
LU rozklad a jeho numerická analýza
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Úvod

Nechť A je regulární matice. Řešíme

Ax = b.

Gaussova eliminace (LU rozklad)
→ jeden z nejdůležitějších nástrojů pro řešení.

Moderní algoritmy → Gaussova eliminace + teorie grafů,
kombinatorika, heuristiky pro omezení zaplnění, teorie
citlivosti a numerické stability.

Historický úvod a souvislosti – skripta.
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Maticový popis Gaussovy eliminace
Eliminační matice

Uvažujme čtvercovou n× n matici Mk následující struktury

Mk =



1
. . .

1

mk+1,k 1
...

. . .

mn,k 1


, mk =



0
...
0

mk+1,k

...
mn,k


.

Platí
Mk = I +mke

T
k ,

Cvičení:
M−1

k = I −mke
T
k .
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Maticový popis Gaussovy eliminace
Součin eliminačních matic

Uvažujme dále dolní trojúhelníkovou matici L,

L ≡M1M2M3 . . .Mn−1.

Na cvičení ukážeme, že platí

L = I +
n−1∑
k=1

mke
T
k .

M1

@
@

@
@

@

M2

@
@

@
@

@

M3

@
@

@
@

@

. . .

Mn−1

@
@

@
@

@

=

L

@
@

@
@

@

. . .

.

5



Soustava lineárních rovnic
Předpoklad proveditelnosti Gaussovy eliminace

Uvažujme
Ax = b , A ∈ Cn×n , b ∈ Cn

s regulární maticí A.

V následujícím předpoklad: Gaussovu eliminaci lze provést.
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Gaussova eliminace
První krok

Od i-tého řádku odečteme (ai,1/a1,1) násobek prvního řádku,
i = 2, . . . , n. Dostaneme tak matici A(1),

A −→ A(1) ≡


a1,1 a1,2 · · · a1,n

0 a
(1)
2,2 · · · a

(1)
2,n

...
...

. . .
...

0 a
(1)
n,2 · · · a

(1)
n,n

 = M−1
1 A ,

M−1
1 =



1

−a2,1/a1,1 1
−a3,1/a1,1 1

...
. . .

−an,1/a1,1 1


, m1 ≡



0

a2,1/a1,1
a3,1/a1,1

...
an,1/a1,1


.

8



Gaussova eliminace
První krok - popis

Platí

M−1
1 = I −m1e

T
1 , m1 ≡



0

a2,1/a1,1
a3,1/a1,1

...
an,1/a1,1


.

Prvkům ai,1/a1,1 budeme říkat násobitelé.

M−1
1 Ax = M−1

1 b . . . modifikujeme i pravou stranu

b −→ b(1) ≡M−1
1 b .
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Gaussova eliminace
Druhý krok

V druhém kroku eliminujeme poddiagonální prvky druhého
sloupce matice A(1) užitím druhého řádku této matice.

Dostaneme A(2) ≡M−1
2 A(1), kde M−1

2 = I −m2e
T
2

M−1
2 =



1

1

−a(1)
3,2/a

(1)
2,2 1

...
. . .

−a(1)
n,2/a

(1)
2,2 1


, m2 ≡



0

0

a
(1)
3,2/a

(1)
2,2

...

a
(1)
n,2/a

(1)
2,2


.
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Gaussova eliminace
Po n − 1 krocích

Po n− 1 krocích dostaneme horní trojúhelníkovou matici

U ≡ A(n−1) = M−1
n−1(M−1

n−2(. . . (M−1
2 (M−1

1 A︸ ︷︷ ︸
=A(1)

)

︸ ︷︷ ︸
=A(2)

...

) . . .)) .

