377 632 602.
E-mail addresses:danek@kma.zcu.cz (J. Daněk); hlavacek@math.cas.cz (I. Hlaváček); nedoma@cs.cas.cz (J. Nedoma).

0378-4754/$30.00 © 2004 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.matcom.2004.12.007
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Domain decomposition for contact problems has been applied by many authors. An augmented La-
grangian method was used by Dostál et al. [1]. The scalability of the algorithm has been studied by
Scḧoberl [2], Dureisseix and Farhat[3] and Dost́al and Hoŕak [4]. Boundary element technique was
employed by Kosior et al.[5]. For related papers, we refer to Luo Ping and Liang Guoping[6] and the
literature therein.

In the present paper we will deal with numerical solution of a generalized semi-coercive contact problem
with the given friction arising in static and quasi-static linear elasticity, for the case that several bodies of
arbitrary shapes are in mutual contacts and are loaded by external forces, by using the non-overlapping
domain decomposition method. The problem will be formulated as the primary variational inequality
problem (see[21]), i.e. in terms of displacements.

We follow the approach proposed by Le Tallec[7] and group every two subdomains which share a
contact area into a single “nonlinear” subdomain (see a similar idea used by Barboteu et al.[8]).

Section2 contains both classical and weak formulation of the problem. Conditions sufficient and
necessary for the existence of a weak solution are given. Approximations by linear finite elements on
triangulation are proposed in Section3 together with error estimates. In Section4we introduce a nonover-
lapping domain decomposition by proving the equivalence of the weak solution on the original domain
with that on the interface and subdomains. For the discretized version we employ the concept of local
Schur complements. The resulting nonlinear equation on the interface is solved by successive approxima-
tions. For the starting approximation we choose the solution of the linear problem, where the unilateral
contact conditions are replaced by classical bilateral conditions without friction.

Sections5 and 6are devoted to the construction of suitable preconditioning matrices of Neumann–
Neumann type. In Section7we study the convergence of successive approximations. A sufficient condition
and an error estimate is deduced on the basis of contractive mappings theorem. Section8 contains a
numerical test solving a geomechanical model with two domains in contact.

Though the solution of the problem with given friction (Tresca’s model) has little physical meaning
itself, it can be plugged into an iterative process for the solution of a more realistic Coulomb friction
model (see[9–11]).

Since we do not divide the contact areas by interfaces, the proposed algorithm can be recommended for
“short” contact only. Such configurations occur e.g. in models of human joints – hips or knees (see[12,13]).

2. Model formulation

Let the investigated part of the elastic body occupy a union� of “s” bounded domains�ι, ι = 1, . . . , s
in R

2, with Lipschitz boundaries∂�ι. Let the boundary∂� =⋃s
ι=1 ∂�

ι consist of four disjoint parts, i.e.
∂� = �̄u ∪ �̄τ ∪ �̄c ∪ �̄o. Let us denote

�klc = ∂�k ∩ ∂�l, k, l = 1, . . . , s, k �= l, �c = ∪k,l�klc , �u = ∪sι=1�
ι
u,

�ιu = �u ∩ ∂�ι, �ιo = �o ∩ ∂�ι, �τ = ∪sι=1�
ι
τ, �

ι
τ = �τ ∩ ∂�ι.

Assume that either

meas�klc > 0 or�klc = ∅
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and either

meas�ιu > 0 or�ιu = ∅.

Let body forcesF, surface tractionsP, boundary displacementsu0 and slip limitsgkl be given.
We have the following problem: find the displacementsuι in all �ι such that

∂

∂xj
τij(uι)+ Fι

i = 0 in�ι, ι = 1, . . . , s, i = 1,2, (2.1)

τij(uι) = cιijkmekm(uι) in�ι,uι = uι0 on�ιu, (2.2)

uιn = 0 andτιt = 0 on�ιo, τij(u
ι)nιj = Pι

i on�ιτ, (2.3)

and on every�klc the following conditions are satisfied:

ukn − uln ≤ 0, τkn ≤ 0, (ukn − uln)τ
k
n = 0, (2.4)

|τklt | ≤ gkl, (2.5)

|τklt | < gkl ⇒ ukt − ult = 0, (2.6)

|τklt | = gkl ⇒ ∃ϑ ≥ 0, ukt − ult = −ϑτklt . (2.7)

We denote the stress tensor byτij, eij(uι) = (1/2)((∂ui/∂xj)+ (∂uj/∂xi)),

ukn = uki n
k
i , u

l
n = ulin

k
i = −ulinli f (nosumoverk or l),

ukt = uk1n
k
2− uk2n

k
1, u

l
t = ul1n

k
2− ul2n

k
1,

τkn = τkijn
k
i n

k
j, τ

k
t = (τkti), τ

k
ti = τkijn

k
j − τknn

k
i , τ

kl
t ≡ τkt .

In what follows, we introduce

W =∏s
ι=1[H

1(�ι)]2, ‖v‖W =
(∑

ι≤s

∑
i≤2

‖vιi‖2
1,�ι

)1/2

,

V0 = {v ∈ W |v = 0 on�u andvn = 0 on�o}, V = u0+ V0,

K = {v ∈ V |vkn − vln ≤ 0 on ∪kl �klc }.

Assume thatuk0n − ul0n = 0 on∪k,l�klc . Let

Fι
i ∈ L2(�ι), Pι

i ∈ L2(�ιτ), c
ι
ijkl ∈ L∞(�ι), gkl ∈ L∞(�klc ),u0 ∈ W.

Definition 2.1. A functionu is a weak solution of problemPsg, if u ∈ K and

a(u, v − u)+ j(v)− j(u) ≥ L(v − u) ∀v ∈ K, (2.8)
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where

a(u,w) =
s∑
ι=1

∫
�ι

cιijkleij(u
ι)ekl(wι) dx,

j(v) =
∑
k,l

∫
�klc

gkl|vkt − vlt|ds,

L(w) =
∑
ι≤s

(∫
�ι

F ι
iw

ι
i dx+

∫
�ιτ

Pι
iw

ι
i ds

)
.

Let us denote the sets of rigid displacements and rotations

Pι = {vι = (vι1, v
ι
2)|vι1 = aι1− bιx2, v

ι
2 = aι2+ bιx1}, P =

s∏
ι=1

Pι,

whereaιi, i = 1,2 andbι are arbitrary real constants. Let

PV = P ∩ V0, P0 =

v ∈ PV |vkn − vln = 0 on

⋃
k,l

�klc


 .

Theorem 2.1. Assume that

P0 = {0}, P ∩K �= {0}

and

L(w) < j(w) ∀w ∈ P ∩K − {0}.

Then there exists a weak solution. If

|L(w)| > j(w) ∀w ∈ PV − {0},

the solution is unique. If

|L(w)| ≤ j(w) ∀w ∈ PV ,

then for any two solutionsu,u∗

u∗ − u ∈ PV and L(u∗ − u) = j(u∗)− j(u)

holds.
For the proof see[14, Theorem 4.1].
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Remark 2.1. The following condition is necessary for the existence of a weak solution

L(w) ≤ j(w) ∀w ∈ P ∩K.

For the proof see Lemma 4.4 by Hlaváček and Nedoma[14].

Remark 2.2. A simple example satisfying the conditions ofTheorem 2.1is given in Remark 4.2 of
Hlaváček and Nedoma[14].

3. Finite element approximation

Let the domain� =⋃s
ι=1�

ι be approximated by�h =
⋃s

ι=1�
ι
h with polygonal boundary∂�h =

�̄uh ∪ �̄τh ∪ �̄ch ∪ �̄oh, where�̄uh, �̄τh, �̄ch, �̄oh are piecewise linear. Let�h =
⋃s

ι=1�
ι
h be triangu-

lated, letqi be nodes of used triangulation. LetTιh, ι = 1, . . . , s, denote triangulations of polygonal
domains�ι

h, ι = 1, . . . , s, andTh = {T ι
h, ι = 1, . . . , s}, We assume thatT ι

h, ι = 1, . . . , s, are consis-
tent with the respective decompositions of the boundaries∂�ι

h, ι = 1, . . . , s and let the nodes lie on
�klc belonging to the triangulations corresponding to the neighbouring subdomains�k and�l being
in a mutual contact. The triangulationTh is said to be regular, if allT ι

h, ι = 1, . . . , s, are regular,h
is the maximal side of the triangulation. For every nodeqi of the triangulationTh on �klc and�o we
define the set of indicesNkl

i = {j ∈ {1, . . . , r} | qi ∈ �klcj} andNi = {j ∈ {1, . . . , r′} | qi ∈ �oj}, where

�klc =
⋃r

j=1�
kl
cj, �o =

⋃r′
j=1�oj, �

kl
cj, �oj denote segments on�klc , �o andr, r′ the number of segments on

�klc and�o, respectively.
Let us define a finite dimensional spaceVh by

Vh = {vh | vh ∈ [C(�1)]2× · · · × [C(�s)]2, vh|Thi ∈ [P1(Thi)]
2,∀Thi ∈ Th;

vhn(qi) = 0, qi ∈ �o; vh(qi) = u0(qi), qi ∈ �u}
and a finite dimensional set of admissible displacements

Kh = {vh|vh ∈ Vh, (vkhn − vlhn)(qi) ≤ 0, qi ∈ �klc }.

Definition 3.1. Functionuh ∈ Kh is a solution of the problem (Psg)h if

a(uh, vh − uh)+ j(vh)− j(uh) ≥ L(vh − uh) ∀vh ∈ Kh.

Note that in a general caseKh �⊂ K.

The next theorem gives the connection between the problem (Psg) and the problem (Psg)h if h→ 0+
under the assumption that the solution of the problem is sufficiently smooth.

Theorem3.1.Let∂�and its parts�u,�τ ,�o,�c bepiecewise polygonal,�klc =
⋃r

j=1�
kl
cj.Let the solution

of problem(Psg) u ∈ K ∩ [H2(�)]2, τij(uι) ∈ H1(�ι), i, j = 1,2 andι = 1, . . . , s, τkln (u) ∈ L∞(�klc ), ukn,
uln ∈ H2(�klj ), k, l = 1, . . . , s andj = 1, . . . , r. LetKh ⊂ K. Let the set of points at which the change of
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ukn − uln < 0 toukn − uln = 0 occurs, be finite. Then for the semi-coercive case

|u− uh| = O(h), where |w| =
(

s∑
ι=1

∫
�ι
h

eij(w)eij(w) dx

)1/2

(3.1)

and for the coercive case

‖u− uh‖W = O(h).

For the proof see[14,15].

4. Domain decomposition algorithm

4.1. Introduction

For effective solution of the problem the parallelization technique by using the High Performance
Fortran can be employed. The latter techniques can be based on overlapping or non-overlapping domain
decomposition methods, respectively. The global problem is splitted in a sequence of local problems of
a smaller dimension. In this section we use the non-overlapping domain decomposition method derived
from the primal formulation in displacements and group every two subdomains in contact (cf. Barboteu
et al.[8], LeTallec[7], Hlaváček[16], Daňek [17], Pavarino, Toselli[18]).

4.2. Domain decomposition

Let every domain̄�ι =⋃J(ι)
i=1 �̄

ι
i, whereJ(ι) represents a number of subdomains of�ι. Let us denote

�ιi = ∂�ι
i\∂�ι, ι ∈ {1, . . . , s}, i ∈ {1, . . . , J(ι)}, a part of dividing line and let� =⋃s

ι=1

⋃J(ι)
i=1�

ι
i represent

the whole interface boundary. Let us introduce

T ι = {j ∈ {1, . . . , J(ι)} : �̄c ∩ �̄ι
j = ∅}, ι = 1, . . . , s (4.1)

the set of all indices of subdomains of the domain�ι which are not adjacent to a contact, and let

�∗j = ∪[i,ι]∈ϑ�ι
i, (4.2)

where

ϑ = {[i, ι] : ∂�ι
i ∩ �c �= ∅} (subdomains in unilateral contact). (4.3)

Suppose that

� ∩ �c = ∅. (4.4)

Then for the trace operatorγ : [H1(�ι
i)]

2 → [L2(∂�ι
i)]

2 we have

V� = γK|� = γV |�. (4.5)

Let γ−1 : V� ∈ V be an arbitrary linear inverse mapping satisfying

γ−1v = 0 on ∪k,l �klc ∀v ∈ V�. (4.6)
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Further, we introduce restrictions̄Rι
i : V� → �ιi; Lι

i : Lι → �ι
i; jιi : jι → S; aιi(., .) : aι(., .) → �ι

i;
V (�ι

i) : V → �ι
i and let us introduceV 0(�ι

i) by

V 0(�ι
i) = {v ∈ V |v = 0 on(∪sι=1�

ι) \�ι
i},

representing the space of functions with zero traces on�ιi.

Theorem 4.1. A functionu is a solution of a global problem(Psg), if and only if:
its traceu = γu|� on the interface� satisfies the condition

s∑
ι=1

J(ι)∑
i=1

[aιi(u
ι
i(u), γ−1w)− Lι

i(γ
−1w)] = 0 ∀w ∈ V�,u ∈ V�, (4.7)

and its restrictionsuιi(u) ≡ u|�ι
i
satisfy

(i) the condition

aιi(u
ι
i(u), φιi) = Lι

i(φ
ι
i) ∀φιi ∈ V 0(�ι

i), u
ι
i(u) ∈ V (�ι

i), γu
ι
i(u)|�ιi = R̄ι

iu, (4.8)

for i ∈ T ι, ι = 1, . . . , s,
(ii) the condition

∑
[i,ι]∈ϑ

aιi(u
ι
i(u), φιi)+ jι(uιi(u)+ φιi)− jι(uιi(u))

∑
[i,ι]∈ϑ

Lι
i(φ

ι
i) (4.9)

for all φ ≡ (φιi, [i, ι] ∈ ϑ), φιi ∈ V 0(�ι
i), and such that

u+ φ ∈ K, γuιi(u)|�ιi = R̄ι
iu for [i, ι] ∈ ϑ. (4.10)

Proof. Let u be a weak solution of the problem (Psg). Thenu satisfies

a(u, v − u)+ j(v)− j(u) ≥ L(v − u) ∀v ∈ K. (4.11)

Let us put test functions

vι = uι ± φιi, φιi ∈ V 0(�ι
i), i ∈ T ι, ι = 1, . . . , s, vµ = uµ, µ �= ι, µ ∈ {1, . . . , s}

into (4.11). Thus we obtain

aιi(u
ι
i(u), φιi)− Lι

i(φ
ι
i) = 0 (4.12)

so that(4.8)holds.
Now let us putv = u+ φ, φ = (φιi, [i, ι] ∈ ϑ, φιi ∈ V 0(�ι

i)), such thatu+ ϕ ∈ K, i.e. such that

(ukn − uln)+ (ϕkin − ϕljn) ≤ 0 on ∪k,l �klc .

Hence(4.9) follows.
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Next, we will derive thecondition (4.7)for u = γu|�. First, we decompose the set of admissible
displacements as

K = γ−1V� ⊕ V 0(�1
1)⊕ V 0(�1

2)⊕ · · · ⊕ V 0(�1
J(1))⊕ · · ·

· · · ⊕ V 0(�2
1)⊕ V 0(�2

2)⊕ · · · ⊕ V 0(�2
J(2))⊕ · · ·

· · · ⊕ V 0(�s
1)⊕ V 0(�s

2)⊕ · · · ⊕ V 0(�s
J(s)).

(4.13)

Any functionv ∈ K can be written in the following form

v = γ−1(v)+
s∑
ι=1

J(ι)∑
i=1

φιi(v), (4.14)

where

v = γv|�, φιi(v) ∈ V 0(�ι
i).

According to the definition of the mappingγ−1 on�c, given by(4.6), we find

(φki (v))n − (φlj(v))n ≤ 0 on ∪kl �klc (4.15)

if [ i, k] ∈ ϑ and [j, l] ∈ ϑ.
From(4.14)we infer

v − u = γ−1(v)− γ−1(u)+
s∑
ι=1

J(ι)∑
i=1

(φιi(v)− φιi(u)). (4.16)

The inequality(4.11)implies

0≤
s∑
ι=1

[aι(uι, γ−1(v)− γ−1(u))− Lι(γ−1(v)− γ−1(u))] +
s∑
ι=1

∑
i∈T ι

[aιi(u
ι
i, φ

ι
i(v)− φιi(u))

−Lι
i(φ

ι
i(v)− φιi(u))] +

∑
[i,ι]∈ϑ

[aιi(u
ι
i, φ

ι
i(v)− φιi(u))− Lι

i(φ
ι
i(v)− φιi(u))] + j(v)− j(u).

By virtue of (4.8), the second sum vanishes. According to(4.6), we may take

φιi(v) = φιi(u) ∀ι = 1, . . . , s and i ≤ J(ι), (4.17)

so that

0 ≤
s∑
ι=1

[aι(uι, γ−1(v)− γ−1(u))− Lι(γ−1(v)− γ−1(u))] + j(v)− j(u).

Next, we have

γ−1(v)− γ−1(u) = γ−1(v − u)
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and we can take

v − u = ±w,

wherew is an arbitrary function fromV |�. Moreover,

j(v)− j(u) = j(γ−1(v)+
∑

[i,ι]∈ϑ
φιi(v))− j(γ−1(u)+

∑
[i,ι]∈ϑ

φιi(u)) = 0

due to(4.6) and (4.17). As a consequence,(4.7) follows.
On the contrary, let us assume that theconditions (4.7)–(4.9)hold for same functionu ∈ K. For any

v ∈ K we may write

I ≡ a(u, v − u)− L(v − u)+ j(v)− j(u)

=
s∑
ι=1

[aι(uι, γ−1(v − u))− Lι(γ−1(v − u))] +
s∑
ι=1

∑
i∈T ι

[aιi(u
ι
i, φ

ι
i(v)−φιi(u))−Lι

i(φ
ι
i(v)− φιi(u))]

+
∑

[i,ι]∈ϑ
[aιi(u

ι
i, φ

ι
i(v)− φιi(u))− Lι

i(φ
ι
i(v)− φιi(u))] + j(v)− j(u).

Due to(4.7) and (4.8), the first and the second sum vanish.
Next, we have for allι ≤ s andi ≤ J(ι)

ψι
i ≡ φιi(v)− φιi(u) ∈ V 0(�ι

i), (4.18)

uιi + ψι
i = γ−1(u)|�ι

i
+ φιi(v), (4.19)

so that

u+
s∑
ι=1

J(ι)∑
i=1

ψι
i ∈ K

follows from(4.15) and (4.6).
Then(4.9)yields that

∑
[i,ι]∈ϑ

[aιi(u
ι
i, ψ

ι
i)− Lι

i(ψ
ι
i)] ≥ j(u)− j

(
u+

s∑
ι=1

J(ι)∑
i=1

ψι
i

)
.

Altogether, we obtain

I ≥ j(v)− j

(
u+

s∑
ι=1

J(ι)∑
i=1

ψι
i

)
= 0
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since

j(v) = j(γ−1(v)+
∑

[i,ι]∈ϑ
φιi(v)) = j

(∑
[i,ι]∈ϑ

φιi(v)

)

and

j

(
u+

s∑
ι=1

J(ι)∑
i=1

ψι
i

)
= j

(
γ−1(u)+

∑
[i,ι]∈ϑ

φιi(v)

)
= j

(∑
[i,ι]∈ϑ

φιi(v)

)

follows from (4.19) and (4.6). As v ∈ K was arbitrary,u is a weak solution of the (global) problem
Psg. �

4.3. Local and global operators of the Schur complement

The aim of this subsection is to analyze in detail the condition (4.7) and to employ it for numeri-
cal computation of our discretized problem (Psg)h. We will introduce the concept of thelocal Schur
complement.

Let us denote

V ι
i = {γv|�ιi |v ∈ K} = {γv|�ιi |v ∈ V }

and define a particular case of the restriction of the inverse mappingγ−1(·)|�ι
i
by{

Tr−1
iι : V ι

i → V (�ι
i), γ(Tr−1

iι u
ι
i)|�ιi = uιi, i = 1, . . . , J(ι), ι = 1, . . . , s,

aιi(Tr
−1
iι u

ι
i, v

ι
i) = 0 ∀vιi ∈ V 0

0 (�ι
i), Tr

−1
iι u

ι
i ∈ V (�ι

i), i ∈ T ι, ι = 1, . . . , s.
(4.20)

where

V 0
0 (�ι

i) = {v ∈ V0|v = 0 on (∪�ι
i) \�ι

i}. (4.21)

For [i, ι] ∈ ϑ we complete the definition by the boundarycondition (4.6), i.e.

Tr−1
iι u

ι
i = 0 on ∪k,l �kl. (4.22)

Definition 4.1. By the local Schur complement fori ∈ T ι it is meant the operatorSιi : V ι
i → (V ι

i )
∗ defined

by

〈Sιiuιi, vιi〉 = aιi(Tr
−1
iι u

ι
i, Tr

−1
iι v

ι
i) ∀uιi, vιi ∈ V ι

i . (4.23)

In the matrix form we may write

SιiU
ι
i = (Āiι − BT

iι Å
−1
iι Biι)U

ι
i, (4.24)

where we use the decomposition of the matrixAiι ≡ aιi(., .) into blocks of the form

Aiι =
[
Åiι Biι

BT
iι Āiι

]
, (4.25)
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which corresponds to the decomposition of the vector of nodal parametersUι
i = [Ů

ιT

i ,U
ιT
i ]T of �̄ι

i where
the nodes ofUι

i belong to�ιi and the internal degrees of freedom areŮ
ι

i.
To derive(4.24)we firstly find

Tr−1
iι =


−Å−1

iι Biι

I


 , i ∈ T ι, ι = 1, . . . , s. (4.26)

Then from(4.20)for the vectorw = (ẘ,w)T = Tr−1
iι U

ι
i we obtain thatw = Uι

i and using the decom-
position(4.25)we arrive at

Åiιẘ + Biιw = 0,

so that

ẘ = −Å−1
iι BiιU

ι
i.

Hence(4.26)follows. Inserting(4.26)into thedefinition (4.23)with the matrix(4.25)we obtain(4.24).
Next, for subdomains which are in contact we will define acommon local Schur complementas follows.

Definition 4.2. The common local Schur complement for the union�k
i ∪�l

j (where�klc ⊂ �c and [i, k] ∈
ϑ, [j, l] ∈ ϑ) is the operator

Skl : (Vk
i × V l

j) → (Vk
i × V l

j)
∗ = (Vk

i )∗ × (V l
j)
∗

defined by the relation

〈Skl(yk
i
, yl

j
), (vki , v

l
j)〉 = aki (u

k
i (y

k

i
), Tr−1

ik v
k
i )+ alj(u

l
j(y

l

j
), Tr−1

jl v
l
j) ∀(vki , v

l
j) ∈ Vk

i × V l
j. (4.27)

HereTr−1
ik andTr−1

jl are defined again by means of(4.20)–(4.22).
The functionsuki (y

k

i
) andulj(y

l

j
) denote the solution of theproblem (4.9), i.e.

aki (u
k
i (y

k

i
), φki )+ alj(u

l
j(y

l

j
), φlj)+ j(u(y)+ φ)− j(u(y)) ≥ Lk

i (φ
k
i )+ Ll

j(φ
l
j)

∀φ ≡ (φki , φ
l
j), φ

k
i ∈ V 0(�k

i ), φ
l
j ∈ V 0(�l

j), (4.28)

such that

u(y)+ φ ∈ K, γu(y)|�ιi = R̄ι
iy,

u(y) ≡ (uki (y
k

i
),ulj(y

l

j
)) ∈ V (�k

i )× V (�l
j), (uki (y))n − (ulj(y))n ≤ 0 on�klc .

The condition (4.7)can be expressed by means of local Schur complements. In fact, we have the
following lemma.
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Lemma 4.1. The traceu = γu|� of the weak solution satisfies the following condition
s∑
ι=1

∑
i∈T ι
〈Sιiuιi, vιi〉 +

∑
k,l

〈Skl(uki ,ulj), (vki , vlj)〉 =
s∑
ι=1

J(ι)∑
i=1

Lι
i(Tr

−1
iι v

ι
i)

∀v ∈ V�, [i, k] ∈ ϑ, [j, l] ∈ ϑ, �klc ⊂ �c,

(4.29)

wherevιi = R̄ι
iv, uιi = R̄ι

iu.

