
Úlohy nejmenších čtverců

1



Problémy nejmenších čtverců Ax ≈ b

Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být
jednoznačné.

Často má smysl hledat x tak, že

Ax ≈ b.

V jakém smyslu má být Ax blízké vektoru b?

Příklad: A reprezentuje matematický model, b jsou
naměřené hodnoty. Cíl: najít původní data x.

Nepřesnosti v datech (A, b) → chceme zohlednit při volbě
metody pro nalezení vhodného vektoru x.

Interpretace ≈ není jednoznačná, závisí na typu problému.
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Matematická formulace

Dáno: A ∈ Cn×m, b ∈ Cn.

n > m → přeurčená úloha
n < m → nedourčená úloha.

Pro zjednodušení výkladu → n ≥ m.

Motivace 1: Předpokládejme, že chybami je zatížen pouze b.
Cíl: nalézt co nejmenší změnu f pravé strany b tak, že x je
řešením soustavy

Ax = b+ f,

velikost změny f měříme euklidovskou normou vektoru.

Jinak řečeno: hledáme x, které minimalizuje normu rezidua

f = b−Ax .
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Problém nejmenších čtverců (LS)

Definice: Problém nejmenších čtverců
Nechť A ∈ Cn×m, b ∈ Cn . Problémem nejmenších čtverců (LS)
budeme nazývat úlohu určení x ∈ Cm, které minimalizuje

‖b−Ax‖.

Ekvivalentně

min
f
‖ f ‖ za podmínky Ax = b+ f .

Zkratka LS pochází z anglického least squares (minimalizuje
se odmocnina ze součtu kvadrátů prvků rezidua).

Ve statistice bývá problém nejmenších čtverců nazýván úlohou
lineární regrese.
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Úplný problém nejmenších čtverců (TLS)

Často nutné uvažovat chyby v b (pozorování) i v A (chyba
modelu). Hledáme co nejmenší změnu E matice A a co
nejmenší změnu f vektoru b tak, že x je řešením soustavy

(A+ E)x = b+ f .

Velikost změny měříme Frobeniovou normou matice [f,E].

Definice: Úplný problém nejmenších čtverců
Nechť A ∈ Cn×m, b ∈ Cn . Úplným problémem nejmenších
čtverců nazveme úlohu určení x ∈ Cm tak, aby platilo

min
f,E
‖[f,E]‖F za podmínky (A+ E)x = b+ f.

Total least squares, ortogonální regrese (statistika).
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Jde o unitárně invariantní problémy

Euklidovská norma vektoru i Frobeniova norma matice jsou
unitárně invariantní.

Přenásobíme-li například

Ax = b+ f

unitární P zleva pak

‖Pf‖ = ‖f‖ ,

tj. velikost hledaných změn pravé strany potřebných
k dosažení rovností nezmění, řešení se nezmění.

Dále jen problém nejmenších čtverců (TLS viz skripta).
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Existence řešení problému nejmenších čtverců

Ax = b má řešení ⇔ b ∈ R(A) = span{a1, . . . , am}.

b /∈ R(A) ⇒ soustava není řešitelná v klasickém smyslu.

Hledáme x, které minimalizuje euklidovskou normu rezidua
‖b−Ax‖ ⇔ hledáme nejlepší aproximaci b v R(A).

Tato aproximace je dána ortogonální projekcí b na R(A) →
označení b|R(A).

Věta: Existence řešení problému nejmenších čtverců
Nechť A ∈ Cn×m, b ∈ Cn . Vektor x je řešením problému
nejmenších čtverců právě tehdy, když

Ax = b|R(A) , ‖b−Ax‖ = ‖b|N (A∗)‖ .

�
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Jednoznačnost

Sloupce A lineárně nezávislé ⇒ ∃! x tak, že Ax = b|R(A).

Sloupce A lineárně závislé → b|R(A) lze vyjádřit pomocí
sloupců A nekonečně mnoha způsoby:
x je řešení ⇒ i x+ z, z ∈ N (A), je řešení.