Zavedeme-li označení A(0) ≡ A, platí

U =



a
(0)
1,1 a

(0)
1,2 a

(0)
1,3 · · · a

(0)
1,n

a
(1)
2,2 a

(1)
2,3 · · · a

(1)
2,n

a
(2)
3,3 · · · a

(2)
3,n

. . .
...

a
(n−1)
n,n


.
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Gaussova eliminace a LU rozklad

A = (M1M2 . . .Mn−2Mn−1)U ≡ LU ,
kde L je dolní trojúhelníková matice s jednotkovou diagonálou

L =



1

a
(0)
2,1/a

(0)
1,1 1

a
(0)
3,1/a

(0)
1,1 a

(1)
3,2/a

(1)
2,2 1

a
(0)
4,1/a

(0)
1,1 a

(1)
4,2/a

(1)
2,2 a

(2)
4,3/a

(2)
3,3

. . .

...
...

... 1

a
(0)
n,1/a

(0)
1,1 a

(1)
n,2/a

(1)
2,2 a

(2)
n,3/a

(2)
3,3 a

(n−2)
n,n−1/a

(n−2)
n−1,n−1 1



.
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LU rozklad
a řešení Ax = b

Nechť A ∈ Cn×n je regulární matice. Rozklad tvaru

A = LU,

kde L je dolní trojúhelníková s jednotkovou diagonálou a U je
horní trojúhelníková matice, nazveme LU rozkladem A.

Ax = b vyřešíme pomocí LU rozkladu ve dvou krocích.
1 Přímý chod: Implicitní násobení Ax = b maticí L−1,

Ax = b ⇔ L−1Ax = L−1b ⇔ Ux = b(n−1).

2 Zpětný chod: Řešení soustavy

Ux = b(n−1)

s horní trojúhelníkovou maticí U .
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Přímý chod Gaussovy eliminace

Přímý chod

Ax = b ⇔ L−1Ax = L−1b ⇔ Ux = b(n−1).

input A(0) := A = [ai,j ], b(0) := b = [β1, . . . , βn]T
for k = 1 : n− 1 do
for i = k + 1 : n do
mi,k := a

(k−1)
i,k

a
(k−1)
k,k

for j = k + 1 : n do
a

(k)
i,j := a

(k−1)
i,j −mi,k a

(k−1)
k,j

end for
β

(k)
i := β

(k−1)
i −mi,k β

(k−1)
k

end for
end for
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Zpětný chod Gaussovy eliminace

Zpětný chod
Řešení soustavy

Ux = b(n−1)

s horní trojúhelníkovou maticí U = A(n−1).

input A(n−1), b(n−1)

ξn := β
(n−1)
n /a

(n−1)
n,n

for i = n− 1 : −1 : 1 do
ξi := β

(n−1)
i

for j = i+ 1 : n do
ξi := ξi − a(i−1)

i,j ξj

end for
ξi := ξi/a

(i−1)
i,i

end for
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Praktická realizace
Přepis prvků matice

Nuly v A(k) se fyzicky přepisují nově spočtenými prvky.

Po výpočtu:

A −→

@
@

@
@@

L

@
@
@
@
@

U

.

Máme A = LU , řešíme dvě trojúhelníkové soustavy

L(Ux) = b, Ux = L−1b ,

přičemž řešení první soustavy L−1b = b(n−1) je vypočteno
v průběhu vytvoření LU rozkladu.

16



Gaussova eliminace s částečnou pivotací
Silná regularita

V předchozím předpoklad

a
(k−1)
k,k 6= 0 pro k = 1, . . . , n− 1 .

Věta: Proveditelnost Gaussovy eliminace
Podmínka a(k−1)

k,k 6= 0, k = 1, . . . , n− 1 je splněna právě tehdy, je-li
matice A silně regulární, tj. pokud platí

det


a1,1 · · · a1,k

...
. . .

...
ak,1 · · · ak,k

 6= 0 , k = 1 . . . , n

(všechny hlavní minory jsou nenulové). �
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Prostá Gaussova eliminace
Úvahy o numerické stabilitě

Předpoklad silné regularity → nedojde k dělení nulou,
nemusí být splněn,

A =
[

0 1
1 0

]
.