Proof. By definition (4.20) and (4.23)we have

〈Sιiuιi, vιi〉 = aιi(Tr
−1
iι u

ι
i, Tr

−1
iι v

ι
i) = aιi(u

ι
i(u), Tr−1

iι v
ι
i) (4.30)

since

uιi(u)− Tr−1
iι u

ι
i ∈ V 0(�ι

i).

For [i, k] ∈ ϑ and [j, l] ∈ ϑ, �klc ⊂ �c we have(4.27). Inserting(4.30) and (4.27)into the equation(4.7),
we obtain(4.29).

Remark 4.1. Conditions(4.7) and/or (4.29), respectively, express the continuity of the stress vector
τ(u).n on the interface� (see[16]).

In accordance withLemma 4.1we will solve Eq.(4.29)on the interface� in the dual space (V�)∗. Let
us denote

SCON =
∑
k,l

R̄T
klS

klR̄kl, (4.31)

where

R̄kl(u) = (R̄k
i (u), R̄l

j(u))T ,u ∈ V�, [i, k] ∈ ϑ, [j, l] ∈ ϑ, �klc ⊂ �c.

By definition, we may write

(Vk
i ×V l

j)
∗〈Skl(R̄kl(u)), R̄kl(w)〉Vk

i ×V l
j
≡ (V�)∗ [(R̄kl)TS

klR̄kl(u),w]V�

(V ι
i )
∗〈SιiR̄ι

iu, R̄
ι
iw〉V ι

i
≡ (V�)∗ [(R̄ι

i)
TSιiR̄

ι
iu,w]V�

andcondition (4.29)can be expressed in the spaceV ∗� as follows:

S0U+ SCONU = F, (4.32)

where

S0 =
s∑
ι=1

∑
i∈T ι

(R̄ι
i)
TSιiR̄

ι
i (4.33)

and

F =
s∑
ι=1

J(ι)∑
i=1

(R̄ι
i)
T (Tr−1

iι )TLι
i. (4.34)
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Eq.(4.32)will be solved bysuccessive approximations, because the operatorsSkl and thereforeSCON are
nonlinear.

We choose a suitable initial approximationU0, for instance the solution of the global primal problem,
where the boundary conditions on�c are replaced by the linear “classical” bilateral conditions

ukn − uln = 0, τklt = 0 on�c0 ≡ ∪k,l�klc0 (4.35)

(note that these conditions corresponds withgkl ≡ 0 and j(u) ≡ 0), where every�klc0 is a part of
�klc ,meas�klc0 > 0, chosen a priori (�klc0 = �klc is allowed, for example). On�klc \�klc0 we consider ho-
mogeneous conditions of zero surface loadPk

j = Pl
j = 0, j = 1,2.

DenotingK0 = {v ∈ V |vkn − vln = 0 on ∪k,l �klc0},we therefore solve the following problem

u0 = arg min
v∈K0

L(v), (4.36)

whereL(v) = 1
2a(v, v)− L(v) and set

U0 = γu0 |� .

The auxiliaryproblem (4.36)is a linear elliptic boundary value problem of a system of “s" elastic bodies
with bilateral contact. We can solve it by the domain decomposition method again, as we will see later.

Returning to the non-linear Eq.(4.32), we assume that the approximationUk−1 is known and define
the next approximationUk as the solution of the following linear problem

S0Uk = F− SCONUk−1, k = 1,2, . . . (4.37)

To the linear operatorS0 a suitable preconditioning of the Neumann–Neumann type will be applied.

4.4. Solution of the auxiliary problem

Let us assume that

K0 ∩ P = {0}. (4.38)

Then the Korn’s inequality holds for the union
⋃s

ι=1�
ι (see[20]). Consequently, there exists a unique

solutionu0 of the auxiliary problem (4.36).
Instead of the variational inequality (3.1) we have the following equation foru0 ∈ K0:

DL(u0, v) = 0 ∀v ∈ K0
0 = {v ∈ V0|vkn − vln = 0 on ∪k,l �klc0}. (4.39)

Thus an analogue ofTheorem 4.1can be derived, where a mappingγ−1
0 : V� → V plays a role, being

linear and satisfying conditions

(γ−1
0 v)kn − (γ−1

0 v)ln = 0 on ∪k,l �klc0. (4.40)

Theorem 4.2.A functionu0 ∈ K0 is a solution of the auxiliary problem(4.36), if and only if its trace
u0 ≡ γu0 |� on the interface� fulfils the condition

s∑
ι=1

J(ι)∑
i=1

[aιi(u
0ι
i (u0), γ−1

0 w)− Lι
i(γ

−1
0 w)] = 0 ∀w ∈ V�,u0 ∈ V� (4.41)
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and its restrictionsu0ι
i (u0) ≡ u0|�ι

i
satisfy the following conditions

aιi(u
0ι
i (u0), φιi) = Lι

i(φ
ι
i) ∀φιi ∈ V 0(�ι

i),

u0ι
i (u0) ∈ V (�ι

i), γu
0ι
i (u0) = R̄ι

iu
0 for i ∈ T ι, ι ≤ s,

(4.42)

and ∑
[i,ι]∈ϑ

aιi(u
0ι
i (u0), φιi) =

∑
[i,ι]∈ϑ

Lι
i(φ

ι
i) ∀φ = (φιi, [i, ι] ∈ ϑ),

φιi ∈ V 0(�ι
i) such that (φki )n − (φlj)n = 0 on

⋃
k,l �

kl
c0, (i.e. φ ∈ K0

0).
(4.43)

Proof. It is analogous to that ofTheorem 4.1. �
Next, we will rewritecondition (4.41)by means of operators of Schur complements. Fori ∈ T ι, ι =

1, . . . , s, we define the mappingsTr−1
iι according to(4.20)and the local Schur complementsS0ι

i by (4.23),
so that(4.24)–(4.26)hold in the matrix form.

Definition 4.3. The common local Schur complement for the union�k
i ∪�l

j, where�klc0 ⊂ �c and
[i, k] ∈ ϑ, [j, l] ∈ ϑ

S0kl : (Vk
i × V l

j) → (Vk
i )∗ × (V l

j)
∗

is defined by the following relation

〈S0kl(u0k
i ,u

0l
j ), (vki , v

l
j)〉 = aki (u

k
i (u

k
i ), Tr

−1
ik v

k
i )+ alj(u

l
j(u

l
j), Tr

−1
jl v

l
j)∀(vki , v

l
j) ∈ Vk

i × V l
j. (4.44)

HereTr−1
ik andTr−1

jl are defined by means of

(Tr−1
ik v

k
i )n − (Tr−1

jl v
l
j)n = 0 on�klc0 (4.45)

and

aki (Tr
−1
ik v

k
i ,w

k
i )+ alj(Tr

−1
jl v

l
j,w

l
j) = 0 ∀wk

i ∈ V 0(�k
i ),w

l
j ∈ V 0(�l

j) (4.46)

such that

(wk
i )n − (wl

j)n = 0 on�klc0.

Like in Lemma 4.1we can rewritecondition (4.41)in terms of Schur complements as follows:
s∑
ι=1

∑
i∈T ι
〈S0ι

i u
0ι
i , v

ι
i〉 +

∑
k,l

〈S0kl(u0k
i ,u

0l
j ), (vki , v

l
j)〉 = =

s∑
ι=1

∑
i∈T ι

Lι
i(Tr

−1
iι v

ι
i)

∀v ∈ V�, vιi = R̄ι
iv, u

0ι
i = R̄ι

iu
0. (4.47)

Definition 4.4. A global Schur complementS is defined by

S = S0+
∑
k,l

(R̄kl)
TS0klR̄kl,

whereS0 has been defined in(4.33)andS0kl in Definition 4.3.



J. Daněk et al. / Mathematics and Computers in Simulation 68 (2005) 271–300 285

Thencondition (4.47)on the interface implies the equation

SU = F (4.48)

in the dual space (V�)∗ (cf. (4.31)–(4.34)).
Let a suitable matrix of preconditioningM be chosen. In what follows, we will describe a method of

so-called Neumann–Neumann preconditioner.

Algorithm PCG1. ChooseU0,H0 and letP0 = 0:

(i) compute the preconditioned direction of descent

Gm =M−1Hm, m = 0,1, . . . ,

(ii) compute

Pm = Gm + 〈Hm,Gm〉
〈Hm−1,Gm−1〉P

m−1, m = 1,2, . . . ,

(iii) on each subdomain�ι
i, i ∈ T ι, ι = 1, . . . , s, solve the Dirichlet problem̊AiιŮ

ι

i = BiιR̄
ι
iP

m (see
(4.25)for the definition of the above matrices),

(iv) on every subdomain�k
i ∪�l

j, (where�klc0 ⊂ �c) solve the following problem:

(Ů
k

i , Ů
l

i) = arg min
EkV̊

k +ElV̊
l=0

:(V̊
k
, V̊

l
), (4.49)

where

:(V̊
k
, V̊

l
) = (V̊

k
)T ÅikV̊

k + 2(R̄k
iP

m)TBT
ikV̊

k + (V̊
l
)T ÅjlV̊

l
2(R̄l

jP
m)TBT

jlV̊
l

and the condition

EkV̊
k + ElV̊

l = 0 is equivalent with (vk)n − (vl)n = 0 on�klc0. (4.50)

Then

(S0klU)ki = BT
ikŮ

k + AikR̄
k
iP

m, (S0klU)kj = BT
jlŮ

l + AjlR̄
l
jP

m.

Here we used the decompositionsUι = [Ů
ιT
,UιT ]T , ι = k, l and insertedUk = R̄k

iP
m, Ul =

R̄l
jP

m,
(v) compute

Zm = SPm =
∑
k,l

(R̄kl)
TS0klR̄klPm +

s∑
ι=1

∑
i∈T ι

(R̄ι
i)
T (ĀiιR̄

ι
iP

m − BT
iι Ů

ι

i),

αm = 〈Hm,Gm〉/〈Zm,Pm〉,
Hm+1 = Hm − αmZ

m,

Um+1 = Um + αmPm,

goto (i).
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Remark 4.2. It is not needed to construct the matrixS explicitly in step (v).

5. Preconditioner of Neumann–Neumann type

A suitable preconditioning matrixM can be defined by means of the inverse Schur complements (see
e.g.[7,19]). To this end, we realize, that the inverse mappings (Sιi)

−1 for i ∈ T ι, ι = 1, . . . , s, map a given
surface loadingg ∈ (V ι

i )
∗ on the traceγ<ι

i on�ιi, where<ι
i is the solution of the following “Neumann

problem”: find<ι
i ∈ V (�ι

i) such that

aιi(φ
ι
i, v) = 〈g, γv〉 ∀v ∈ V (�ι

i). (5.1)

Then

(Sιi)
−1g= γφιi|�ιi . (5.2)

Likewise the operator inverse to any common local Schur complement is defined:

(S0kl)−1 : (Vk
i )∗ × (V l

j)
∗ → Vk

i × V l
j.

For given data (gk,gl) ∈ (Vk
i )∗ × (V l

j)
∗ we solve a “Neumann–Neumann” problem: find< ≡ (<k

i ,<
l
j) ∈

V̂ such that

aki (φ
k
i , v

k)+ alj(φ
l
j, v

l) = 〈gk, γvk|�ki 〉 + 〈gl, γvl|�lj 〉 ∀v ∈ V̂ (5.3)

where

V̂ = {(vk, vl) ∈ V (�k
i )× V (�l

j)| (vk)n − (vl)n = 0 on�klc0}.

Then we define

(S0kl)−1(gk,gl) = (γφki |�ki , γφlj|�lj ). (5.4)

In terms of the degrees of freedom theproblem (5.3)leads to a quadratic programming problem with a
linear equality constraint(4.50).

Furthermore, we introduce the following injections

Dι
i : V ι

i → V�, i ∈ T ι, ι = 1, . . . , s,

Dkl : (Vk
i × V l

j) → V�, [i, k] ∈ ϑ, [j, l] ∈ ϑ, �klc0 ⊂ �c,

by means of the following rule.
For each degree of freedom on the interface

Dι
iv(Pm) = v(Pn)=

ι
i/=T , i = 1, . . . , J(ι), ι = 1, . . . , s, (5.5)

if themth degree of freedom ofV� corresponds with thenth degree of freedom ofV ι
i and

Dι
iv(Pm) = 0 (5.6)
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in the opposite case; here=ιi denotes the local measure of stiffness of the subdomain�ι
i (e.g. the average

of the Young modulus) and

=T =
∑
Pl∈�̄ι

j

=ιj (5.7)

is the sum of=ιj over all subdomains̄�ι
j, which contain the pointPl.

Note, that a necessary conditions for a correct choice of the injectionsDι
i is

s∑
ι=1

J(ι)∑
i=1

Dι
iR̄

ι
i = Id onV� (5.8)

(whereId is the identity operator).
The boundary value (Neumann)problems (5.1)and (5.3) are not solvable, in general (for details see

[19]). We denoteZιi = KerAiι, ι = 1, . . . , s, i ∈ T ι andZkl a common subspace of displacements and
rotation of the block�k

i ∪�l
j. Let<0ι

i ∈ Q(�ι
i) = V (�ι

i)� Zιi be a particular solution of the problem (5.1)
and let the couple (<0k

i , <
0l
j ) be a particular solution of theproblem (5.3)in the subspaceQ(�k

i ∪�l
j) =

V̂ � Zkl.
Now, we will define the Neumann–Neumann preconditioner. This preconditioner was described e.g.

in Le Tallec[7].

Definition 5.1. A preconditionerM−1(z0) of the Neumann–Neumann type will be defined by the formula

M−1(z0)S=
s∑
ι=1

∑
i∈T ι

Dι
iγ(φ0ι

i + z0ι
i )|�ιi , (5.9)

wherez0ι
i will be found from the following global optimization problem

z0 = arg min
z∈@Zιi

〈S(M−1(z)− S−1)S, (M−1(z)− S−1)S〉 (5.10)

where

@Zιi =
s∏
ι=1

∏
i∈T ι
Zιi ×

∏
k,l

Zkl.

Remark 5.1. We see that the optimal preconditionerM−1(z0) minimizes the differenceM−1(z)− S−1

in the subset of kernels@Zιi.

In what follows, we analyze the question, how to satisfy the equilibrium conditions in the course of
theAlgorithm PCG1. To this end, we introduce the “course space” of traces

VH =
s∑
ι=1

∑
i∈T ι

Dι
iγZ

ι
i +

∑
k,l

DklγZkl (5.11)

and the set

V⊥H ⊂ (V�)∗
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by the relation

S∈ V⊥H ⇔ 〈S, z〉 = 0 ∀z ∈ VH.

Next, letPZ be theS – orthogonal projection ofV� onVH defined by

PZU ∈ VH, 〈Sz,U− PZU〉 = 0 ∀z ∈ VH,∀U ∈ V�. (5.12)

The Euler necessary condition of a minimum of functional in(5.10) leads to a variational “coarse”
equation that can be written as∑

i,ι

Dι
iγz

0ι
i = −PZ

∑
i,ι

Dι
iγφ

0ι, (5.13)

so that the preconditioner(5.9) takes the form

M−1S≡M−1(z0)S= (I − PZ)
∑
i,ι

Dι
iγφ

0ι. (5.14)

Lemma 5.1. Assume that in the AlgorithmPCG1we takeH0 ∈ V⊥H . ThenHm ∈ V⊥H ,m = 1,2, . . .

Proof. LetHm ∈ V⊥H andSPm−1 ∈ V⊥H . Using(5.14), we derive that

Gm ≡M−1Hm = (I − PZ)φ0

holds for the element<0 ∈ V�, calculated on the basis of the functionalHm. By virtue of(5.12)and due
to the symmetry we may write

〈SGm, z〉 = 〈Sz,Gm〉 = 〈Sz, (I − PZ)φ0〉 = 0 ∀z ∈ VH,

so thatSGm ∈ V⊥H . In the algorithm, we have

Zm = SPm = SGm + βmSPm−1 ∈ V⊥H ,

sinceβm is a constant andV⊥H is a linear subspace. Finally, we also have

Hm+1 = Hm − αmZ
m ∈ V⊥H .

SinceSP0 = 0 ∈ V⊥H andH1 = H0− α0SP0 = H0 ∈ V⊥H , the assertion of the lemma follows by induc-
tion.

To satisfy the conditionH0 ∈ V⊥H ,we calculate the initial approximationU0 in PCG1 such thatU0 ∈ V⊥H
and

〈H0, z〉 ≡ 〈F− SU0, z〉 = 0 ∀z ∈ VH. (5.15)

Note that this problem is the same as the calculation ofz0 from Eq.(5.13), except for another right-hand
side. �
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6. Solution of the original problem on the interface

Recall that we have to solve theproblem (4.32)by successive approximations (see[19]), i.e., by means
of a sequence of problems (4.37), i.e.

S0Uk = bk, k = 1,2, . . . , (6.1)

where

S0 =
s∑
ι=1

∑
i∈T ι

(R̄ι
i)
TSιiR̄

ι
i, (6.2)

bk = F− SCONUk−1; (6.3)

now U0 is the solution of the auxiliary problem, i.e.U0 = γu0 |�, whereu0 is a solution of problem
(4.36). To solveproblem (6.1), we use the method of preconditioned conjugate gradients, as follows.

Algorithm PCG2. Chooseω0, ρ0 = bk − S0ω0,π0 = 0.

(i) compute the preconditioned direction of descentgm =M−1
0 ρm, whereM−1

0 is a “reduced” precon-
ditioner;

(ii) compute

πm = gm + 〈ρm,gm〉
〈ρm−1,gm−1〉πm−1;

(iii) on every subdomain�ι
i, ι = 1, . . . , s and i ∈ T ι solve (parallel) the system̊Aiιω̊

ι
i = BiιR̄

ι
iπm;

(Dirichlet problem);
(iv) computeξm = S0− πm =

∑s
ι=1

∑
i∈T ι(R̄

ι
i)
T (ĀiιR̄

ι
iπm − BT

iι ω̊
ι
i);

(v) compute

αm = 〈ρm,gm〉/〈ξm,πm〉,

ρm+1 = ρm − αmξm,

ωm+1 = ωm + αmπm,

goto (i).

Now, the “injection operators”

D̊
ι

i : V ι
i → V�, ι = 1, . . . , s andi ∈ T ι

differ from the previous. Namely, for the nodes on�ki ∪ �lj (�klc ⊂ �c, [i, k] ∈ ϑ, [j, l] ∈ ϑ)

D̊
ι

iv(Pm) = v(Pn) if Pn ∈ �ki ∪ �lj, (6.4)

D̊
ι

iv(Pm) = v(Pn)=
ι
i/=

T (6.5)
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if themth degree of freedom corresponds with thenth degree ofV ι
i andPn /∈ �ki ∪ �lj and

D̊
ι

iv(Pm) = 0 (6.6)

in the remaining cases;=ιi and=T have been defined in(5.7).
Now we define new Neumann–Neumann preconditioner (for more details see[19]).

Definition 6.1. The new preconditioner of the Neumann–Neumann type is defined by

M−1
0 (z0)S=

s∑
ι=1

∑
i∈T ι

D̊
ι

iγ(φ0ι
i + z0ι

i ), (6.7)

wherez0ι
i denotes the solution of the following reduced global optimization problem

z0 = arg min
z∈@0Z

ι
i

〈S0(M−1
0 (z)− S−1

0 )S, (M−1
0 (z)− S−1

0 )S〉, (6.8)

where

@0Z
ι
i =

s∏
ι=1

∏
i∈T ι
Zιi.

Let us define the “coarse” reduced space of traces

V0H =
s∑
ι=1

∑
i∈T ι

D̊
ι

iγZ
ι
i

and a linear setV⊥0H ∈ (V�)∗ of functionals by the relation

S∈ V⊥0H ⇔ 〈S, z〉 = 0 ∀z ∈ V0H.

Lemma 6.1. In the AlgorithmPCG2let us setρ0 ∈ V⊥0H,π0 = 0.Thenρm ∈ V⊥0H,m = 1,2, . . .

Proof. It is analogous to that ofLemma 5.1. �

7. A convergence theorem for the successive approximations

In the present section we will analyze the convergence of the method of successive approximation
(6.1), to the solution of the originalproblem (4.32)in the space (V�)∗.

To this end, we introduce a seminorm and a norm.

Definition 7.1. Let H0 be an orthogonal complement of the subspaceV0H in V�. Let us introduce a
seminorm

|R̄cv|ϑ =

∑

k,l

[aki (Tr
−1
ik R̄

k
i v, Tr

−1
ik R̄

k
i v)+ alj(Tr

−1
jl R̄

l
jv, Tr

−1
jl R̄

l
jv)]


1/2
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where�klc ⊂ �c, [i, k] ∈ ϑ and [j, l] ∈ ϑ.

Lemma 7.1. The expression‖u‖2
Q = 〈S0u,u〉 defines a norm inH0.

For the proof seeLemma 5.1by Hlaváček[16].

Definition 7.2. Let a mappingT : H0 → H0 be defined by the relation

〈S0(Ty), v〉 = 〈F− SCON(y), v〉 ∀v ∈ H0. (7.1)

Assumption 7.1. Let a constantβ exist such that

|R̄cu|ϑ ≤ β‖u‖Q ∀u ∈ H0. (7.2)

Lemma 7.2. If Assumption 7.1is satisfied, the mapping T is well-defined, i.e. for all y ∈ H0 there exists
a unique elementTy ∈ H0, satisfying(7.1).

Proof. By Lemma 7.1the mappingS0 is positive definite onH0. Since we have

|〈S0u, v〉| =
∣∣∣∣∣

s∑
ι=1

∑
i∈T ι

aιi(Tr
−1
iι R̄

ι
iu, Tr

−1
iι R̄

ι
iv)

∣∣∣∣∣
≤
∑
ι,i

[aιi(Tr
−1
iι R̄

ι
iu, Tr

−1
iι R̄

ι
iu)]1/2[aιi(Tr

−1
iι R̄

ι
iv, Tr

−1
iι R̄

ι
iv)]1/2 ≤ ‖u‖Q‖v‖Q.

S0 is continuous. Therefore, it suffices to show thatSCON(y) ∈ (H0)∗ for anyy ∈ H0. We may write, using
the corresponding definitions and the Schwarz inequality,

〈SCON(y), v〉 =
〈∑

k,l

Skl(R̄kly), R̄klv

〉
=
∑
k,l

(aki (u
k
i (y

k

i
), Tr−1

ik v
k
i )+ alj(u

l
j(y

l

j
), Tr−1

jl v
l
j))

≤ [uki (y
k

i
),ulj(y

l

j
)]a|R̄cv|ϑ ≤ C(y)β‖v‖Q

where

C(y) ≡ [uki (y
k

i
),ulj(y

l

j
)]a =


∑

k,l

[aki (u
k
i (y

k

i
),uki (y

k

i
))+ alj(u

l
j(y

l

j
),ulj(y

l

j
))]


1/2

.

SinceC(y) <∞ for anyy ∈ H0, SCON(y) ∈ (H0)∗ follows.

Theorem 7.1. Let theAssumption 7.1hold. Then

‖T (y)− T (w)‖Q ≤ 2β2‖y− w‖Q y,w ∈ H0.

Proof. By definitions, we may write

S0(T (y))− S0(T (w)) = S0(T (y)− T (w)) = SCON(w)− SCON(y).
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Let us denotev = T (y)− T (w) and

akl(u, v) = aki (u
k
i , v

k
i )+ alj(u

l
j, v

l
j) for �kl

c ⊂ �c, ∀u, v ∈ V(�k
i )× V(�l

j ),

Lkl(v) = Lk
i (v

k
i )+ Ll

j(v
l
j), Tr−1

kl v = (Tr−1
ik v

k
i , Tr

−1
jl v

l
j).

