LU rozklad a jeho numericka analyza



Uvod

o Necht A je regularni matice. Redime
Ax =b.
o Gaussova eliminace (LU rozklad)
— jeden z nejdiilezitéjSich nastroji pro feseni.
o Moderni algoritmy — Gaussova eliminace + teorie graf(,

kombinatorika, heuristiky pro omezeni zaplnéni, teorie
citlivosti a numerické stability.

o Historicky Gvod a souvislosti — skripta.



Maticovy popis Gaussovy eliminace
Eliminacni matice

Uvazujme Ctvercovou n X n matici M}, nasledujici struktury

1 [0
! 0
My, = y Mg = ——
+ b
Mit1k 1 .
. My, k
| My k 1 ] L
o Platf
M, =1+ mkef,
o Cvileni:

Ml;lszmkeg.




Maticovy popis Gaussovy eliminace

Soudin eliminaénich matic

o Uvazujme dale dolni trojihelnikovou matici L,
L= M1M2M3 e Mnfl.

o Na cviceni ukazeme, ze plati

n—1
L=1+> mgej.
k=1

My Mo M;3 M, 1




Soustava linearnich rovnic

Ptredpoklad proveditelnosti Gaussovy eliminace

o Uvazujme
Ar=b, AecC™, becC"

s regularni matici A.

o V nasledujicim predpoklad: Gaussovu eliminaci lze provést.



Gaussova eliminace

= M['A,

- 0 -

asi/ai

Prvni krok
Od i-tého tadku odecteme (a;,1/a1,1) ndsobek prvniho fadku,
i=2,...,n. Dostaneme tak matici A1),

a1 ai2

o ot

A — A=

0 a,(i;

I 1
. —agy/ar; 1
My~ = —az1/ai 1

L —&n,l/am

a3,1/al,1

L an,l/al,l J



Gaussova eliminace
Prvni krok - popis

o Plati
_ 0 -
. . az1/a1;1
Ml :I—mlel, mi = (1371/(1171
L an,l/al,l J
o Prvkim a; /a1, budeme Fikat nasobitelé.
o M;'Az = M;'b ... modifikujeme i pravou stranu

b — b =M.



Gaussova eliminace
Druhy krok

o V druhém kroku eliminujeme poddiagonalni prvky druhého
sloupce matice A uzitim druhého ¥adku této matice.

o Dostaneme A® = M; 1AW kde My ' =T — moed

1 1 [ 0
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Gaussova eliminace

Po n — 1 krocich
o Po n — 1 krocich dostaneme horni trojihelnikovou matici
U=A""Y = Mt (M50 (MY (MTEA)) ).
——
=A1)

N—————
—=A®2)

r (o 0 0 0) T
Qzo Qg3 - a2én
- ORI
_ atin )|
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Gaussova eliminace a LU rozklad

A= (M1M2 e Mn,QMnfl) U= LUv7

kde L je dolni trojuhelnikovad matice s jednotkovou diagonélou

1

0 0

o /a’ 1
ag1/al?) aly/ad) 1

0), (0 1
agl,l)/ag,l) ai%/am a4 3/a

wr/at) apy/aby 0 /a a2/
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LU rozklad

afeseni Az =b
o Necht A € C™*™ je regularni matice. Rozklad tvaru

A=LU,

kde L je dolni trojihelnikova s jednotkovou diagonalou a U je
horni trojihelnikova matice, nazveme LU rozkladem A.

o Az = b vyresime pomoci LU rozkladu ve dvou krocich.
@ P¥imy chod: Implicitni nasobeni Az = b matici L1,
Ar=b & L 'Az=L""% &  Uz=»b""b.
@ Zpétny chod: Redeni soustavy
Uz = b1

s horni trojihelnikovou matici U.
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Primy chod Gaussovy eliminace