Pozor na
mezivýsledky s velkou absolutní hodnotou,

odečítání čísel stejného znaménka.
→ ztráta přesnosti, numerická nestabilita.

Kde mohou v algoritmu vznikat velká čísla?
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Výpočetní operace - jádro Gaussovy eliminace
Kde mohou v algoritmu vznikat velká čísla?

Jádrem Gaussovy eliminace je

mi,k =
a

(k−1)
i,k

a
(k−1)
k,k

, a
(k)
i,j = a

(k−1)
i,j −mi,k a

(k−1)
k,j ,

kde i, j ∈ {k + 1, . . . , n}, k = 1, . . . , n− 1.

Je-li dělitel a(k−1)
k,k výrazně menší v porovnání s čitateli

a
(k−1)
i,k , potom je |mi,k| � 1. Může se pak např. stát, že∣∣∣mi,k a

(k−1)
k,j

∣∣∣� ∣∣∣a(k−1)
i,j

∣∣∣ , a tedy
∣∣∣a(k)

i,j

∣∣∣� ∣∣∣a(k−1)
i,j

∣∣∣ .
V praxi je třeba řešit soustavy s obecnou regulární maticí
bez předpokladu silné regularity.
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Jak omezit vliv zaokrouhlovacích chyb?

Věta
Ke každé regulární A existuje permutační matice P taková, že PA
je silně regulární. Matice P není obecně určena jednoznačně.

Naučíme se konstruovat permutační matici P zajišťující nejen
silnou regularitu PA, ale i zlepšení numerické stability.

Při řešení soustavy rovnic nezáleží na pořadí rovnic.

Snaha, aby mi,k v absolutní hodnotě co nejmenší,

mi,k =
a

(k−1)
i,k

a
(k−1)
k,k

.
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Gaussova eliminace s částečnou pivotací
Strategie

Najdeme index ` takový, aby∣∣∣a(k−1)
`,k

∣∣∣ = max
i=k,...,n

∣∣∣a(k−1)
i,k

∣∣∣ .
Zaměníme k-tý a `-tý řádek v matici A(k−1) a pokračujeme
standardním postupem.

Výběr maximálního prvku ve sloupci → všechny násobitelé
jsou v absolutní hodnotě menší nebo rovny jedné.
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Proveditelnost Gaussovy eliminace s částečnou pivotací

Gaussova eliminace s částečnou pivotací je proveditelná pro
libovolnou regulární matici A.

Pokud by byly všechny a(k−1)
i,k nulové,

@
@

@

•
...
•

0

0
...

0

A(k) ,

pak by byl k-tý sloupec částečně eliminované matice lineární
kombinací předchozích sloupců ⇒ A singulární, spor.
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Gaussova eliminace s částečnou pivotací
Maticový zápis

Věta
Ke každé regulární A existuje permutační matice P taková, že PA
je silně regulární. Matice P není obecně určena jednoznačně.

Pro dokončení důkazu věty stačí ukázat

Na GE s částečnou pivotací aplikovanou na A lze nahlížet

jako na prostou GE aplikovanou na PA.

Pk značí permutační matici, která v k-tém kroku eliminace
zamění k-tý a `-tý řádek. Celý proces lze zapsat jako

U ≡ M−1
n−1

(
Pn−1 . . . (M−1

2 (P2(M−1
1 (P1A))))

)
.
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Gaussova eliminace s částečnou pivotací
Maticový zápis

Řešení soustavy Ax = b pak dostaneme vyřešením úlohy

Ux = M−1
n−1

(
Pn−1 . . . (M−1

2 (P2(M−1
1 (P1b))))

)
,

kde U je horní trojúhelníková matice.

Uvědomme si, že matice

M−1
n−1Pn−1 . . .M

−1
2 P2M

−1
1 P1 ,

která převede matici A na horní trojúhelníkový tvar není
obecně dolní trojúhelníková.