Then we may write

‖v‖2
Q = 〈S0v, v〉 = 〈SCON(w)− SCON(y), v〉 =

∑
k,l

akl(u(w)− u(y), Tr−1
kl v). (7.3)

Here u(y) is the solution of the variational inequality(4.28), i.e. u(y) ∈ V (�k
i )× V (�l

j), (u
k
i (y))n −

(ulj(y))n ≤ 0 on �klc ,

akl(u(y), φ)+ j(u(y)+ φ)− j(u(y)) ≥ Lkl(φ) (7.4)

for all ϕ ∈ V 0(�k
i )× V 0(�l

j) such thatu(y)+ ϕ satisfies the unilateral contact condition on�klc
and u(y)+ ϕ ∈ V (�k

i )× V (�l
j). We can writeu(y) = Tr−1

kl y+ y0, wherey0 ∈ K0
kl = {v ∈ V 0(�k

i )×
V 0(�l

j)|(vki )n − (vlj)n ≤ 0 on�klc }.
Analogous characterization holds foru(w), so that

u(w) = Tr−1
kl w + w0, w0 ∈ K0

kl.

If we denotev = u(y)+ ϕ, thenφ = v − (Tr−1
kl y+ y0) = v0− y0. wherev0 = v − Tr−1

kl y ∈ K0
kl. The

inequality(7.4) is equivalent with

akl(u(y), v0− y0)+ j(u(y)+ v0− y0)− j(u(y)) ≥ Lkl(v0− y0) (7.5)

for all v0 ∈ K0
kl.

By a parallel argument, we arrive at

akl(u(w), v0− w0)+ j(u(w)+ v0− w0)− j(u(w)) ≥ Lkl(v0− w0) (7.6)

for all v0 ∈ K0
kl.

Let us insertv0 := w0 in (7.5)andv0 := y0 in (7.6)and sum up.
Recall thatTr−1

kl y = Tr−1
kl w = 0 on�klc , (cf. (4.22)) so that

j(u(y)+ w0− y0) = j(Tr−1
kl y+ w0) = j(w0) = j(u(w)),

j(u(w)+ y0− w0) = j(u(y)).

As a consequence, the summing gives

akl(u(w)− u(y), y0− w0) ≥ 0. (7.7)
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Let us denoteψ = y0− w0 and

‖t‖kl = [akl(t, t)]1/2 ∀t ∈ V (�k
i )× V (�l

j).

Then(7.7)and the Schwarz inequality yields the estimate

‖ψ‖2
kl ≤ akl(Tr−1w − Tr−1y, ψ) ≤ ‖Tr−1(w − y)‖kl‖ψ‖kl,

so that

‖ψ‖kl ≤ ‖Tr−1(w − y)‖kl. (7.8)

Making use of(7.3) and (7.8), we may write

‖v‖2
Q =

∑
k,l

akl(Tr−1(w − y)− ψ, Tr−1v) =
∑
k,l

[akl(Tr−1(w − y), Tr−1v)− akl(ψ, Tr−1v)]

≤
∑
k,l

(‖Tr−1(w − y) ‖kl + ‖ψ‖kl)‖Tr−1v‖kl ≤ 2|R̄c(w − y)|ϑ|R̄cv|ϑ.

Finally, theAssumption 7.1implies‖v‖2
Q ≤ 2β2‖w − y‖Q‖v‖Q and proof is complete. �

Corollary 7.1. Let theAssumption 7.1hold withβ <
√

2/2 for all U ∈ Y, whereY is a subset ofH0

such that

T (Y) ⊂ Y andU0 ∈ Y. (7.9)

Then the mappingT is contractive onY. The successive approximations(6.1) converge to the
fixed point of the mappingT, which represents a solution of Eq.(4.32). The following error estimate
holds

‖Uk − U‖Q ≤ (2β2)k(1− 2β2)−1‖U0− TU0‖Q, k = 1,2, . . .

Proof is classical – see e.g. the book by Nečas and Hlav́aček ([20], Section 11.7,Theorem 7.1).

Remark 7.1. To find conditions guaranteeing(7.2)with β <
√

2/2 and(7.9) is a difficult task. Having
the definitions of the norms in mind, it seems that the subdomains adjacent to the contact boundary should
be “small” in comparison with the union of the remaining subdomains. Nevertheless, these conditions
are only sufficient for the convergence and the successive approximations may converge in other cases
too.

8. Implementation of the algorithm and numerical results

The algorithm which is described in the previous section is based on the nonoverlapping domain
decomposition method. The original problem is first decomposed into smaller problems defined on
nonoverlapping subdomains. Parallel iterative procedures are then constructed for decoupling the whole
domain problem into subdomain problems. During the iterative process, information must be trans-
mitted between subdomains. For passing informations we used Message Passing Interface (MPI).



294 J. Daněk et al. / Mathematics and Computers in Simulation 68 (2005) 271–300

Fig. 1. A geometry of the geomechanical problem.

Hence the introduced algorithm has been implemented in MPI Version 1.2.0 by using FORTRAN
77 compiler. The implementation of the described parallelization is based on model “master-slaves”,
where one computer (master) directs all other computers (slaves) which compute partial problems
for subdomains without contact and partial problems for couples of subdomains with contact. In
this section, we illustrate the practical behavior of our algorithm on the solution of the following
problems.

Fig. 2. A detail of deformations (enlarging factor is 10).
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Fig. 3. A detail of displacements and principal stresses in a neighbourhood of the tunnel.

8.1. The geomechanical problem

The geomechanical model problem describes a loaded tunnel which is crossing by a deep fault and
based on the geomechanical theory and models having connection with radioactive waste repositories
(see Nedoma[15]). A geometry of the problem is inFig. 1.

8.1.1. Material parameters
Two regions with Young’s modulusE = 5.2× 109 Pa and Poisson’s ratioν = 0.18. Specific gravity

is 2.45× 104 Pa/m.

Fig. 4. Normal and tangential components of displacements on contact boundary (parts 5–6 and 7–8).
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Fig. 5. Normal and tangential components of stress on contact boundary (parts 5–6 and 7–8).

Fig. 6. A geometry of the biomechanical problem.
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8.1.2. Boundary conditions
Prescribed displacement (2.5× 10−2; 0) m on 1–2. Pressure 0.5× 107 Pa on 1–4 and 2–8 and 1×

107 Pa on 8–3. Bilateral contact boundary on 3–4. Unilateral contact boundary: 5–6 and 7–8. Given slip
limit is 106 Pa. Zero surface forces on the tunnel wall.

8.1.3. Discretization statistics
Twelve subdomains, 5501 nodes, 9676 elements, 10428 unknowns, 89 unilateral contact conditions,

466 interface elements.

Fig. 7. The principal stresses (→← represents compression and←→ extension).
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Fig. 8. Normal and tangential components of displacements and stress on contact boundary (parts 7–8 and 9–10).

8.1.4. Convergence statistics
Twenty one iterations of the PCG algorithm for the auxiliary problem, 15 iterations of the successive

approximations method for accuracy 10−6, total 39 iterations of the PCG algorithm for the original
problem.

Fig. 2 represents detail of deformations andFig. 3 shows displacements and principal stresses in a
neighbourhood of the tunnel.

Fig. 4shows normal and tangential components of displacements on two parts of the contact boundary,
where we denotedDUn ≡ ukn − uln andDUt ≡ ukt − ult. Fig. 5shows normal and tangential components
of stress on two parts contact boundary.

8.2. The biomechanical problem

The biomechanical model problem was derived from the X-ray image and describes total knee re-
placement. We deal with and simulations of mechanical processes taking place during static loadening.
A geometry of the problem is inFig. 6.

8.2.1. Material parameters
Bone: Young’s modulusE = 1.71× 1010 Pa, Poisson’s ratioν = 0.25, (1) Ti6Al4V: E = 1.15×

1011 Pa,ν = 0.3, (2) Chirulen:E = 3.4× 108 Pa,ν = 0.4, (3) CoCrMo:E = 2.08× 1011 Pa,ν = 0.3.

8.2.2. Boundary conditions
The femur is loaded between points 5 and 6 by a loading 0.215× 107 Pa, the tibia and the fibula are

fixed between points 1 and 2 (the tibia) and between 3 and 4 (the fibula) are fixed and the unilateral
contact boundary are between points 7 and 8 as well as between 9 and 10. Given slip limit is 105 Pa.

8.2.3. Discretization statistics
Thirteen subdomains of domain decomposition, 3800 nodes, 7200 elements, 62 unilateral contact

nodes, 350 interface elements. The loadings evoked by muscular forces were neglected.
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8.2.4. Convergence statistics
Nineteen iterations of the PCG algorithm for the auxiliary problem, 14 iterations of the successive

approximations method for accuracy 10−6 and total 36 iterations of the PCG algorithm for the original
problem.

In Fig. 7 the principal stresses are presented.Fig. 8 shows normal and tangential components of
displacements and stress on two parts of the contact boundary, where we denotedDUn ≡ ukn − uln and
DUt ≡ ukt − ult.
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Abstract. The paper deals with the stress/strain analysis of an artifi-
cial knee joint. Three cases, where femoral part of the knee joint part is
cut across under 3, 5 and 7 degrees, are analysed. Finite element method
and the nonoverlapping decomposition technique for the contact prob-
lem in elasticity are applied. Numerical experiments are presented and
discussed.

1 Introduction

The success of artificial replacements of human joints depends on many factors.
The mechanical factor is an important one. The idea of a prothesis being a device
that transfers the joint loads to the bone allows one to explain the mechanical
factor in terms of the load transfer mechanism. A complex relation exists between
this mechanism and the magnitude and direction of the loads, the geometry of
the bone/joint prothesis configuration, the elastic properties of the materials
and the physical connections at the material connections. Authors in [7,12,9,
10] showed that the contact problems in a suitable rheology, and their finite
element approximations [2,5] are a very useful tools for analyzing these relations
for several types of great human joints and their artificial replacements. The
aim of the paper is to analyze the total knee replacement in dependence on the
femoral cut and the orientation of the anatomic joint line.

2 The Model

The model of the knee is based on the contact problem in elasticity, and the finite
element approximation. The problem leads to solving variational inequalities,
which describe physically the principle of virtual work in its inequality form.

A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3044, pp. 456–466, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 594.962 841.96 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 24000 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 10.0
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



On the Stress-Strain Analysis of the Knee Replacement 457

In the present paper we deal with mathematical simulations of total knee joint
replacements and simulations of mechanical processes taking place during static
loadening. The model problem investigated was formulated as the primary semi-
coercive contact problem with the given friction and for the numerical solution of
the studied problem the nonoverlapping domain decomposition method is used
([1,2,3]).

Let the investigated part of the knee joint occupy a union Ω of bounded
domains Ωι, ι = f, t in IRN (N = 2), denoting separate components of the knee
joint - the femur (f) and the tibia together with the fibula (t), with Lipschitz
boundaries ∂Ωι. Let the boundary ∂Ω = ∂Ωf ∪∂Ωt consist of three disjoint parts
such that ∂Ω = Γτ ∪ Γu ∪ Γc. Let Γτ = 1Γτ ∪ 2Γτ , where by 1Γτ we denote the
loaded part of the femur and by 2Γτ the unloaded part of the boundary ∂Ω. By
Γu we denote the part of the tibia boundary, where we simulate its fixation. The
common contact boundary between both joint components Ωf and Ωt before
deformation we denote by Γc = ∂Ωf ∩ ∂Ωt.

Let body forces F, surface tractions P and slip limits gft be given.
We have the following problem: find the displacements uι in all Ωι such that

∂

∂xj
τij(uι) + F ι

i = 0 in Ωι, ι = f, t, i = 1, ..., N, (1)

where the stress tensor τij is defined by

τij(uι) = cι
ijklekl(uι) in Ωι, ι = f, t, i = 1, ..., N, (2)

with boundary conditions

τij(u)nj = Pi on 1Γτ , i = 1, ..., N, (3)

τij(u)nj = 0 on 2Γτ , i = 1, ..., N, (4)

u = u0 (= 0) on Γu, (5)

uf
n − ut

n ≤ 0, τf
n ≤ 0, (uf

n − ut
n)τf

n = 0 on Γc, (6)

|τft
t | ≤ gft on Γc,

|τft
t | < gft =⇒ uf

t − ut
t = 0,

|τft
t | = gft =⇒ there exists ϑ ≥ 0 such that uf

t − ut
t = −ϑτft

t .

(7)

Here eij(u) = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is the small strain tensor, normal and tangential

components of displacement vector u (u = (ui), i = 1, 2) and stress vector τ

(τ =(τi)) uf
n = uf

i nf
i , ut

n = ut
in

f
i (no sum over t or f), uf

t = (uf
ti), uf

ti =
uf

i − uf
nnf

i , ut
t = (ut

ti), ut
ti = ut

i + ut
nnt

i, i = 1, ..., N, τf
n = τf

ijn
f
i nf

j , τf
t = (τf

ti),
τf
ti = τf

ijn
f
j − τf

nnf
i , τ t

n = τ t
ijn

t
in

t
j , τ t

t = (τ t
ti), τ t

ti = τ t
ijn

t
j − τ t

nnt
i, τft

t ≡ τf
t .
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Assume that cι
ijkl are positive definite symmetric matrices such that

0 < cι
0 ≤ cι

ijklξijξkl | ξ |−2≤ cι
1 < +∞ for a.a. x ∈ Ωι, ξ ∈ IRN2

, ξij = ξij ,
where cι

0, cι
1 are constants independent of x ∈ Ωι.

Let us introduce W =
∏

ι=f,t[H
1(Ωι)]N , ‖v‖W = (

∑
ι=f,t

∑
i≤N ‖vι

i‖2
1,Ωι)

1
2

and the sets of virtual and admissible displacements V0 = {v ∈ W |
v =0 on Γu}, V = u0 + V0, K = {v ∈ V | vf

n − vt
n ≤ 0 on Γc}. Assume

that uf
0n − ut

0n = 0 on Γc Let cι
ijkl ∈ L∞(Ωι), F ι

i ∈ L2(Ωι), Pi ∈ L2( 1Γτ ),
uι

0 ∈ [H1(Ωι)]N .
Then we have to solve the following variational problem (P):

find a function u, u − u0 ∈ K, such that

a(u,v − u) + j(v) − j(u) ≥ L(v − u) ∀v ∈ K (8)

holds, where

a(u,v) =
∑

ι=f,t

∫
Ωι cι

ijkleij(uι)ekl(vι) dx,

j(v) =
∫

Γc
gft | vf

t − vt
t | ds,

L(v) =
∑

ι=f,t

∫
Ωι F ι

i vι
i dx − ∑

ι=f,t

∫
Γ ι

τ
P ι

i vι
i ds.

(9)

Let us define the sets of rigid displacements and rotations
P = P f × P t, P ι = {vι = (vι

1, v
ι
2) | vι

1 = aι
1 − bιx2, v

ι
2 = aι

2 + bιx1} where
aι

i, i = 1, 2 and bι are arbitrary real constants and ι = f, t.
It can be shown that the problem (8) has a unique solution, if (see [5]):

3 Short Description of the Domain Decomposition
Algorithm

Let every domain Ω
ι

= ∪J(ι)
i=1 Ω

ι

i, where J(ι) is a number of subdomains of Ωι.
Let Γ ι

i = ∂Ωι
i\∂Ωι, ι = f, t, i ∈ {1, ..., J(ι)}, be a part of dividing line (boundary

line) and let Γ = ∪ι=f,t ∪J(ι)
i=1 Γ ι

i be the whole interface boundary. Let

T ι = {j ∈ {1, .., J(ι)} : Γ c ∩ ∂Ω
ι

j = ∅}, ι = f, t, (10)

be the set of all indices of subdomains of the domain Ωι which are not adjacent
to a contact, and let

Ω∗j = ∪[i,ι]∈ϑΩι
i , (11)

where ϑ = {[i, ι] : ∂Ωι
i∩Γc �= ∅} represent subdomains in unilateral contact. Sup-

pose that Γ ∩ Γc = ∅. Then for the trace operator γ : [H1(Ωι
i)]

N → [L2(∂Ωι
i)]

N

we have

VΓ = γK|Γ = γV |Γ (12)
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Let γ−1 : VΓ ∈ V be an arbitrary linear inverse mapping satisfying

γ−1v = 0 on Γc ∀v ∈ VΓ . (13)

Let us introduce restrictions R
ι

i : VΓ → Γ ι
i ; Lι

i : Lι → Ωι
i ; jι

i : jι → S; aι
i(., .) :

a(., .) → Ωι
i ; V (Ωι

i) → Ωι
i and let V 0(Ωι

i) = {v ∈ V | v = 0 on (∪ι=f,tΩι)\Ωι
i}

be the space of functions with zero traces on Γ ι
i . The algorithm is based on the

next theorem and on the use of local and global Schur complements.

Theorem 3.1: A function u is a solution of a global problem (P), if and
only if its trace u = γu|Γ on the interface Γ satisfies the condition

∑

ι=f,t

J(ι)∑

i=1

[aι
i(u

ι
i(u), γ−1w) − Lι

i(γ
−1w)] = 0 ∀w ∈ VΓ ,u ∈ VΓ (14)

and its restrictions uι
i(u) ≡ u|Ωι

i
satisfy:

(i) the condition

aι
i(u

ι
i(u), ϕι

i) − Lι
i(ϕ

ι
i) ∀ϕι

i ∈ V 0(Ωι
i), uι

i(u) ∈ V (Ωι
i),

γuι
i(u)|Γ ι

i
= Rι

iu, i ∈ T ι, ι = f, t,
(15)

(ii) the condition
∑

[i,ι]∈ϑ aι
i(u

ι
i(u), ϕι

i) + jι(uι
i(u) + ϕι

i) − jι(uι
i(u)) ≥

≥ ∑
[i,ι]∈ϑ Lι

i(ϕ
ι
i) ∀ϕ ∈ (ϕι

i, [i, ι] ∈ ϑ, ϕι
i ∈ V 0(Ωι

i),
(16)

and such that

u + ϕ ∈ K, γuι
i(u)|Γ ι

i
= Rι

iu for [i, ι] ∈ ϑ. (17)

For the proof see [2].

To analyze the condition (14) the local and global Schur complements
are introduced. Let

V ι
i = {γv|Γ ι

i
| v ∈ K} = {γv|Γ ι

i
| v ∈ V }

and define a particular case of the restriction of the inverse mapping γ−1(.)|Ωι
i

by

Tr−1
iι : V ι

i → V (Ωι
i), γ(Tr−1

iι u)|Γ ι
i

= uι
i, i = 1, .., J(ι), ι = f, t

aι
i(Tr−1

iι uι
i,v

ι
i) = 0 ∀vι

i ∈ V 0
0 (Ωι

i),
T r−1

iι uι
i ∈ V (Ωι

i) for i ∈ T ι, ι = f, t,

(18)

where V 0
0 (Ωι

i) = {v ∈ V0 | v = 0 on (∪Ωι
i)\Ωι

i}. For [i, ι] ∈ ϑ we complete the
definition by the boundary condition (13), i.e.

Tr−1
iι uι

i = 0 on Γc. (19)
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The local Schur complement for i ∈ T ι is the operator Sι
i : V ι

i → (V ι
i )∗ defined

by

〈Sι
iu

ι
i,v

ι
i〉 = aι

i(Tr−1
iι uι

i, T r−1
iι vι

i) ∀uι
i,v

ι
i ∈ V ι

i . (20)

For subdomains which are in contact we define a common local Schur com-
plement for the union Ωf

i ∪ Ωt
j (where [i, f ] ∈ ϑ, [j, t] ∈ ϑ) as the operator

Sft : (V f
i × V t

j ) → (V f
i × V t

j )∗ = (V f
i )∗ × (V t

j )∗ defined by
〈
Sft(yf

i ,yt
j), (v

f
i ,vt

j)
〉

= af
i (uf

i (yf
i ), T r−1

if vf
i ) + at

j(u
t
j(y

t
j), T r−1

jt vt
j)

∀(vf
i ,vt

j) ∈ V f
i × V t

j ,
(21)

where Tr−1
if and Tr−1

jt are defined by means of (18) and (19).
The condition (14) can be expressed by means of local Schur complements

in the form
∑

ι=f,t

∑
i∈T ι

〈Sι
iu

ι
i,v

ι
j

〉
+

∑
ι=f,t

〈
Sft(uf

i ,ut
j), (v

f
i ,vt

j)
〉

=

=
∑

ι=f,t

∑J(ι)
i=1 Lι

i(Tr−1
iι vι

i) ∀v ∈ VΓ , [i, f ] ∈ ϑ, [j, t] ∈ ϑ,
(22)

where u = γu|Γ , vι
i = R

ι

iv,uι
i = R

ι

iu. Then we will solve the equation (22) on
the interface Γ in the dual space (VΓ )∗. We rewrite (22) into the following form

S0U+SCONU = F, (23)

where

S0 =
∑

ι=f,t

∑
i∈T ι(R

ι

i)
T Sι

iR
ι

i, SCON =
∑

ι=f,t R
T

ftSftRft,

F =
∑

ι=f,t

∑J(ι)
i=1 (R

ι

i)
T (Tr−1

iι )T Sι
i ,

(24)

and Rft(u) = (R
f

i (u), R
t

j(u))T ,u ∈ VΓ , [i, f ] ∈ ϑ, [j, t] ∈ ϑ. Equation (23) will be
solved by successive approximations, because the operators Sft and therefore
SCON are nonlinear. As a initial approximation U

0
we choose the solution of

the global primal problem, where the boundary conditions on Γc are replaced
by the linear bilateral conditions with gft ≡ 0 (i.e. j(u) ≡ 0)

uf
n − ut

n = 0, τft
t = 0 on Γc0. (25)

On Γc\Γc0 we consider homogeneous conditions of zero surface load P f
j = P t

j =
0, j = 1, 2.

Then we replace the set K by K0 = {v ∈ V | vf
n − vt

n = 0 on Γc0} and
therefore, we solve the following problem

u0 = arg minv∈K0 L(v) (26)

where L(v) = 1
2a(v,v) − L(v) and we set U

0
= γu0|Γ . The auxiliary problem

(26) represents a linear elliptic boundary value problem with bilateral contact
and it can be solved by the domain decomposition method again.
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Fig. 1. The models.

The non-linear equation (23) will be solved by successive approximations. We
will assume that the approximation U

k−1
is known and the next approximation

U
k
we find as the solution of the following linear problem

S0U
k

= F − SCONU
k−1

, k = 1, 2, ..... (27)

In [2] the convergence of the method of successive approximation (27) to the
solution of the original problem (23) in the space (VΓ )∗ is proved.

Numerically (26) and (27) are solved by the finite element method.

4 Discussion of Numerical Results

The model of the knee joint replacement was derived from the X-ray image after
application the total knee prothesis under the resulting femoral cuts 3, 5 and 7
degrees.

In the model the material parameters are as follows: Bone: Young’s modulus
E = 1.71 × 1010 [Pa], Poisson’s ratio ν = 0.25, (1) Ti6Al4V : E = 1.15 × 1011

[Pa], ν = 0.3, (2) Chirulen: E = 3.4 × 108 [Pa], ν = 0.4, (3) CoCrMo:
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0
0.

05
0.

1

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

τ y

−
5.

35
09

7e
+

06

−
4.

28
51

5e
+

06

−
3.

21
93

2e
+

06

−
2.

15
35

0e
+

06

−
1.

08
76

8e
+

06

−
2.

18
62

2e
+

04

+
1.

04
39

6e
+

06

+
2.

10
97

8e
+

06

+
3.

17
56

0e
+

06

0
0.

05
0.

1

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

τ y

−
5.

75
92

2e
+

06

−
4.

59
38

1e
+

06

−
3.

42
84

0e
+

06

−
2.

26
29

9e
+

06

−
1.

09
75

7e
+

06

+
6.

78
37

9e
+

04

+
1.

23
32

5e
+

06

+
2.

39
86

6e
+

06

+
3.

56
40

7e
+

06

0
0.

05
0.

1

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

τ y

−
6.

14
73

7e
+

06

−
4.

88
57

4e
+

06

−
3.

62
41

1e
+

06

−
2.

36
24

9e
+

06

−
1.

10
08

6e
+

06

+
1.

60
76

8e
+

05

+
1.

42
24

0e
+

06

+
2.