Zahrnutí z ∈ N (A) do řešení problému nejmenších čtverců
nepřispívá ke snížení normy rezidua ⇒ je vhodné uvažovat
pouze řešení, která složku z N (A) neobsahují.

Následující věta → takové řešení je pouze jedno a je ze všech
možných řešení LS problému minimálním v normě.
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Řešení LS minimální v normě

Věta: Řešení LS minimální v normě
Nechť A ∈ Cn×m, b ∈ Cn . Potom existuje právě jedno řešení x
problému nejmenších čtverců minimální v normě a je dáno vztahy

Ax = b|R(A) a x ∈ R(A∗) .

�
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Řešení problému nejmenších čtverců
a soustava normálních rovnic

Věta
Nechť A ∈ Cn×m, b ∈ Cn . x je řešením problému nejmenších
čtverců právě tehdy, je-li řešením soustavy normálních rovnic,

A∗Ax = A∗b .

�
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Soustava normálních rovnic
Poznámky

Má-li matice A plnou sloupcovou hodnost, je matice A∗A
regulární a soustava normálních rovnic má jednoznačné řešení,

x = (A∗A)−1A∗b ,

neboli x = A†b.

Jak uvidíme dále, má vyjádření řešení pomocí pseudoinverze
obecnou platnost.
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Přehled metod pro řešení LS
A s plnou sloupcovou hodností

Předpoklad: A ∈ Cn×m, n ≥ m,

rank(A) = m.

Problém nejmenších čtverců má pak jednoznačné řešení
(nemusíme tudíž hledat řešení minimální v normě).

Tři základní metody:

Řešení LS pomocí QR rozkladu.

Řešení LS pomocí soustavy normálních rovnic.

Řešení LS pomocí rozšířené soustavy rovnic.
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Řešení problému nejmenších čtverců
pomocí QR rozkladu

LS je unitárně invariantní, je-li U unitární

‖b−Ax‖ = ‖U(b−Ax)‖.

Využijeme QR rozklad matice A,

A = QR , Q ∈ Cn×n , R ∈ Cn×m ,

min
x
‖b−Ax‖ = min

x
‖b−QRx‖ = min

x
‖Q∗b−Rx‖.

A má plnou sloupcovou hodnost ⇒

R =
[
R̂
0

]
,

kde R̂ ∈ Cm×m je regulární horní trojúhelníková.
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Řešení problému nejmenších čtverců
pomocí QR rozkladu

Označíme-li

Q = [q1, . . . , qm|qm+1, . . . , qn] ≡ [Qm|Vm] ,

Hledáme řešení ekvivalentního problému,

Q∗b−Rx =
[
Q∗mb
V ∗mb

]
−
[
R̂
0

]
x =

[
Q∗mb− R̂x

V ∗mb

]
.

Volbou x lze ovlivnit pouze prvních m prvků vektoru rezidua,
a hledané x je řešením soustavy

R̂ x = Q∗mb ,

přičemž
min

x
‖b−Ax‖ = ‖V ∗mb‖ .
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Praktická realizace
Aplikujeme QR rozklad na rozšířenou matici [A, b].

Po aplikaci m Householderových reflexí dostáváme

Hm . . . H1 [A, b] =
[
R̂H cH

0 dH

]
.

Potom xH = R̂−1
H cH a ‖b−AxH‖ = ‖dH‖.

Aplikací MGS na matici [A, b] získáme obdobně

[A, b] = [Qm, q̃]
[
R̂G cG

0 dG

]
.

Řešení opět získáme jako xG = R̂−1
G cG a ‖b−AxG‖ = dG.

Pokud při užití Householderových reflexí neukládáme bázi,
jsou oba postupy přibližně stejně drahé.