Lze Gaussovu eliminaci s částečným výběrem pivota popsat
jako LU rozklad?
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Struktura matic PtM
−1
k Pt, t > k

Matice
PtM

−1
k Pt, t > k

má stejnou nenulovou strukturu jako M−1
k �

První krok lze zapsat ve tvaru

P2M
−1
1 P1A = (P2M

−1
1 P2)P2P1A

a P2M
−1
1 P2 má stejnou nenulovou strukturu jako M−1

1 .
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Oddělení eliminačních a permutačních matic
Analogicky

U = M−1
n−1Pn−1M

−1
n−2Pn−2 . . . P2M

−1
1 P1A

=
(
M̃−1

n−1M̃
−1
n−2 . . . M̃

−1
1

)
(Pn−1Pn−2 . . . P2P1)A,

kde

M̃−1
n−1 = M−1

n−1
M̃−1

n−2 = Pn−1M
−1
n−2Pn−1

...

M̃−1
1 = (Pn−1Pn−2 . . . P3P2)M−1

1 (P2P3 . . . Pn−2Pn−1).

Matice A je nejprve permutována, poté eliminována.

Označme

L−1 = M̃−1
n−1M̃

−1
n−2 . . . M̃

−1
1 ,

P = Pn−1Pn−2 . . . P2P1.
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Zápis eliminace s částečnou pivotací jako LU rozklad
Potom platí

U = L−1PA, neboli LU = PA

je zápis eliminace s částečnou pivotací jako LU rozklad.

Z konstrukce → daný rozklad vždy existuje; pro libovolnou
regulární matici A je tedy matice PA silně regulární.

Matici P nelze určit apriori (předem), vzniká postupně při
výběru jednotlivých pivotů.

Díky výběru pivota → prvky |L| jsou ≤ 1.

Věta
GE s částečnou pivotací lze reprezentovat vztahem PA = LU .

Jinak řečeno, na GE s částečnou pivotací lze nahlížet jako
na GE bez pivotace aplikovanou na permutovanou matici PA.
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Citlivost Ax = b na změny vstupních dat

Prvky A lze např. v některých případech interpretovat jako
hodnoty spojené s popisem modelu a prvky b jako hodnoty
spojené s pozorováním.

V měřených datech chyby → je přirozené zkoumat vliv malých
změn vstupních dat (malých perturbací dat) na řešení x.

Nechť ∆b označuje malou změnu pravé strany a nechť x+ ∆x
je řešením systému s perturbovanou pravou stranou

A(x+ ∆x) = b+ ∆b .

Jak může velikost ∆b ovlivnit velikost ∆x?

Platí
‖∆x‖
‖x‖

≤ κ(A) ‖∆b‖
‖b‖

. �
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Kvalita aproximace a norma rezidua
Mějme aproximaci x̂ přesného řešení x.
Jak blízko je aproximace x̂ k řešení přesnému řešení x?

Nabízí se spočíst reziduum b−Ax̂ a na základě jeho velikosti
(normy) usuzovat na blízkost x̂ k řešení.

Přepíšeme-li r = b−Ax̂ ve tvaru

A(x+ (x̂− x)︸ ︷︷ ︸
∆x

) = b+ (−r)︸ ︷︷ ︸
∆b

,

plyne z předchozího

‖x− x̂‖
‖x‖

≤ κ(A) ‖r‖
‖b‖

.

Je-li κ(A) velké, nemusí relativní norma rezidua poskytovat
relevantní informaci o blízkosti aproximace x̂ k x.
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Numerická stabilita Gaussovy eliminace
Výsledky Goldstine, von Neumanna, Wilkinsona a ostatních

Goldstine, von Neumanna 1947: Pro inverzi X symetrické poz. def.
matice A spočtenou Gaussovou eliminací platí

‖AX − I ‖ ≤ 14.2n2uκ(A) ,

kde u označuje strojovou přesnost.