68
40

2e
+

06

+
3.

94
56

5e
+

06

(a
)

(b
)

(c
)

F
ig

.
2.

T
he

ve
rt

ic
al

st
re

ss
te

ns
or

co
m

po
ne

nt
-

th
e

fr
on

ta
l
cr

os
s-

se
ct

io
n

of
th

e
C

oC
rM

o
pr

ot
he

si
s

(a
)

th
e

fe
m

or
al

cu
t

un
de

r
3

de
gr

ee
,

(b
)

th
e

fe
m

or
al

cu
t

un
de

r
5

de
gr

ee
,

(c
)

th
e

fe
m

or
al

cu
t

un
de

r
7

de
gr

ee
.



On the Stress-Strain Analysis of the Knee Replacement 463

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

τ 1, τ
2

−
5.

53
29

7e
+

06

+
1.

20
37

1e
+

07

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

τ 1, τ
2

−
5.

89
17

3e
+

06

+
1.

28
73

1e
+

07

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06

0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

τ 1, τ
2

−
6.

29
29

9e
+

06

+
1.

36
95

2e
+

07

(a
)

(b
)

(c
)

F
ig

.
3.

T
he

pr
in

ci
pa

l
st

re
ss

es
-
th

e
fr

on
ta

l
cr

os
s-

se
ct

io
n

C
oC

rM
o

pr
ot

he
si

s
(
→
←

re
pr

es
en

ts
co

m
pr

es
si

on
an

d
←
→

ex
te

ns
io

n)
(a

)
th

e
fe

m
or

al
cu

t
un

de
r

3
de

gr
ee

,
(b

)
th

e
fe

m
or

al
cu

t
un

de
r

5
de

gr
ee

,
(c

)
th

e
fe

m
or

al
cu

t
un

de
r

7
de

gr
ee

.



464 J. Daněk et al.
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E = 2.08 × 1011 [Pa], ν = 0.3. The femur is loaded between points 5 and
6 by a loading 0.215 × 107[Pa], the tibia and the fibula are fixed between
points 1 and 2 (the tibia) and between 3 and 4 (the fibula) are fixed and the
unilateral contact boundary are between points 7 and 8 as well as between
9 and 10. On the contact boundary we suppose that gft = 0. Discretization
statistics are characterized by 13 subdomains of domain decoposition, 3800
nodes, 7200 elements, 62 unilateral contact nodes, 350 interface elements.
The loadings evoked by muscular forces were neglected. The paper presents
three models - the frontal cross-section prothesis with the cut under 3 de-
gree - model (a), 5 degree - model (b) and 7 degree - model (c). All models
are presented in Fig.1. In Fig.2 a,b,c the vertical stress tensor components for the

frontal cross-section are presented, while in Figs 3 a,b,c the principal stresses
are presented. The presented graphical results represent distribution of stresses
in the femur, in the total protheses and in the tibia as well as in the fibula. On
Figs 4 a,b,c the normal and tangential components of displacement and on Figs
5 a,b,c stress vectors on the contact boundaries of both condyles (i.e. between
points 7 − 8 and 9 − 10) are presented. We see that both parts of the prothesis
are in a contact and that they mutually move in the tangential direction.

The obtained numerical results, in their graphical forms, corespond to the
observed distribution of stress field in the bones and in the knee prothesis, and
therefore, they are in a good agreement with the orthopaedic practice. The
presented models facilitate to compare the protheses made from the different
materials like the CoCrMo alloy, the Al2O3 and ZrO2 ceramics, respectively.
The aim of the mathematical modelling of the knee prothesis is to determine the
best version of the knee prothesis.
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merical analysis of the loosened total hip replacement (THR). Mathematics and
Computers in Simulation. 60, pp. 119-127.
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Abstract

In the contribution a weight-bearing total knee joint replacement will be based on numerical results on a non-linear contact
problem with Coulombian friction in elasticity. The non-overlapping domain decomposition algorithm will be used. The main goal
of the contribution represents an application of mathematical modelling and obtained numerical results to the practice—the total
knee joint replacement.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Total knee joint replacement; Contact problem; Non-overlapping domain decomposition method

1. Introduction

The first attempt of artificial replacement of human knee joint was made by Gluck in 1890. The technology of
artificial joint replacement has developed namely during the last 50 years. The fundamental idea of Charnley, the so-
called low friction arthroplasty, changed the development of all types of joint prostheses and is used up to the present.
During recent years, considerable progress has been made in theoretical investigation of total joint replacements and
their successful application in the practice. Let us mention here [1,2,7,11].

In the contribution a weight-bearing total knee replacement will be discussed and analysed. The model was derived
from the X-ray radiograph of the knee joint after the implantation of artificial knee joint prosthesis. The stress–strain
analysis is based on the theory of contact problems in elasticity and the non-overlapping domain decomposition method.

In our presentation, we would like to present our numerical results and their application in practice. Therefore, we will
also present the information about the knee joint replacements WALTER UNIVERSAL and WALTER MODULAR.

The intention of total knee replacement is to replace damaged articular surfaces and to restore the mechanical axis
of the extremity in such a way to change the non-functional knee joint by the complete functional one.

∗ Corresponding author.
E-mail address: danek@kma.zcu.cz (J. Daněk).

0378-4754/$32.00 © 2007 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.matcom.2007.01.013
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The model concerned with the above-discussed problem makes it possible to test total knee prosthesis from the
aspect of biomechanics during statically loading of the knee prosthesis as well as tribology and the distribution of
stress–strain field in the natural knee and in its replacement. The best surgical procedure for a given patient is then
determined to preserve the condition of an approximately equal distribution of the stress–strain field in the knee joint
and its replacement (see [6]). Since the implanted artificial knee joint, as well as the natural one, is a physically defined
static system, where the shape corresponds to the function, then its impairment leads to a mechanical failure of the
knee prosthesis, i.e. to a loosening of the knee prosthesis.

2. The Model

For the geometry of the model the X-ray radiograph was used. The mathematical model is based on the theory of
contact problem in elasticity and the finite element approximation. The algorithm used for our computation is based
on the non-overlapping domain decomposition method. On the contact boundary between both collided parts of the
knee the Coulombian type of friction acts.

We will assume that the investigated knee joint occupies the domain Ω = ∪3
ι=1Ω

ι, where Ω1 is occupied by the
femoral part of the knee joint,Ω2 by the tibial part of the knee joint andΩ3 by the fibula. The boundary ∂Ω is assumed
to be sufficiently smooth and consists of three disjoint parts such that ∂Ω = Γτ ∪ Γu ∪ Γc, where by Γτ we denote the
loaded and unloaded part of the boundary ∂Ω. By Γu we denote the parts of the tibial and fibula’s boundaries, where the
tibia and the fibula are fixed. By Γc = (∂Ω1 ∩ ∂Ω2) ∪ (∂Ω2 ∩ ∂Ω3) we denote the common contact boundary between
both knee joint componentsΩ1 andΩ2 and the connection between the tibia and the fibula. The knee joint is assumed
to be loaded by the loading parallel with the femur’s axis, corresponding to the weight of the human body. Let the body
forces F, the surface forces P and the slip limits gc be given. Then we have to solve the following problem:

Problem (P). Find the displacements uι in all Ωι such that:

∂τij(uι)
∂xj

+ Fιi = 0, i, j = 1, 2 inΩι, ι = 1, 2, 3, (1)

τijnj = Pi, i, j = 1, 2 onΓτ, (2)

ui = u0i, i = 1, 2 onΓu, (3)

ukn − uln ≤ 0, τkln ≤ 0, (ukn − uln)τkln = 0

|τklt (u)| ≤ Fklc |τkln (u)| ≡ gklc

|τklt (u)| < gklc ⇒ ukt − ult = 0

|τklt (u)| = gklc ⇒ there existsϑ ≥ 0

such that ukt − ult = −ϑτklt (u)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

onΓ klc , (4)

where Γ klc = ∂Ωk ∩ ∂Ωl, k 	= l, k ∈ {1, 2}, l = k + 1 and where the normal and tangential components of displacement
vector u = (ui), i = 1, 2, and stress vector τ = (τi), i = 1, 2, are defined as follows: un = uini, ut = u − unn, τn =
τijnjni, τt = τ − τnn, where n denotes the outerward unit normal to the boundary ∂Ω, and therefore, τkn = τln ≡ τkln ,
τkt (u) = τlt(u) ≡ τklt (u). Moreover, the elastic coefficients cijkl satisfy the conditions of symmetry cijkl = cjikl = cijlk =
cklij and the condition 0 < cι0 ≤ cιijklξijξkl|ξ|−2 ≤ cι1 < +∞, for a.a. x ∈ Ωι, ξ ∈R4, ξij = ξji, c

ι
0, c

ι
1 = constant > 0

independent of x ∈Ωι, ι∈ {1, 2, 3}.

LetW = �3
ι=1[H1(Ωι)]

2
be the Sobolev space in the usual sense, let ‖v‖W = (

∑
ι

∑
i‖vi‖2

1,Ωι )
1/2

. Let us introduce
the sets of virtual and admissible displacements:

V0 = {v ∈W |v = 0 on Γu}, V = u0 + V0, K = {v ∈V |vkn − vln ≤ 0 onΓc}
and letVh,Kh = Vh ∩K be their finite element approximations. Assume thatuk0n − ul0n = 0 onΓ klc . Let cιijkl ∈L∞(Ωι),

Fιi ∈L2(Ωι), Pi ∈L2(Γτ), uι0 ∈ [H1(Ωι)]
2
. Then we have to solve the following variational problem.
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Problem (Pv). Find a function u ∈K, such that:

a(u, v − u) + j(v) − j(u) ≥ L(v − u), ∀v ∈K, (5)

where

a(u, v) =
∑
ι

∫
Ωι
cιijkleij(u

ι)ekl(vι) dx,

j(v) =
∫

∪k,lΓ klc
gklc |vkt − vlt| ds,

L(v) =
∑
ι

∫
Ωι
F ιi dx −

∑
ι

∫
1Γτ∩∂Ωι

Pιi v
ι
i ds.

(6)

Let us introduce the sets of rigid displacements and rotations R = ∪ιRι, Rι = {vι = (vι1, v
ι
2)|vι1 = aι1 − bιx2, v

ι
2 =

aι2 + bιx1}, where aι1, a
ι
2, b

ι, ι = 1, 2, 3, are arbitrary real constants. If:

L(v) < j(v), ∀v ∈R ∩K − {0},
{v ∈R ∩ V0, v

k
n − vln = 0 onΓ klc } = {0} and

|L(v)| > j(v), ∀v ∈R ∩ V0 − {0},
(7)

then the problem (5) has a unique solution. The finite element approximation leads to solve the following problem.

Problem (Ph). Find a function uh ∈Kh, such that:

a(uh, vh − uh) + j(vh) − j(uh) ≥ L(vh − uh), ∀vh ∈Kh. (8)

For the numerical solution the non-overlapping domain decomposition method [3–5,9,10] was used.

3. Numerical results

For the geometry of the model the X-ray radiograph was used. We will study the knee joint replacement in two
cases—the cut in the frontal plane (Fig. 1 a) and the cut in the sagital plane (Fig. 1b). The numerical results were used
for verifications of the real existing total knee joint replacements WALTER-UNIVERSAL and WALTER-MODULAR,
described below in Section 4.

The material parameters are as follows (E, Young’s modulus; ν, Poisson’s ratio): bone: E = 1.71 × 1010 Pa, ν =
0.25; [1] Ti6Al4V:E = 1.15 × 1011 Pa, ν = 0.3; [2] UHMWPE:E = 3.4 × 108 Pa, ν = 0.4; [3] CoCrMo:E = 2.08 ×
1011 Pa, ν = 0.3.

The femoral part of the knee joint was loaded between points 5 and 6 by a loading 0.215 × 107 Pa, the tibia and the
fibula are fixed between points 1 and 2, 3 and 4, and the contact between the femoral and tibial parts of the knee joint
replacement is between 7 and 8, 9 and 10, and between the tibial and fibula’s parts 11 and 12. Figs. 2 and 3 represent
the vertical τy and shear τxy components of stress tensor and Fig. 4 the principal stresses in the knee joint replacement.

Ideal distribution of loading on the tibial component of the total knee joint replacement represents the main require-
ment for its high quality. Stresses in the soft tissues (ligaments, joint capsule) in the neighbourhood of the total knee
replacement determine the pressure relations in the joint. Observations of the reoperated knee joints show that certain
asymmetric overloading of medial or lateral compartment, as well as overloading of the hinder part of the tibial plate
increases to a wear of the UHMWPE insert or even starts its deformation.

Our numerical results show that for horizontal stresses predominate relatively small tractions in the region around
inner medial and outer lateral parts of the contact area and in the region between condyles, otherwise the pressures
are indicated in the femoral and tibial parts of the knee joint. Moreover, analyses of our numerical results indicate that
the gradients of stresses in the joint are counterpoised in the epiphysis and then the metaphysis is strained uniformly.
For vertical stress components in the whole area are indicated pressures, the area between condyles and the medial
periphery are lightened and in the lateral direction the stresses increase. The similar situation is also in the tibia. Our
numerical results indicate that pressures are transferred across outward lateral and inner medial contact area. From
the vertical and shear stress components as well as from the principal stresses, it is shown, that greater parts of the
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Fig. 1. The geometry of the model (a) in the frontal plane and (b) in the sagital plane.

Fig. 2. The vertical component τy of stress tensor.
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Fig. 3. The shear component τxy of stress tensor.

concentration of pressures are situated into the areas of outward condyles of the femur and the tibia, the smaller part
across the inner condyles and tractions are situated in the area between the condyles.

4. Applications

Analyses of our numerical results were used for verification of function of the knee joint replacements WALTER
UNIVERSAL and WALTER MODULAR (see [8]). Both are indicated for severe destruction of the knee joint in
rheumatoid arthritis or osteoarthritis, and for some post-traumatic cases, as well as for some systemic diseases. The
implants are intended for the primary replacement of the knee joint.

WALTER UNIVERSAL (WU) (see Fig. 5) is the older design which has used since 1984 and has implanted suc-
cessfully in more than 12,000 cases. Femoral component of WU is designed as a symmetrical one and is manufactured
of the CoCrMo (ISO 5832-4) alloy. Its basic type is intended for the application with bone cement. The femoral com-
ponents are supplied in four sizes and can be provided with distal or dorsal inserts for the filling of local bone defects.
Tibial component of WU is designed as a symmetrical one. The total tibial plateau is composed of two inseparable
parts of (i) symmetric anchoring plate with a stem manufactured of the CoCrMo (ISO 5832-4) alloy and (ii) an insert
produced of UHMWPE (ISO 5834-2), which forms the contact areas. It is supplied in four sizes and each of four
thicknesses.

WALTER MODULAR (WM) (see Fig. 6) is based on the experiences with the previous model WU. The femoral
component is designed as an asymmetrical one—right and left versions, and is produced of CoCrMo (ISO 5832-4)
alloy. In its basic version is used with the bone cement. Femoral component is supplied in four sizes and it can be also
provided with distal or dorsal inserts for the treatment of the local bone defects. Tibial component is designed as a
modular one, in right and left versions. It is formed by an anchoring plate with a stem, and with an interchangeable
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Fig. 4. The principal stresses.

Fig. 5. The knee joint replacement—WALTER UNIVERSAL.
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Fig. 6. The knee joint replacement—WALTER MODULAR.

insert with corresponding contact areas. The asymmetrical anchoring plate of tibial component shape corresponds to
the different shapes of medial and lateral tibial condyles. The slots on plate provide space to preserve the posterior
cruciate ligament. For fixation, the anchoring plate is provided with couple of anti-rotating ribs, short stem and two
holes for bone screws. Basic version is supplied with a standard stem, which is provided with closing bolt at the end.
All parts together with the anchoring plate are manufactured of titanium Ti6Al4V (ISO 5832-3) alloy. The articular
insert is manufactured of the UHMWPE (ISO 5834-2) material in the right and left versions. The insert is fixed in the
anchoring plate by several bosses and one central screw. The insert is delivered in four basic and three intermediate
sizes to compensate possible differences between the femoral and tibial components.

Fig. 7 represents the X-ray images of WALTER UNIVERSAL in the frontal and sagital plane.

Fig. 7. The X-ray images of WALTER UNIVERSAL.
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Abstract

In geomechanics, there are problems whose investigations lead to solving model problems based on variational formulations.
al work
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t data in
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ual
blem
al-
ing
Such problems are frequently formulated by variational inequalities as they physically describe the principle of virtu
in its inequality form. In the first part of the contribution, the algorithm for the numerical solution of the discussed var
inequality problem will be investigated. The used parallel algorithm is based on a nonoverlapping domain decom
method for unilateral contact problem with the given friction and the finite element approach. The conditions of solvab
be presented. In the second part of the contribution, a unilateral contact problem with friction and with uncertain inpu
quasi-coupled thermo-elasticity is analysed. Method of worst scenario will be applied to find the most “dangerous” ad
input data. The solvability of the corresponding worst scenario (antioptimization) problem will be shortly discussed. N
experiments, e.g. a tunnel crossing by an active fault will be presented.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will deal with semi-coercive con-
tact problem with friction and uncertain input data
in linear quasi-coupled thermo-elasticity. The prob-
lem represents extension of problems solved in[1,2]
for their application in geomechanics of high level
radioactive waste repositories. Such problems are fre-
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quently formulated by variational inequalities as t
physically describe the principle of virtual work in
inequality form.

The first part of the contribution will deal wi
numerical solution of a geomechanical problem ba
on the generalized semi-coercive contact problem
the given friction in quasi-coupled thermo-elasticity
the case that “s” bodies of arbitrary shapes are in mut
contacts and are loaded by external forces. The pro
will be formulated as the primary variational inequ
ity problem. The corresponding algorithm, employ

0167-739X/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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I. Hlaváček et al. / Future Generation Computer Systems 22 (2006) 468–483 469

properties of modern parallel computers with greater
number of processors, will be based on nonoverlap-
ping domain decomposition method.

In the second part of the contribution we will
assume that the input data will be also uncertain. By
uncertain data we mean input data (physical coef-
ficients, right-hand sides, boundary values, friction,
etc.), which cannot be determined uniquely but only
in some intervals determined by their measurement
errors. The notationreliable solution denotes the
worst case among a set of possible solutions, where
possibility is given by uncertain input data, and the
degree of badness is measured by a criterion-functional
[3–5]. The main goal of our investigation will be to
find maximal values of this functional depending on
the solution of the problem to be solved. Therefore,
we will formulate and analyze a corresponding
maximization (worst scenario) problem.

2. Formulation of the thermo-elastic contact
problem

Let us consider a unionΩ of bounded domains
Ωι, ι = 1, . . . , s, with Lipschitz boundaries∂Ωι, occu-
pied by elastic bodies such thatΩ = ∪s Ωι ⊂
R

s t
∂

of
Γ

∂

t
b-

l of
b rad-
u

2
c

fi
t

i

κij
∂T

∂xj
ni = 0 onΓu, (2.2)

T = T1 onΓτ, (2.3)

T k = T l,

(
κij
∂T

∂xj
ni

)k
+
(
κij
∂T

∂xj
ni

)l
= 0

on ∪k,l Γ kl,1 ≤ k, l ≤ s. (2.4)

Throughout the paper we use the summation con-
vention, i.e. a repeated index implies summation from
1 to N. Furthermore,nk = (nki ), i = 1, . . . , N, 1 ≤ k ≤
s, denotes the unit normal with respect to∂Ωk,nk =
−nl on Γ kl; (κιij) is the matrix of thermal conductiv-
ities. Assume thatκι are positive definite symmetric
matrices,

0< κι0 ≤ κιijζiζj|ζ|−2 ≤ κι1 < +∞
for a.a.x ∈ Ωι, ζ ∈ R

N,

whereκι0, κ
ι
1 are constants independent ofx ∈ �ι. Let

κιij ∈ L∞(Ωι), Wι ∈ L2(Ωι), T1 ∈ H1(Ωι), T k1 = T l1

on∪k,lΓ kl.

Definition 2.1. We say that a functionT is a weak

ti-
by
ry
ι=1
N,N ∈ {2,3}. Let the boundary∂Ω = ∪sι=1∂Ω

ι con-
ist of three disjoint partsΓτ , Γu andΓc, such tha
Ω = Γ̄τ ∪ Γ̄u ∪ Γ̄c.

Assume that (N − 1)-dimensional measures
τ, Γu andΓc are positive, whereΓc = ∪k,lΓ kl,Γ kl =
Ωk ∩ ∂Ωl, 1 ≤ k, l ≤ s, k �= l, andΓ̄τ, Γ̄u, Γ̄c denote
he closures in∂Ω.

We will deal with the following quasi-coupled pro
em of thermo-elasticity, which consists of a pair
oundary value and contact problems to be solved g
ally.

.1. Problem of stationary heat
onduction—problem P1

LetWι andT1 be given functions. ProblemP1 is to
nd a function of temperatureT = (T 1, . . . , T s) such
hat

∂

∂xi

(
κιij
∂T ι

∂xj

)
+Wι = 0

n Ωι, 1 ≤ ι ≤ s, i, j = 1, . . . , N, (2.1)
solution of problemP1, if T − T1 ∈ V1 and

b(T, z) = s(z) ∀ z ∈ V1, (2.5)

where

b(T, z) =
s∑
ι=1

∫
Ωι
κιij
∂T ι

∂xi

∂zι

∂xj
dx,

s(z) =
s∑
ι=1

∫
Ωι
Wιzι dx,

V1 = {z ∈ W1 = 
sι=1H
1(Ωι)|z = 0 onΓτ,

zk = zl on ∪k,l Γ kl}.

The formulation(2.5) can be obtained by mul
plying Eq. (2.1) by a test function, integrating
parts over the domainΩι and using the bounda
conditions.
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2.2. Problem of unilateral contact problem with
friction—problem P2

Let the body forcesF, the surface tractionsP,
boundary displacementsu0, elastic coefficientscιijkl,
coefficients of thermal expansionβιij and slip limits

gklc , the temperatureT ι and the reference temperature
T ι0 = T ι0(x) be given.

We will deal with the following problem:
Problem P2: Find the displacement fieldu =

(ui), i = 1, . . . , N in Ω, such that

∂

∂xj
τij(uι, T ι) + Fιi = 0 inΩι,

1 ≤ ι ≤ s, i = 1, . . . , N, (2.6)

τij(uι, T ι) = cιijklekl(u
ι) − βιij(T

ι − T ι0)

in Ωι, 1 ≤ ι ≤ s, i = 1, . . . , N, (2.7)

u = u0 onΓu, (2.8)

τij(u, T )nj = Pi onΓτ, i = 1, . . . , N, (2.9)

uk − ul ≤ 0, τk ≤ 0, (uk − ul )τk = 0

ic

where cι0, c
ι
1 are constants independent ofx ∈

Omegaι. Let cιijkl ∈ L∞(Ωι), Fιi ∈ L2(Ωι), Pi ∈
L2(Γτ), βιij ∈ L∞(Ωι),uι0 ∈ [H1(Ωι)]N . Let coef-
ficients of thermal expansionβij be such that
βij = βji.

To simplify the formulation of stress–strain rela-
tions, the entries of any symmetric (N ×N) matrix
{τij} will be denoted bythe vector notation {τj}, j =
1, . . . , jN , wherejN = N(N + 1)/2, as follows:

τi = τii for 1 ≤ i ≤ N, τ3 = τ12 for N = 2,

τ4 = τ23, τ5 = τ31, τ6 = τ12 for N = 3.

Likewise, we replace the symmetric matrices
(eij(u)), (βij) by vectors{ej(u)}, {βj}. Then the stress–
strain relation(2.7)can be rewritten as

τi(uι, T ι) =
jN∑
j=1

Aιijej(u
ι) − βιi(T

ι − T ι0),

1 ≤ i, j ≤ jN, 1 ≤ ι ≤ s, (2.7′)

whereAι is a symmetric (jN × jN ) matrix, Aιik ∈
L∞(Ωι), ι = 1, . . . , s.