Björck a Paige, překvapující výsledek: zpětná chyba výpočtu
matic R̂H a R̂G je pro oba postupy srovnatelná.
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Řešení problému nejmenších čtverců
pomocí soustavy normálních rovnic

A má plnou sloupcovou hodnost → A∗A je regulární,
hermitovská, pozitivně definitní ⇒ řešení x je jednoznačné →
Choleského rozklad či metoda sdružených gradientů.

rank(A) = m → řešení soustavy normálních rovnic je
ekvivalentní s řešením soustavy vzniklé z QR rozkladu

A∗Ax = A∗b ⇐⇒ R∗Rx = R∗Q∗b

⇐⇒ R̂∗R̂ x = R̂∗Q∗mb

⇐⇒ R̂x = Q∗mb .

R̂∗R̂ je Choleského rozklad matice A∗A.

Výpočet pomocí soustavy normálních rovnic může být
výhodný např. tehdy, když je n� m a m je malé.

Pokud A velká → iterační metody, násobení A∗Av
realizujeme postupně jako A∗(Av).
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Řešení problému nejmenších čtverců
pomocí soustavy normálních rovnic

Nevýhoda → nárůst čísla podmíněnosti,

κ(A) = σ1(A)
σm(A) ,

pak pro matici soustavy normálních rovnic platí

κ(A∗A) = σ1(A∗A)
σm(A∗A) =

(
σ1(A)
σm(A)

)2
= κ2(A) .

Možné numerické problémy, výpočet pomocí soustavy
normálních rovnic bezpečný v případě

κ2(A)� 1
ε
.
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Řešení problému nejmenších čtverců
pomocí rozšířené soustavy rovnic

rank(A) = m → x je jednoznačné řešení Ax = b|R(A) a platí

δ ≡ b−Ax = b− b|R(A) ∈ N (A∗) ⇒ A∗δ = 0 .

δ = b−Ax lze zapsat maticově

[
I A

] [ δ
x

]
= b .

Dohromady [
I A
A∗ 0

] [
δ
x

]
=
[
b
0

]
,

máme rozšířenou soustavu rovnic, získali jsme soustavu se
čtvercovou hermitovskou maticí dimenze (m+ n)× (m+ n),
tzv. sedlobodová matice.
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Řešení problému nejmenších čtverců
pomocí rozšířené soustavy rovnic

Lemma
Uvažujme tzv. sedlobodovou matici

C =
[
B A
A∗ 0

]
,

kde B ∈ Cn×n je hermitovská pozitivně definitní a A ∈ Cn×m,
n ≥ m, má plnou sloupcovou hodnost. Potom je C je regulární,
hermitovská a indefinitní. �
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Řešení problému nejmenších čtverců
pomocí rozšířené soustavy rovnic - shrnutí

Věta
Nechť A ∈ Cn×m, n ≥ m, b ∈ Cn a nechť A = m. Řešení x
problému nejmenších čtverců lze nalézt řešením rozšířené soustavy[

I A
A∗ 0

] [
δ
x

]
=
[
b
0

]

se sedlobodovou maticí → je regulární, hermitovská a indefinitní.

Soustavy s indefinitními maticemi mohou být velmi obtížně
řešitelné. I přesto může být tento postup výpočtu v některých
případech úspěšný.
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Řešení problému nejmenších čtverců
obecný případ

Singulární rozklad A umožní nalézt řešení minimální v normě pro
obecný problém nejmenších čtverců.

Věta
Nechť A ∈ Cn×m, b ∈ Cn, A = UrΣrV

∗
r je ekonomický singulární

rozklad matice A. Pak

x = VrΣ−1
r U∗r b = A†b

představuje řešení problému nejmenších čtverců minimální
v normě. �
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Cvičení

6.2 Nechť má matice A plnou sloupcovou hodnost m, A = QR je
její QR rozklad a R̂ je regulární horní trojúhelníkový blok
matice R. Dokažte

σ1(R̂) = σ1(A) aσm(R̂) = σm(A).

6.3 Ukažte, že sedlobodová matice

C =
[
B A
A∗ 0

]
,

kde B ∈ Cn×n je hermitovská pozitivně definitní a
A ∈ Cn×m, n ≥ m, je regulární.
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