Wilkinson a ostatní (1961-1971)
Nechť L̂ a Û jsou vypočtené faktory LU rozkladu matice A a
nechť x̂ je vypočtené řešení úlohy Ax = b s použitím LU rozkladu.
Pak x̂ je přesným řešením úlohy

(A+ ∆A)x̂ = b ,

|∆A| ≤ 6nu|L̂| |Û |+O(u2) ,
‖∆A‖∞ ≤ 6nu‖L̂‖∞ ‖Û‖∞ +O(u2) .
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Gaussova eliminace s částečnou pivotací
a zpětná stabilita

Na GE s částečnou pivotací lze hledět jako na GE bez pivotace
aplikovanou na matici PA - lze aplikovat předchozí větu.

Kdy je podíl ‖∆A‖∞/‖A‖∞ úměrný násobku u?

Částečná pivotace zajišťuje, že prvky matice |L̂| jsou vždy
menší nebo rovny jedné, a proto je

‖L̂‖∞ ≤ n.

Potom je

‖∆A‖∞
‖A‖∞

≤ 6n2 u ‖Û‖∞
‖A‖∞

+O(u2).

O zpětné stabilitě rozhoduje velikost růstového faktoru

‖Û‖∞
‖A‖∞

.
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Růstový faktor
a zpětná stabilita Gaussovy eliminace s částečnou pivotací

Výpočet pomocí Gaussovy eliminace s částečnou pivotací je
zpětně stabilní, pokud příliš neroste velikost prvků ve spočtené
matici Û v porovnání s velikostí prvků v původní matici A.

Říkáme, že Gaussova eliminace s částečnou pivotací je
podmíněně zpětně stabilní.
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Maximální velikost růstového faktoru
v Gaussově eliminaci s částečnou pivotací

Vyjdeme ze vztahu

mi,k =
a

(k−1)
i,k

a
(k−1)
k,k

, a
(k)
i,j = a

(k−1)
i,j −mi,k a

(k−1)
k,j .

Jelikož |mi,k| ≤ 1, platí

|a(k)
i,j | ≤ |a(k−1)

i,j |+ |a(k−1)
k,j |

≤ 2 max
i,j
|a(k−1)

i,j |

...

≤ 2k−1 max
i,j
|ai,j |

a prvky matice U splňují nerovnost
|uij | ≤ 2n−1 max

i,j
|ai,j |.
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Maximální velikost růstového faktoru
Příklad

Maximální nárůst velikosti prvků U lze pozorovat při Gaussově
eliminaci s částečnou pivotací např. u matice (cvičení)

1 1
−1 1 1
...

. . .
. . .

...
−1 · · · −1 1 1
−1 · · · −1 −1 1

 .

Při praktických výpočtech dochází k exponenciálnímu růstu
velikosti prvků matice U zřídka.

Velikost růstového faktoru obecně nesouvisí s κ(A).
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Škálování

Téměř vždy, je-li to možné, se v rámci předzpracování dat
provádí škálování matice.

Jsou-li D1 a D2 regulární diagonální matice, pak

D1AD2y = D1b, x = D2y.

Důvody pro škálování:
normalizace naměřených dat,
redukce čísla podmíněnosti.

Obvykle normalizujeme řádky či sloupce → redukuje číslo
podmíněnosti téměř optimálně (až na faktor

√
n).

Škálování může ovlivnit výběr pivota, posloupnost
prováděných operací a tím i stabilitu výpočtu.
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Choleského rozklad
hermitovské pozitivně definitní matice

Aplikujme Gaussovu eliminaci na hermitovskou pozitivně
definitní (HPD) matici.

Pro HPD matice je Gaussova eliminace vždy proveditelná
bez pivotace. (HPD matice je silně regulární – cvičení).