It is readily seen that

n n n n n n

on ∪k,l Γ kl, 1 ≤ k, l ≤ s, (2.10)

|τklt | ≤ gkl on ∪k,l Γ kl, 1 ≤ k, l ≤ s, (2.11)

|τklt | < gkl =⇒ ukt − ult = 0, (2.12)

|τklt | = gkl =⇒ there existsϑ ≥ 0

such thatukt − ult = −ϑτklt . (2.13)

Here, eij(u) = 1
2((∂ui/∂xj) + (∂uj/∂xi)), ukn =

uki n
k
i , u

l
n = ulin

k
i (no sum overk or l), ukt = (ukti),

ukti = uki − uknn
k
i , ult = (ulti), ulti = uli − ulnn

l
i, i =

1, . . . , N, τkn = τkijn
k
i n
k
j , τ

k
t = (τkti), τ

k
ti = τkijn

k
j − τknn

k
i ,

τln = τlijn
l
in
l
j, τ

l
t = (τlti), τ

l
ti = τlijn

l
j − τlnn

l
i, τ

kl
t ≡ τkt .

Assume thatcιijkl are positive definite symmetr
matrices such that

0< cι0 ≤ cιijklξijξkl|ξ|−2 ≤ cι1 < +∞

for a.a.x ∈ Ωι, ξ ∈ R
N2
, ξji = ξij,
τ : e ≡ τijeij =
N∑
i=1

τiei + 2
jN∑

i=N+1

τiei.

Therefore, we can write

cιijkleijekl =
jN∑
i,j=1

Bιijeiej,

whereBι is a symmetric (jN × jN ) matrix such that

Bιij = Aιij for 1 ≤ i, j ≤ N,

Bιij = 0 for 1 ≤ i ≤ N, N + 1 ≤ j ≤ jN,

Bιij = 2Aιij for N + 1 ≤ i, j ≤ jN.

Let us denote

W1 = 
sι=1H
1(Ωι), ‖w‖W1 =

(∑
ι≤s

‖wι‖2
1,Ωι

) 1
2

,
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W = 
sι=1[H1(Ωι)]N,

‖v‖W =

∑
ι≤s

∑
i≤N

‖vιi‖2
1,Ωι




1
2

.

Assume that the matricesBι are positive definite, so
that

0< aι0 ≤
jN∑
i,j=1

Bιijξiξj|ξ|−2 ≤ aι1 < +∞

for a.a.x ∈ Ωι, ξ ∈ R
jN ,

where the constantsaι0, aι1 are independent ofx ∈ Ωι.
Finally, let us assume that

measN−1(Γu ∩ ∂Ωι) > 0 and

measN−1(Γτ ∩ ∂Ωι) > 0 for all ι = 1, . . . , s,

and let u0 ∈ W , T0 ∈ W1, gklc ∈ L∞(Γ kl), βιj ∈
L∞(Ωι). Let us introduce the space of virtual
displacements

V = {v ∈ W |v = 0 onΓu}

a

K

w iply
e by
p ns
a
o

D
s

a

w

a

jg(v) =
∑
k,l

∫
Γ kl
gkl|vkt − vlt| ds, (2.15)

S(v, T ) =
s∑
ι=1

∫
Ωι

(Fιi v
ι
i + (T ι − T ι0)βι : e(vι)) dx

+
∫
Γτ

Pivi ds, (2.16)

where the weak solutionT of the problemP1 in S(v, T )
is inserted.

3. Numerical solution and domain
decomposition algoritm

In this section, we deal with the elastic part of prob-
lem only, as the domain decomposition algorithm for
the thermal part of the problem is the standard problem
solved in the literature.

3.1. Formulation of the problem

We follow the approach proposed by Le Tallec[6]
and group every two subdomains which share a con-

kl e
the

lting
suc-
tion
the
las-

ce

o-
nd the set of admissible displacements

= {v ∈ V |vkn − vln ≤ 0 on ∪k,l Γ kl}.

We shall define a weak solution of the problemP2,
hich is motivated by the standard procedure: mult
quations(2.6) by a test vector function, integrate
arts over the domainΩ, use the boundary conditio
nd assume thatu0 satisfies conditionsuk0n − ul0n = 0
n∪k,lΓ kl.

efinition 2.2. We say that the functionu is a weak
olution of problemP2, if u − u0 ∈ K and

(u, v − u) + jg(v) − jg(u)

≥ S(v − u, T ) ∀ v ∈ u0 +K, (2.13)

here

(u, v) =
s∑
ι=1

∫
Ωι

3∑
i,j=1

Bιijei(u
ι)ej(vι) dx, (2.14)
tact areaΓ into a single “nonlinear” subdomain. W
use discretization by linear finite elements and
concept of local Schur complements. The resu
nonlinear equation on the interface is solved by
cessive approximations. For the starting approxima
we choose the solution of the linear problem, where
unilateral contact conditions are replaced by the c
sical bilateral contact conditions without friction.

Let every domainΩ̄ι be divided intoJ(ι) sub-
domainsΩιi, i ≤ J(ι). Let us denoteΓ ιi = ∂Ωιi\∂Ωι,
ι ∈ {1, . . . , s}, i ∈ {1, . . . , J(ι)}, a part of dividing line
and letΓ = ∪sι=1 ∪J(ι)

i=1 Γ
ι
i represent the whole interfa

boundary. Let us introduce

T ι = {j ∈ {1, . . . , J(ι)} : Γ̄c ∩ Ω̄ιj = ∅}, ι = 1, . . . , s

(3.1)

the set of all indices of subdomains of the domainΩι

which are not adjacent to a contact, and let

Ω∗j = ∪[i,ι]∈ϑΩιi, (3.2)

where ϑ = {[i, ι] : ∂Ωιi ∩ Γc �= ∅}, represent subd
mains in unilateral contact. Suppose thatΓ ∩ Γc = ∅.
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Then for the trace operatorγ : [H1(Ωιi)]
N →

[L2(∂Ωιi)]
N we have

VΓ = γK|Γ = γV |Γ . (3.3)

Let γ−1 : VΓ ∈ V be an arbitrary linear inverse map-
ping satisfying

γ−1v̄ = 0 on ∪k,l Γ kl ∀ v̄ ∈ VΓ . (3.4)

Let us introduce restrictions̄Rιi : VΓ → Γ ιi ;L
ι
i : Lι →

Ωιi; j
ι
gi : jιg → Γ kl; aιi(·, ·) : aιi(·, ·) → Ωιi; V (Ωιi) →

Ωιi and let

V 0(Ωιi) = {v ∈ V |v = 0 on(∪sι=1Ω
ι)\Ωιi}

be the space of functions with zero traces onΓ ιi .

Theorem 3.1. A function u is a solution of a global
problem P2, if and only if: its trace u = γu|Γ on the
interface Γ satisfies the condition

s∑
ι=1

J(ι)∑
i=1

[aιi(u
ι
i(u), γ−1w) − Sιi(γ

−1w)] = 0

∀ w ∈ VΓ , u ∈ VΓ , (3.5)

and its restrictions uιi(u) ≡ u|Ωι
i

satisfy

)

3.2. The Schur complements and the linearized
problem

The aim of this subsection is to analyze in detail the
condition(3.5)and to employ it for numerical compu-
tation of problemP2. We will introduce the concept of
thelocal Schur complement.

Let us denoteV ιi = {γv|Γ ι
i
|v ∈ K} = {γv|Γ ι

i
|v ∈

V } and define a particular case of the restriction of the
inverse mappingγ−1(·)|Ωι

i
by




Tr−1
iι : V ιi → V (Ωιi),

γ(Tr−1
iι uιi)|Γ ιi = uιi, i = 1, . . . , J(ι),

ι = 1, . . . , s,

aιi(Tr
−1
iι uιi, vιi) = 0

∀ vιi ∈ V 0(Ωιi),

Tr−1
iι uιi ∈ V (Ωιi), for i ∈ T ι,

ι = 1, . . . , s.

(3.9)

For [i, ι] ∈ ϑ we complete the definition by the bound-
ary condition(3.4), i.e.

Tr−1
iι uιi = 0 on ∪k,l Γ kl. (3.10)

Definition 3.1. By the local Schur complement fori ∈

l

ne

nt
(i) the condition

aιi(u
ι
i(u),ϕιi) = Sιi(ϕ

ι
i) ∀ ϕιi ∈ V 0(Ωιi),

uιi(u) ∈ V (Ωιi), γuιi(u)|Γ ι
i

= R̄ιiu,

(3.6

for i ∈ T ι, ι = 1, . . . , s, and
(ii) the condition∑

[i,ι]∈ϑ
aιi(u

ι
i(u),ϕιi) + jιg(u

ι
i(u) + ϕιi) − jιg(u

ι
i(u))

≥
∑

[i,ι]∈ϑ
Sιi(ϕ

ι
i) (3.7)

for all ϕ ≡ (ϕιi, [i, ι] ∈ ϑ),ϕιi ∈ V 0(Ωιi), and such
that

u + ϕ ∈ K,
γuιi(u)|Γ ι

i
= R̄ιiu for [i, ι] ∈ ϑ. (3.8)

For the proof see[7].
T ι it is meant the operatorSιi : V ιi → (V ιi )
∗ defined by

〈Sιiūιi, v̄ιi〉 = aιi(Tr
−1
iι ūιi, Tr

−1
iι v̄ιi) ∀ ūιi, v̄ιi ∈ V ιi (3.11)

and in the matrix form by

SιiŪ
ι
i = (Āiι − B̄T

iιÅ
−1
iι Biι)Ū

ι
i, (3.12)

where

Aiι =
(
Åiι Biι

BT
iι Āiι

)
, Uιi =

(
Ů
ι

i

Ūιi

)
, (3.13)

where the nodes of̄Uιi belong toΓ ιi and the interna
degrees of freedom are̊U

ι

i.

For subdomains which are in contact we will defi
a common local Schur complement as follows:

Definition 3.2. The common local Schur compleme
for the unionΩki ∪Ωlj (whereΓ klc ⊂ Γc and [i, k] ∈
ϑ, [j, l] ∈ ϑ) is the operator

Skl : (Vki × V lj) → (Vki × V lj)
∗ = (Vki )∗ × (V lj)

∗
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defined by the relation

〈Skl(ȳki , ȳlj), (v̄
k
i , v̄lj)〉

= aki (u
k
i (ȳ

k
i ), Tr

−1
ik v̄ki ) + alj(u

l
j(ȳ

l
j), Tr

−1
jl v̄lj)

∀ (vki , v̄lj) ∈ Vki × V lj. (3.14)

whereTr−1
ik andTr−1

jl are defined by means of(3.9)

and (3.10)anduki (ȳ
k
i ), ulj(ȳ

l
j) denote the solution of the

problem(3.7).

The condition(3.5) can be expressed by means of
local Schur complements. Then we have

Lemma 3.2. The trace ū = γu|Γ of the weak solution
satisfies the following condition
s∑
ι=1

∑
i∈T ι

〈Sιiūιi, v̄ιj〉 +
∑
k,l

〈Skl(ūki , ūlj), (v̄
k
i , v̄lj)〉

=
s∑
ι=1

J(ι)∑
i=1

Lιi(Tr
−1
iι v̄ιi) ∀ v̄ ∈ VΓ , [i, k] ∈ ϑ,

[j, l] ∈ ϑ, Γ kl ⊂ Γc, (3.15)

where v̄ιi = R̄ιiv̄, ūιi = R̄ιiū.

e

tion
ob-
d
or-

ukn − uln = 0, τklt = 0 onΓc0 ≡ ∪k,lΓ kl0 (3.18)

whereΓ kl0 are parts ofΓ kl, textrmmeasΓ kl0 > 0, cho-
sen a priori (for example,Γ kl0 = Γ kl). OnΓ kl\Γ kl0 we
consider homogeneous conditions of zero surface load
Pkj = Plj = 0, j = 1, . . . , N.

Then we replace the setK by K0 = {v ∈ V |vkn −
vln = 0 on ∪k,l Γ kl0 } and therefore, we will solve the
following problem

u0 = arg minv∈K0

(
1

2
a(v, v) − S(v)

)
(3.19)

and we set̄U0 = γu0|Γ . The auxiliary problem(3.19)
represents a linear elliptic boundary value problem of a
system of “s” elastic bodies with bilateral contact and
it can be solved by the domain decomposition method
again.

3.3. Solution of the auxiliary problem

Instead of(2.13)we will solve the variational equa-
tion for u0 ∈ K0:

a(u0, v) = S(v) ∀ v ∈ K0. (3.20)

,
d-

. For

nts

ent
Then we will solve the Eq.(3.15)on the interfac
Γ in the dual space (VΓ )∗. We rewrite(3.15) into the
following form

S0Ū + SCONŪ = F, (3.16)

where

S0 =
s∑
ι=1

∑
i∈T ι

(R̄ιi)
TSιiR̄

ι
i, SCON =

∑
k,l

R̄T
klS

klR̄kl,

F =
s∑
ι=1

J(ι)∑
i=1

(R̄ιi)
T(Tr−1

iι )TSιi (3.17)

and R̄kl(ū) = (R̄ki (ū), R̄lj (ū))T, ū ∈ VΓ , [i, k] ∈ ϑ,
[j, l] ∈ ϑ, Γ kl ⊂ Γc.

Eq.(3.16)will be solved bysuccessive approxima-
tions, because the operatorsSkl and thereforeSCON are
nonlinear. We choose a suitable initial approxima
Ū0, for instance the solution of the global primal pr
lem, where the boundary conditions onΓc are replace
by the linear “classical” bilateral conditions (which c
respond withgkl ≡ 0 andjg(u) ≡ 0)
Thus, an analogue ofTheorem 3.1can be derived
where the condition(3.7)is replaced by the correspon
ing variational equality and where a mappingγ−1

0 :
VΓ → V satisfies conditions (γ−1

0 v̄)kn − (γ−1
0 v̄)ln = 0

on∪k,lΓ kl0 .
We introduce operators of Schur complements

i ∈ T ι, ι = 1, . . . , s, we define the mappingsTr−1
iι

according to(3.9)and the local Schur complemene
S0ι
i by (3.11).

Definition 3.3. The common local Schur complem
for the unionΩki ∪Ωlj, whereΓ kl0 ⊂ Γc and [i, k] ∈
ϑ, [j, l] ∈ ϑ,

S0kl : (Vki × V lj) → (Vki )∗ × (V lj)
∗

is defined by the following relation

〈S0kl(ū0k
i ,u0l

j ), (v̄ki , v̄lj)〉
= aki (u

k
i (ū

k
i ), Tr

−1
ik v̄ki ) + alj(u

l
j(ū

l
j), Tr

−1
jl vlj)

∀ (v̄ki , v̄lj) ∈ Vki × V lj, (3.21)
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where Tr−1
ik and Tr−1

jl are defined by means of

(Tr−1
ik v̄ki )n − (Tr−1

jl v̄kj )n = 0 onΓ kl0 and

aki (Tr
−1
ik v̄ki ,wk

i ) + alj(Tr
−1
jl v̄lj,wl

j) = 0

∀ wk
i ∈ V 0(Ωki ), wl

j ∈ V 0(Ωlj) (3.22)

such that (wk
i )n − (wl

j)n = 0 onΓ kl0 .
A global Schur complementS is defined by

S = S0 +
∑
k,l

(R̄kl)
TS0klR̄kl, (3.23)

whereS0 is defined in(3.17). andS0kl by (3.21) and
(3.22).

Then the condition coresponding to(3.15) of the
auxiliary problem on the interface implies the equation

SŪ = F in the dual space (VΓ )∗. (3.24)

To solve problem(3.24)the method of preconditioned
conjugate gradients can be used. In[7], the so-called
Neumann–Neumann preconditioner is derived.

3.4. Successive approximation method and its
convergence

f

s
-

od
ew
ann

D̊
ι

iv(Pm) = v(Pn)ριi
ρT (3.27)

if the mth degree of freedom corresponds with thenth
degree ofV ιi andPn /∈ Γ ki ∪ Γ lj and

D̊
ι

iv(Pm) = 0 in the remaining cases. (3.28)

Here,ριi denotes the local measure of stiffness of the
subdomainΩιi (e.g. the average of the Young modulus)
and

�T =
∑
Pl∈Ω̄ιj

�ιj

is the sum ofριj over all subdomains̄Ωιj, which contain
the pointPl.

Let us realize that the kernel

Zιi = KerAiι, ι = 1, . . . , s, i ∈ T ι (3.29)

may contain nonzero elements, i.e. displacements of a
ι nal

-

e
we

ces-
l

rm.
Recall that we have to solve the problem(3.16)by
successive approximations. Now̄U0 is the solution o
the auxiliary problem, i.e.̄U0 = γu0|Γ , whereu0 is a
solution of problem(3.19). The next approximation
Ūk, k = 1,2, . . ., we find as the solution of the follow
ing linear problem

S0Ūk = F− SCONŪk−1, k = 1,2, . . . . (3.25)

To solve problem(3.25), we use again the meth
of preconditioned conjugate gradients with n
“reduced” preconditioner of the Neumann–Neum
type (see[7]).

Definition 3.4. We define “injection operators”

D̊
ι

i : V ιi → VΓ , ι = 1, . . . , s andi ∈ T ι

by the following relation. For the nodes onΓ ki ∪ Γ lj
(Γ kl ⊂ Γc, [i, k] ∈ ϑ, [j, l] ∈ ϑ)

D̊
ι

iv(Pm) = v(Pn) if Pn ∈ Γ ki ∪ Γ lj, (3.26)
rigid bodyΩi. Therefore, we introduce the orthogo
complement of the kernelZιi in the spaceV (Ωιi), so
that

Q(Ωιi) ⊕ KerAiι = V (Ωιi). (3.30)

Let us define the “coarse” reduced space of traces

V0H =
s∑
ι=1

∑
i∈T ι

D̊
ι

iγZ
ι
i (3.31)

and a linear setV⊥
0H ∈ (VΓ )∗ of functionals by the rela

tion

S ∈ V⊥
0H ⇔ 〈S, z〉 = 0 ∀ z ∈ V0H. (3.32)

The setV⊥
0H will be used for starting values of th

preconditioned conjugate gradients algorithm. Now
will analyze the convergence of the method of su
sive approximation(3.25), to the solution of the origina
problem(3.16)in the space (VΓ )∗.

To this end, we introduce a seminorm and a no
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Definition 3.5. Let H0 be an orthogonal complement
of the subspaceV0H inVΓ . Let us introduce a seminorm

|R̄cv|ϑ =

∑

k,l

[aki (Tr
−1
ik R̄

k
i v, Tr

−1
ik R̄

k
i v) + alj(Tr

−1
jl R̄

l
jv, Tr

−1
jl R̄

l
jv)]




1
2

(3.33)

whereΓ kl ⊂ Γc, [i, k] ∈ ϑ and [j, l] ∈ ϑ.

Lemma 3.3. The expression

‖u‖2
Q = 〈S0u,u〉 (3.34)

defines a norm in H0.

Definition 3.6. Let a mappingT : H0 → H0 be
defined by the relation

〈S0(Ty), v〉 = 〈F− SCON (y), v〉 ∀ v ∈ H0.

(3.35)

Assumption 3.4. Let a constantβ exist such that

|R̄cu|ϑ ≤ β ‖u‖Q ∀ u ∈ H0. (3.36)

Lemma 3.5. If Assumption 3.4is satisfied, the mapping
T is well-defined, i.e. for all y ∈ H0 there exists a unique

Remark 3.1. TheAssumption 3.4with β <
√

2/2 is
fulfilled if the union∪[i,ι]∈ϑΩιi of subdomains, adjacent

to the contact boundaryΓc, is “small” with regard to the
union of remaining subdomains and if the triangulation
of everyΩιi, [i, ι] ∈ ϑ is sufficiently fine nearΓ ιi .

4. Worst scenario problem for uncertain input
data

4.1. Sets of uncertain input data

Let us assume that the input data

A = {Bι, κι,Wι, T1,Fι, βι,P,u0, g
kl,

ι = 1, . . . , s,∀k, l}
are uncertain. Let the only available information about
them be that they belong to some sets of admissible
data, i.e.

ι ι ι

1

element Ty ∈ H0, satisfying (3.35).

For the proof see[7].
Theorem 3.6. Let the Assumption 3.4hold. Then

‖T (y) − T (w)‖Q ≤ 2β2‖y − w‖Q y,w ∈ H0.

ad ad ad ad

u0 ∈ Uu0
ad, g

kl ∈ Ugklad .

Assume that all the bodiesΩι are piecewise homo-
ι

(3.37)

For the proof see[7].

Corollary 3.7. Let the Assumption 3.4 hold with β <√
2/2. Then the mapping T is contractive on H0. The

successive approximations (3.25) converge to a fixed
point of the mapping T, which represents a solution U
of the Eq. (3.16). The following error estimate holds

‖Uk − U‖Q ≤ (2β2)k(1 − 2β2)−1‖U0 − TU0‖Q,
k = 1,2, . . . (3.38)

for any U0 ∈ H0.

For the proof see[8, §11.7].
A ∈ Uad ⇔ Bι ∈ UBad, κ
ι ∈ Uκad, W

ι ∈ UWad ,

T ∈ UT1, Fι ∈ UFι, βι ∈ Uβι, P ∈ UP ,
geneous, so that partitions of̄Ω exist such that

Ω̄ι= ∪j̄ιj=1 Ω̄
ι
j, Ωιj ∩Ωιk = ∅ for j �= k,1 ≤ ι ≤ s,

(4.1)

Γ kl = ∪Qklq=1Γ̄
kl
q , Γ klq ∩ Γ klp = ∅ for q �= p,∀ k, l

(4.2)

and let the dataBι, κι,Fι,Wι, βι bepiecewise constant
with respect to the partition(4.1).

Let us denote

Γu ∩ ∂Ωι = Γ ιu, ι = 1, . . . , s, (4.3)

Γτ ∩ ∂Ωι = Γ ιτ , ι ≤ s. (4.4)
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We define the sets of admissible matrices:

UB
ι

ad = {(jN × jN ) symmetric matricesBι : Bιik(j)

≤ Bik|Ωι
j
= const.≤ B̄ιik(j), j

≤ j̄ι, i, k = 1, . . . , jN} (4.5)

whereBι(j) andB̄ι(j) are given (jN × jN ) symmetric
matrices,ι = 1, . . . , s. Assume that positive constants
cιB(j) exist such that

λmin( 1
2(Bι(j) + B̄ι(j))) − ρ( 1

2(B̄ι(j) − Bι(j)))

≡ cιB(j) for j = 1, . . . , j̄ι, ι = 1, . . . , s, (4.6)

whereλmin andρ denotes the minimal eigenvalue and
the spectral radius, respectively. Next, we define the set
of admissible matrices

Uκ
ι

ad = {(N ×N) − symmetric matricesκι : κιik(j)

≤ κιik|Ωιj = const.≤ κ̄ιik(j), j ≤ j̄ι, i, k ≤ N}
(4.7)

whereκι(j) and κ̄ι(j) are given (N ×N) symmetric
matrices,j = 1, . . . , j̄ , ι = 1, . . . , s. Assume that pos-

nd
rices

-

for ι ≤ s, whereWι(j) andW̄ ι(j) are given constants;

U
T1
ad = {T ∈ L∞(Γτ) : T 1(ι) ≤ T|Γ ιτ∗

= const.≤ T̄1(ι), ι ≤ s}, (4.11)

whereT 1(ι) andT̄1(ι) are given constants;

U
u0i
ad = {u ∈ L∞(Γu) : u0i(ι) ≤ u|Γ ιu

= const.≤ ū0i(ι), ι ≤ s}, (4.12)

whereu0i(ι) and ū0i(ι), i = 1, . . . , N, are given con-
stants;

U
Pi
ad = {p ∈ L∞(Γτ) : Pi(ι) ≤ p|Γ ιτ

= const.≤ P̄i(ι), ι ≤ s}, (4.13)

wherePi(ι) and P̄i(ι), i = 1, . . . , N are given con-
stants;

U
βι
i

ad = {b ∈ L∞(Ω) : βι
i
(j) ≤ b|Ωι

j

= const.≤ β̄ι(j), j ≤ j̄ι}, (4.14)

for i ≤ jN, ι ≤ s, whereβι
i
(j) andβ̄ιi(j) are given con-

stants;

U
gkl =

{
g ∈ L∞(Γ kl) : g| ∈ C(0),1(Γ̄ kl);

e

, as

d-

the
ι

itive constantscικ(j) exist such that

λmin( 1
2(κι(j) + κ̄ι(j))) − ρ( 1

2(κ̄ι(j) − κι(j)))

≡ cικ(j) for j ≤ j̄ι, ι ≤ s, (4.8)

whereλmin andρ denotes the minimal eigenvalue a
the spectral radius, respectively. Then the mat
κι(j) = κι|Ωι

j
are positive definite for anyκι ∈ Uκιad,

ι ≤ s, j ≤ j̄ι.
Now, let us introduce

U
Fι
i

ad = {f ∈ L∞(Ω) : Fιi(j) ≤ f |Ωι
j

= const.≤ F̄ ιi (j), j ≤ j̄ι}, (4.9)

for i ≤ N, ι ≤ s, whereFιi(j) andF̄ ιi (j) are given con
stants;

UW
ι

ad = {w ∈ L∞(Ω) : Wι(j) ≤ w|Ωι
j

= const.≤ W
ι
(j), j ≤ j̄ι}, (4.10)
ad Γ̄ klq q

0 ≤ g(s) ≤ ḡklq ,∣∣∣∣dgds
∣∣∣∣ ≤ Cklg a.e. inΓ klq , q ≤ Qkl

}
, (4.15)

for all pairsk, l under consideration, where ¯gklq andCklg
are given positive constants. Here,C(0),1 denotes th
space of Lipschitz-continuous functions.