Primy chod
Ar=b & L 'Az=L"% &  Uzr=0b""". J

input A©) := A = [a;,], b :=b=[B1,..., 8"
fork=1:n—1do
fori=k+1:ndo

o ag;q)
Mgk = ‘al(j;m
forj=k+1:ndo
k k—1 k—1
az(,j) = “g,j = Mk “l(c,j )
en’::I for i i
-1 -1
B = B = mie Y
end for

end for
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Zpétny chod Gaussovy eliminace

Zpétny chod

Regeni soustavy
Uz = b=V

s horni trojahelnikovou matici U = A1),

input A= p(n-1)
& =By Jal Y
fori=m—-1:-1:1do
& = p" Y
for j=i+1:ndo
§i=& — agffl)ﬁj
end for
& =& /al Y

end for
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Prakticka realizace

Ptepis prvkl( matice

o Nuly v A%) se fyzicky prepisuji nové spo&tenymi prvky.

AH&.

o Mame A = LU, feSime dvé trojihelnikové soustavy

o Po vypocltu:

L{Uz)=b, Ux=L""b,

pricemz Ffedeni prvni soustavy L~1b = p(n—1)

v priibéhu vytvoreni LU rozkladu.

je vypocteno
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Gaussova eliminace s ¢aste¢nou pivotaci

Silna regularita

o V predchozim predpoklad

1);&0 pro k=1,...,

Véta: Proveditelnost Gaussovy eliminace

n—1.

Podminka ak b ;é 0, k=1,...,n—1 je splnéna pravé tehdy, je-li

matice A siln& regularni, tj. pokud plati

det #0,

(v8echny hlavni minory jsou nenulové).

k=1...
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Prosta Gaussova eliminace

Uvahy o numerické stabilité

o Predpoklad silné regularity — nedojde k déleni nulou,

nemusi byt splnén,
0 1
a0 1]

o mezivysledky s velkou absolutni hodnotou,

o Pozor na

o odecitani cisel stejného znaménka.

— ztrata presnosti, numericka nestabilita.

o Kde mohou v algoritmu vznikat velka cisla?
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Vypocetni operace - jadro Gaussovy eliminace

Kde mohou v algoritmu vznikat velka cisla?

o Jadrem Gaussovy eliminace je

o Gk o® (k—1) (k—1)
Mik = 1) Qjj = Qi — Mk
kk

kdei,je{k+1,....,n}, k=1,...,n— L

- k—1) . . v L .
o Je-li délitel a,(c i ) vyrazné mensi v porovnani s Citateli
G

a;} ', potom je |m; | > 1. Mize se pak napf. stat, ze

(k=1)

-1 kl)

‘m“C a, , a tedy

o V praxi je tfeba Fesit soustavy s obecnou regularni matici
bez predpokladu silné regularity.



Jak omezit vliv zaokrouhlovacich chyb?

Véta
Ke kazdé regularni A existuje permutaéni matice P takova, ze PA
je silné regularni. Matice P neni obecné urCena jednoznacné.

o Naucime se konstruovat permutacni matici P zajistujici nejen
silnou regularitu P A, ale i zlepseni numerické stability.

o Pri reseni soustavy rovnic nezalezi na poradi rovnic.
o Snaha, aby m; . v absolutni hodnoté co nejmensi,
(k=1)
e — a; K,
ik — (k—1) "
Ak k
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Gaussova eliminace s ¢aste¢nou pivotaci
Strategie

o Najdeme index /¢ takovy, aby

‘agck_l)’ = max agﬁg_l)‘.
i=k,...,n
o Zaménime k-ty a -ty Fadek v matici A~1) a pokradujeme

standardnim postupem.

o Vybér maximalniho prvku ve sloupci — vSechny nasobitelé
jsou v absolutni hodnoté mensi nebo rovny jedné.
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Proveditelnost Gaussovy eliminace s ¢astecnou pivotaci

o Gaussova eliminace s CasteCnou pivotaci je proveditelna pro
libovolnou regularni matici A.