Věta: Choleského rozklad
Pro každou HPD matici A existuje jednoznačný rozklad

A = LL∗,

kde L je dolní trojúhelníková matice s kladnými prvky na diagonále.
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Choleského rozklad - algoritmus
input A(0) := A = [ai,j ]
for k = 1 : n do
lk,k :=

√
a

(k−1)
k,k

for i = k + 1 : n do
li,k := a

(k−1)
i,k

lk,k

for j = k + 1 : i do
a

(k)
i,j := a

(k−1)
i,j − li,k lj,k

end for
end for

end for
Pro řádky lTi matice L platí

lTi l̄i = ‖li‖2 = ai,i ⇒ ‖L‖2F =
n∑

i=1
ai,i = trace(A).

V přesné aritmetice je velikost prvků matice L omezena a
nemůže dojít k jejich růstu jak je tomu u LU rozkladu.
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Zpětná stabilita Choleského rozkladu

Zpětná stabilita Choleského rozkladu
Nechť L̂ je vypočtený faktor Choleského rozkladu hermitovské
pozitivně definitní matice A ∈ Cn×n na počítači se strojovou
přesností u a nechť je n3/2 u� 1. Potom pro matici E takovou,
že A+ E = L̂L̂∗, platí

‖E‖F ≤
(

2n3/2

1− 2n3/2 u

)
u ‖A‖F +O(u2) .

Důkaz ve skriptech.

Choleského rozklad je zpětně stabilní nezávisle na prvcích
Choleského faktoru L̂.
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Iterační zpřesnění Gaussovy eliminace
Nechť je dána soustava Ax = b. Jak zpřesnit řešení soustavy lineárních rovnic?

1 GE s částečnou pivotací → x1. Pro reziduum r1 platí,

r1 = b−Ax1 = Ax−Ax1 = A(x− x1) ≡ Ae(1) .

2 GE s částečnou pivotací řešíme soustavu,

Ae(1) = r1,

získáme aproximaci ê(1) chyby řešení e(1).
3 Použijeme ê(1) ke zpřesnění řešení,

x2 = x1 + ê(1) .

4 Lze iterovat.
5 Zpřesňujeme řešení? Pohledy - přímá a zpětná chyba.
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Iterační zpřesnění Gaussovy eliminace
Dvě možnosti

Mixed precision iterative improvement. Pokud má být
spočtené řešení x2 přesnější než řešení x1 ve smyslu přímé
chyby, je nutné provádět výpočet rezidua r1 se zvýšenou
přesností → lze dosáhnout zpřesnění řešení na maximální
počet platných cifer v dané standardní aritmetice.

Fixed precision iterative improvement. K redukci zpětné
chyby řešení na úroveň u je postačuje provádět všechny
výpočty ve stejné aritmetice (Skeel 1980), x2 přesné řešení

(A+ ∆A)x2 = b,
‖∆A‖
‖A‖

≈ u +O(u2) .

Běžně stačí provést jen několik iterací. Jedna iterace zajistí
zpětnou stabilitu výpočtu, tedy x2 je již zpětně stabilní.
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Výpočetní náklady Gaussovy eliminace
viz cvičení

Operace celkem

× 1
3 n

3 − 1
2 n

2 + 1
6 n

− 1
3 n

3 − 1
2 n

2 + 1
6 n

: 1
2 n

2 − 1
2 n

∼ 2
3 n

3 operací

Tabulka: Přímý chod (v každém kroku dělíme číslem aj,j).

Operace celkem

× 1
2 n

2 − 1
2 n

+ 1
2 n

2 − 3
1 n+ 1

− n− 1
: 1

∼ n2 operací

Tabulka: Zpětný chod
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Gaussova eliminace pro velké řídké úlohy

Velké řídké matice → mnoho nulových prvků.

O řídké matici mluvíme, je-li výhodné použít struktury pro
ukládání pouze nenulových prvků matice
(šetří-li to paměť a urychluje výpočet).

Matici, která není řídká, budeme říkat hustá.