Finally, we introduce the set of admissible data
follows:

Uad = 
ι≤sUBιad × 
ι≤sUκιad × 
ι≤s,j≤NUF
ι
i

ad

× 
ι≤s UWι

ad × U
T1
ad × 
ι≤s,i≤NUβ

ι

ad

× 
i≤N UPiad × 
i≤NUu0i
ad × 
k,lUg

kl

ad . (4.16)

To obtainT1 ∈ W1, we have to extend the boun
ary valuesT1 ∈ UT1

ad into the domainsΩι properly,
i.e. satisfying the conditionsT k1 = T l1 on all Γ kl. As
a consequence at some intersectionsΓ kl ∩ Γ̄τ (if any),
additional continuity conditions are necessary in
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definition ofUT1
ad. An analogous remark holds for the

datau0i ∈ Uu0i
ad andΓ kl ∩ Γ̄u.

Definition 4.1. Instead of the bilinear forms and func-
tionalsb(T, z), a(u, v), jg(v), s(z), S(v, T ) introduced
in Definitions 2.1 and 2.2, we will write b(A; T, z),
a(A; u, v), jg(A; v), s(A; z), S(A; v, T ) for any A ∈
Uad.

Lemma 4.1. There exist positive constants ci, i =
0,1, . . . ,6 independent of A ∈ Uad, such that

b(A; z, z) ≥ C0‖z‖2
W1 ∀ z ∈ V1, (4.17)

|b(A; z, y)| ≤ C1‖z‖W1‖y‖W1 ∀ z, y ∈ W1, (4.18)

a(A; v, v) ≥ C2‖v‖2
W ∀ v ∈ V, (4.19)

|a(A; v,w)| ≤ C3‖v‖W‖w‖W ∀ v,w ∈ W, (4.20)

|s(A; z)| ≤ C4‖z‖0,Ω ∀ z ∈ V1, (4.21)

|S(A; v,T )| ≤ C5(‖v‖0,Ω + ‖v‖0,Γτ + ‖T
− T0‖0,Ω‖v‖W ) ∀ v,w ∈ W, (4.22)

|j (A; u) − j (A; v)|

s

Arguing as in(4.24), we may write

a(A; v, v) ≥ ( min
ι≤s,j≤j̄ι

cιB(j))
∑
ι≤s

∫
Ωι

jN∑
k=1

e2
k(v

ι) dx.

(4.26)

The Korn’s inequality∫
Ωι
e(vι) : e(vι) dx ≥ Cι2‖vι‖2

1,Ωι (4.27)

holds for any restrictionvι of v ∈ V . Since

1

2
e : e ≤

jN∑
k=1

e2
k, (4.28)

recall the formula(2.13), combining(4.26)–(4.28), we
obtain the inequality(4.19). The inequality(4.20)is an
easy consequence of the definitions ofUB

ι

ad.
Thus, we may write

|s(A; z)| ≤
∑
ι≤s

(max
j≤j̄ι

|W̄ ι(j)|)
∫
Ωι

|zι| dx ≤ C4‖z‖0,Ω

Next, we have

|S(A; v, T )|

g g

≤ C6

∑
ι≤s

‖uι−vι‖0,∂Ωι ∀ u, v ∈ W. (4.23)

Proof. By Theorem 5 in[9], we have

λmin(κι(j)) ≥ cικ(j)∀ κι ∈ Uκιad, ι ≤ s, j ≤ j̄ι.

As a consequence, we obtain

b(A; z, z) ≥ ( min
ι≤s,j≤j̄ι

cικ(j))
∑
ι≤s

∫
Ωι

|gradzι|2 dx.

(4.24)

Then we have∫
Ωι

|gradzι|2 dx ≥ Cι1‖zι‖2
1,Ωι (4.25)

for any restrictionzι of z ∈ V1. Combining(4.24) and
(4.25), we arrive at(4.17).

The inequality(4.18) follows from the definition
of Uκ

ι

ad immediately.
≤
∑
ι≤s

(N1/2(max{|F̄ ιi (j)|, |Fιi(j)|})‖vι‖0,Ωι

+C(maxβ̄ι(j))
∫
Ωι

2|T ι − T ι0| ‖e(vι)‖ dx

+N1/2(max{|P̄i(ι)|, |Pi(ι)|})‖vι‖0,Γ ιτ )

≤ C5(‖v‖0,Ω + ‖v‖0,Γτ + ‖T − T0‖0,Ω‖v‖W ).

Finally, we may write

|jg(A; u) − jg(A; v)|

≤
∑
k,l

∫
Γ kl
gkl|(ukt − vkt ) − (ult − vlt)| ds

≤
∑
k,l

max
q≤Qkl

gklq

∫
Γ kl

|(ukt − vkt ) − (ult − vlt)| ds

≤ C
∑
k,l

∑
i≤N

(‖uki − vki ‖0,Γ kl + ‖uli − vli‖0,Γ kl )

≤ C6

∑
ι≤s

‖uι − vι‖0,∂Ωι . �
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Proposition 4.2. There exists a unique weak solution
T (A) of the problem P1 for any A ∈ Uad and u(A) of
problem P2 for any A ∈ Uad.

For the proof see[10].

4.2. Criteria of worst scenario

To find the “worst”, i.e. the most “dangerous” input
dataA in the setUad, we need a criterion, i.e. a func-
tional, which depends on the solutionT (A) or u(A) of
problemP1 orP2, respectively.

Next, we present several examples of such criteria.
LetGr ⊂ Ω, r = 1, . . . , r̄, be (small) subdomains,

adjacent to the boundaries∂Ωι, for example. We can
define

Φ1(T ) = max
r≤r̄ ϕr(T ) (4.29)

where ϕr(T ) = (measNGr)−1
∫
Gr
T dx; let G′

r ⊂
Γu, r ≤ r̄ and

Φ2(T ) = max
r≤r̄ ψr(T ) (4.30)

whereψr(T ) = (measN−1G
′
r)

−1
∫
G′
r
T ds.

int

d

see,
the

stress tensor deviatorτD, i.e.

I2
2(τ) =

3∑
i,j=1

τDij τ
D
ij , τDij = τij − 1

3
τkkδij;

I2
2 = 2

3[τ2
11 + τ2

22 + τ2
33 − (τ11τ22 + τ11τ33 + τ22τ33)

+ 3(τ2
12 + τ2

13 + τ2
23)] for N = 3.

In (4.33), τ(A; u, T ) is defined by the formula(2.7).
For orthotropic material and plane strain, we have to
insertτ13 = τ23 = 0.

If the friction can be neglected (as in[11,8,2]), we
setgklc ≡ 0 and define, e.g.

Φ6(A; u, T ) = max
r≤r̄ µr(A; u, T ); (4.34)

µr(A; u,T ) = (measNGr)−1
∫
Gr

(−τn(A; u, T )) dx;
andGr is a small subdomain adjacent toΓc.

Now we formulate theworst scenario problems as
follows:

find

A0i = arg max
A∈U

Φi(T (A)), i = 1,2, (4.35)

m

rio
-

Next, we define

Φ3(u) = max
r≤r̄ χr(u) (4.31)

whereχr(u) = (measNGr)−1
∫
Gr
uini(Xr) dx; where

n(Xr) is the unit outward normal at a fixed po
Xr ∈ ∂Ωι ∩ ∂Gr (if Gr ⊂ Ωι) to the boundary∂Ωι;

Φ4(u) = max
r≤r̄ χ

′
r(u) (4.32)

where χ′
r(u) = (measN−1G

′
r)

−1
∫
G′
r
uini(Xr) ds; G′

r

⊂ ∪ι≤s∂Ωι\Γu.
Since the weak solutionu(A) of our problem(2.13)

depends onT (A), thenu(A) = u(A; T (A)) and instea
of Φi(u) we writeΦi(A; u, T ). Another choice is

Φ5(A; u, T ) = max
r≤r̄ ωr(A; u, T ) (4.33)

whereωr(A; u, T ) = (measNGr)−1
∫
Gr
I2
2(τ(A; u, T ))

dx.
Here,I2(τ) denotes the intensity of shear stress (

e.g. [8]), i.e. the second fundamental invariant of
ad

and

A0i = arg max
A∈Uad

Φi(u(A), T (A)), i = 3,4,5,6,

(4.36)

whereT (A) areu(A) are weak solutions of the proble
P1 andP2, respectively.

Remark 4.1. Since the weak solutionu(A) of prob-
lemP2 depends onT (A), u(A) ≡ u(A; T (A)) and we
writeΦi(u(A), T (A)), instead ofΦi(u(A)) for i = 3,4
in (4.36).

4.3. Stability of weak solutions

To analyze the solvability of worst scena
problems(4.35) and (4.36)we have to study the map
pingA �→ T (A) andA �→ u(A, T (A)). First, we intro-
duce the following decomposition ofA ∈ Uad: A =
{A′, A′′}, where
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A′ = {
ι≤s 
j≤j̄ι κι(j),
ι≤s 
j≤j̄ι Wι(j),
ι≤sT ι1},
A′ ∈ R

p1,

p1 = (jN + 1)
∑
ι≤s

j̄ι + s

and

A′′ = {
ι≤s 
j≤j̄ι Bι(j),
ι≤s 
j≤j̄ι Fι(j),
ι≤sPι,

ι≤suι0,
ι≤s 
j≤j̄ι βι(j),
k,l 
q≤Qkl gkl(q)},

A′′ ∈ R
p2 × 
k,l 
q≤Qkl C(Γ̄ klq ),

p2 =
(∑
ι≤s

j̄ι

)
[(3 + jN )jN/2 +N(1 + 2s)].

We are going to show the continuity of the mappings
A′ �→ T (A′) for A′ ∈ U ′

ad = 
ι≤sUκιad × 
ι≤sUWι

ad ×
U
Tι1
ad andA �→ u(A, T (A′)) forA′′ ∈ U ′′

ad = 
ι≤sUBιad ×

ι≤s,j≤NUFιad × 
ι≤s,i≤NUβ

ι

ad × 
i≤NUPiad × 
i≤NUu0i
ad ,

respectively. Since the problem discussed is quasi-
coupled, we have the following theorem and lemma:

4.4. Existence of a solution of the worst scenario
problem

To prove the existence of a solution of the worst
scenario problem, we will use the following lemma.

Lemma 4.5. Let Φi(T ), i = 1,2, be defined by (4.29)
and (4.30)and let Tn → T in W1, as n → ∞. Then

lim
n→∞Φi(Tn) = Φi(T ), i = 1,2.

LetΦi(u), i = 3,4,be defined by (4.31)and (4.32)and
let un → u in W, as n → ∞. Then

lim
n→∞Φi(un) = Φi(u), i = 3,4.

Let Φi(A; u,T), i = 5,6, be defined by (4.33) and
(4.34). LetAn → A in U,An ∈ Uad,un → u in W and
Tn → T in L2(Ω). Then

lim
n→∞Φi(An,un, Tn) = Φi(A,u, T ), i = 5,6.

The main result gives the next theorem:
Lemma 4.3. If An ∈ Uad, An → A in U, where U =
R
p1+p2 × 
k,l 
q≤Qkl C(Γ̄ klq ), and un ⇀ u weakly in

W then

a(An; un, v) → a(A; u, v) ∀ v ∈ W, (4.37)

S(An; un, T ) → S(A; u, T ) ∀ T ∈ W1, (4.38)

jg(An; u) → jg(A; u). (4.39)

For the proof see[10].

Theorem 4.4. Let A′ ∈ U ′
ad,A

′
n → A′ in R

p1 as n →
∞. Then

T (A′
n) → T (A′) in W1.

Let An ∈ Uad, An → A in U ≡ R
p1+p2 × 
k,l 
q≤Qkl

C(Γ̄ klq ). Then

u(An) → u(A) in W.

For the proof see[10].
Theorem 4.6. There exists at least one solution of
the worst scenario problems (4.35) and (4.36), i =
1, . . . ,6.

Proof. Let us denote

Ji(A) = Φi(T (A)), i = 1,2.

If An ∈ Uad, An → A in U asn → ∞, thenA′
n → A

in R
p1 andT (An) → T (A) inW1 by virtue ofTheorem

4.4. UsingLemma 4.5, we obtain

Ji(An) → Ji(A),

so thatJi is continuous on the setUad.
It is easy to show thatUad is compact subset ofU,

if we employ Arzela–Ascoli Theorem forUg
kl

ad .
As a consequence,Ji attains its maximum onUad.
The same argument can be applied to

Ji(A) = Φi(A; u(A)T (A)), i = 3,4,5,6.
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Here, we employTheorem 4.4andLemma 4.5to verify
the continuity ofJi on the setUad. �

5. Numerical experiments

For approximations of the problem we can employ
the finite element method and the algorithm of Section
3 based on the nonoverlapping domain decomposition
approach developed in[7].

The geomechanical model problem describing a
loaded tunnel which is crossing by a deep fault and
based on the geomechanical theory and models having
connection with radioactive waste repositories[2]. A
geometry of the problem is inFig. 1.

5.1. Material parameters

Two regions with Young’s modulusE = 5.2 ×
109 Pa and Poisson’s ratioν = 0.18. Specific gravity
is 2.45× 104 Pa/m.

5.2. Boundary conditions

Prescribed displacement (2.5 × 10−2; 0) [m] on

Fig. 2. Detail of deformations (enlarging factor is 10).

Fig. 3. Detail of displacements on the tunnel wall.
1–2. Pressure 0.5 × 107 Pa on 1–4 and 2–8 and 1×

Fig. 1. Geometry of the problem.
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Fig. 4. Detail of principal stresses on the tunnel wall.

107 Pa on 8–3. Bilateral contact boundary on 3–4.
Unilateral contact boundary: 5–6 and 7–8. Given slip
limit is 106 Pa. Zero surface forces on the tunnel
wall.

F nnel.

5.3. Discretization statistics

Twelve subdomains, 5501 nodes, 9676 elements,
10428 unknowns, 89 unilateral contact conditions, 466
interface elements.

5.4. Convergence statistics

Twenty-one iterations of the PCG algorithm for
the auxiliary problem, 15 iterations of the succes-
sive approximations method for accuracy 10−6, total
39 iterations of the PCG algorithm for the original
problem.

Fig. 2 represents detail of deformations andFig. 3
shows displacements in a neighbourhood of the tun-
nel. OnFigs. 4 and 5details of principal stresses are
displayed in a neighbourhood of the tunnel.

6. Conclusions

The theory presented in this paper represents exten-
sion of geomechanical problems solved in[1,2] for the
case if input data, i.e. thermal conductivity and elastic
coefficients, body and surface forces, thermal sources,
body and surface forces, coefficients of thermal expan-

tact
is an
d
ty of
aste
rmal
face
pan-
tact
uely,

of
enti-
the
here
func-
ste
ndi-

nal,
tical
ems
ents,
tress
ig. 5. Detail of principal stresses in a neighbourhood of the tu
sion, boundary values, coefficient of friction on con
boundaries, etc. are uncertain. Since the theory
extension of problems solved in[2] it can be use
for mathematical models connected with the safe
construction and of operation of the radioactive w
repositories. The models involve input data (as the
conductivity and elastic coefficients, body and sur
forces, thermal sources, coefficients of thermal ex
sion, boundary values, coefficient of friction on con
boundaries, etc.) which cannot be determined uniq
but only in some intervals, given by the accuracy
measurements and the approximate solutions of id
fication problems. The “reliable solution” denotes
worst case among a set of possible solutions w
the degree of badness is measured by a criterion
tional. For the safety of the high level radioactive wa
repositories and other structures under critical co
tions we seek the maximal value of this functio
which depends on the solution of the mathema
model. Then for the computations of such probl
(some mean values of temperatures, displacem
intensity of shear stresses, principal stresses, s
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tensor components, normal and tangential components
of the displacement or stress vector on the contact
boundaries, etc.) we have to formulate a corresponding
maximization (worst scenario) problem. Then methods
and algorithms known from “optimal design” can be
used.

To construct a model of structures under the influ-
ence of critical conditions the influence of global tec-
tonics onto a local area, where the critical structure
is built as well as the influence of the resulting
local geomechanical processes on a critical struc-
ture must be taken into account[2]. Problems of
this kind with uncertain input data are problems with
high level radioactive waste repositories. In the case
of the high level radioactive waste repositories the
effects of geodynamical processes in the sense of plate
tectonics must be taken into consideration, namely
in regions near tectonic areas (e.g. the Japan island
arc, the Central and South Europe, etc.), but also in
the platform regions (as in Sweden, Canada, etc.).
But in geomechanics and geodynamics our informa-
tion about input data are very questionable as we
obtain input data with very small accuracy. There-
fore, the presented method as well as algorithms used
give a worst scenario (anti-optimal) solution of the
problem studied. In the practice it represents a toler-

crit-
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THE MORTAR FINITE ELEMENT METHOD IN 2D:

IMPLEMENTATION IN MATLAB
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Abstract

The paper is focused on the mortar finite element method for solving linear

elliptic problems in 2D. The mortar finite element method is a nonconforming

domain decomposition technique tailored to handle problems posed on domains

that are partitioned into independently triangulated subdomains. In the contri-

bution we explained the principle and properties of the method. A significant

part of the paper is dedicated to the implementation of the mortar method in

the Matlab system. The numerical results are showing both the principle and

the possibility of practical use of the method.

1 Introduction

The finite element method is applicable to a wide range of physical and engineering problems

which can be described by means of partial differential equations. The mortar finite element

discretization is a discontinuous Galerkin approximation. The functions in the approximation

subspaces have jumps across subdomain interfaces and are standard finite element functions

when restricted to the subdomains. The jumps across subdomains interfaces are constrained

by conditions associated with one of the two neighboring meshes so that a weak continuity

condition must be fulfilled. Because of the discontinuity on the interface we classify the mortar

finite element method as a nonconforming finite element method (see [6]).

Mortar finite elements were first introduced in 1994 by Christine Bernardi, Yvon Maday

and Anthony T. Patera in [1]. Our paper is focused on the mortar finite element method in two

dimensions and its implementation in the Matlab system. Most of the literature describing the

mortar finite element method deal with the geometrically conforming partition, which is easier.

Therefore, this paper is focused on the nonconforming case.

2 Mortar Finite Element Method

In this section we briefly describe the mortar finite element method in two dimensions. Let

Ω ⊂ R
2
be a polygonal computational domain. We decompose the domain into P nonoverlapping

polygonal subdomains

Ω =

P
⋃

i=1

Ωi, Ωj ∩ Ωk = ∅ for j 6= k, j, k = 1, . . . , P.

The partition can be:

• Geometrically conforming – The intersection between two closure of any two subdomains

Ωi ∩ Ωj , i 6= j is either an entire edge, a vertex or empty. Figure 1 shows an example of

the partition.

• Geometrically nonconforming – All the other cases. See example of the nonconforming

partition in Figure 2.
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Figure 1: Example of geometrically conforming partition of Ω into subdomains Ωi.
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Figure 2: Example of geometrically nonconforming partition of Ω into subdomains Ωi.

The subdomains Ωi form together a coarse mesh of the whole domain Ω. We discretize

each subdomain by triangular elements known from the finite element method. The size of the

triangles can be chosen with regard to the problem. We use finer mesh in subdomains, where

big changes in behaviour of the solution are expected, etc. The resulting triangulation can be

nonmatching across the interfaces of the subdomains, as you can see in Figure 4.

We define the interface Γ between subdomains Ωi as a closure of the union of the parts of

the boundaries of ∂Ωi, i = 1, . . . P , that are interior to Ω

Γ = ∪P
i=1(∂Ωi \ ∂Ω). (1)

The interface can be considered also as a set of nodes, that belong to the boundary of at least

two subdomains.

We denote

V h
(Ω) = V h

1 (Ω1)× V
h
2 (Ω2)× · · · × V

h
P (ΩP ) (2)

the space of mortar finite elements defined on Ω. We consider the low order basis functions, for

example the piecewise linear basis functions. V h
i (Ωi) is a finite element space in each subdomain

Ωi. V
h
i (S) is a restriction of functions from V h

to a set S.

For further analysis, we introduce some more notation. A main edge will represent a side

of a planar n-agle, see Figure 3. A square has four main edges, n-agle has n main edges. Let

Γij be an open common edge or a part of an edge of two adjacent subdomains Ωi and Ωj

Γij = Ωi ∩ Ωj . (3)

The edge Γij is a part of a main edge (or is a main edge) both of the subdomain Ωi and Ωj. We

choose the main edge of one subdomain as a master (mortar) and the main edge of the second

subdomain as a slave (nonmortar). We use a new notation:

• Mortar edge γ – If it belongs to a particular main edge of a boundary ∂Ωi, we denote it

γi.

• Nonmortar edge δ – If it belongs to a particular main edge of a boundary ∂Ωj , we denote

it δj .



Figures 3 and 4 show examples of situations, that can occur on the interface. If we consider

geometrically conforming partition of Ω, it is obvious, that for two subdomains Ωi and Ωj with

a commom edge holds an equality γi = Γij = δj , or γj = Γij = δi (it’s important which edge

is chosen as a mortar), see Figure 4. The situation is more complicated in the nonconforming

case. There is arising a question, how to choose mortar and nonmortar edges. An example of

such a choice is in Figure 5. It can be proven that the partition always exists (see [3] or [6]).

In term of a new notation we can write:

Γ =

K
⋃

k=1

γk, γm ∩ γn = ∅, if m 6= n, m, n = 1, . . . ,K, (4)

where K is the number of all mortar edges. Obviously also

Γ =

L
⋃

l=1

δl, δm ∩ δn = ∅, if m 6= n, m, n = 1, . . . , L, (5)

where L is the number of all nonmortar edges.

Ω
Γij

Ωi

Ωj

main edge ∂Ωi

main edge ∂Ωj

δj

γi

Figure 3: Interface Γij of two subdomains Ωi and Ωj and signification of edges as mortar and

nonmortar.

Ω

Ωi Ωj

Γij

γjδi

Figure 4: Mortar edge γ and nonmortar edge δ on the interface Γij of two subdomains Ωi and

Ωj.

It remains to solve the most important point of the method - the situation on the interface

Γ. It’s necessary to join somehow the values of the searched function (we call it mortar function)
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Figure 5: Example of choice of mortar edges in geometrically nonconforming case (mortar edges

are blue).

on the interface. Instead of a pointwise continuity we require fulfilment of a weak continuity

condition. The exact formulation will follow after some necessary definitions.