o Pokud by byly vSechny agg_l) nulové,
°
0
0 |: Ak) ,
0

pak by byl k-ty sloupec ¢astecné eliminované matice linearni
kombinaci predchozich sloupci = A singularni, spor.
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Gaussova eliminace s ¢aste¢nou pivotaci

Maticovy zapis

Véta
Ke kazdé regularni A existuje permutaéni matice P takova, ze PA
je silné regularni. Matice P neni obecné urcena jednoznacné.

o Pro dokonceni dikazu véty stali ukazat

o Na GE s castecnou pivotaci aplikovanou na A lze nahlizet

o jako na prostou GE aplikovanou na PA.

o P znadi permutaéni matici, kterd v k-tém kroku eliminace
zaméni k-ty a /-ty fadek. Cely proces |ze zapsat jako

U= MY (Pac. .. (M5 (P(M]H(P1A)))))
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Gaussova eliminace s ¢aste¢nou pivotaci

Maticovy zapis
o Reseni soustavy Ax = b pak dostaneme vyfeSenim tlohy

Uz = M (Paoy .. (M5 (P(MTH(P1D)))))
kde U je horni trojihelnikova matice.

o Uvédomme si, Ze matice
M ! P M 1P3M 1P
n—14n—1.--412 1 1

kterd prevede matici A na horni trojdhelnikovy tvar neni
obecné dolni trojahelnikova.

o Lze Gaussovu eliminaci s ¢asteCnym vybérem pivota popsat
jako LU rozklad?

25



Struktura matic Pth_lPt, t>k

o Matice
Pth_lpt, t>k

ma stejnou nenulovou strukturu jako M,;l LS

o Prvni krok Ize zapsat ve tvaru

PyM['PiA = (P,M;'P) PP A

a P,M; ' P, ma stejnou nenulovou strukturu jako M.
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Oddéleni eliminacnich a permutacnich matic
o Analogicky
U = M, 4P, 1M, %P, 5... M P A
= (M N NITY) (Paca P PP A,

kde

WMy = M

Mn__lg = Pn 1M QPn 1

M{' = (Py 1Py o...P3P) M (PPs... P, 2P, 1).

o Matice A je nejprve permutovana, poté eliminovana.
o Oznacme
—1 —1 -1 r—1
L - M’I’L—an—Q"'Ml 5
P = P, 1P, o...PP.
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Zapis eliminace s Castecnou pivotaci jako LU rozklad

o Potom plati
U=L"1PA, neboli LU = PA

je zapis eliminace s Castecnou pivotaci jako LU rozklad.

o Z konstrukce — dany rozklad vzdy existuje; pro libovolnou
reguldrni matici A je tedy matice PA silné regularni.

o Matici P nelze urcit apriori (pfedem), vznika postupné pfi
vybéru jednotlivych pivotd.

o Diky vybéru pivota — prvky |L| jsou < 1.

Véta

GE s ¢asteCnou pivotaci Ize reprezentovat vztahem PA = LU.

Jinak feceno, na GE s CasteCnou pivotaci Ize nahlizet jako
na GE bez pivotace aplikovanou na permutovanou matici PA.
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Citlivost Az = b na zmény vstupnich dat

o Prvky A lze napt. v nékterych pFipadech interpretovat jako
hodnoty spojené s popisem modelu a prvky b jako hodnoty
spojené s pozorovanim.

o V mérenych datech chyby — je pfirozené zkoumat vliv malych
zmén vstupnich dat (malych perturbaci dat) na Feseni .

o Necht Ab oznacuje malou zménu pravé strany a necht x 4+ Ax
je fesenim systému s perturbovanou pravou stranou

Az + Azx) = b+ Ab.

o Jak muze velikost Ab ovlivnit velikost Az?

o Plati
|[Az]]

]

Ab
< K(4) \Hb’H '
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Kvalita aproximace a norma rezidua
o Méjme aproximaci & presného feseni x.
Jak blizko je aproximace & k feSeni presnému fesSeni x?