Motivace pivotace může být dvojí:
numerická stabilita,

omezení zaplnění.
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Zaplnění matice při Gaussově eliminaci
Příklad

Dána A s následující strukturou nenulových prvků

A =



• • • • • •
• •
• •
• •
• •
• •


.

Pomocí permutační matice P , lze matici A transformovat na
matici B, B = PAP T , s následující strukturou

B =



• •
• •
• •
• •
• •

• • • • • •


, P ≡


1

. .
.

1

 .
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Zaplnění matice při Gaussově eliminaci
Příklad – pokračování I

Soustava rovnic

Ax = b ⇔ P TAPx = b ⇔ By = b,

kde x = Py. Obě soustavy se liší pouze pořadím rovnic a
pořadím hledaných neznámých.

Soustava s A → po prvním kroku je A(1) obecně hustá,

A(1) =



• • • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •


.
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Zaplnění matice při Gaussově eliminaci
Příklad – pokračování II

Počet nenulových prvků A(1) vzroste oproti A

z 3n− 2 na n2 − n+ 1 .

Příklad: n = 106, double precision (64 bitů na číslo). Pak
A . . . 23 megabytů,

A(1) . . . 7 450 gigabytů.

Řešíme-li soustavu s B bez pivotace, stačí 8(3n− 2) bytů.
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Řídkost, zaplnění, stabilita

Řídkosti matic lze využít ke zmenšení velikosti potřebné
paměti i ke zmenšení počtu prováděných operací. Podstatné
u velkých matic.

Obecně se snažíme nalézt permutační matice P , Q takové,
aby v LU rozkladu matice B = PAQT docházelo k malému
zaplnění a výpočet byl zároveň rozumně stabilní.

Snaha zajistit numericky stabilní výpočet pomocí vhodné
pivotace může působit (a často také působí) proti snaze
minimalizovat zaplnění,

numerická stabilita × zaplnění.
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Srovnání LU a QR rozkladu pro řešení soustav rovnic
Srovnání z několika hledisek

Stabilita.
LU rozklad . . .podmíněně zpětně stabilní,
QR rozklad . . . zpětně stabilní.

Výpočetní náklady. Algoritmy pro husté matice:
LU rozklad . . . 2/3n3 aritmetických operací,
QR rozklad . . . 4/3n3 aritmetických operací.

Zaplnění. Často rozhodující kritérium.
Téměr výhradně LU rozklad.
U QR nejsme schopni udržet faktory Q a R řídké.
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Cvičení

4.1 Uvažujme eliminační matici Mk ∈ Cn×n. Ukažte, že

M−1
k = I −mke

T
k .

4.2 Nechť M1, . . . ,Mn−1 jsou eliminační matice. Dokažte, že platí

M1M2M3 . . .Mn−1 = I +
n−1∑
i=1

mie
T
i .

4.3 Nechť A ∈ Cn×n. Sestrojte permutační matici P takovou, že
zaměňuje i-tý a j-tý řádek matice A. Ukažte, jak lze pomocí
P zaměnit i-tý a j-tý sloupec matice A.
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Cvičení
4.4 Použijte Gaussovu eliminaci s pivotací na matici

1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 .

Sledujte velikosti prvků ve vznikající horní trojúhelníkové
matici U .

4.5 Nechť A ∈ Cn×n je matice hermitovská pozitivně definitní.
Ukažte pomocí blokového rozdělení

A =
[
Ãk A∗2,1
A2,1 A2,2

]
,

kde Ãk je hlavní submatice obsahující prvních k řádků a
sloupců matice A, že A je silně regulární.
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Cvičení

4.6 Použijte standardních sčítacích vzorců
n∑

k=1
k = 1

2 n(n+ 1) a
n∑

k=1
k2 = 1

6 n(2n+ 1)(n+ 1)

k tomu, abyste ukázali, jaká je výpočetní náročnost přímého
chodu Gaussovy eliminace a zpětného chodu Gaussovy
eliminace.
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