Each nonmortar edge δl belongs to exactly one subdomain, we denote it Ωl. Let Γl be the

union of q parts of the mortar edges γl,i which correspond geometrically to nonmortar edge δl

Γl =

q
⋃

i=1

(γl,i ∩ δl). (6)

For each nonmortar edge δl we choose a space of test functions Ψ
h
(δl), which is a subspace

of the space V h
l (δl), that is a restriction of functions from V h

l (Ωl) to δl. So if we choose piecewise

linear basis functions, V h
l (Ωl) will be a space of piecewise linear functions. Ψ

h
(δl) will be a

restriction of functions from V h
l (Ωl) to δl with requirement that these continuous, piecewise

linear functions are constant in the first and last mesh intervals of δl (see Figure 6). Other

possibility how to establish the space of test functions is described in [7].

Figure 6: Test functions on δl.

We define the mortar projection on δl as πq1,q2
(ul) : L2

(Γl) → V h
l (δl). For two arbitrary

values q1 and q2 and a function ul ∈ L
2
(Γl) it satisfies

∫

δl

(ul − πq1,q2
(ul))ψ ds = 0 ∀ψ ∈ Ψ

h
(δl). (7)

The condition means, that the jump of the mortar function across each nonmortar edge must

be orthogonal (in L2
(Γl)) to the space of test functions defined on δl. The condition is called

the weak continuity condition or the mortar condition.



3 Formulation of the Mortar Problem

3.1 Variational (Weak) Formulation of the Mortar Problem

Let us remind a variational (weak) formulation of a Poisson problem in two dimensions. We

need to find a solution u ∈W 1
2 (Ω) of the Poisson equation

−4u = f in Ω ⊂ R
2, (8)

u = g1 on ∂ΩD,
∂u

∂n
= g2 on ∂ΩN , (9)

where f ∈ L2(Ω), g1 ∈ L2(∂ΩD), g2 ∈ L2(∂ΩN ). The solution u ∈W 1
2 (Ω) must be from the set

of admissible functions

Vg = {u ∈W 1
2 (Ω) : u = g1 na ∂ΩD in the sense of traces} (10)

and for every test function v must satisfy

a(u, v) = F (v) ∀v ∈ V, (11)

where

V = {v ∈W 1
2 (Ω) : v = 0 on ∂ΩD in the sense of traces}. (12)

a(u, v) =

∫

Ω

[gradu grad v] dΩ, (13)

F (v) =

∫

Ω

fv dΩ +

∫

∂ΩN

g2v dS. (14)

We can formulate the problem (8), (9) in terms of a decomposition of the domain Ω into

subdomains Ωi, i = 1, 2, . . . , P and by using an appropriate mortar finite element space V h
. We

appear from the weak formulation (11) of the problem (8), (9) and we rewrite it to the discrete

form.

We know, that V h
i (Ωi) ⊂W

1
2 (Ωi), i = 1, . . . , P . Thus, we can write

aΓ
(u, v) = F Γ

(v) ∀v ∈W 1,0
2 (Ω). (15)

aΓ
(·, ·) is a bilinear form, which is defined as a sum of contributions from the particular subdo-

mains

aΓ
(u, v) =

P
∑

i=1

∫

Ωi

[grad u grad v] dΩi (16)

and

FΓ
(v) = F (v) =

∫

Ω

fv dΩ +

∫

∂ΩN

g2v dS. (17)

A variational (weak) formulation of the mortar problem represents such a task: Find uh ∈ V
h

which satisfies

aΓ
(uh, vh) = F Γ

(vh) ∀vh ∈ V
h. (18)

The existence and uniqueness of the solution of (18) follows i.a. from the Lax-Milgram lemma.



3.2 Mixed Formulation of the Mortar Problem

First, we present some findings relating to dual spaces. We know, that V h
i (Ωi) ⊂ W 1

2 (Ωi). A

restriction of a mortar function u to a nonmortar edge δl belongs to the space W
1/2
2 (δl). The

space of test functions Ψ
h
(δl) can then be a subset of the dual space of space W

1/2
2 (δl) with

respect to the L2
inner product, thus Ψ

h
(δl) ⊂W

−1/2
2 (δl).

For introduction of a mixed formulation we use the mortar condition (7), whose satisfaction

is demanded on the interface. We denote [ul] the jump of uh ∈ V
h

across δl. The test functions

from the mortar condition can be considered as Lagrange multipliers. A function u belongs to

the space V h
if and only if for all the nonmortar edges δl and for all the Lagrange multipliers

µl, which form a basis of Ψ
h
(δl), holds

∫

δl

[ul]µl ds = 0. (19)

From the first paragraph of this subsection results, that [ul] ∈W
1/2
2 (δl). Lagrange multi-

pliers µl must then be from the dual space W
−1/2
2 (δl). Let Mh

=
∏

l Ψ
h
(δl) ⊂

∏

lW
−1/2
2 (δl) and

µh ∈M
h
, where µh = (µl)l=1:L, L is the number of nonmortar edges. We define a bilinear form

b(uh, µh) =

L
∑

l=1

∫

δl

[uh]µlds. (20)

A function uh is a mortar function if and only if

b(uh, µh) = 0 ∀µh ∈M
h. (21)

We can rewrite the discrete problem (18) to the mixed formulation: Find a couple (uh, λh) ∈
V h ×Mh

which satisfies

aΓ
(uh, vh) + b(vh, λh) = F Γ

(vh) ∀vh ∈ V
h,

b(uh, µh) = 0 ∀µh ∈M
h.

(22)

As well as in other mixed formulations, it is important to satisfy the Brezzi-Babuška

condition (see [7]) also in formulation (22). This is important for the existence of the solution

and for the error estimate.

4 Implementation of the Mortar Finite Element Method

We describe briefly the key points of the implementation of the mortar finite element method

in the Matlab system. We started from the program [4], which deals with the conforming

partition of the computational domain into squares and rectangles, whose sides are parallel

to the coordinate axes. The generalization of the program to the nonconforming case is not

a trivial task. Our program solves the Poisson or Laplace equation in two dimensions with

Dirichlet boundary condition and can deal with polygonal computational domains, that can be

divided into general polygonal convex subdomains. Since the conforming partition is a specific

case of the nonconforming partition, it’s obvious, that the program can handle with conforming

case also.

The input data are the geometry of the computational domain, the right hand side and the

Dirichlet boundary condition. The geometrical data contain informations about the subdomains

- each subdomain and its triangulations is inscribed with a triplet of matrices p, e, t representing

matrices of points, edges and triangles. It’s necessary to save the information on the mutual



relationships of the edges and subdomains. We must distinguish the edges on the boundary

because of the fulfilment of the boundary condition and we need to know the adjacent edges

and subdomains of each edge and subdomain.

4.1 Mutual Relationship of the Edges

So let us consider a polygonal computational domain Ω. We divide the domain into polygonal

subdomains Ωi. There are, in fact, two types of nonconforming partitions, see Figure 2. In the

first case, the subdomains are squares and rectangles, whose sides are parallel to the coordinate

axes. The second case is more general – the subdomains are general n-agles or rectangles, whose

sides are not parallel to the coordinate axes. Both cases can be combined.

In the following text we will use the terms edge and main edge, see Section 2 for the

explanation. The edges and their belongings to the main edges are described in matrices e. The

comparison of the mutual relationships in the input geometry data is realized through the edges,

not the main edges. We look for the parallelism of the edges. The parallelism is indicated by

the identical multiples of x- and y- component of the directional vectors. If an edge is parallel

to a coordinate axis, we can profit from the fact, that one component of its directional vector

is equal to zero. We must identify the edges, that are overlapping. The necessary condition of

the overlapping is, that the edges lie on the same line (a special case of parallelism). Two edges

can overlap with parts of the edges, one edge can be inside the second one or they can coincide.

The information on the mutual relationships of the edges and subdomains is stored in a matrix

by a numerical value. On the basis of described information we can do the partition into mortar

and nonmortar edges.

4.2 Division of the Edges into Mortar and Nonmortar

We divide the main edges, that are not lying on the outer boundary, into mortars and non-

mortars. We have already mentioned, that the partition is always possible. But there is no

universal instruction, how to choose the mortars. We introduce some possibilities. First of all,

we focus on the conforming case with rectangular subdomains. Each main edge is either on the

outer boundary or has one adjacent main edge with which it coincides. The choice of mortar is

without any problems. Let’s show two possibilities:

• Neumann-Dirichlet partition – Each subdomain has either all the main edges mortar or

nonmortar.

• We sign the first two main edges of the subdomain as mortar, the second two as nonmortar.

We omit the main edges on the boundary.

The situation is more complicated in the nonconforming case. Neither of the above-mentioned

methods can be used. With regard to a lack of information in a literature we use our own way

of a choice of the mortar edges.

We will do the following. We go through the particular subdomains in the same sequence

as they were entered. If a main edge is unsigned yet and if it is possible, we sign the main edge

as mortar and its adjacent main edge (or edges) as nonmortar. So we go through all the main

edges of all the subdomains. If a main edge is once called mortar (or nonmortar), we don’t

change it again. The process of signing of the main edges is shown in Figure 7.

The information on the adjacent edges is known from the previous research and is stored

in a matrix. On the basis of a detection of an overlap there is assigned a type of the appropriate

edge and of the adjacent edge. It’s necessary to verify if one of these two edges already has

a value (mortar or nonmortar). In this case, we must keep the value and the type is assigned



only to the second edge. The edges, that belong to the same main edge, are of the same type.

The type (mortar, nonmortar, outer boundary) is stored as a numerical parameter added in the

matrices e (0 = outer boundary, 1 = nonmortar edge, 2 = mortar edge), see Figure 7.
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Figure 7: Process of signing of main edges (mortar edges are blue (2), nonmortar edges are grey

(1) and 0 is for edges of outer boundary).

4.3 Assembling

We briefly describe the assembling of the stiffness matrix and the right hand side. We add in

the assembling the requierement of the fulfilment of the mortar condition (see Section 2) also.

First, we need to do some auxiliary steps. Let us consider all the nodes of all the subdomains.

For further computation we divide the nodes into several groups - in the local meaning (within

the subdomains) and also in global meaning (in terms of the whole computational domain). We

divide the nodes into active and inactive, into interior and boundary, etc. We mention closely

the global division of the nodes. We introduce a set of global active interior nodes, that contains

interior nodes of all the subdomains, interior nodes of the mortar edges and all the corner nodes,

that don’t lie on the outer boundary. All the nodes lying on the outer boundary are called global

active boundary nodes, etc. The sense of these sets will be clear later.

For each mortar (master) edge we assemble the so-called master matrix and for each



nonmortar (slave) edge the so-called slave matrix, that introduce the right and left hand side

matrix in applying the mortar condition. In the computation of the master matrix we deal with

the test functions on the nonmortar edge described in Section 2. Since the test functions have

zero values at the end points of the nonmortar edges, it’s necessary to have the nonmortar edges

with at least three nodes (including the end nodes).

Each subdomain is first assembled in a usual way as in the case of the finite element

method. The values on the subdomain edges are re-counted according to whether the appropriate

main edge is mortar or nonmortar.

4.4 Solving the Resulting System of Equations

For solving the resulting system of equations, we use the conjugate gradient method with pre-

conditioning, that is implemented in Matlab. This method is highly suitable for solving system

of equations with symmetric positive definite and sparse matrix. The method is convenient for

large matrices because of the iterative character of the method. The preconditioning accelerates

the computation and improves stability.

The system of equations is solved only for the global active interior nodes. After the

computation it’s necessary to compute the solution on the outer boundary, where the fulfilment

of the Dirichlet boundary condition is required, and the solution in the inactive (nonmortar)

nodes, which is computed by the mortar projection.

5 Numerical Results

In this section, we present two practical examples showing both the principle and the possibility

of practical use of the method. The examples are solved by our program for solving linear elliptic

partial differential equations in 2D by the mortar finite element method.

As first example, we consider a Poisson problem on a general computational domain Ω

(see Figure 8):

−4u = 30 on Ω,

u = 0 on Γ0, (23)

u = 1 on Γ1.

Γ0

Γ1

Figure 8: Computational domain Ω for problem (23).



The partition of the computational domain with the appropriate nonmatching mesh is on

Figure 9 and the solution of the problem (23) is displayed in Figures 10 and 11. This example

serves as an illustration of the principle of the mortar finite element method. There is shown

the commonness of the usage of the method.
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Figure 9: Partition of Ω for problem (23). Figure 10: Solution of (23).
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Figure 11: Solution of (23).



As the second example, we consider a Laplace problem:

−4u = 0 on Ω = {(x, y) ∈ R
2

:
1

4
< x2

+ y2 < 1},

u(cosϕ, sinϕ) =
5π

4
− ϕ, ϕ ∈ (

π

4
,
9π

4
), (24)

u(
1

2
cosϕ,

1

2
sinϕ) =

5π

4
− ϕ, ϕ ∈ (

π

4
,
9π

4
).

Figures 12(a),(b) show the partition of the computational domain with two versions of

the appropriate mesh. The solution of the problem (24) is displayed in Figures 13(a),(b) and

14(a),(b). The usage of the mortar finite element method enables a choice of a mesh with respect

to the discontinuity of the boundary condition. The subdomain with the jump can be meshed

much finer than the other one.

(a) (b)

Figure 12: Partition of Ω and two versions of the appropriate mesh for problem (24).
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Figure 13: Solution of (24) for two versions of the appropriate mesh.
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Figure 14: Solution of (24) for two versions of the appropriate mesh.
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Time-Space FE-PDAS Method for Dynamic
Unilateral Contact Problem in Viscoelasticity
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2 Dept. of Mathematics, Faculty of Applied Science, University of West Bohemia,

Pilsen, Czech Republic

Abstract. The paper deals with numerical analysis of a class of multi-
body dynamic unilateral contact problems. The presented problem de-
scribes the seismological model problem, representing a new approach in
this branch and of studying propagation of seismic waves through bro-
ken up upper parts of the Earth. The semi-implicit finite element and
the primal-dual active set strategy methods will be discussed.

Keywords: multibody unilateral dynamic contact problem, time-space
solution of hyperbolic equation, semi-implicit scheme, FEM, seismology.

1 Introduction

This paper deals with a computational efficient method for multibody dynamic
visco-elastic bodies being in contact, describing propagation of seismic waves
through the elastic and/or viscoelastic media. The dynamic contact problems
with given (Tresca) friction involving linearly (thermo−)elastic and visco-
elastic bodies were analyzed in Duvaut, Lions (1976), Hilber et al. (1977),
Jarušek (1996), Rivera, Racke (1998), Nedoma (1998), Nedoma (2000),
Nedoma (2001), Eck et al. (2005), Nedoma, Daněk (2007), etc.

Analyses of seismic wave propagation play an important role in geodynamic
investigations. The propagation of elastic as well as seismic waves through the
elastic and the visco-elastic media or the Earth body, characterized by inhomoge-
neous with elastic or visco-elastic parameters are functions of place were studied
theoretically by means of simplified models in several papers and books by use
of different techniquies, like the ray method, the wave method, the method of
propagators, the finite difference and finite element methods, etc. Theoretical
seismograms, constructed on this basis of results obtained by various methods
mentioned above, do not yield a complete answer to the question of the struc-
ture of the Earths crust, mantle as well as core. Their physical structure is so
complicated that the present-day methods cannot give the actual information
about their structure. The present-day methods analyse the interior of the Earth
under the presumption that the Earths interior can be described by continuous
inhomogeneous media. But in the real Earth the crust and the upper mantle are
broken up into a great number of 3D plates and geological blocks which are in

O. Gervasi et al. (Eds.): ICCSA 2008, Part II, LNCS 5073, pp. 707–719, 2008.
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708 J. Nedoma and J. Daněk

common contacts. Such problems are up-to-date unsolved. Therefore, the main
goal of this paper is to give the new methodology and the optimal algorithm
which facilitate to investigate such type of seismological problems. The method-
ology discussed in the paper can be applied also in the other branches like the
building industries, the structural mechanics, etc. These type of problems lead to
study the dynamic multibody contact problem in linear viscoelasticity, where the
damping term and the Coulombian type of friction acting on the contact bound-
aries between lithosperic plates or geological blocks being in common contact
are also assumed.

2 Formulation of the Dynamic Contact Problem

We introduce a viscoelastic bodies of a Kelvin-Voigt type being in a mutual
contact which initially occupy a bounded domains of arbitrary shapes Ωι of
R

2, such that Ω = ∪r
ι=1Ω

ι. Let several neighboring bodies, say Ωs and Ωm,
be in a mutual contact and let Γ sm

c be the common contact boundary between
them before their deformation. Let the boundary ∂Ω = Γτ ∪ Γu ∪ Γc, where
Γc = ∪s,mΓ sm

c , Γ sm
c = ∂Ωs ∩ ∂Ωm, s �= m, s, m ∈ {1, . . . , r} and where Γj ,

j = u, τ, c are open subsets in ∂Ω. Let I = (0, tp) be a time interval and let
Ωt = I × Ω denote the time-space domain and Γτ (t) = I × Γτ , Γu(t) = I × Γu,
Γc(t) = I × Γc denote the parts of its boundary ∂Ωt = I × ∂Ω.

We assume that in the region Ω will act the damping α (x) ≥ 0, defined by
such a way that the waves propagated through the areas of a certain thickness
D (in which α(x) > 0) near the boundary Γu are completely absorbed (for
more details see Nedoma (1998)). In the body different nonzero densities ρ are
assumed. The body is subjected to volume forces F and as a result of the effect of
damping α (x) zero displacements are imposed on Γu and on Γτ zero or nonzero
tractions P are imposed. The point sources of seismic waves can be of different
types and can be simulated by nonzero volume forces (in remaning points of Ω
the volume forces are assumed to be zero), see e.g. Nedoma (1998).

Let n denote the outer normal vector of the boundary ∂Ω, un = uini, ut =
u−unn, τn = τijnjni, τ t = τ −τnn be the normal and tangential components of
the displacement and stress vectors u = (ui), τ = (τi), τi = τijnj , i, j = 1, 2. On
Γ sm

c the positive direction of the outer normal vector n is assumed with respect
to Ωs. The respective time derivatives are denoted by “ ′ ”.

The stress strain relation in every Ωι will be defined by the Hooke’s law

τ ι
ij = τ ι

ij (uι,uι′) = c
(0)ι
ijkl(x)ekl(uι) + c

(1)ι
ijkl(x)ekl(uι′),

i, j, k, l = 1, 2, ι = 1, . . . , r,
(1)

where c
(n)ι
ijkl (x), n = 0, 1, are elastic and viscous coefficients and eij(u) = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
) are components of the small strain tensor. For the tensors c

(n)ι
ijkl (x), n = 0, 1,

we assume

c
(n)ι
ijkl ∈ L∞ (Ωι) , n = 0, 1, c

(n)ι
ijkl = c

(n)ι
jikl = c

(n)ι
klij = c

(n)ι
ijlk ,

c
(n)ι
ijkleijekl ≥ c

(n)ι
0 eijeij ∀eij , eij = eji and a.e. x ∈ Ωι, c

(n)ι
0 > 0.

(2)
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A repeated index implies summation from 1 to 2.
The problem to be solved has the following classical formulation:

Problem 1. Let s ≥ 2. Find a vector function u : I × Ω → R
2, satisfying

ρι ∂
2uι

i

∂t2
+ αι ∂uι

i

∂t
=

∂τ ι
ij (uι,uι′)

∂xj
+ F ι

i ,

i, j = 1, 2, ι = 1, . . . , r, (t,x) ∈ Ωι
t = I × Ωι,

(3)

τijnj = Pi, i, j = 1, 2, (t,x) ∈ Γτ (t) = I × ∪r
ι=1 (Γτ ∩ ∂Ωι) , (4)

ui = 0, i = 1, 2, on Γu(t) = I × ∪r
ι=1 (Γu ∩ ∂Ωι) , (5)

⎧⎪⎪⎨
⎪⎪⎩

us
n − um

n ≤ dsm, τs
n = τm

n ≡ τsm
n ≤ 0, (us

n − um
n − dsm) τsm

n = 0,
u′s

t − u′m
t = 0 ⇒ |τ sm

t | ≤ Fsm
c (0) |τsm

n |,
u′s

t − u′m
t �= 0 ⇒ τ sm

t = −Fsm
c (u′s

t − u′m
t ) |τsm

n | u′s
t −u′m

t

|u′s
t −u′m

t | ,
(t,x) ∈ Γc(t) = I × ∪s,mΓ sm

c ,

(6)

u (x, 0) = u0 (x) , u′ (x, 0) = u1 (x) , x ∈ Ω, (7)

where u0, u1 are given functions.

The coefficient of friction Fsm
c ≡ Fsm

c (x,u′) is globally bounded, non-negative
and satisfies the Carathéodory property and has a compact support SFc, which
depends on the space variable x and since we model also the difference between
the coefficients of friction and of stick as well as slip, it depends also on the
tangential displacement rate component u′

t. Let us denote by aΓ sm
c ⊂ Γ sm

c the
actual contact set, i.e. for which us

n −um
n = dsm on aΓ sm

c and us
n −um

n < dsm on
cΓ sm

c = Γ sm
c \ aΓ sm

c . For the continuous displacement u the actual contact zone
aΓ sm

c is well-defined and closed subset of ∪s,m
aΓ sm

c .
In the next, the Hilbert and the Sobolev spaces will be used as usual, see e.g.

(see Adams (1975)).
The dynamic contact problem with Coulombian friction where the Signorini

conditions are formulated in displacements is up-to-date unsolved. In the next,
for the numerical solution of the problem discussed, we will assume that the
Coulombian friction in every time level depends on its value gsm

c from the pre-
vious time levels, where gsm

c is non-negative function and has a meaning of a
given friction limit and −gsm

c represents a given frictional force.
The contact problem (3)-(7) has a weak formulation in terms of a variational

inequality. Let us introduce the set of virtual displacements and the set of ad-
missible displacements by

V = {v | v ∈ L2(I; 
r
ι=1H

1,2 (Ωι)),v = 0 on Γu(t),
vs

n − vm
n = dsm a.e. on I × ∪s,mΓ sm

c },

K = {v | v ∈ L2(I; 
s
ι=1H

1,2(Ωι)),v = 0 on Γu (t) ,
vs

n − vm
n ≤ dsm a.e. on I × ∪s,mΓ sm

c }.

Then we have the following problem:
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Problem 2. A weak solution of (3)-(7) is a function u ∈ B(I; H1,2(Ω)) with
u(t, .) ∈ K for a.e. t ∈ I, u′ ∈ L2(I; H1,2(Ω))∩L∞(I; L2,2(Ω)), u′(tp, .) ∈ L2,2(Ω)
such that for all v ∈ H1,2(Ω(t)) with v(t, .) ∈ K a.e. in I the following inequality
holds
∫

I
{(u′′ (t) ,v − u (t)) + (αu′ (t) ,v − u (t)) + a(0) (u (t) ,v − u (t))+

+a(1) (u′(t) ,v − u (t)) + j (v) − j (u (t))} dt ≥
∫

I

(
f (t) ,v − u (t)

)
dt,

u (x, 0) = u0 (x), u′ (x, 0) = u1 (x).
(8)

where we assume that the initial data u0, u1 satisfy the static con-
tact multibody linear elastic problem (see Nedoma (1983), Nedoma (1987),
Hlaváček, Nedoma (2002)) and where

(u′′,v) =
∑r

ι=1 (u′′ι,vι) =
∫

Ω
ρu′′

i vi dx,
(αu′,v) =

∑r
ι=1 (αιu′ι,vι) =

∫
Ω αu′

ivi dx,
a(n) (u,v) =

∑r
ι=1 a(n)ι (uι,vι) =

∫
Ω

c
(n)
ijklekl (u) eij (v) dx,(

f ,v
)

=
∑r

ι=1

(
f

ι
,vι
)

=
∫

Ω
Fivi dx +

∫
Γτ

Pivi ds,
j (v) =

∑r
ι=1 jι (vι) =

∫
∪s,mΓ sm

c
gsm

c |vs
t − vm

t | ds ≡ 〈gsm
c |vs

t − vm
t |〉Γc

,

where the bilinear forms a(n) (u,v), n = 0, 1, are symmetric in u,v and satisfy
a(n) (u,u) ≥ c

(n)
0 ‖u‖2

1,2, c
(n)
0 = const. > 0,

∣∣a(n) (u,v)
∣∣ ≤ c

(n)
1 ‖u‖1,2 ‖v‖1,2,

c
(n)
1 = const. > 0, u,v ∈ V .