o Nabizi se spodist reziduum b — AZ a na zakladé jeho velikosti
(normy) usuzovat na blizkost Z k feSeni.

o Prepiseme-li r = b — AZ ve tvaru

—— ——
Az Ab
plyne z predchoziho
[l — 2] Il
—— < Kk(A) 1 .
[l 1]

o Je-li K(A) velké, nemusi relativni norma rezidua poskytovat
relevantni informaci o blizkosti aproximace & k .
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Numericka stabilita Gaussovy eliminace

Vysledky Goldstine, von Neumanna, Wilkinsona a ostatnich

Goldstine, von Neumanna 1947: Pro inverzi X symetrické poz. def.

matice A spoctenou Gaussovou eliminaci plati
|AX —T| < 14.2n%ur(A),

kde u oznacuje strojovou presnost.

Wilkinson a ostatni (1961-1971)

Necht L a U jsou vypoctené faktory LU rozkladu matice A a
necht Z je vypoctené feseni Glohy Ax = b s pouzitim LU rozkladu.
Pak x je presnym Fesenim ulohy

(A+AA)Z = b,
IAA] < 6nulL||U] + Ou?),
[AAlle < 6nu|Lo U]l + O(u?).

32



Gaussova eliminace s ¢aste¢nou pivotaci
a zpétna stabilita
o Na GE s castecnou pivotaci Ize hledét jako na GE bez pivotace
aplikovanou na matici PA - Ize aplikovat predchozi vétu.

©

©

Castetné pivotace zajistuje, 7e prvky matice || jsou vidy
mensi nebo rovny jedné, a proto je

IZ]loo < n.
o Potom je
[AA[l [1Tloo
10 < 6nlu + O(u?).
[ Alloo [[Alloo
o O zpétné stabilité rozhoduje velikost riistového faktoru
1Uloo

| Alloo -
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Ristovy faktor

a zpétna stabilita Gaussovy eliminace s ¢asteCnou pivotaci

o Vypocet pomoci Gaussovy eliminace s ¢asteCnou pivotaci je
zpétné stabilni, pokud prilis neroste velikost prvkii ve spoctené
matici U v porovnani s velikosti prvkii v plivodni matici A.

o Rikdme, ze Gaussova eliminace s ¢asteCnou pivotaci je
podminéné zpétné stabilni.

34



Maximalni velikost rtistového faktoru

v Gaussové eliminaci s ¢aste¢nou pivotaci

o Vyjdeme ze vztahu
(k=1)
ik
mik = (k—1)°
Ok e

o Jelikoz |m; | < 1, plati
(k)’

’ai,j

IN

IN

(k) _ (k—1) (k—1)
i = Yy T Mk Qg
k—1 k—1
a4 Jat Y]
(k—1)
zmgx‘ai,j |
2" max |a; |
27]

a prvky matice U spliuji nerovnost

luij| < 2“_1maX|ai,j\.
l’]



Maximalni velikost rtistového faktoru
P¥iklad

o Maximalni narist velikosti prvkd U Ize pozorovat pfi Gaussové
eliminaci s ¢aste¢nou pivotaci napf. u matice (cvicenf)

1 1
-1 1 1
-1 -~ -1 11
-1 -+ -1 -1 1

o P¥i praktickych vypoctech dochazi k exponencialnimu ristu
velikosti prvkd matice U zfidka.

o Velikost ristového faktoru obecné nesouvisi s k(A).
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é
|

kalovan

o Témér vzdy, je-li to mozné, se v ramci predzpracovani dat
provadi Skalovani matice.

o Jsou-li D1 a Ds regularni diagonalni matice, pak
D1 ADgy = D1b7 Tr = Dgy.

o Divody pro skalovani:
o normalizace naméFenych dat,
o redukce ¢isla podminénosti.
o Obvykle normalizujeme ¥adky ¢i sloupce — redukuje Cislo
podminénosti téméF optimalné (az na faktor \/n).
o Skalovani maze ovlivnit vybér pivota, posloupnost
provadénych operaci a tim i stabilitu vypoctu.
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Choleského rozklad

hermitovské pozitivné definitni matice

o Aplikujme Gaussovu eliminaci na hermitovskou pozitivné
definitni (HPD) matici.

o Pro HPD matice je Gaussova eliminace vzdy proveditelna
bez pivotace. (HPD matice je silné regularni — cvicen).

Véta: Choleského rozklad
Pro kazdou HPD matici A existuje jednoznaény rozklad

A=LL",

kde L je dolni trojuhelnikova matice s kladnymi prvky na diagonale.
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Choleského rozklad - algoritmus
input AO) = 4 = [am]

for k=1:ndo
I (k—1)
kk - Ak
forz—k:+k1 >ndo
forj=k+1:ido
k k—1
end for
end for
end for

o Pro vadky II' matice L plati

n
T7 2 2
LL=LI?=ay; = |LIIF=)_ai = trace(A).
i=1
o V presné aritmetice je velikost prvk( matice I omezena a
nemize dojit k jejich rlstu jak je tomu u LU rozkladu.



/Zpétna stabilita Choleského rozkladu

Zpétna stabilita Choleského rozkladu

Necht L je vypoclteny faktor Choleského rozkladu hermitovské
pozitivné definitni matice A € C™*™ na pocitadi se strojovou
presnosti u a necht je n3/2u < 1. Potom pro matici E takovou,
Ye A+ E = LL*, plati

2n3/2
1E|F < <1_2ng/211> ullA]p +O(u?).

o Dikaz ve skriptech.

o Choleského rozklad je zpétné stabilni nezavisle na prvcich
Choleského faktoru L.
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Iteracni zpresnéni Gaussovy eliminace

Necht je dana soustava Az = b. Jak zpfesnit feSeni soustavy linedrnich rovnic?
@ GE s ¢aste¢nou pivotaci — x1. Pro reziduum r; plati,
r1=b— Az, = Az — Az = A(x — 1) = AeW .
@ GE s cCastecnou pivotaci feSime soustavu,
AeM) =y,

ziskame aproximaci é() chyby Feseni e(1).

@ Pouzijeme ¢ ke zpFesnéni feden,
To = X1 + é(l) .

@ Lze iterovat.

® Zpresnujeme feseni? Pohledy - pfima a zpétna chyba.
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Iteracni zpresnéni Gaussovy eliminace

Dvé moznosti

o Mixed precision iterative improvement. Pokud ma byt
spoctené feseni xo presnéjsi nez feseni x1 ve smyslu pfimé
chyby, je nutné provadét vypocet rezidua r; se zvySenou
presnosti — lze dosdhnout zpfesnéni feSeni na maximalni
pocet platnych cifer v dané standardni aritmetice.

o Fixed precision iterative improvement. K redukci zpétné
chyby feseni na Groven u je postacuje provadét vSechny
vypoclty ve stejné aritmetice (Skeel 1980), zo presné feseni

AA
(A+AA)zy =b, M ~u+ 0(u?).
o Bézné staci provést jen nékolik iteraci. Jedna iterace zajisti
zpétnou stabilitu vypoctu, tedy xo je jiz zpétné stabilni.



Vypocetni naklady Gaussovy eliminace

viz cvieni

H Operace H celkem H

x 3 5 )
X n®  operaci

win

2

1 1
3 =3
1 1
3N =3
1 1
273

Tabulka: P¥imy chod (v kazdém kroku délime &islem a; ;)

H Operace H celkem H

X 5n2—5n ) )
%n2—1n+1 ~ n” operaci
— n—1
1

Tabulka: Zpétny chod
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Yo

Gaussova eliminace pro velké fidké Glohy

©

Velké tidké matice — mnoho nulovych prvkd.

o O Fidké matici mluvime, je-li vyhodné pouzit struktury pro
ukladani pouze nenulovych prvkl matice
(Setfi-li to pamét a urychluje vypocet).