To prove the existence of the solution the decomposion v − u = v − u + u′−u′ =
w − u′ can be used. Then the proof is similar of that of Eck et al. (2005),
Chap. 4. For the proof the technique of penalization and regularization will
be used.

3 Numerical Solution and the Algorithm

Let Ω be approximated by a polygon Ωh with the boundary ∂Ωh = Γτh ∪Γuh ∪
Γch. Let I = (0, tp), tp > 0, let m > 0 be an integer, then �t = tp/m, ti = i�t,
i = 0, . . . , m. Let {Th,Ωh

} be a regular family of finite element partitions Th of
Ωh compatible to the boundary subsets Γ τh, Γ uh and Γ ch. Let Vh ⊂ V be the
finite element space of linear elements corresponding to the partition Th. Then
Kh = Vh ∩ K is the set of continuous piecewise linear functions that vanish at
the nodes of Γ uh and whose normal components are non-positive at the nodes on
∪s,mΓ sm

c . It is evident that Kh is a nonempty, closed, convex subset of Vh ⊂ V .
Let u0h ∈ Kh, u1h ∈ Kh be an approximation of u0 or u1. Further, we assume
that the end points Γ τh ∪ Γ uh, Γuh ∪ Γ ch, Γ τh ∪ Γ ch coincide with the vertices
of Thi. Moreover, we will assume that the frictional term is approximated by its
value in the previous time levels, so that the frictional term is approximated by
a given friction limit. Then in every time level we have the following discrete
problem:
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Problem 3. Find a displacement field uh : I → Vh with uh (0) = u0h,u′
h (0) =

u1h, such that for a.e. t ∈ I, uh (t) ∈ Kh

(u′′
h (t) ,vh − uh (t)) + (αu′

h (t) ,vh − uh (t)) + a(0) (uh (t) ,vh−uh (t))+
+a(1) (u′

h (t) ,vh−uh (t)) + j (vh) − j (uh (t)) ≥
(
f (t) ,vh−uh (t)

)
∀vh ∈ Kh, a.e. t ∈ I,

(9)

where

(u′′
h,vh) =

∑r
ι=1 (u′′ι

h ,vι
h) =

∫
Ω

ρu′′
hivhi dx,

(αu′
h,vh) =

∑r
ι=1 (αιu′ι

h ,vι
h) =

∫
Ω αu′

hivhi dx,
a(n) (uh,vh) =

∑r
ι=1 a(n)ι (uι

h,vι
h) =

∫
Ω

c
(n)
ijklekl (uh) eij (vh) dx, n = 0, 1,(

f ,vh

)
=
∑r

ι=1(f
ι
,vι

h) =
∫

Ω Fivhi dx +
∫

Γτ
Pivhi ds,

j (vh) =
∑r

ι=1 jι (vι
h) =

∫
∪s,mΓ sm

c
gsm

c |vs
t − vm

t | ds ≡ 〈gsm
c , |vs

t − vm
t |〉Γc

,

where we also assume that the frictional term is approximated by the given
friction functional in the previous time levels.

To prove the existence of discrete solution uh the technique similar of that as in
the continuous case based on the decomposition vh −uh = vh −uh +u′

h −u′
h =

wh −u′
h, the penalty and regularization technique (Eck et al. (2005)) is used. In

the next the test function v will correspond with v + u′ − u in (8) and vh with
vh + u′

h − uh in (9) after used decomposition.

3.1 Algorithm

For the algorithm the semi-implicit scheme in time and the finite elements in
space will be used. Let m > 0 be integer, then �t = tp/m, ti = i�t, i =
0, 1, . . . , m. Then, the derivatives are approximated by the differences, i.e. u′′

h =
ui+1

h −2ui
h+ui−1

h

�t2 , u′
h = ui+1

h −ui−1
h

�t , and after some algebra, in every time level
t = ti+1 we have to solve the following problem:

(uh,vh − uh) + �t (αuh,vh − uh)+
+�t2a(0) (uh,vh − uh) + �ta(1) (uh,vh − uh)+
+�t2

∫
∪s,mΓ sm

c
g̃sm

ch (|vs
th − vm

th| − |us
th − um

th|) ds ≥
≥ (fh,vh − uh) , t = ti+1 ∈ I,

uh (0) = u0h, u′
h (0) = u1h,

(10)

where we set ui
h = uh (ti), �ui

h = uh (ti) − uh (ti−1), ui+1
h ≡ uh,

g̃sm
ch = gsm

ch (ti) = Fsm
c

(
�t−1

(
�usi

h − �umi
h

))
|τsm

n (ui
h,

�ui
h

�t )|, (F(ti+1),vh) =

�t2(fh(ti+1),vh)+(2ui
h−ui−1

h ,vh)+�t(αui
h,vh)+�ta

(1)
h (ui

h,vh), F(ti+1) ≡ fh.
Let us put

A (uh,vh) = (uh,vh) + �t (αuh,vh) + �t2a(0) (uh,vh) + �ta(1) (uh,vh) ,
j (vh) = �t2

∫
∪s,mΓ sm

c
g̃sm

ch |vs
th − vm

th| ds,

where g̃sm
ch is the approximate given frictional limit.
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Since we assumed that ρ ≥ ρ0 > 0, α ≥ α0 > 0 and since bilinear forms
a
(n)
h (uh,vh), n = 0, 1, are symmetric in uh and vh and satisfy a(n) (uh,uh) ≥

c
(n)
0 ‖uh‖2

1,2, c
(n)
0 = const. > 0,

∣∣a(n) (uh,vh)
∣∣ ≤ c

(n)
0 ‖uh‖1,2 ‖vh‖1,2 , c

(n)
1 =

const. > 0, n = 0, 1, uh,vh ∈ Vh, then the bilinear form A (uh,vh) is also
symmetric in uh and vh and

A (uh,vh) ≥ a0 ‖uh‖2
1,2, a

(n)
0 = const. > 0,

|A (uh,vh)| ≤ a1 ‖uh‖1,2 ‖vh‖1,2, a1 = const. > 0, uh,vh ∈ Vh,

hold.
Then we have to solve in every time level the equivalent problem:

Problem 4. Find uh ∈ Kh, a.e. t = ti+1 ∈ I, such that

A (uh,vh − uh)+j (vh)−j (uh) ≥ (fh,vh − uh) , ∀vh ∈ Kh, t = ti+1 ∈ I, (11)

Then Problem 4 is equivalent with the following problem:

Problem 5. Find uh ∈ Kh, a.e. t = ti+1 ∈ I, such that

L (uh) ≤ L (vh) , ∀vh ∈ Kh, t = ti+1 ∈ I, (12)

where the Lagrangian L is defined as L (vh) = L0 (vh) + j (vh), L0 (vh) =
1
2A (vh,vh) − (fh,vh).

The Mortar Approach - The Non-matching Case. For every polygonal
domain Ωι, ι = 1, . . . , r, we introduce triangulations Th,Ωι in such a way that
on the contact boundaries Γ sm

c the points of Γ s
c and Γ m

c are not identical, and
therefore, the meshsizes hs �= hm.

To give a saddle point formulation, we introduce a Lagrange multiplier space
M . We introduce the trace space W = H

1
2 (∪s,mΓ sm

c ), being the trace space of
V s restricted to ∪s,mΓ sm

c , and its dual W ′ = H− 1
2 (∪s,mΓ sm

c ). We introduce the
Lagrange multiplier space M = Mn × Mt, where

Mn = {μn ∈ W ′; μn ≥ 0},
Mt =

{
μt ∈ L2 (∪s,mΓ sm

c ) | ‖μt‖ ≤ 1 a.e., μt = 0 on ∪s,m Γ sm
c \ supp gsm

c

}
.

We define the bilinear form

b (μ,v) = 〈μn, [v.n]s − dsm〉Γ s
c

+
∫
∪sΓ s

c

g̃sm
ch μt. [vt]

s ds,

where [v.n]s = vs
n (x)−vm

n (Rsm (x)), [vt]
s = vs

t (x)−vm
t (Rsm (x)), where Rsm :

Γ s
c (t) �→ Γ m

c (t), at t ∈ I, is a bijective map satisfying Γ m
c (t) ⊂ Rsm (Γ s

c (t)) , t ∈
I and where 〈., .〉Γ s

c
denotes the duality pairing between W and M = Mn × Mt.

We introduce the discrete approximation of the Lagrange multiplier space
MhH = Mhn × MHt, where

WhH (Γ s
c ) = Whn (Γ s

c ) × WHt (Γ s
c ) = {μhH |�r ∈ [P0 (�r)]

2
, 0 ≤ r ≤ n (hs)}

Mhn = {μhn ∈ Whn (Γ s
c ) , μhn ≥ 0 a.e. on every Γ s

c },
MHt ={μHt ∈WHt (Γ s

c ) ,
∫

Γ s
c

μHtψH ds−
∫
Γ s

c
g̃sm

ch |ψH | ds≤0, ∀ψH ∈ WHt (Γ s
c )},
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where Γ s
c = ∪p

p=1Γ
sp
c , Γ sp

c = ∪r�r, �r = (qr, qr + hp), r = 0, 1, . . . , m (hp) − 1,
where hp is a step of mesh in the p − th segment of Γ s

c .
The problem then leads to the following problem:

In every time level find (λhH ,uh) ∈ MhH × Vh satisfying

A (uh,vh) + b (λhH ,vh) = (fh,vh) vh ∈ Vh = 
r
ι=1V

ι
h ,

b (μhH − λhH ,vh) ≤ 〈dsm, μhn − λhn〉∪Γ s
c

(13)

The existence and uniqueness of (λhH ,uh) of this saddle-point problem has
been stated e.g. in Haslinger et al. (1996), and the discrete Babuška-Brezzi “inf-
sup” condition must be satisfied. Thus

Proposition 1. Let −τn (u) ∈ Mhn. Then the problem (13) has a unique solu-
tion (λhH ,uh) ∈ MhH × Vh, a.e. t ∈ I. Moreover, we have

λs
hn = −τs

n (uh) and gs
cλ

s
Ht = −τs

t (uh) ,

where uh is the solution of the discrete primal problem and gs
c ≡ g̃sm

ch .

The above problem is equivalent to that of the Lagrangian formulation:
Find in every time level a pair (λhH ,uh) ∈ (Mhn × MHt) × Vh, such that

H (μhH ,uh) ≤ H (λhH ,u) ≤ H (λhH ,vh)
∀ (μhH ,vh) ∈ (Mhn × MHt) × Vh, t ∈ I, (14)

where H (μhH ,vh) = 1
2A (vh,vh) + b (μhH ,vh) − (fh,vh).

Matrix Formulation and the Primal-Dual Active Set Strategy Method
(PDAS) for the Frictionless Case. Since in the frictionless case the tangen-
tial stress component on the contact boundary ∪Γ sm

c is zero, then λHt = 0, and
therefore, MhH = Mhn. Wolhmuth and Krause (2003) show that the standard
basis of the space Vh (Ωι, Th,Ωι) is not a good choice for these type of problems
and they introduced the space with a weak condition on ∪Γ sm

c

V̂h = {v ∈ 
r
ι=1Vh(Ωι, Th,Ωι) |

∫
∪Γ sm

c

[v.ei]sψ ds = 0, 1 ≤ i ≤ 2, ψ ∈ Mhn},

where ei denotes the i-th unit vector. The definition of V̂h yields
∫
∪Γ s

c

[v.np]
s
ψs ds ≤ ds

p

for all vertices on the slide (non-mortar) side. Then the strong form of the non-
penetration condition [u.n]s ≤ dsm will be replaced by its weak discrete form

∫
∪Γ s

c

[u.n]s ψp ds ≤
∫
∪Γ s

c

ds
pψp ds, p ∈ S, (15)



714 J. Nedoma and J. Daněk

where S is the set of all vertices in the potential contact part on the slave side.
The constraints (15) give a coupling between the vertices on the slave side and
the master side. We introduce now a basis transformation of the basis of Vh in
such a way that the weak non-penetration condition (15) in the new basis (the
so-called dual basis) only deals with the vertices on the slave side. Thus the non-
penetration condition is satisfied for all elements in V̂h, and V̂h is a subspace of
Kh.

The Lagrange multipliers λhn are the approximations of the contact forces
−τ (uh) .n = − (njnkτjk (uh)) which are necessary to adjust the contact dis-
placements on the contact boundary ∪Γ sm

c .
Let the space Vh = span{ϕp, p = 1, . . . , nV }, nV denotes the number of

degrees of freedom of the space Vh and Mhn = span {ψq, q = 1, . . . , ncn}, where
ψq denotes the basis function associated with the vertex p and ncn denotes the
number of degrees of freedom of the space Mhn in each component. ϕp and ψq

are the scalar basis functions associated with the node p resp. the node q, and
satisfying the biorthogonality relation

∫
∪Γ s

c

ϕpψq ds = δpq

∫
∪Γ s

c

ϕp ds, (16)

with the Kronecker symbol δpq, where

δpq = 〈1 where the structure node p coincides with potential node q,
0 otherwise.

The discrete mortar formulation of the saddle point problem (13)
for every time level is defined as follows:

Problem 6. In every time level find uh ∈ Vh, λhn ∈ Mhn, a.e. t ∈ I, satisfying

A (uh,vh) + b (λhn,vh) = (fh,vh) vh ∈ Vh, t ∈ I,
b (μhn − λhn,vh) ≤ 〈dsm, (μhn − λhn)〉

∪Γ sm
c

∀μhn ∈ Mhn, t ∈ I, (17)

where

Mhn = {μhn ∈ Mn| 〈μhn, vh〉
∪Γ sm

c

≥ 0 ∀vh ∈ {vh ∈ Wh|vh.ns ≥ 0}},
where Wh is the discrete approximation of W

and

A (uh,vh) = (ρuh,vh) + �t (αuh,vh) + �t2a(0) (αuh,vh) + �ta(1) (αuh,vh) ,

b (μhn,vh) =
∫

∪Γ sm
c

μhn [vh.n]s ds = 〈μhn, [vh.n]s〉
∪Γ sm

c
∀vh ∈ Vh, μhn ∈ Mhn.

The condition (17b) is equivalent with the following conditions

b (λhn,uh) = 〈dsm, λhn〉
∪Γ sm

c

,
b (μhn,uh) ≤ 〈dsm, μhn〉

∪Γ sm
c

∀μhn ∈ Mhn.
(18)
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Since the space Mhn is the convex cone, then putting μhn = 0 and
μhn = 2λhn in (17b), we have b (λhn,uh) ≥ 〈dsm, λhn〉∪Γ sm

c
and b (λhn,uh) ≤

〈dsm, λhn〉∪Γ sm
c

, therefore (18a) follows immediately. From (17b) using (18a) the
condition (18b) follows and it represents the weak nonpenetration condition.

Let us denote the nodal parameters uh by U, of λhn by λhn, and since for the
frictionless case the tangential stress component on the contact boundary ∪Γ sm

c

is zero, then λHt = 0, and thus λHt = 0.
The Eq. (17a) for every t ∈ I in the matrix form is of the form

AhU + Bhλh = Fh. (19)

To examine the structure of Bh, we introduce three sets of indices N , M, S.
We decompose the set of all vertices in every time level into three disjoint parts
N , M and S, where by S (dim nV ) we denote all vertices on the possible contact
part on the slave side, by M (dim ncn) all vertices of the possible contact part
of the master side, and by N all the other one. Then the strong formulation of
the non-penetration condition (i.e. [u.n]sm ≤ dsm on ∪Γ sm

c ) will be replaced by
its weak discrete form∫

∪Γ sm
c

[U.n]s ψp ds ≤
∫
∪Γ sm

c

dsmψp ds, p ∈ S. (20)

This condition connects points of sets S and M. We introduce a basis in a
new transformation of the basis of the space Vh in such a way that the weak
non-penetration condition (20) in the new basis only deals with the vertices on
the slave side (see Hüeber, Wolhmuth (2005), Wolhmuth, Krause (2003)).

Let us introduce the transformation ϕ = (ϕN , ϕM, ϕS)T . The matrices and
vectors in (19) can be decomposed in the sense of decomposition of the set of all
vertices into three disjoint parts N , M and S, i.e.

⎡
⎣ANN ANM ANS O

AMN AMM AMS −M
T

ASN ASM ASS D

⎤
⎦
⎡
⎢⎢⎣

UN
UM
US
λS

⎤
⎥⎥⎦ =

⎡
⎣FN

FM
FS

⎤
⎦ , (21)

where elements of Bh are defined by Bh [p, q] =
∫
∪Γ sm

c
ϕpψq ds I2 =

δpq

∫
∪Γ s

c
ϕp ds, p = 1, . . . , nV , q = 1, . . . , ncn, and where I2 denotes the iden-

tity matrix in R
2×2. The biorthogonality of the basis functions satisfies (16).

Further, the matrix M represents the coupling matrix the trace of the finite
element shape functions on the master side “m” and the shape functions for the
Lagrange multiplier on the slave side “s”, defined by

M [p, q] =
∫
∪Γ sm

c

ϕpψq ds I2, p ∈ S, q ∈ M. (22)

The matrix M is the block matrix and D is the block diagonal matrix with

D [p, q] = δpq I2.

∫
∪Γ sm

c

ϕp ds, p = q ∈ S. (23)
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The structure of the matrix Bh in every time level, using an approximate node
numbering, is thus of the form Bh =

(
O, −M

T , D
)T . The block matrices associ-

ated with the basis functions of the free structure nodes (i.e. N ), the potential
contact nodes of the master side (i.e. M) and the potential contact nodes on the
slide side (i.e. S) are denoted by Ak,l, k, l ∈ {N , M, S}. The entries of vectors
U and F for k ∈ {N , M, S} are denoted by Uk and Fk, respectively.

We introduce a new modified basis Φ = (ΦN , ΦM, ΦS)T instead of the basis
ϕ = (ϕN , ϕM, ϕS)T and the matrix M̂ = D

−1
M. Then

Φ = (ΦN , ΦM, ΦS)T =

⎡
⎣ I2 O O

O I2 M̂
T

O O I2

⎤
⎦
⎡
⎣ϕN

ϕM
ϕS

⎤
⎦ = Qϕ. (24)

Hence
U =QT

Û,

where Û is the vector of coefficients with respect to the transformed basis Φ.
The modified stiffness matrix Âh associated with the transformed basis Φ is

of the form

Âh =

⎡
⎣ I2 O O

O I2 M̂
T

O O I2

⎤
⎦
⎡
⎣ANN ANM ANS

AMN AMM AMS

ASN ASM ASS

⎤
⎦
⎡
⎣ I2 O O

O I2 O

O M̂ I2

⎤
⎦ = QAhQT =

=

⎡
⎢⎣

ANN ANM + ANS M̂ ANS

AMN + M̂
T

ASN AMM + AMS M̂ + M̂
T

ASM + M̂
T

ASS M̂ AMS +M̂
T

ASS

ASN ASM +ASS M̂ ASS

⎤
⎥⎦

and the modified vector of the right hand side F̂h is the following

F̂h = QFh =

⎡
⎣FN

FM + M̂
T

FS
FS

⎤
⎦ .

The algebraic representation of the weak non-penetration condition associated
with the transformed basis Φ is the following:

[Un]s =
∑

p∈S Ûp [Φpn]s +
∑

q∈M Ûq [Φqn]s =

= (
∑

p∈S Ûpϕp).ns
p +

∑
q∈M Ûq(−ϕq +

∑
p′∈S M̂ [p′, q] ϕp′).ns

p.

By multiplying this equation with ψp, p ∈ S and integrating the resulting equa-
tion over ∪sΓ

s
c , we have due to the biorthogonality condition (16) and the defi-

nition of the matrix M̂ and (24)

Ûn,p ≡
(
ns

p

)T
D [p, p] Ûp ≤ dsm

p ∀p ∈ S, (25)

where dsm
p =

∫
∪sΓ s

c
dsm

h ψp ds, p ∈ S, as the coefficients at Ûq, q ∈ M, are
nullified. This basis transformation glues the vertices of the slave (non-master)
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side and on the master side together. The displacements of the glued vertices are
given by ÛM and the relative displacements between the vertices on the slave
side and on the master side are given by ÛS .

The modified matrix B̂h associated with the transformed basis Φ has the form

B̂h = QBh =

⎡
⎣ I2 O O

O I2 M
T

O O I2

⎤
⎦
⎡
⎣ O

−M
T

D

⎤
⎦ = (O, O, D)T .

Then, in every time level, we will solve the following problem

ÂhÛ + B̂hλhH = F̂h,

Ûn,p ≤ dsm
p , λhn,p ≥ 0, (Ûn,p − dsm

p )Λhn,p = 0, ∀p ∈ S,
ΛHt,p = 0, ∀p ∈ S,

(26)

where in (26) the second line represents the Karush-Kuhn-Tucker conditions of
a constrained optimization problem for inequality constraints,

Λhn,p = nsT
p D̂ [p, p]Λhn (p) , Λhn (p) ∈ R

2,

ΛHt,p = Λhn (p) −
(
Λhn (p) .ns

p

)
ns

p =
(
Λhn (p) .ts

p

)
ts
p.

We decompose the set S as S = A ∪ I, where A is the active set and I
is the inactive set. Then the above problem in every time level leads to the
primal-dual active set algorithm, which is of the form:

Algorithm PDAS:

STEP 1. Initiate the sets A1 (active set) and I1 (inactive set), such that
S = A1 ∪I1 and A1 ∩I1 = ∅, put the initial value (Û0, Λ0

hn), c1 ∈
(
103, 104

)
and set k = 1.

STEP 2. If (Ûk−1, Λk−1
hn ) is known, find the primal-dual pair (Ûk, Λk

hn) such
that

ÂhÛ
k + B̂hΛk

hn = F̂h,

Û
k
n,p = dsm

p for all p ∈ Ak,

Λk
hn,p = 0 for all p ∈ Ik,

Λk
Ht,p = 0 for all p ∈ S.

(27)

STEP 3. Set Ak+1 and Ik+1 to

Ak+1 = {p ∈ S : Λk
hn,p + c1(Ûk

n,p − dsm
p ) > 0},

Ik+1 := {p ∈ S : Λk
hn,p + c1(Ûk

n,p − dsm
p ) ≤ 0}.

STEP 4. If Ak+1 = Ak and Ik+1 = Ik, then STOP else k = k+1; goto STEP 2,
where the active (Ak) and inactive (Ik) sets are associated with the trans-
formed basis Φ.

Remark 1. The system (27) can be rewritten if we decompose the set of vertices
S on the slave side in each step k of the PDAS algorithm into the disjoint active
and inactive sets S = Ak ∪ Ik.
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4 Conclusion

With the development of computers, methods of numerical analysis of solv-
ing partial differential equations were evolved and were applied to the solution
of the propagation of seismic waves in the stratified homogeneous and non-
homegeneous media in the time domain. Such models allow the simulation of
propagations of seismic waves inside the Earth closed to the real rheology of
the investigated upper parts of the Earth. All these methods were evolved for
the continuous Earths crust and the mantle. Since the upper parts of the Earth
are broken up into a great number of plates and blocks the up-to-date evolved
methods cannot be used and we are forced urgently to investigate new meth-
ods and new algorithms permit to simulate and study propagation of seismic
ans elastic waves through the broken up media. The different problem is to ap-
proximate optimally the contact conditions between geological blocks being in
common contact. In our paper the primal-dual active set strategy technique for
the 2D seismological model is used. The real Earths body is connected from a
great number of 3D bodies being in common contact, and therefore, the meth-
ods as well as algorithms must be extended and investigated also in the three
dimensions, and moreover, for very complicated contact boundaries between ge-
ological blocks, as well as for complicated cracks problems which accompanied
the propagation seismic waves through elastic media. It is evident that these
problems are enormous difficult and will be problems for very long future time
period.
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Eck, C., Jarušek, J., Krbec, J.: Unilateral Contact Problems. Variational Methods and

Existence Theorems. Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton,
London, New York, Singapore (2005)
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