©

Matici, ktera neni ridka, budeme fikat husta.
o Motivace pivotace miize byt dvoji:
o numerickd stabilita,

o omezeni zaplnéni.
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Zaplnéni matice pri Gaussové eliminaci
P¥iklad
Dana A s nasledujici strukturou nenulovych prvki

Pomoci permutacni matice P, Ize matici A transformovat na
matici B, B = PAP”, s nasledujici strukturou

e/
Il
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Zaplnéni matice pri Gaussové eliminaci

Ptiklad — pokracovani |
o Soustava rovnic
Az =b < PT'APz=b <« By=b,

kde z = Py. Obé soustavy se li$i pouze pofadim rovnic a
poradim hledanych neznamych.

o Soustavas A — po prvnim kroku je A(Y) obecné husta,
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Zaplnéni matice pri Gaussové eliminaci

Ptiklad — pokracovani Il

o Pocet nenulovych prvkii A() vzroste oproti A
z 3n —2 na n>—n+1.

o P¥iklad: n = 10, double precision (64 bitii na &islo). Pak
o A ...23 megabyta,
o AWM 7450 gigabytd.

o Resime-li soustavu s B bez pivotace, sta&i 8(3n — 2) bytd.
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Ridkost, zaplnéni, stabilita

o Ridkosti matic Ize vyuzit ke zmenseni velikosti potiebné
paméti i ke zmenseni poctu provadénych operaci. Podstatné
u velkych matic.

o Obecné se snazime nalézt permutacni matice P, (Q takové,
aby v LU rozkladu matice B = PAQT dochéazelo k malému
zaplnéni a vypocet byl zaroven rozumné stabilni.

o Snaha zajistit numericky stabilni vypocet pomoci vhodné
pivotace miize pusobit (a asto také piisobi) proti snaze
minimalizovat zaplnéni,

numericka stabilita x zaplnéni.
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Srovnani LU a QR rozkladu pro feSeni soustav rovnic

Srovnani z nékolika hledisek

o Stabilita.

o LU rozklad ... podminéné zpétné stabilni,
o QR rozklad ...zpétné stabilni.
o Vypocetni naklady. Algoritmy pro husté matice:
o LU rozklad ...2/3n? aritmetickych operaci,
o QR rozklad ...4/3n? aritmetickych operaci.
o Zaplnéni. Casto rozhodujici kritérium.

o Témér vyhradné LU rozklad.
o U QR nejsme schopni udrzet faktory @@ a R Fidké.
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Cviceni

4.1 Uvazujme eliminaéni matici M}, € C"*™. Ukazte, Ze
-1 T
Mk =1 — mgeég .

4.2 Necht M, ..., M,_; jsou elimina¢ni matice. Dokazte, ze plati
n—1
MiMyMs ... My =1+ me].
i=1

4.3 Necht A € C"*". Sestrojte permutacni matici P takovou, ze
zaménuje i-ty a j-ty fadek matice A. Ukazte, jak Ize pomoci
P zaménit i-ty a j-ty sloupec matice A.
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Cviceni
4.4 Pouzijte Gaussovu eliminaci s pivotaci na matici

1 0 0 01
-1 1 0 01
-1 -1 1 0 1
-1 -1 -1 11
-1 -1 -1 -1 1

Sledujte velikosti prvki ve vznikajici horni trojihelnikové
matici U.

4.5 Necht A € C™*" je matice hermitovska pozitivné definitni.
Ukazte pomoci blokového rozdélen{

kde Ay je hlavni submatice obsahujici prvnich k radki a
sloupcli matice A, Ze A je silné regularni.



Cviceni

4.6 Pouzijte standardnich scitacich vzorci
n 1 n
Y k=-nn+1) a Z n(2n+1)(n +1)
k=1 2 k=1

k tomu, abyste ukazali, jaka je vypocletni narocnost primého
chodu Gaussovy eliminace a zpétného chodu Gaussovy
eliminace.
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